TWM599954U - Resume scoring system - Google Patents

Resume scoring system Download PDF

Info

Publication number
TWM599954U
TWM599954U TW109205223U TW109205223U TWM599954U TW M599954 U TWM599954 U TW M599954U TW 109205223 U TW109205223 U TW 109205223U TW 109205223 U TW109205223 U TW 109205223U TW M599954 U TWM599954 U TW M599954U
Authority
TW
Taiwan
Prior art keywords
history
model
training
content
resume
Prior art date
Application number
TW109205223U
Other languages
Chinese (zh)
Inventor
林志豪
鄒尚軒
羅宏瑜
吳浣青
馮國鈞
林佳妤
邱國豪
曾文忻
宋政隆
王俊權
Original Assignee
中國信託商業銀行股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國信託商業銀行股份有限公司 filed Critical 中國信託商業銀行股份有限公司
Priority to TW109205223U priority Critical patent/TWM599954U/en
Publication of TWM599954U publication Critical patent/TWM599954U/en

Links

Images

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

一種履歷評分系統,包含多個正規表示式、一向量生成模型,及一評分模型,該每一正規表示式具有一預定關鍵字,該向量生成模型用以根據一文字內容產生一文本向量,該評分模型根據該等正規表示式產生的結果和該向量生成模型產生的文本向量產生一分數,當接收到相關於一求職者的一履歷時,對於每一正規表示式,該系統根據該履歷利用該正規表示式獲得一包括該履歷中對應於該正規表示式之預定關鍵字之關鍵字內容的關鍵字組合,並利用該向量生成模型產生一對應該履歷的文本向量,且根據每一關鍵字組合及該文本向量,利用該評分模型產生一分數。A resume scoring system includes a plurality of regular expressions, a vector generation model, and a scoring model. Each regular expression has a predetermined keyword. The vector generation model is used to generate a text vector based on a text content. The model generates a score based on the results generated by the regular expressions and the text vector generated by the vector generation model. When a resume related to a job applicant is received, for each regular expression, the system uses the resume according to the resume. The regular expression obtains a keyword combination including the keyword content of the predetermined keyword in the resume corresponding to the regular expression, and uses the vector generation model to generate a text vector corresponding to the resume, and according to each keyword combination And the text vector, using the scoring model to generate a score.

Description

履歷評分系統Resume scoring system

本新型是有關於一種辦公室自動化系統,特別是指一種根據履歷自動產生評分的系統。This new model relates to an office automation system, in particular to a system that automatically generates scores based on resumes.

在現今社會中,一般企業進行徵才作業時,第一關多會以求職者所提供的履歷作為依據進行篩選,然而對於徵才企業而言,當收到數以萬計的履歷時,多是由人資部門逐一審核每份履歷內容以篩選適合的求職者,此一作法不僅勞心勞力,同時亦有可能由於各人見解不同或是人為疏失,造成履歷誤篩選的問題。In today's society, when general companies conduct job recruitment, the first pass will be based on the resume provided by job applicants. However, for talent recruitment companies, when they receive tens of thousands of resumes, they often The human resources department reviews the content of each resume one by one to select suitable job applicants. This method is not only laborious, but also may cause the problem of erroneous screening of resumes due to different opinions or human errors.

有鑑於此,勢必需要提出一種全新解決方案,以解決目前審核履歷過度耗費時間人力成本以及容易產生履歷誤篩選的問題。In view of this, it is necessary to propose a new solution to solve the current problems of excessive time-consuming and labor-intensive review of resumes and the possibility of misselection of resumes.

因此,本新型的目的,即在提供一種協助評估履歷的履歷評分系統。Therefore, the purpose of the present invention is to provide a resume scoring system that assists in evaluating resumes.

於是,本新型履歷評分系統,用以對一履歷產生評分,並經由一通訊網路連接一管理端,該履歷包含一求職者填寫的一學經歷內容,及一個人介紹的自傳內容,該履歷評分系統包含一通訊模組、一儲存模組,及一處理模組。Therefore, the new resume scoring system is used to generate a score on a resume and connect it to a management terminal via a communication network. The resume includes the content of an academic experience filled in by a job applicant and the autobiographical content introduced by a person. The resume scoring system It includes a communication module, a storage module, and a processing module.

該通訊模組連接至該通訊網路,該儲存模組儲存有多個正規表示式、一向量生成模型,及一評分模型,該每一正規表示式具有一預定關鍵字,該向量生成模型用以根據一由文字構成的內容產生一文本向量,該評分模型依據該正規表示式產生的結果和該向量生成模型產生的文本向量產生一分數。The communication module is connected to the communication network. The storage module stores a plurality of regular expressions, a vector generation model, and a scoring model. Each regular expression has a predetermined keyword, and the vector generation model is used for A text vector is generated based on a content composed of text, and the scoring model generates a score based on the result of the regular expression and the text vector generated by the vector generation model.

該處理模組電連接該通訊模組及該儲存模組,其中,當該處理模組透過該通訊模組接收到來自該管理端且該相關於該求職者的履歷時,對於每一正規表示式,該處理模組根據該學經歷內容,利用該正規表示式獲得該學經歷內容中對應於該正規表示式之預定關鍵字的關鍵字內容,其中每一正規表示式之預定關鍵字及其對應的關鍵字內容構成一對應的關鍵字組合,並根據該自傳內容,利用該向量生成模型產生一對應該自傳內容的文本向量,以及根據每一關鍵字組合及該文本向量,利用該評分模型產生一對應該履歷的分數。The processing module is electrically connected to the communication module and the storage module, wherein, when the processing module receives the resume related to the job applicant from the management terminal through the communication module, for each regular expression According to the content of the learning experience, the processing module uses the formal expression to obtain the keyword content corresponding to the predetermined keyword of the formal expression in the learning experience content, wherein the predetermined keyword of each formal expression and its The corresponding keyword content constitutes a corresponding keyword combination, and according to the autobiographical content, the vector generation model is used to generate a text vector corresponding to the autobiographical content, and the scoring model is used according to each keyword combination and the text vector Generate a score corresponding to the resume.

本新型的功效在於:藉由該處理模組產生對應該履歷的分數,相關工作人員可參考分數篩選求職者,不僅節省審核每份履歷的時間人力成本,同時避免人為因素所導致的履歷誤篩選問題。The effect of this new model is: through the processing module to generate scores corresponding to the resumes, relevant staff can refer to the scores to screen job applicants, which not only saves the time and labor cost of reviewing each resume, but also avoids misselection of resumes caused by human factors problem.

在本新型被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that in the following description, similar elements are represented by the same numbers.

參閱圖1,本新型履歷評分系統的一第一實施例,由一伺服端1來實施,該伺服端1透過一通訊網路100連接至一管理端2,並包含一通訊模組11、一儲存模組12,及一處理模組13。Referring to FIG. 1, a first embodiment of the new history scoring system is implemented by a server terminal 1. The server terminal 1 is connected to a management terminal 2 through a communication network 100, and includes a communication module 11 and a storage Module 12, and a processing module 13.

該通訊模組11透過該通訊網路100連接至該管理端2。The communication module 11 is connected to the management terminal 2 through the communication network 100.

該儲存模組12儲存有多個正規表示式、多筆歷史履歷、一向量生成模型,及一評分模型,該每一正規表示式具有一預定關鍵字,該每一歷史履歷具有一相關於一歷史求職者個人介紹的自傳內容、多筆相關於該歷史求職者學經歷的關鍵字組合、一相關於該自傳內容的文本向量,及一相關於該歷史履歷的分數,該向量生成模型用以根據一由文字構成的內容產生一文本向量,該評分模型依據該正規表示式產生的結果和該向量生成模型產生的文本向量產生一分數。The storage module 12 stores multiple regular expressions, multiple historical histories, a vector generation model, and a scoring model. Each regular expression has a predetermined keyword, and each historical record has a correlation with a The autobiographical content introduced by the historical job seeker, multiple keyword combinations related to the historical job seeker’s learning experience, a text vector related to the autobiographical content, and a score related to the historical resume. The vector generation model is used A text vector is generated based on a content composed of text, and the scoring model generates a score based on the result of the regular expression and the text vector generated by the vector generation model.

該處理模組13電連接該通訊模組11及該儲存模組12,並根據一相關於一求職者的履歷產生一對應該履歷的分數,其中該履歷包含該求職者填寫的一學經歷內容,及一相關於該求職者個人介紹的自傳內容。The processing module 13 is electrically connected to the communication module 11 and the storage module 12, and generates a score corresponding to a resume based on a resume related to a job applicant, wherein the resume contains the content of an academic experience filled in by the job applicant , And an autobiographical content related to the job applicant’s personal introduction.

參閱圖2、圖3,及圖4,該第一實施例所執行的一履歷評分方法,包含一向量生成模型訓練程序、一評分模型訓練程序,及一評分程序。Referring to FIG. 2, FIG. 3, and FIG. 4, a history scoring method implemented in the first embodiment includes a vector generation model training program, a scoring model training program, and a scoring program.

參閱圖2,該向量生成模型訓練程序包含一步驟301、一步驟302、一步驟303、一步驟304,及一步驟305,並說明該處理模組13如何根據該等歷史履歷調整精進該向量生成模型。Referring to FIG. 2, the vector generation model training program includes a step 301, a step 302, a step 303, a step 304, and a step 305, and explains how the processing module 13 adjusts and refines the vector generation according to the historical histories model.

在該步驟301中,該處理模組13根據該等歷史履歷的自傳內容及文本向量,利用一深度學習演算法,建立一用以根據一由文字構成的內容產生一文本向量的第二訓練模型,例如BERT或XLNet等訓練模型。In this step 301, the processing module 13 uses a deep learning algorithm according to the autobiographical content and text vectors of the historical histories to establish a second training model for generating a text vector based on a content composed of text , Such as training models such as BERT or XLNet.

在該步驟302中,該處理模組13根據每一歷史履歷所對應的自傳內容,利用該第二訓練模型產生分別對應每一歷史履歷的多個訓練文本向量。In this step 302, the processing module 13 uses the second training model to generate a plurality of training text vectors corresponding to each historical record according to the autobiographical content corresponding to each historical record.

在該步驟303中,對於每一歷史履歷,該處理模組13判斷對應該歷史履歷的該文本向量及該訓練文本向量的相似度是否大於一預設閥值。在該第一實施例中,該處理模組13根據一相似度比對演算法,例如餘弦相似度(cosine similarity),獲得該歷史履歷的該文本向量及該訓練文本向量之間的相似度。當該處理模組13判斷相似度並未大於該預設閥值時,該處理模組13調整該第二訓練模型並重新進行該步驟302,亦即該步驟304,當該處理模組13判斷相似度大於該預設閥值時,該處理模組13將該第二訓練模型作為用以根據一由文字構成的內容產生一文本向量的該向量生成模型,亦即該步驟305。In this step 303, for each historical record, the processing module 13 determines whether the similarity between the text vector and the training text vector corresponding to the historical record is greater than a preset threshold. In the first embodiment, the processing module 13 obtains the similarity between the text vector of the historical history and the training text vector according to a similarity comparison algorithm, such as cosine similarity. When the processing module 13 determines that the similarity is not greater than the preset threshold, the processing module 13 adjusts the second training model and performs step 302, that is, step 304, again, when the processing module 13 determines When the similarity is greater than the preset threshold, the processing module 13 uses the second training model as the vector generation model for generating a text vector based on a content composed of text, that is, step 305.

參閱圖3,該評分模型訓練程序包含一步驟401、一步驟402、一步驟403、一步驟404,及一步驟405,並說明該處理模組13如何根據該等歷史履歷調整精進該評分模型。Referring to FIG. 3, the scoring model training procedure includes a step 401, a step 402, a step 403, a step 404, and a step 405, and illustrates how the processing module 13 adjusts and refines the scoring model according to the historical histories.

在該步驟401中,該處理模組13將所儲存的多筆歷史履歷區分為一訓練子集及一測試子集,其中該訓練子集中所包括的該等歷史履歷與該測試子集中所包括的該等歷史履歷,其數量可以相等亦可以有所差別。In the step 401, the processing module 13 divides the stored history history into a training subset and a test subset, wherein the history history included in the training subset and the test subset included The number of these historical histories can be equal or different.

在該步驟402中,該處理模組13根據該訓練子集中每一歷史履歷所對應的該關鍵字組合、該文本向量,及該分數,利用一機器學習演算法,例如邏輯斯迴歸(Logistic Regression)、隨機森林(Random Forest)、梯度提升技術(Gradient Boosting)、人工神經網路(Artificial Neural Network)等等,建立一根據該等關鍵字組合及該文本向量產生一訓練分數的第一訓練模型。In this step 402, the processing module 13 uses a machine learning algorithm, such as a logistic regression (Logistic Regression) according to the keyword combination, the text vector, and the score corresponding to each historical record in the training subset. ), Random Forest, Gradient Boosting, Artificial Neural Network, etc., to establish a first training model that generates a training score based on the keyword combinations and the text vector .

在該步驟403中,該處理模組13根據該訓練子集及該測試子集中每一歷史履歷所對應的該關鍵字組合、該文本向量,及該分數,判斷該第一訓練模型是否過度擬合或擬合不足,當判斷該第一訓練模型過度擬合或擬合不足時,該處理模組13調整該第一訓練模型並重新判斷調整後的該第一訓練模型是否過度擬合或擬合不足,亦即該步驟404,當判斷該第一訓練模型並未過度擬合及擬合不足時,該處理模組13將該第一訓練模型作為依據該正規表示式產生的結果和該向量生成模型產生的文本向量產生一分數的該評分模型,亦即該步驟405。In step 403, the processing module 13 determines whether the first training model is over-engineered according to the keyword combination, the text vector, and the score corresponding to each historical record in the training subset and the test subset. When it is judged that the first training model is over-fitting or under-fitting, the processing module 13 adjusts the first training model and re-determines whether the adjusted first training model is over-fitting or under-fitting. Insufficient combination, that is, in step 404, when it is determined that the first training model is not over-fitted or under-fitted, the processing module 13 uses the first training model as the result generated according to the regular expression and the vector The text vector generated by the generative model generates a score of the scoring model, that is, step 405.

參閱圖4,該評分程序包含一步驟501、一步驟502、一步驟503,及一步驟504,並說明該處理模組13如何根據該履歷產生對應該履歷的該分數。Referring to FIG. 4, the scoring procedure includes a step 501, a step 502, a step 503, and a step 504, and illustrates how the processing module 13 generates the score corresponding to the history according to the history.

在該步驟501中,當該處理模組13透過該通訊模組11接收到該來自該管理端2且相關於該求職者的該履歷時,對於每一正規表示式,該處理模組13根據該履歷的該學經歷內容利用該正規表示式獲得該學經歷內容中對應於該正規表示式之預定關鍵字的關鍵字內容,其中每一正規表示式之預定關鍵字及其對應的關鍵字內容構成一對應的關鍵字組合。在該第一實施例中,該等正規表示式之預定關鍵字分別為「最高學歷」、「工作經歷」、「英文能力」,則該處理模組13根據該等正規表示式所獲得的關鍵字內容分別對應為「成功大學電機系碩士」、「台積電研發部門3年」、「多益測驗870分」,而「最高學歷:成功大學電機系碩士」為一對應「最高學歷」的關鍵字組合,類似地,對應「工作經歷」、「英文能力」的關鍵字組合分別為「工作經歷:台積電研發部門3年」、「英文能力:多益測驗870分」。In step 501, when the processing module 13 receives the resume related to the job applicant from the management terminal 2 through the communication module 11, for each regular expression, the processing module 13 according to The academic experience content of the resume uses the formal expression to obtain the keyword content corresponding to the predetermined keyword of the formal expression in the academic experience content, wherein the predetermined keyword of each formal expression and its corresponding keyword content Form a corresponding keyword combination. In the first embodiment, the predetermined keywords of the formal expressions are "highest education", "work experience", and "English ability". Then the processing module 13 obtains the key according to the formal expressions. The content of the words corresponds to "Master of Electrical Engineering of Chenggong University", "3 years of TSMC R&D Department", and "870 points in the TOEIC test", and "Highest Education: Master of Electrical Engineering of Chenggong University" is a keyword corresponding to the "highest degree" Similarly, the keyword combinations corresponding to "work experience" and "English ability" are "work experience: 3 years in TSMC R&D department" and "English ability: TOEIC test 870 points" respectively.

在該步驟502中,該處理模組13根據該履歷的該自傳內容,利用該向量生成模型產生一對應該自傳內容的文本向量。值得一提的是,該向量生成模型可為該步驟305所確認的該向量生成模型。In step 502, the processing module 13 uses the vector generation model to generate a text vector corresponding to the autobiographical content according to the autobiographical content of the history. It is worth mentioning that the vector generation model may be the vector generation model confirmed in step 305.

在該步驟503中,該處理模組13根據每一關鍵字組合及該文本向量,利用該評分模型產生一對應該履歷的分數。值得一提的是,該評分模型可為該步驟405所確認的該評分模型。In step 503, the processing module 13 uses the scoring model to generate a score corresponding to the history according to each keyword combination and the text vector. It is worth mentioning that the scoring model may be the scoring model confirmed in step 405.

在該步驟504中,該處理模組13儲存該履歷的該自傳內容、每一關鍵字組合、該文本向量,及該分數為該等歷史履歷之其中一者。藉此,可累積該等歷史履歷之數量,以使該評分模型及該向量生成模型之訓練樣本更多元,藉由持續追蹤及調整訓練和測試樣本來精進所獲得之該評分模型及該向量生成模型。In the step 504, the processing module 13 stores the autobiographical content of the history, each keyword combination, the text vector, and the score is one of the history history. In this way, the number of historical histories can be accumulated to make the training samples of the scoring model and the vector generation model more diverse, and the obtained scoring model and the vector can be refined by continuously tracking and adjusting the training and testing samples Generate the model.

參閱圖5,本新型履歷評分系統的一第二實施例類似於該第一實施例,其相同之處不再贅述,其相異之處在於,在該第二實施例中,該儲存模組12還儲存有一用以根據一由文字構成的內容產生一摘要的摘要生成模型,而該儲存模組12所儲存的該每一歷史履歷還具有一相關於所對應之歷史履歷的該自傳內容的摘要,而在該步驟504前還包含一摘要程序,說明該處理模組13如何根據該履歷的自傳內容,產生一對應該履歷之自傳內容的摘要,並包括一步驟601、一步驟602、一步驟603、一步驟604、一步驟605、及一步驟606。Referring to FIG. 5, a second embodiment of the new resume scoring system is similar to the first embodiment, and the similarities are not repeated here. The difference is that in the second embodiment, the storage module 12 also stores a summary generation model for generating a summary based on a content composed of text, and each history history stored in the storage module 12 also has a history related to the autobiographical content of the corresponding history history Abstract, and before step 504, a summary program is also included, explaining how the processing module 13 generates a summary corresponding to the autobiographical content of the resume based on the autobiographical content of the resume, and includes a step 601, a step 602, and a step 601. Step 603, a step 604, a step 605, and a step 606.

在該步驟601中,該處理模組13根據該等歷史履歷的該等自傳內容及該等摘要,利用一深度學習演算法,例如遞迴神經網路,建立一根據一由文字構成的內容產生一摘要的訓練模型,例如GPT-2或Transformer等模型。In this step 601, the processing module 13 uses a deep learning algorithm, such as a recurrent neural network, based on the autobiographical content and the abstracts of the historical histories to create a text-based content generation An abstract training model, such as GPT-2 or Transformer.

在該步驟602中,該處理模組13根據每一歷史履歷所對應的自傳內容,利用該訓練模型產生分別對應每一歷史履歷的多個訓練摘要。In step 602, the processing module 13 uses the training model to generate a plurality of training summaries corresponding to each historical record according to the autobiographical content corresponding to each historical record.

在該步驟603中,對於每一歷史履歷,該處理模組13判斷對應該歷史履歷的該摘要及該訓練摘要的相似度是否大於另一預設閥值。在本實施例中,該處理模組13利用一相似度比對演算法,例如餘弦相似度(cosine similarity),獲得該歷史履歷的該摘要及該訓練摘要之間的相似度。當判斷相似度並未大於該另一預設閥值時,該處理模組13調整該訓練模型並重新進行該步驟602,亦即該步驟604,當判斷相似度大於該另一預設閥值時,該處理模組13確定該訓練模型為一用以根據一由文字構成的內容產生一摘要的摘要生成模型,亦即該步驟605。In this step 603, for each history history, the processing module 13 determines whether the similarity between the summary and the training summary corresponding to the history history is greater than another preset threshold. In this embodiment, the processing module 13 uses a similarity comparison algorithm, such as cosine similarity, to obtain the similarity between the summary of the history and the training summary. When it is judged that the similarity is not greater than the other preset threshold, the processing module 13 adjusts the training model and re-executes the step 602, that is, the step 604, when it is judged that the similarity is greater than the another preset threshold At this time, the processing module 13 determines that the training model is a summary generation model for generating a summary based on a content composed of text, that is, step 605.

在該步驟606中,當該處理模組13透過該通訊模組11接收到該來自該管理端2且相關於該求職者的履歷時,該處理模組13根據該履歷的該自傳內容,利用該摘要生成模型產生一對應該自傳內容的摘要。In step 606, when the processing module 13 receives the resume related to the job applicant from the management terminal 2 through the communication module 11, the processing module 13 uses the autobiographical content of the resume The abstract generation model generates a pair of abstracts that should be autobiographical content.

此外,在該第二實施例中,在該步驟504中,該處理模組13儲存該履歷的該自傳內容、每一關鍵字組合、該文本向量、該分數,及該摘要為該等歷史履歷之其中一者。In addition, in the second embodiment, in step 504, the processing module 13 stores the autobiographical content of the history, each keyword combination, the text vector, the score, and the summary is the history history One of them.

綜上所述,本新型履歷評分系統,藉由該處理模組13根據該等正規表示式、該向量生成模型,及該評分模型產生一對應該履歷的分數,藉此,能夠節省相關工作人員對於每一履歷進行評估篩選的時間人力成本,同時由於統一藉由該處理模組根據該評分模型產生該分數,一併避免了由於各人見解相異或是人為失誤所造成的問題,例如履歷誤篩選或是誤評分,此外,藉由該處理模組13根據該摘要生成模型產生一對應該自傳內容的摘要,藉此,當審核履歷者對於某些分數的履歷感到興趣時,可透過該摘要迅速地更進一步了解該求職者,進而節省閱讀整份履歷所花費的時間人力成本,故確實能達成本新型的目的。In summary, the new type of resume scoring system uses the processing module 13 to generate scores corresponding to the resume based on the formal expressions, the vector generation model, and the scoring model, thereby saving relevant staff. The time and labor cost for evaluating and screening each resume. At the same time, because the processing module generates the score based on the scoring model, it also avoids problems caused by different opinions or human errors, such as resumes. In addition, the processing module 13 generates a summary corresponding to the autobiographical content according to the summary generation model, so that when the reviewer is interested in the history of certain scores, he can use the The summary quickly learns about the job applicant, and saves the time and labor cost of reading the entire resume, so it can indeed achieve the new purpose of cost.

惟以上所述者,僅為本新型的實施例而已,當不能以此限定本新型實施的範圍,凡是依本新型申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本新型專利涵蓋的範圍內。However, the above-mentioned are only examples of the present model. When the scope of implementation of the present model cannot be limited by this, all simple equivalent changes and modifications made in accordance with the patent scope of the present model application and the contents of the patent specification still belong to This new patent covers the scope.

1:伺服端 100:通訊網路 11:通訊模組 12:儲存模組 13:處理模組 2:管理端 301~305:步驟 401~405:步驟 501~504:步驟 601~606:步驟 1: server 100: Communication network 11: Communication module 12: Storage module 13: Processing module 2: Management side 301~305: steps 401~405: steps 501~504: steps 601~606: steps

本新型的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一方塊圖,說明本新型履歷評分系統的一第一實施例經由一通訊網路連接一管理端; 圖2是一流程圖,說明該第一實施例所執行的一履歷評分方法之一向量生成模型訓練程序; 圖3是一流程圖,說明該第一實施例所執行的該履歷評分方法之一評分模型訓練程序; 圖4是一流程圖,說明該第一實施例所執行的該履歷評分方法之一評分程序;及 圖5是一流程圖,說明一第二實施例所執行的該履歷評分方法之一摘要程序。 Other features and effects of the present invention will be clearly presented in the embodiments with reference to the drawings, among which: Figure 1 is a block diagram illustrating a first embodiment of the new history scoring system connected to a management terminal via a communication network; 2 is a flowchart illustrating a vector generation model training procedure of a resume scoring method executed by the first embodiment; Fig. 3 is a flowchart illustrating a scoring model training procedure of the resume scoring method executed by the first embodiment; 4 is a flowchart illustrating a scoring procedure of the resume scoring method executed by the first embodiment; and FIG. 5 is a flowchart illustrating a summary procedure of the resume scoring method executed by a second embodiment.

1:伺服端 1: server

100:通訊網路 100: Communication network

11:通訊模組 11: Communication module

12:儲存模組 12: Storage module

13:處理模組 13: Processing module

2:管理端 2: Management side

Claims (6)

一種履歷評分系統,用以對一履歷產生評分,並經由一通訊網路連接一管理端,該履歷包含一求職者填寫的一學經歷內容,及一個人介紹的自傳內容,該履歷評分系統包含: 一通訊模組,連接至該通訊網路; 一儲存模組,儲存有多個正規表示式、一向量生成模型,及一評分模型,該每一正規表示式具有一預定關鍵字,該向量生成模型用以根據一由文字構成的內容產生一文本向量,該評分模型依據該正規表示式產生的結果和該向量生成模型產生的文本向量產生一分數;及 一處理模組,電連接該通訊模組及該儲存模組; 其中,當該處理模組透過該通訊模組接收到來自於該管理端的該相關於該求職者的履歷時,對於每一正規表示式,該處理模組根據該學經歷內容利用該正規表示式獲得該學經歷內容中對應於該正規表示式之預定關鍵字的關鍵字內容,其中每一正規表示式之預定關鍵字及其對應的關鍵字內容構成一對應的關鍵字組合,並根據該自傳內容,利用該向量生成模型產生一對應該自傳內容的文本向量,以及根據每一關鍵字組合及該文本向量,利用該評分模型產生一對應該履歷的分數。 A resume scoring system for generating a score on a resume and connecting it to a management terminal via a communication network. The resume includes content of an academic experience filled in by a job applicant and autobiographical content introduced by a person. The scoring system of resume includes: A communication module connected to the communication network; A storage module stores a plurality of regular expressions, a vector generation model, and a scoring model. Each regular expression has a predetermined keyword. The vector generation model is used to generate a vector based on a content composed of text. A text vector, the scoring model generates a score based on the result generated by the regular expression and the text vector generated by the vector generation model; and A processing module, electrically connected to the communication module and the storage module; Wherein, when the processing module receives the resume related to the job applicant from the management terminal through the communication module, for each formal expression, the processing module uses the formal expression according to the content of the academic experience Obtain the keyword content corresponding to the predetermined keyword of the regular expression in the content of the academic experience, wherein the predetermined keyword of each regular expression and its corresponding keyword content constitute a corresponding keyword combination, and according to the autobiography For content, use the vector generation model to generate a text vector corresponding to the autobiographical content, and use the scoring model to generate a score corresponding to the resume based on each keyword combination and the text vector. 如請求項1所述的履歷評分系統,其中,該處理模組將該履歷的該自傳內容、該每一關鍵字組合、該文本向量,及該分數儲存至該儲存模組成一歷史履歷。The history scoring system according to claim 1, wherein the processing module stores the autobiographical content of the history, each keyword combination, the text vector, and the score in the storage module to form a history history. 如請求項2所述的履歷評分系統,其中,該處理模組將該儲存模組將所儲存的多筆歷史履歷區分為一訓練子集及一測試子集,並根據該訓練子集中每一歷史履歷所對應的該關鍵字組合、該文本向量,及該分數,利用一機器學習演算法建立一根據該等關鍵字組合及該文本向量產生一訓練分數的第一訓練模型,且根據該訓練子集及該測試子集中每一歷史履歷所對應的該關鍵字組合、該文本向量,及該分數,判斷該第一訓練模型是否過度擬合或擬合不足,當判斷該第一訓練模型過度擬合或擬合不足時,調整該第一訓練模型並重新判斷是否過度擬合或擬合不足,及當判斷該第一訓練模型並未過度擬合與擬合不足時,將該第一訓練模型作為該評分模型。The history scoring system according to claim 2, wherein the processing module divides the stored history history into a training subset and a test subset by the storage module, and according to each of the training subsets The keyword combination, the text vector, and the score corresponding to the historical resume are used to establish a first training model that generates a training score based on the keyword combination and the text vector using a machine learning algorithm, and based on the training The keyword combination, the text vector, and the score corresponding to each historical record in the subset and the test subset are used to determine whether the first training model is over-fitting or under-fitting. When fitting or underfitting, adjust the first training model and re-judge whether it is overfitting or underfitting, and when it is judged that the first training model is not overfitting or underfitting, the first training model The model serves as the scoring model. 如請求項2所述的履歷評分系統,其中,該處理模組根據儲存於該儲存模組的多筆歷史履歷的自傳內容及文本向量,利用一深度學習演算法建立一用以根據一由文字構成的內容產生一文本向量的第二訓練模型,並根據每一歷史履歷所對應的自傳內容,利用該第二訓練模型產生分別對應每一歷史履歷的多個訓練文本向量,對於每一歷史履歷,該處理模組判斷對應該歷史履歷的該文本向量及該訓練文本向量的相似度是否大於一預設閥值,當判斷相似度並未大於該預設閥值時,調整該第二訓練模型並重新產生該等訓練文本向量及判斷相似度,當判斷相似度大於該預設閥值時,將該第二訓練模型作為該向量生成模型。The history scoring system according to claim 2, wherein the processing module uses a deep learning algorithm to create a document based on the autobiographical content and text vectors of multiple history histories stored in the storage module The constituted content generates a second training model of text vectors, and according to the autobiographical content corresponding to each history history, the second training model is used to generate multiple training text vectors corresponding to each history history. For each history history , The processing module determines whether the similarity between the text vector and the training text vector corresponding to the historical record is greater than a preset threshold, and when it is determined that the similarity is not greater than the preset threshold, adjusts the second training model The training text vectors are regenerated and the similarity is judged. When the similarity is judged to be greater than the preset threshold, the second training model is used as the vector generation model. 如請求項1所述的履歷評分系統,其中,該儲存模組還儲存有一摘要生成模型,該摘要生成模型用以根據一由文字構成的內容產生一摘要,該處理模組根據該自傳內容,利用該摘要生成模型產生一對應該自傳內容的摘要。The resume scoring system of claim 1, wherein the storage module further stores a summary generation model, the summary generation model is used to generate a summary based on a content composed of text, and the processing module is based on the autobiographical content, Use the abstract generation model to generate a pair of autobiographical content abstracts. 如請求項5所述的履歷評分系統,其中,該儲存模組還儲存有多筆歷史履歷,該每一歷史履歷包括所對應之歷史履歷的一自傳內容及一摘要,該處理模組根據該等自傳內容及該等摘要,利用一深度學習演算法建立一根據一由文字構成的內容產生一摘要的訓練模型,並根據每一歷史履歷所對應的自傳內容,利用該訓練模型產生分別對應每一歷史履歷的多個訓練摘要,對於每一歷史履歷,該處理模組判斷對應該歷史履歷的該摘要及該訓練摘要的相似度是否大於另一預設閥值,當判斷相似度並未大於該另一預設閥值時,調整該訓練模型並重新產生該等訓練摘要及判斷相似度,當判斷相似度大於該另一預設閥值時,將該訓練模型作為該摘要生成模型。The history scoring system according to claim 5, wherein the storage module also stores a plurality of history history, each history history includes an autobiographical content and a summary of the corresponding history history, and the processing module according to the According to the autobiographical content and the abstracts, a deep learning algorithm is used to establish a training model that generates an abstract based on a content composed of text, and according to the autobiographical content corresponding to each historical resume, the training model is used to generate a corresponding A plurality of training summaries of a history history, for each history history, the processing module determines whether the similarity of the summary corresponding to the history history and the training summary is greater than another preset threshold. When it is judged that the similarity is not greater than When the other preset threshold value, the training model is adjusted and the training summaries are regenerated and the similarity is judged. When the judgment similarity is greater than the other preset threshold value, the training model is used as the summary generation model.
TW109205223U 2020-04-30 2020-04-30 Resume scoring system TWM599954U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109205223U TWM599954U (en) 2020-04-30 2020-04-30 Resume scoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109205223U TWM599954U (en) 2020-04-30 2020-04-30 Resume scoring system

Publications (1)

Publication Number Publication Date
TWM599954U true TWM599954U (en) 2020-08-11

Family

ID=73004532

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109205223U TWM599954U (en) 2020-04-30 2020-04-30 Resume scoring system

Country Status (1)

Country Link
TW (1) TWM599954U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI776146B (en) * 2020-04-30 2022-09-01 中國信託商業銀行股份有限公司 Resume scoring method and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI776146B (en) * 2020-04-30 2022-09-01 中國信託商業銀行股份有限公司 Resume scoring method and system

Similar Documents

Publication Publication Date Title
CN106339756B (en) Generation method, searching method and the device of training data
US8266098B2 (en) Ranking expert responses and finding experts based on rank
US20190050731A1 (en) Automated commentary for online content
US10783447B2 (en) Information appropriateness assessment tool
CN105247564A (en) Online social persona management
WO2014160282A1 (en) Classifying resources using a deep network
US20210118024A1 (en) Multi-label product categorization
US9536443B2 (en) Evaluating expert opinions in a question and answer system
CN112380427B (en) User interest prediction method based on iterative graph attention network and electronic device
CN113343091A (en) Industrial and enterprise oriented science and technology service recommendation calculation method, medium and program
Kuznetsov et al. Reducing cold start problems in educational recommender systems
Sajeev et al. Effective web personalization system based on time and semantic relatedness
TWM599954U (en) Resume scoring system
Imran et al. A framework to provide personalization in learning management systems through a recommender system approach
Lau et al. A folksonomy-based lightweight resource annotation metadata schema for personalized hypermedia learning resource delivery
Huang et al. Course recommendation model in academic social networks based on association rules and multi-similarity
Do et al. A fuzzy approach to detect spammer groups
Salehi et al. Attribute-based recommender system for learning resource by learner preference tree
US20230088444A1 (en) Unified platform of an artificial intelligence (ai) based test generator and test training system
TWI776146B (en) Resume scoring method and system
Phuong et al. Collaborative filtering by multi-task learning
McNett et al. Recommender systems research and theory in higher education: A systematic literature review.
Liang et al. The research of video resource personalized recommendation system based on education website
US11238411B1 (en) Artificial neural networks-based domain- and company-specific talent selection processes
Bellogín et al. Discovering relevant preferences in a personalised recommender system using machine learning techniques