TWM599917U - Optical image capturing system - Google Patents
Optical image capturing system Download PDFInfo
- Publication number
- TWM599917U TWM599917U TW109201367U TW109201367U TWM599917U TW M599917 U TWM599917 U TW M599917U TW 109201367 U TW109201367 U TW 109201367U TW 109201367 U TW109201367 U TW 109201367U TW M599917 U TWM599917 U TW M599917U
- Authority
- TW
- Taiwan
- Prior art keywords
- lens
- optical axis
- imaging system
- optical
- optical imaging
- Prior art date
Links
Images
Landscapes
- Lenses (AREA)
Abstract
Description
本創作是有關於一種光學成像系統組,且特別是有關於一種應用於電子產品上的小型化光學成像系統組。 This creation is related to an optical imaging system group, and particularly to a miniaturized optical imaging system group applied to electronic products.
近年來,隨著具有攝影功能的可攜式電子產品的興起,光學系統的需求日漸提高。一般光學系統的感光元件不外乎是感光耦合元件(Charge Coupled Device;CCD)或互補性氧化金屬半導體元(Complementary Metal-Oxide Semiconductor Sensor;CMOS Sensor)兩種,且隨著半導體製程技術的精進,使得感光元件的畫素尺寸縮小,光學系統逐漸往高畫素領域發展,因此對成像品質的要求也日益增加。 In recent years, with the rise of portable electronic products with photography functions, the demand for optical systems has increased day by day. The photosensitive elements of general optical systems are nothing more than Charge Coupled Device (CCD) or Complementary Metal-Oxide Semiconductor Sensor (CMOS Sensor). With the advancement of semiconductor process technology, The pixel size of the photosensitive element has been reduced, and the optical system has gradually developed into the field of high pixels, so the requirements for image quality are also increasing.
傳統搭載於可攜式裝置上的光學系統,多採用五片或六片式透鏡結構為主,然而由於可攜式裝置不斷朝提昇畫素並且終端消費者對大光圈的需求例如微光與夜拍功能,習知的光學成像系統已無法滿足更高階的攝影要求。 Traditional optical systems mounted on portable devices mostly use five or six-element lens structures. However, as portable devices continue to improve their pixels and end consumers’ demands for large apertures such as low light and night Shooting function, the conventional optical imaging system can no longer meet the higher-level photography requirements.
因此,如何有效增加光學成像鏡頭的進光量,並進一步提高成像的品質,便成為一個相當重要的議題。 Therefore, how to effectively increase the light input of the optical imaging lens and further improve the imaging quality has become a very important issue.
本創作實施例之態樣係針對一種光學成像系統及光學影像擷取鏡頭,能夠利用七個透鏡的屈光力、凸面與凹面的組合(本創作所述凸面或凹面原則上係指各透鏡之物側面或像側面距離光軸不同高度的幾何形狀變化之描述),進而有效提高光學成像系統之進光量,同時提高成像品質,以應用於小型的電子產品上。 The aspect of this creative embodiment is aimed at an optical imaging system and an optical image capture lens that can utilize the refractive power of seven lenses, the combination of convex and concave surfaces (the convex or concave surface in this creation refers in principle to the object side of each lens Or the description of the geometric shape changes at different heights from the side to the optical axis), which can effectively increase the amount of light entering the optical imaging system and at the same time improve the imaging quality, so that it can be applied to small electronic products.
本創作實施例相關之透鏡參數的用語與其代號詳列如下,作為後續描述的參考:與長度或高度有關之透鏡參數 The terms and codes of the lens parameters related to this creative embodiment are listed below for reference in the subsequent description: lens parameters related to length or height
光學成像系統之最大成像高度以HOI表示;光學成像系統之高度以HOS表示;光學成像系統之第一透鏡物側面至第七透鏡像側面間的距離以InTL表示;光學成像系統之固定光欄(光圈)至成像面間的距離以InS表示;光學成像系統之第一透鏡與第二透鏡間的距離以IN12表示(例示);光學成像系統之第一透鏡於光軸上的厚度以TP1表示(例示)。 The maximum imaging height of the optical imaging system is represented by HOI; the height of the optical imaging system is represented by HOS; the distance between the object side of the first lens and the image side of the seventh lens of the optical imaging system is represented by InTL; the fixed aperture of the optical imaging system ( The distance between the aperture) and the imaging surface is represented by InS; the distance between the first lens and the second lens of the optical imaging system is represented by IN12 (example); the thickness of the first lens of the optical imaging system on the optical axis is represented by TP1 ( Exemplified).
與材料有關之透鏡參數 Lens parameters related to material
光學成像系統之第一透鏡的色散係數以NA1表示(例示);第一透鏡的折射律以Nd1表示(例示)。 The chromatic dispersion coefficient of the first lens of the optical imaging system is represented by NA1 (example); the refractive law of the first lens is represented by Nd1 (example).
與視角有關之透鏡參數 Lens parameters related to viewing angle
視角以AF表示;視角的一半以HAF表示;主光線角度以MRA表示。 The viewing angle is expressed in AF; half of the viewing angle is expressed in HAF; the chief ray angle is expressed in MRA.
與出入瞳有關之透鏡參數 Lens parameters related to the entrance and exit pupil
光學成像鏡片系統之入射瞳直徑以HEP表示;單一透鏡之任一表面的最大有效半徑係指系統最大視角入射光通過入射瞳最邊緣的光線於該透鏡表面交會點(Effective Half Diameter;EHD),該交會點與光軸之間的垂直高度。例如第一透鏡物側面的最大有效半徑以EHD11表示,第一透鏡像側面的最大有效半徑以EHD12表示。第二透鏡物側面的最大有效半徑以EHD21表示,第二透鏡像側面的最大有效半徑以EHD22表示。光學成像系統中其餘透鏡之任一表面的最大有效半徑表示方式以此類推。 The entrance pupil diameter of an optical imaging lens system is expressed by HEP; the maximum effective radius of any surface of a single lens refers to the intersection point (Effective Half Diameter; EHD) of the system's maximum angle of view incident light passing through the edge of the entrance pupil at the lens surface, The vertical height between the intersection point and the optical axis. For example, the maximum effective radius of the object side of the first lens is represented by EHD11, and the maximum effective radius of the image side of the first lens is represented by EHD12. The maximum effective radius of the object side of the second lens is represented by EHD21, and the maximum effective radius of the image side of the second lens is represented by EHD22. The expression of the maximum effective radius of any surface of the remaining lenses in the optical imaging system can be deduced by analogy.
與透鏡面形弧長及表面輪廓有關之參數 Parameters related to the arc length and surface profile of the lens
單一透鏡之任一表面的最大有效半徑之輪廓曲線長度,係指該透鏡之表面與所屬光學成像系統之光軸的交點為起始點,自該起始點沿著該透鏡之 表面輪廓直至其最大有效半徑之終點為止,前述兩點間的曲線弧長為最大有效半徑之輪廓曲線長度,並以ARS表示。例如第一透鏡物側面的最大有效半徑之輪廓曲線長度以ARS11表示,第一透鏡像側面的最大有效半徑之輪廓曲線長度以ARS12表示。第二透鏡物側面的最大有效半徑之輪廓曲線長度以ARS21表示,第二透鏡像側面的最大有效半徑之輪廓曲線長度以ARS22表示。光學成像系統中其餘透鏡之任一表面的最大有效半徑之輪廓曲線長度表示方式以此類推。 The length of the contour curve of the maximum effective radius of any surface of a single lens refers to the point of intersection of the surface of the lens and the optical axis of the optical imaging system as the starting point, from which the starting point is along the line of the lens The surface profile reaches the end of its maximum effective radius. The arc length of the curve between the aforementioned two points is the length of the contour curve of the maximum effective radius, and is expressed in ARS. For example, the length of the contour curve of the maximum effective radius of the object side of the first lens is represented by ARS11, and the length of the contour curve of the maximum effective radius of the image side of the first lens is represented by ARS12. The length of the contour curve of the maximum effective radius of the object side of the second lens is represented by ARS21, and the length of the contour curve of the maximum effective radius of the image side of the second lens is represented by ARS22. The length of the contour curve of the maximum effective radius of any surface of the remaining lenses in the optical imaging system can be deduced by analogy.
單一透鏡之任一表面的1/2入射瞳直徑(HEP)之輪廓曲線長度,係指該透鏡之表面與所屬光學成像系統之光軸的交點為起始點,自該起始點沿著該透鏡之表面輪廓直至該表面上距離光軸1/2入射瞳直徑的垂直高度之座標點為止,前述兩點間的曲線弧長為1/2入射瞳直徑(HEP)之輪廓曲線長度,並以ARE表示。例如第一透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE11表示,第一透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE12表示。第二透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE21表示,第二透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE22表示。光學成像系統中其餘透鏡之任一表面的1/2入射瞳直徑(HEP)之輪廓曲線長度表示方式以此類推。
The length of the profile curve of 1/2 entrance pupil diameter (HEP) of any surface of a single lens means that the intersection of the surface of the lens and the optical axis of the optical imaging system is the starting point, and the starting point is along the The surface contour of the lens reaches the coordinate point of the vertical height from the
與透鏡面形深度有關之參數 Parameters related to the depth of the lens surface
第七透鏡物側面於光軸上的交點至第七透鏡物側面的最大有效半徑之終點為止,前述兩點間水平於光軸的距離以InRS71表示(最大有效半徑深度);第七透鏡像側面於光軸上的交點至第七透鏡像側面的最大有效半徑之終點為止,前述兩點間水平於光軸的距離以InRS72表示(最大有效半徑深度)。其他透鏡物側面或像側面之最大有效半徑的深度(沉陷量)表示方式比照前述。 The intersection of the object side surface of the seventh lens on the optical axis to the end of the maximum effective radius of the object side surface of the seventh lens, the distance between the aforementioned two points horizontal to the optical axis is represented by InRS71 (the maximum effective radius depth); the image side of the seventh lens From the point of intersection on the optical axis to the end of the maximum effective radius of the image side of the seventh lens, the distance between the aforementioned two points horizontal to the optical axis is represented by InRS72 (the maximum effective radius depth). The depth (sinkage) of the maximum effective radius of the object side or image side of other lenses is expressed in the same way as above.
與透鏡面型有關之參數 Parameters related to lens surface
臨界點C係指特定透鏡表面上,除與光軸的交點外,一與光軸相垂直之切面相切的點。承上,例如第五透鏡物側面的臨界點C51與光軸的垂直距離為 HVT51(例示),第五透鏡像側面的臨界點C52與光軸的垂直距離為HVT52(例示),第六透鏡物側面的臨界點C61與光軸的垂直距離為HVT61(例示),第六透鏡像側面的臨界點C62與光軸的垂直距離為HVT62(例示)。其他透鏡例如第七透鏡之物側面或像側面上的臨界點及其與光軸的垂直距離的表示方式比照前述。 Critical point C refers to a point on the surface of a specific lens that is tangent to a tangent plane perpendicular to the optical axis, except for the point of intersection with the optical axis. Continuing, for example, the vertical distance between the critical point C51 on the object side of the fifth lens and the optical axis is HVT51 (example), the vertical distance between the critical point C52 of the fifth lens image side and the optical axis is HVT52 (example), the vertical distance between the critical point C61 of the sixth lens object side and the optical axis is HVT61 (example), and the sixth lens The vertical distance between the critical point C62 on the side of the mirror image and the optical axis is HVT62 (exemplified). For other lenses, such as the seventh lens, the critical point on the object side or the image side and the vertical distance from the optical axis are expressed in the same way as described above.
第七透鏡物側面上最接近光軸的反曲點為IF711,該點沉陷量SGI711(例示),SGI711亦即第七透鏡物側面於光軸上的交點至第七透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離,IF711該點與光軸間的垂直距離為HIF711(例示)。第七透鏡像側面上最接近光軸的反曲點為IF721,該點沉陷量SGI721(例示),SGI711亦即第七透鏡像側面於光軸上的交點至第七透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離,IF721該點與光軸間的垂直距離為HIF721(例示)。 The inflection point closest to the optical axis on the object side of the seventh lens is IF711. The sinking amount of this point is SGI711 (example). SGI711 is the intersection point of the object side of the seventh lens on the optical axis to the nearest optical axis of the object side of the seventh lens. The horizontal displacement distance between the inflection points parallel to the optical axis, and the vertical distance between this point and the optical axis of IF711 is HIF711 (example). The inflection point closest to the optical axis on the image side of the seventh lens is IF721. The sinking amount of this point is SGI721 (example). SGI711 is the intersection of the image side of the seventh lens on the optical axis to the closest optical axis of the image side of the seventh lens. The horizontal displacement distance between the inflection points parallel to the optical axis, the vertical distance between this point and the optical axis of IF721 is HIF721 (example).
第七透鏡物側面上第二接近光軸的反曲點為IF712,該點沉陷量SGI712(例示),SGI712亦即第七透鏡物側面於光軸上的交點至第七透鏡物側面第二接近光軸的反曲點之間與光軸平行的水平位移距離,IF712該點與光軸間的垂直距離為HIF712(例示)。第七透鏡像側面上第二接近光軸的反曲點為IF722,該點沉陷量SGI722(例示),SGI722亦即第七透鏡像側面於光軸上的交點至第七透鏡像側面第二接近光軸的反曲點之間與光軸平行的水平位移距離,IF722該點與光軸間的垂直距離為HIF722(例示)。 The second inflection point on the object side of the seventh lens that is close to the optical axis is IF712. The sinking amount of this point is SGI712 (example). SGI712 is the intersection of the object side of the seventh lens on the optical axis and the second closest to the object side of the seventh lens. The horizontal displacement distance between the inflection points of the optical axis parallel to the optical axis, and the vertical distance between this point of IF712 and the optical axis is HIF712 (example). The second inflection point on the image side of the seventh lens that is closest to the optical axis is IF722. The sinking amount of this point is SGI722 (example). SGI722 is the intersection of the image side of the seventh lens on the optical axis and the second closest to the image side of the seventh lens. The horizontal displacement distance between the inflection points of the optical axis parallel to the optical axis, and the vertical distance between this point of IF722 and the optical axis is HIF722 (example).
第七透鏡物側面上第三接近光軸的反曲點為IF713,該點沉陷量SGI713(例示),SGI713亦即第七透鏡物側面於光軸上的交點至第七透鏡物側面第三接近光軸的反曲點之間與光軸平行的水平位移距離,IF713該點與光軸間的垂直距離為HIF713(例示)。第七透鏡像側面上第三接近光軸的反曲點為IF723,該點沉陷量SGI723(例示),SGI723亦即第七透鏡像側面於光軸上的交點至第七透鏡像側面第三接近光軸的反曲點之間與光軸平行的水平位移距離,IF723該點與光 軸間的垂直距離為HIF723(例示)。 The third inflection point on the object side of the seventh lens that is close to the optical axis is IF713. The sinking amount of this point is SGI713 (example). SGI713 is the intersection point of the object side of the seventh lens on the optical axis to the third closest to the object side of the seventh lens. The horizontal displacement distance between the inflection point of the optical axis parallel to the optical axis, and the vertical distance between this point of IF713 and the optical axis is HIF713 (example). The third inflection point on the image side of the seventh lens that is close to the optical axis is IF723. The sinking amount of this point is SGI723 (example). SGI723 is the intersection point of the image side of the seventh lens on the optical axis and the third closest to the image side of the seventh lens. The horizontal displacement distance between the inflection points of the optical axis and the optical axis parallel to the optical axis. The vertical distance between the shafts is HIF723 (example).
第七透鏡物側面上第四接近光軸的反曲點為IF714,該點沉陷量SGI714(例示),SGI714亦即第七透鏡物側面於光軸上的交點至第七透鏡物側面第四接近光軸的反曲點之間與光軸平行的水平位移距離,IF714該點與光軸間的垂直距離為HIF714(例示)。第七透鏡像側面上第四接近光軸的反曲點為IF724,該點沉陷量SGI724(例示),SGI724亦即第七透鏡像側面於光軸上的交點至第七透鏡像側面第四接近光軸的反曲點之間與光軸平行的水平位移距離,IF724該點與光軸間的垂直距離為HIF724(例示)。 The fourth inflection point on the object side of the seventh lens that is close to the optical axis is IF714. The sinking amount of this point is SGI714 (example). SGI714 is the intersection point of the object side of the seventh lens on the optical axis to the fourth closest to the object side of the seventh lens. The horizontal displacement distance between the inflection points of the optical axis parallel to the optical axis, and the vertical distance between this point of IF714 and the optical axis is HIF714 (example). The fourth inflection point on the image side of the seventh lens that is close to the optical axis is IF724. The sinking amount of this point is SGI724 (example). SGI724 is the intersection of the image side of the seventh lens on the optical axis to the fourth closest to the image side of the seventh lens. The horizontal displacement distance between the inflection points of the optical axis parallel to the optical axis, and the vertical distance between this point of IF724 and the optical axis is HIF724 (example).
其他透鏡物側面或像側面上的反曲點及其與光軸的垂直距離或其沉陷量的表示方式比照前述。 The expression of the inflection point on the object side or the image side of the other lens and the vertical distance from the optical axis or the sinking amount of the lens is similar to the foregoing.
與像差有關之變數 Variables related to aberrations
光學成像系統之光學畸變(Optical Distortion)以ODT表示;其TV畸變(TV Distortion)以TDT表示,並且可以進一步限定描述在成像50%至100%視野間像差偏移的程度;球面像差偏移量以DFS表示;慧星像差偏移量以DFC表示。 Optical distortion (Optical Distortion) of the optical imaging system is expressed in ODT; its TV distortion (TV Distortion) is expressed in TDT, and it can be further defined to describe the degree of aberration shift between 50% and 100% of the imaging field; spherical aberration shift The shift is expressed in DFS; the coma aberration shift is expressed in DFC.
光圈邊緣橫向像差以STA(STOP Transverse Aberration)表示,評價特定光學成像系統之性能,可利用子午面光扇(tangential fan)或弧矢面光扇(sagittal fan)上計算任一視場的光線橫向像差,特別是分別計算最長工作波長(例如波長為650NM)以及最短工作波長(例如波長為470NM)通過光圈邊緣之橫向像差大小作為性能優異的標準。前述子午面光扇之座標方向,可進一步區分成正向(上光線)與負向(下光線)。最長工作波長通過光圈邊緣之橫向像差,其定義為最長工作波長通過光圈邊緣入射在成像面上特定視場之成像位置,其與參考波長主光線(例如波長為555NM)在成像面上該視場之成像位置兩位置間之距離差,最短工作波長通過光圈邊緣之橫向像差,其定義為最短工作波長通過光圈邊緣入射在成像面上特定視場之成像位置,其與參考波長主光線在成像面上該視場之 成像位置兩位置間之距離差,評價特定光學成像系統之性能為優異,可利用最短以及最長工作波長通過光圈邊緣入射在成像面上0.7視場(即0.7成像高度HOI)之橫向像差均小於100微米(μm)作為檢核方式,甚至可進一步以最短以及最長工作波長通過光圈邊緣入射在成像面上0.7視場之橫向像差均小於80微米(μm)作為檢核方式。 The lateral aberration at the edge of the aperture is expressed as STA (STOP Transverse Aberration). To evaluate the performance of a specific optical imaging system, you can use the tangential fan or the sagittal fan to calculate the light transverse direction of any field of view. The aberrations, especially the lateral aberrations of the longest working wavelength (for example, the wavelength of 650 NM) and the shortest working wavelength (for example, the wavelength of 470 NM) passing through the edge of the aperture, are calculated separately as a criterion for excellent performance. The coordinate direction of the aforementioned meridian surface light fan can be further divided into a positive direction (upward ray) and a negative direction (downward ray). The lateral aberration of the longest working wavelength passing through the edge of the aperture is defined as the imaging position of the longest working wavelength incident on the imaging surface through the edge of the aperture on the specific field of view on the imaging surface, and the reference wavelength chief ray (for example, the wavelength is 555NM) on the imaging surface. The difference in the distance between the two positions of the imaging position of the field, the lateral aberration of the shortest working wavelength passing through the edge of the aperture, which is defined as the imaging position of the shortest working wavelength incident on the imaging surface through the edge of the aperture, and the chief ray of the reference wavelength Of the field of view on the imaging surface The distance difference between the two positions of the imaging position is excellent in evaluating the performance of the specific optical imaging system. The shortest and longest working wavelength can be used to incident on the imaging surface through the edge of the aperture. The lateral aberration of 0.7 field of view (ie 0.7 imaging height HOI) is less than 100 micrometers (μm) can be used as the verification method, and the shortest and longest working wavelengths can even be further used as the verification method when the shortest and longest operating wavelengths are incident on the imaging surface through the edge of the aperture. The lateral aberrations of the 0.7 field of view are all less than 80 micrometers (μm).
光學成像系統於成像面上垂直於光軸具有一最大成像高度HOI,光學成像系統的正向子午面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以PLTA表示,其正向子午面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以PSTA表示,負向子午面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以NLTA表示,負向子午面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以NSTA表示,弧矢面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以SLTA表示,弧矢面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以SSTA表示。 The optical imaging system has a maximum imaging height HOI perpendicular to the optical axis on the imaging surface. The longest working wavelength of visible light of the forward meridian fan of the optical imaging system passes through the edge of the entrance pupil and is incident on the imaging surface at 0.7 HOI. The aberration is expressed in PLTA. The shortest working wavelength of visible light of the positive meridian fan passes through the edge of the entrance pupil and is incident on the imaging plane at 0.7HOI. The lateral aberration is expressed in PSTA, and the negative meridian fan has the longest visible light. The lateral aberration of the working wavelength passing through the edge of the entrance pupil and incident on the imaging surface at 0.7 HOI is expressed in NLTA. The shortest visible light working wavelength of the negative meridian fan passes through the edge of the entrance pupil and is incident on the imaging surface at 0.7 HOI The lateral aberration at the position is expressed in NSTA, the longest working wavelength of visible light of the sagittal plane fan passes through the edge of the entrance pupil and is incident on the imaging plane. The lateral aberration at 0.7HOI is expressed in terms of SLTA, and the shortest working wavelength of visible light of the sagittal plane fan The lateral aberration passing through the edge of the entrance pupil and incident on the imaging plane at 0.7 HOI is represented by SSTA.
本創作提供一種光學成像系統,可同時對可見光與紅外線(雙模)對焦並分別達到一定性能,並且其第七透鏡的物側面或像側面設置有反曲點,可有效調整各視場入射於第七透鏡的角度,並針對光學畸變與TV畸變進行補正。另外,第七透鏡的表面可具備更佳的光路調節能力,以提升成像品質。 This creation provides an optical imaging system that can simultaneously focus on visible light and infrared (dual mode) and achieve a certain performance separately, and the seventh lens is provided with a reflex point on the object side or image side, which can effectively adjust the incidence of each field of view The angle of the seventh lens is corrected for optical distortion and TV distortion. In addition, the surface of the seventh lens can have better light path adjustment capabilities to improve imaging quality.
依據本創作提供一種光學成像系統,由物側至像側依序包含第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡、第六透鏡、第七透鏡以及一成像面。第一透鏡具有屈折力。該第一透鏡至該第七透鏡的焦距分別為f1、f2、f3、f4、f5、f6、f7,該光學成像系統的焦距為f,該光學成像鏡片系統之入射瞳直徑為HEP,該第一透鏡物側面至該成像面具有一距離HOS,該第一透鏡物側面 至該第七透鏡像側面於光軸上具有一距離InTL,該光學成像系統之最大可視角度的一半為HAF,該光學成像系統於該成像面上垂直於光軸具有一最大成像高度HOI,該些透鏡中任一透鏡之任一表面與光軸的交點為起點,延著該表面的輪廓直到該表面上距離光軸1/2入射瞳直徑之垂直高度處的座標點為止,前述兩點間之輪廓曲線長度為ARE,其滿足下列條件:1≦f/HEP≦10;以及0.9≦2(ARE/HEP)≦2.0。 According to the present creation, an optical imaging system is provided, which includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, a seventh lens, and an imaging surface in sequence from the object side to the image side. The first lens has refractive power. The focal lengths of the first lens to the seventh lens are f1, f2, f3, f4, f5, f6, f7, the focal length of the optical imaging system is f, the entrance pupil diameter of the optical imaging lens system is HEP, and the There is a distance HOS from the object side of a lens to the imaging mask, and the object side of the first lens The seventh lens image side has a distance InTL on the optical axis, half of the maximum viewing angle of the optical imaging system is HAF, and the optical imaging system has a maximum imaging height HOI on the imaging plane perpendicular to the optical axis. The intersection of any surface of any lens in these lenses with the optical axis is the starting point, and the contour of the surface is extended to the coordinate point on the surface at the vertical height of 1/2 the diameter of the entrance pupil from the optical axis. The length of the contour curve is ARE, which meets the following conditions: 1≦f/HEP≦10; and 0.9≦2(ARE/HEP)≦2.0.
依據本創作另提供一種光學成像系統,由物側至像側依序包含第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡、第六透鏡、第七透鏡以及一成像面。第一透鏡具有屈折力。第二透鏡具有屈折力。第三透鏡具有屈折力。 第四透鏡具有屈折力。第五透鏡具有屈折力。第六透鏡具有屈折力。第七透鏡具有屈折力,其物側面及像側面皆為非球面。該第一透鏡至該第七透鏡中至少一透鏡其個別之至少一表面具有至少一反曲點,該第一透鏡至該第七透鏡的焦距分別為f1、f2、f3、f4、f5、f6、f7,該光學成像系統的焦距為f,該光學成像鏡片系統之入射瞳直徑為HEP,該第一透鏡物側面至該成像面具有一距離HOS,該第一透鏡物側面至該第七透鏡像側面於光軸上具有一距離InTL,該光學成像系統之最大可視角度的一半為HAF,該光學成像系統於該成像面上垂直於光軸具有一最大成像高度HOI,該些透鏡中任一透鏡之任一表面與光軸的交點為起點,延著該表面的輪廓直到該表面上距離光軸1/2入射瞳直徑之垂直高度處的座標點為止,前述兩點間之輪廓曲線長度為ARE,其滿足下列條件:1≦f/HEP≦10;0.5≦HOS/HOI≦1.8以及0.9≦2(ARE/HEP)≦2.0。 According to this creation, another optical imaging system is provided, which sequentially includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, a seventh lens, and an imaging surface from the object side to the image side. . The first lens has refractive power. The second lens has refractive power. The third lens has refractive power. The fourth lens has refractive power. The fifth lens has refractive power. The sixth lens has refractive power. The seventh lens has refractive power, and both the object side and the image side are aspherical. At least one surface of at least one of the first lens to the seventh lens has at least one inflection point, and the focal lengths of the first lens to the seventh lens are f1, f2, f3, f4, f5, f6, respectively , F7, the focal length of the optical imaging system is f, the entrance pupil diameter of the optical imaging lens system is HEP, there is a distance HOS from the object side of the first lens to the imaging mask, and the object side of the first lens to the seventh lens The mirror image side has a distance InTL on the optical axis, half of the maximum viewing angle of the optical imaging system is HAF, and the optical imaging system has a maximum imaging height HOI perpendicular to the optical axis on the imaging surface. Any of the lenses The intersection point between any surface of the lens and the optical axis is the starting point, and follow the contour of the surface to the coordinate point on the surface at the vertical height of 1/2 the diameter of the entrance pupil from the optical axis. The length of the contour curve between the aforementioned two points is ARE, which satisfies the following conditions: 1≦f/HEP≦10; 0.5≦HOS/HOI≦1.8 and 0.9≦2(ARE/HEP)≦2.0.
依據本創作再提供一種光學成像系統,由物側至像側依序包含第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡、第六透鏡、第七透鏡以及一成像面。其中該光學成像系統具有屈折力的透鏡為七枚且該第一透鏡至該第七透鏡中至少二透鏡其個別之至少一表面具有至少一反曲點。第一透鏡具有屈 折力。第二透鏡具有屈折力。第三透鏡具有屈折力。第四透鏡具有屈折力。第五透鏡具有屈折力。第六透鏡具有屈折力。第七透鏡具有屈折力。該第一透鏡至該第七透鏡的焦距分別為f1、f2、f3、f4、f5、f6、f7,該光學成像系統的焦距為f,該光學成像鏡片系統之入射瞳直徑為HEP,該第一透鏡物側面至該成像面具有一距離HOS,該第一透鏡物側面至該第七透鏡像側面於光軸上具有一距離InTL,該光學成像系統之最大可視角度的一半為HAF,該些透鏡中任一透鏡之任一表面與光軸的交點為起點,延著該表面的輪廓直到該表面上距離光軸1/2入射瞳直徑之垂直高度處的座標點為止,前述兩點間之輪廓曲線長度為ARE,其滿足下列條件:1≦f/HEP≦10;0.5≦HOS/HOI≦1.8以及0.9≦2(ARE/HEP)≦2.0。 According to this creation, an optical imaging system is provided, which includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, a seventh lens, and an imaging surface in sequence from the object side to the image side . There are seven lenses of the optical imaging system having refractive power, and at least one surface of at least two of the first lens to the seventh lens has at least one inflection point. The first lens has flexion Fold force. The second lens has refractive power. The third lens has refractive power. The fourth lens has refractive power. The fifth lens has refractive power. The sixth lens has refractive power. The seventh lens has refractive power. The focal lengths of the first lens to the seventh lens are f1, f2, f3, f4, f5, f6, f7, the focal length of the optical imaging system is f, the entrance pupil diameter of the optical imaging lens system is HEP, and the There is a distance HOS from the object side of a lens to the imaging mask, a distance InTL from the object side of the first lens to the image side of the seventh lens on the optical axis, half of the maximum viewing angle of the optical imaging system is HAF, the The intersection point of any surface of any lens in the lens with the optical axis is the starting point, and the contour of the surface is extended to the coordinate point on the surface at the vertical height of 1/2 the diameter of the entrance pupil from the optical axis. The length of the profile curve is ARE, which meets the following conditions: 1≦f/HEP≦10; 0.5≦HOS/HOI≦1.8 and 0.9≦2(ARE/HEP)≦2.0.
單一透鏡之任一表面在最大有效半徑範圍內之輪廓曲線長度影響該表面修正像差以及各視場光線間光程差的能力,輪廓曲線長度越長則修正像差的能力提升,然而同時亦會增加生產製造上的困難度,因此必須控制單一透鏡之任一表面在最大有效半徑範圍內之輪廓曲線長度,特別是控制該表面之最大有效半徑範圍內之輪廓曲線長度(ARS)與該表面所屬之該透鏡於光軸上之厚度(TP)間的比例關係(ARS/TP)。例如第一透鏡物側面的最大有效半徑之輪廓曲線長度以ARS11表示,第一透鏡於光軸上之厚度為TP1,兩者間的比值為ARS11/TP1,第一透鏡像側面的最大有效半徑之輪廓曲線長度以ARS12表示,其與TP1間的比值為ARS12/TP1。第二透鏡物側面的最大有效半徑之輪廓曲線長度以ARS21表示,第二透鏡於光軸上之厚度為TP2,兩者間的比值為ARS21/TP2,第二透鏡像側面的最大有效半徑之輪廓曲線長度以ARS22表示,其與TP2間的比值為ARS22/TP2。光學成像系統中其餘透鏡之任一表面的最大有效半徑之輪廓曲線長度與該表面所屬之該透鏡於光軸上之厚度(TP)間的比例關係,其表示方式以此類推。 The length of the contour curve of any surface of a single lens within the maximum effective radius affects the surface's ability to correct aberrations and the optical path difference between rays of each field of view. The longer the contour curve length, the higher the ability to correct aberrations, but it also It will increase the difficulty of manufacturing, so it is necessary to control the contour curve length of any surface of a single lens within the maximum effective radius, especially the contour curve length (ARS) and the surface within the maximum effective radius of the surface The proportional relationship (ARS/TP) between the thickness (TP) of the lens on the optical axis. For example, the length of the contour curve of the maximum effective radius of the object side of the first lens is represented by ARS11, the thickness of the first lens on the optical axis is TP1, the ratio between the two is ARS11/TP1, and the maximum effective radius of the image side of the first lens is The length of the profile curve is represented by ARS12, and the ratio between it and TP1 is ARS12/TP1. The contour curve length of the maximum effective radius of the second lens object side is represented by ARS21, the thickness of the second lens on the optical axis is TP2, the ratio between the two is ARS21/TP2, the contour of the maximum effective radius of the second lens image side The curve length is represented by ARS22, and the ratio between it and TP2 is ARS22/TP2. The proportional relationship between the length of the contour curve of the maximum effective radius of any surface of the remaining lens in the optical imaging system and the thickness (TP) of the lens on the optical axis to which the surface belongs, and the expression method can be deduced by analogy.
單一透鏡之任一表面在1/2入射瞳直徑(HEP)高度範圍內之輪廓曲線 長度特別影響該表面上在各光線視場共用區域之修正像差以及各視場光線間光程差的能力,輪廓曲線長度越長則修正像差的能力提升,然而同時亦會增加生產製造上的困難度,因此必須控制單一透鏡之任一表面在1/2入射瞳直徑(HEP)高度範圍內之輪廓曲線長度,特別是控制該表面之1/2入射瞳直徑(HEP)高度範圍內之輪廓曲線長度(ARE)與該表面所屬之該透鏡於光軸上之厚度(TP)間的比例關係(ARE/TP)。例如第一透鏡物側面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度以ARE11表示,第一透鏡於光軸上之厚度為TP1,兩者間的比值為ARE11/TP1,第一透鏡像側面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度以ARE12表示,其與TP1間的比值為ARE12/TP1。第二透鏡物側面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度以ARE21表示,第二透鏡於光軸上之厚度為TP2,兩者間的比值為ARE21/TP2,第二透鏡像側面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度以ARE22表示,其與TP2間的比值為ARE22/TP2。光學成像系統中其餘透鏡之任一表面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度與該表面所屬之該透鏡於光軸上之厚度(TP)間的比例關係,其表示方式以此類推。 The contour curve of any surface of a single lens within the height range of 1/2 entrance pupil diameter (HEP) The length particularly affects the ability of the surface to correct aberrations in the common area of the field of view of each light and the optical path difference between each field of view. The longer the contour curve length, the higher the ability to correct aberrations, but it will also increase the manufacturing Therefore, it is necessary to control the length of the contour curve of any surface of a single lens within the height range of 1/2 entrance pupil diameter (HEP), especially control the length of the surface within the height range of 1/2 entrance pupil diameter (HEP). The proportional relationship (ARE/TP) between the profile curve length (ARE) and the thickness of the lens on the optical axis (TP) to which the surface belongs. For example, the length of the profile curve of the 1/2 entrance pupil diameter (HEP) height of the object side of the first lens is represented by ARE11, the thickness of the first lens on the optical axis is TP1, and the ratio between the two is ARE11/TP1. The length of the contour curve of the 1/2 entrance pupil diameter (HEP) height on the mirror side is represented by ARE12, and the ratio between it and TP1 is ARE12/TP1. The length of the profile curve of the 1/2 entrance pupil diameter (HEP) height of the second lens on the object side is represented by ARE21. The thickness of the second lens on the optical axis is TP2, and the ratio between the two is ARE21/TP2. The second lens image The length of the profile curve of 1/2 entrance pupil diameter (HEP) height on the side is represented by ARE22, and the ratio between it and TP2 is ARE22/TP2. The ratio between the length of the profile curve of 1/2 entrance pupil diameter (HEP) height of any surface of the remaining lenses in the optical imaging system and the thickness (TP) of the lens on the optical axis to which the surface belongs, expressed in And so on.
當|f1|>|f7|時,光學成像系統的系統總高度(HOS;Height of Optic System)可以適當縮短以達到微型化之目的。 When |f1|>|f7|, the total system height of the optical imaging system (HOS; Height of Optic System) can be appropriately shortened to achieve the purpose of miniaturization.
當|f2|+|f3|+|f4|+|f5|+|f6|以及|f1|+|f7|滿足上述條件時,藉由第二透鏡至第六透鏡中至少一透鏡具有弱的正屈折力或弱的負屈折力。所稱弱屈折力,係指特定透鏡之焦距的絕對值大於10。當本創作第二透鏡至第六透鏡中至少一透鏡具有弱的正屈折力,其可有效分擔第一透鏡之正屈折力而避免不必要的像差過早出現,反之若第二透鏡至第六透鏡中至少一透鏡具有弱的負屈折力,則可以微調補正系統的像差。 When |f2|+|f3|+|f4|+|f5|+|f6| and |f1|+|f7| meet the above conditions, at least one of the second to sixth lenses has a weak positive Refraction or weak negative reflex. The so-called weak refractive power means that the absolute value of the focal length of a particular lens is greater than 10. When at least one of the second lens to the sixth lens of the present invention has a weak positive refractive power, it can effectively share the positive refractive power of the first lens and avoid unnecessary aberrations from appearing prematurely. On the contrary, if the second lens to the first lens At least one of the six lenses has a weak negative refractive power, and the aberration of the correction system can be fine-tuned.
此外,第七透鏡可具有負屈折力,其像側面可為凹面。藉此,有利於縮短其後焦距以維持小型化。另外,第七透鏡的至少一表面可具有至少一反 曲點,可有效地壓制離軸視場光線入射的角度,進一步可修正離軸視場的像差。 In addition, the seventh lens may have negative refractive power, and its image side surface may be concave. This helps to shorten the back focal length to maintain miniaturization. In addition, at least one surface of the seventh lens may have at least one reflection The inflection point can effectively suppress the incident angle of the off-axis field of view, and further correct the aberration of the off-axis field of view.
10、20、30、40、50、60、70、80:光學成像系統 10, 20, 30, 40, 50, 60, 70, 80: optical imaging system
100、200、300、400、500、600、700、800:光圈 100, 200, 300, 400, 500, 600, 700, 800: aperture
110、210、310、410、510、610、710、810:第一透鏡 110, 210, 310, 410, 510, 610, 710, 810: first lens
112、212、312、412、512、612、712、812:物側面 112, 212, 312, 412, 512, 612, 712, 812: Object side
114、214、314、414、514、614、714、814:像側面 114, 214, 314, 414, 514, 614, 714, 814: like side
120、220、320、420、520、620、720、820:第二透鏡 120, 220, 320, 420, 520, 620, 720, 820: second lens
122、222、322、422、522、622、722、822:物側面 122, 222, 322, 422, 522, 622, 722, 822: Object side
124、224、324、424、524、624、724、824:像側面 124, 224, 324, 424, 524, 624, 724, 824: like side
130、230、330、430、530、630、730、830:第三透鏡 130, 230, 330, 430, 530, 630, 730, 830: third lens
132、232、332、432、532、632、732、832:物側面 132, 232, 332, 432, 532, 632, 732, 832: Object side
134、234、334、434、534、634、734、834:像側面 134, 234, 334, 434, 534, 634, 734, 834: like side
140、240、340、440、540、640、740、840:第四透鏡 140, 240, 340, 440, 540, 640, 740, 840: fourth lens
142、242、342、442、542、642、742、842:物側面 142, 242, 342, 442, 542, 642, 742, 842: Object side
144、244、344、444、544、644、744、844:像側面 144, 244, 344, 444, 544, 644, 744, 844: like side
150、250、350、450、550、650、750、850:第五透鏡 150, 250, 350, 450, 550, 650, 750, 850: fifth lens
152、252、352、452、552、652、752、852:物側面 152, 252, 352, 452, 552, 652, 752, 852: Object side
154、254、354、454、554、654、754、854:像側面 154, 254, 354, 454, 554, 654, 754, 854: like side
160、260、360、460、560、660、760、860:第六透鏡 160, 260, 360, 460, 560, 660, 760, 860: sixth lens
162、262、362、462、562、662、762、862:物側面 162, 262, 362, 462, 562, 662, 762, 862: Object side
164、264、364、464、564、664、764、864:像側面 164, 264, 364, 464, 564, 664, 764, 864: like side
170、270、370、470、570、670、770、870:第七透鏡 170, 270, 370, 470, 570, 670, 770, 870: seventh lens
172、272、372、472、572、672、772、872:物側面 172, 272, 372, 472, 572, 672, 772, 872: Object side
174、274、374、474、574、674、774、874:像側面 174, 274, 374, 474, 574, 674, 774, 874: like side
180、280、380、480、580、680、780、880:紅外線濾光片 180, 280, 380, 480, 580, 680, 780, 880: infrared filter
190、290、390、490、590、690、790、890:成像面 190, 290, 390, 490, 590, 690, 790, 890: imaging surface
192、292、392、492、592、692、792、892:影像感測元件 192, 292, 392, 492, 592, 692, 792, 892: image sensor
f:光學成像系統之焦距 f: focal length of optical imaging system
f1:第一透鏡的焦距 f1: focal length of the first lens
f2:第二透鏡的焦距 f2: the focal length of the second lens
f3:第三透鏡的焦距 f3: focal length of the third lens
f4:第四透鏡的焦距 f4: focal length of the fourth lens
f5:第五透鏡的焦距 f5: focal length of the fifth lens
f6:第六透鏡的焦距 f6: focal length of the sixth lens
f7:第七透鏡的焦距 f7: focal length of the seventh lens
f/HEP;Fno;F#:光學成像系統之光圈值 f/HEP; Fno; F#: the aperture value of the optical imaging system
HAF:光學成像系統之最大視角的一半 HAF: Half of the maximum viewing angle of the optical imaging system
NA1:第一透鏡的色散係數 NA1: Dispersion coefficient of the first lens
NA2、NA3、NA4、NA5、NA6、NA7:第二透鏡至第七透鏡的色散係數 NA2, NA3, NA4, NA5, NA6, NA7: the dispersion coefficient of the second lens to the seventh lens
R1、R2:第一透鏡物側面以及像側面的曲率半徑 R1, R2: The curvature radius of the first lens object side and image side
R3、R4:第二透鏡物側面以及像側面的曲率半徑 R3, R4: The curvature radius of the second lens on the object side and the image side
R5、R6:第三透鏡物側面以及像側面的曲率半徑 R5, R6: The curvature radius of the third lens on the object side and the image side
R7、R8:第四透鏡物側面以及像側面的曲率半徑 R7, R8: The curvature radius of the fourth lens on the object side and the image side
R9、R10:第五透鏡物側面以及像側面的曲率半徑 R9, R10: The radius of curvature of the fifth lens on the object side and the image side
R11、R12:第六透鏡物側面以及像側面的曲率半徑 R11, R12: The radius of curvature of the sixth lens on the object side and the image side
R13、R14:第七透鏡物側面以及像側面的曲率半徑 R13, R14: The curvature radius of the seventh lens on the object side and the image side
TP1:第一透鏡於光軸上的厚度 TP1: The thickness of the first lens on the optical axis
TP2、TP3、TP4、TP5、TP6、TP7:第二至第七透鏡於光軸上的厚度 TP2, TP3, TP4, TP5, TP6, TP7: the thickness of the second to seventh lenses on the optical axis
Σ TP:所有具屈折力之透鏡的厚度總和 Σ TP: The sum of the thickness of all refractive lenses
IN12:第一透鏡與第二透鏡於光軸上的間隔距離 IN12: The distance between the first lens and the second lens on the optical axis
IN23:第二透鏡與第三透鏡於光軸上的間隔距離 IN23: The separation distance between the second lens and the third lens on the optical axis
IN34:第三透鏡與第四透鏡於光軸上的間隔距離 IN34: The distance between the third lens and the fourth lens on the optical axis
IN45:第四透鏡與第五透鏡於光軸上的間隔距離 IN45: The separation distance between the fourth lens and the fifth lens on the optical axis
IN56:第五透鏡與第六透鏡於光軸上的間隔距離 IN56: The distance between the fifth lens and the sixth lens on the optical axis
IN67:第六透鏡與第七透鏡於光軸上的間隔距離 IN67: The distance between the sixth lens and the seventh lens on the optical axis
InRS71:第七透鏡物側面於光軸上的交點至第七透鏡物側面的最大有效半徑位置於光軸的水平位移距離 InRS71: The horizontal displacement distance from the intersection of the seventh lens object side on the optical axis to the maximum effective radius position of the seventh lens object side on the optical axis
IF711:第七透鏡物側面上最接近光軸的反曲點 IF711: The inflection point closest to the optical axis on the object side of the seventh lens
SGI711:該點沉陷量 SGI711: The amount of subsidence at this point
HIF711:第七透鏡物側面上最接近光軸的反曲點與光軸間的垂直距離 HIF711: The vertical distance between the inflection point closest to the optical axis on the object side of the seventh lens and the optical axis
IF721:第七透鏡像側面上最接近光軸的反曲點 IF721: The inflection point closest to the optical axis on the image side of the seventh lens
SGI721:該點沉陷量 SGI721: The amount of subsidence at this point
HIF721:第七透鏡像側面上最接近光軸的反曲點與光軸間的垂直距離 HIF721: The vertical distance between the inflection point closest to the optical axis on the image side of the seventh lens and the optical axis
IF712:第七透鏡物側面上第二接近光軸的反曲點 IF712: The second inflection point close to the optical axis on the object side of the seventh lens
SGI712:該點沉陷量 SGI712: The amount of subsidence at this point
HIF712:第七透鏡物側面第二接近光軸的反曲點與光軸間的垂直距離 HIF712: The vertical distance between the second inflection point on the object side of the seventh lens near the optical axis and the optical axis
IF722:第七透鏡像側面上第二接近光軸的反曲點 IF722: The second inflection point closest to the optical axis on the image side of the seventh lens
SGI722:該點沉陷量 SGI722: The amount of subsidence at this point
HIF722:第七透鏡像側面第二接近光軸的反曲點與光軸間的垂直距離 HIF722: The vertical distance between the second inflection point on the image side of the seventh lens and the optical axis
C71:第七透鏡物側面的臨界點 C71: The critical point of the seventh lens object side
C72:第七透鏡像側面的臨界點 C72: The critical point of the seventh lens image side
SGC71:第七透鏡物側面的臨界點與光軸的水平位移距離 SGC71: The horizontal displacement distance between the critical point of the seventh lens object side and the optical axis
SGC72:第七透鏡像側面的臨界點與光軸的水平位移距離 SGC72: The horizontal displacement distance between the critical point of the seventh lens image side and the optical axis
HVT71:第七透鏡物側面的臨界點與光軸的垂直距離 HVT71: The vertical distance between the critical point of the seventh lens and the optical axis
HVT72:第七透鏡像側面的臨界點與光軸的垂直距離 HVT72: The vertical distance between the critical point of the seventh lens image side and the optical axis
HOS:系統總高度(第一透鏡物側面至成像面於光軸上的距離) HOS: Total height of the system (the distance from the object side of the first lens to the imaging surface on the optical axis)
Dg:影像感測元件的對角線長度 Dg: The diagonal length of the image sensor
InS:光圈至成像面的距離 InS: distance from aperture to imaging surface
InTL:第一透鏡物側面至該第七透鏡像側面的距離 InTL: the distance from the object side of the first lens to the image side of the seventh lens
InB:第七透鏡像側面至該成像面的距離 InB: The distance from the seventh lens image side to the imaging surface
HOI:影像感測元件有效感測區域對角線長的一半(最大像高) HOI: Half of the diagonal length of the effective sensing area of the image sensor (maximum image height)
TDT:光學成像系統於結像時之TV畸變(TV Distortion) TDT: TV distortion of the optical imaging system at the time of image formation (TV Distortion)
ODT:光學成像系統於結像時之光學畸變(Optical Distortion) ODT: Optical Distortion of the Optical Imaging System during Image Setting (Optical Distortion)
本創作上述及其他特徵將藉由參照附圖詳細說明。 The above and other features of this creation will be described in detail with reference to the accompanying drawings.
第1A圖係繪示本創作第一實施例之光學成像系統的示意圖;第1B圖由左至右依序繪示本創作第一實施例之光學成像系統的球差、像散以及光學畸變之曲線圖;第1C圖係繪示本創作第一實施例光學成像系統之光學成像系統之子午面光扇以及弧矢面光扇,最長工作波長以及最短工作波長通過光圈邊緣於0.7視場處之橫向像差圖;第2A圖係繪示本創作第二實施例之光學成像系統的示意圖;第2B圖由左至右依序繪示本創作第二實施例之光學成像系統的球差、像散以及光學畸變之曲線圖;第2C圖係繪示本創作第二實施例光學成像系統之子午面光扇以及弧矢面光扇,最長工作波長以及最短工作波長通過光圈邊緣於0.7視場處之橫向像差圖;第3A圖係繪示本創作第三實施例之光學成像系統的示意圖;第3B圖由左至右依序繪示本創作第三實施例之光學成像系統的球差、像散以及光學畸變之曲線圖;第3C圖係繪示本創作第三實施例光學成像系統之子午面光扇以及弧矢面光扇,最長工作波長以及最短工作波長通過光圈邊緣於0.7視場處之橫向像差圖;第4A圖係繪示本創作第四實施例之光學成像系統的示意圖; 第4B圖由左至右依序繪示本創作第四實施例之光學成像系統的球差、像散以及光學畸變之曲線圖;第4C圖係繪示本創作第四實施例光學成像系統之子午面光扇以及弧矢面光扇,最長工作波長以及最短工作波長通過光圈邊緣於0.7視場處之橫向像差圖;第5A圖係繪示本創作第五實施例之光學成像系統的示意圖;第5B圖由左至右依序繪示本創作第五實施例之光學成像系統的球差、像散以及光學畸變之曲線圖;第5C圖係繪示本創作第五實施例光學成像系統之子午面光扇以及弧矢面光扇,最長工作波長以及最短工作波長通過光圈邊緣於0.7視場處之橫向像差圖;第6A圖係繪示本創作第六實施例之光學成像系統的示意圖;第6B圖由左至右依序繪示本創作第六實施例之光學成像系統的球差、像散以及光學畸變之曲線圖;第6C圖係繪示本創作第六實施例光學成像系統之子午面光扇以及弧矢面光扇,最長工作波長以及最短工作波長通過光圈邊緣於0.7視場處之橫向像差圖。 Figure 1A is a schematic diagram of the optical imaging system of the first embodiment of this creation; Figure 1B shows the spherical aberration, astigmatism, and optical distortion of the optical imaging system of the first embodiment of this creation in order from left to right Curve diagram; Figure 1C shows the meridian and sagittal surface fans of the optical imaging system of the optical imaging system of the first embodiment of the creation. The longest working wavelength and the shortest working wavelength pass through the edge of the aperture at the 0.7 field of view. Aberration diagram; Figure 2A is a schematic diagram showing the optical imaging system of the second embodiment of this creation; Figure 2B shows the spherical aberration and astigmatism of the optical imaging system of the second embodiment of this creation in order from left to right And the curve diagram of optical distortion; Figure 2C shows the meridian and sagittal surface fans of the optical imaging system of the second embodiment of the creation. The longest working wavelength and shortest working wavelength pass through the edge of the aperture in the horizontal direction of the 0.7 field of view. Aberration diagram; Figure 3A is a schematic diagram showing the optical imaging system of the third embodiment of this creation; Figure 3B shows the spherical aberration and astigmatism of the optical imaging system of the third embodiment of this creation in order from left to right And the curve diagram of optical distortion; Figure 3C shows the meridian and sagittal surface fans of the optical imaging system of the third embodiment of the creation. The longest working wavelength and shortest working wavelength pass through the edge of the aperture at the 0.7 field of view. Aberration diagram; Figure 4A is a schematic diagram showing the optical imaging system of the fourth embodiment of this creation; Figure 4B shows the spherical aberration, astigmatism, and optical distortion of the optical imaging system of the fourth embodiment of this creation in order from left to right; Figure 4C shows the optical imaging system of the fourth embodiment of this creation The transverse aberration diagram of the meridian surface fan and the sagittal surface fan, the longest operating wavelength and the shortest operating wavelength pass through the edge of the aperture at a field of view of 0.7; Figure 5A is a schematic diagram of the optical imaging system of the fifth embodiment of this creation; Figure 5B shows the spherical aberration, astigmatism and optical distortion of the optical imaging system of the fifth embodiment of this creation in order from left to right; Figure 5C shows the optical imaging system of the fifth embodiment of this creation The transverse aberration diagrams of the meridian surface fan and the sagittal surface fan, the longest operating wavelength and the shortest operating wavelength pass through the edge of the aperture at a field of view of 0.7; Figure 6A is a schematic diagram of the optical imaging system of the sixth embodiment of this creation; Figure 6B shows the spherical aberration, astigmatism, and optical distortion of the optical imaging system of the sixth embodiment of this creation in order from left to right; Figure 6C shows the optical imaging system of the sixth embodiment of this creation The transverse aberration diagram of the meridian surface fan and the sagittal surface fan, the longest working wavelength and the shortest working wavelength pass through the edge of the aperture at the 0.7 field of view.
一種光學成像系統組,由物側至像側依序包含具屈折力的第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡、第六透鏡、第七透鏡以及一成像面。光學成像系統更可包含一影像感測元件,其設置於成像面,成像高度於以下個實施例均趨近為3.91mm。 An optical imaging system group comprising a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, a seventh lens, and an imaging surface with refractive power in sequence from the object side to the image side . The optical imaging system may further include an image sensing element, which is disposed on the imaging surface, and the imaging height approaches 3.91 mm in the following embodiments.
光學成像系統可使用三個工作波長進行設計,分別為486.1nm、587.5 nm、656.2nm,其中587.5nm為主要參考波長為主要提取技術特徵之參考波長。 光學成像系統亦可使用五個工作波長進行設計,分別為470nm、510nm、555nm、610nm、650nm,其中555nm為主要參考波長為主要提取技術特徵之參考波長。 The optical imaging system can be designed with three working wavelengths, 486.1nm and 587.5 respectively nm, 656.2nm, of which 587.5nm is the main reference wavelength, which is the main reference wavelength for extracting technical features. The optical imaging system can also be designed with five working wavelengths, which are 470nm, 510nm, 555nm, 610nm, 650nm, of which 555nm is the main reference wavelength for the main extraction technical features.
光學成像系統的焦距f與每一片具有正屈折力之透鏡的焦距fp之比值PPR,光學成像系統的焦距f與每一片具有負屈折力之透鏡的焦距fn之比值NPR,所有正屈折力之透鏡的PPR總和為ΣPPR,所有負屈折力之透鏡的NPR總和為ΣNPR,當滿足下列條件時有助於控制光學成像系統的總屈折力以及總長度:0.5≦ΣPPR/|ΣNPR|≦15,較佳地,可滿足下列條件:1≦ΣPPR/|ΣNPR|≦3.0。 The ratio of the focal length f of the optical imaging system to the focal length fp of each lens with positive refractive power PPR, the ratio of the focal length f of the optical imaging system to the focal length fn of each lens with negative refractive power NPR, all lenses with positive refractive power The sum of PPR is ΣPPR, and the sum of NPR of all negative refractive power lenses is ΣNPR. When the following conditions are met, it helps to control the total refractive power and total length of the optical imaging system: 0.5≦ΣPPR/|ΣNPR|≦15, better It can meet the following conditions: 1≦ΣPPR/|ΣNPR|≦3.0.
光學成像系統可更包含一影像感測元件,其設置於成像面。影像感測元件有效感測區域對角線長的一半(即為光學成像系統之成像高度或稱最大像高)為HOI,第一透鏡物側面至成像面於光軸上的距離為HOS,其滿足下列條件:HOS/HOI≦10;以及0.5≦HOS/f≦10。較佳地,可滿足下列條件:1≦HOS/HOI≦5;以及1≦HOS/f≦7。藉此,可維持光學成像系統的小型化,以搭載於輕薄可攜式的電子產品上。 The optical imaging system may further include an image sensing element disposed on the imaging surface. The half of the diagonal length of the effective sensing area of the image sensor element (that is, the imaging height or maximum image height of the optical imaging system) is HOI, and the distance from the object side of the first lens to the imaging surface on the optical axis is HOS, which Meet the following conditions: HOS/HOI≦10; and 0.5≦HOS/f≦10. Preferably, the following conditions can be satisfied: 1≦HOS/HOI≦5; and 1≦HOS/f≦7. In this way, the miniaturization of the optical imaging system can be maintained to be mounted on thin and portable electronic products.
另外,本創作的光學成像系統中,依需求可設置至少一光圈,以減少雜散光,有助於提昇影像品質。 In addition, in the optical imaging system of this creation, at least one aperture can be set as required to reduce stray light and help improve image quality.
本創作的光學成像系統中,光圈配置可為前置光圈或中置光圈,其中前置光圈意即光圈設置於被攝物與第一透鏡間,中置光圈則表示光圈設置於第一透鏡與成像面間。若光圈為前置光圈,可使光學成像系統的出瞳與成像面產生較長的距離而容置更多光學元件,並可增加影像感測元件接收影像的效率;若為中置光圈,係有助於擴大系統的視場角,使光學成像系統具有廣角鏡頭的優勢。前述光圈至第六透鏡像側面間的距離為InS,其滿足下列條件:0.2≦InS/HOS≦1.1。藉此,可同時兼顧維持光學成像系統的小型化以及具備廣角的特 性。 In the optical imaging system of this creation, the aperture configuration can be a front aperture or a middle aperture. The front aperture means that the aperture is set between the subject and the first lens, and the middle aperture means that the aperture is set between the first lens and the first lens. Between imaging surfaces. If the aperture is a front aperture, the exit pupil of the optical imaging system and the imaging surface can produce a longer distance to accommodate more optical elements, and can increase the efficiency of image sensing elements to receive images; if it is a central aperture, the system It helps to expand the field of view of the system, so that the optical imaging system has the advantage of a wide-angle lens. The distance from the aforementioned aperture to the image side surface of the sixth lens is InS, which satisfies the following condition: 0.2≦InS/HOS≦1.1. In this way, it is possible to maintain the miniaturization of the optical imaging system and the characteristics of a wide angle at the same time. Sex.
本創作的光學成像系統中,第一透鏡物側面至第七透鏡像側面間的距離為InTL,於光軸上所有具屈折力之透鏡的厚度總和為ΣTP,其滿足下列條件:0.1≦ΣTP/InTL≦0.9。藉此,當可同時兼顧系統成像的對比度以及透鏡製造的良率並提供適當的後焦距以容置其他元件。 In the optical imaging system of this creation, the distance between the object side of the first lens and the image side of the seventh lens is InTL, and the total thickness of all refractive lenses on the optical axis is ΣTP, which satisfies the following conditions: 0.1≦ΣTP/ InTL≦0.9. In this way, the contrast of the system imaging and the yield rate of lens manufacturing can be taken into account at the same time, and an appropriate back focus can be provided to accommodate other components.
第一透鏡物側面的曲率半徑為R1,第一透鏡像側面的曲率半徑為R2,其滿足下列條件:0.001≦|R1/R2|≦20。藉此,第一透鏡的具備適當正屈折力強度,避免球差增加過速。較佳地,可滿足下列條件:0.01≦|R1/R2|<10。 The radius of curvature of the object side of the first lens is R1, and the radius of curvature of the image side of the first lens is R2, which satisfies the following conditions: 0.001≦|R1/R2|≦20. In this way, the first lens has a proper positive refractive power strength to avoid excessive increase in spherical aberration. Preferably, the following conditions can be satisfied: 0.01≦|R1/R2|<10.
第七透鏡物側面的曲率半徑為R13,第七透鏡像側面的曲率半徑為R14,其滿足下列條件:-7<(R11-R12)/(R11+R12)<50。藉此,有利於修正光學成像系統所產生的像散。 The radius of curvature of the object side of the seventh lens is R13, and the radius of curvature of the image side of the seventh lens is R14, which meets the following conditions: -7<(R11-R12)/(R11+R12)<50. This is beneficial to correct the astigmatism generated by the optical imaging system.
第一透鏡與第二透鏡於光軸上的間隔距離為IN12,其滿足下列條件:IN12/f≦3.0。藉此,有助於改善透鏡的色差以提升其性能。 The distance between the first lens and the second lens on the optical axis is IN12, which satisfies the following condition: IN12/f≦3.0. This helps to improve the chromatic aberration of the lens to enhance its performance.
第六透鏡與第七透鏡於光軸上的間隔距離為IN67,其滿足下列條件:IN67/f≦0.8。藉此,有助於改善透鏡的色差以提升其性能。 The distance between the sixth lens and the seventh lens on the optical axis is IN67, which satisfies the following condition: IN67/f≦0.8. This helps to improve the chromatic aberration of the lens to enhance its performance.
第一透鏡與第二透鏡於光軸上的厚度分別為TP1以及TP2,其滿足下列條件:0.1≦(TP1+IN12)/TP2≦10。藉此,有助於控制光學成像系統製造的敏感度並提升其性能。 The thicknesses of the first lens and the second lens on the optical axis are respectively TP1 and TP2, which satisfy the following conditions: 0.1≦(TP1+IN12)/TP2≦10. This helps to control the sensitivity of the optical imaging system manufacturing and improve its performance.
第六透鏡與第七透鏡於光軸上的厚度分別為TP6以及TP7,前述兩透鏡於光軸上的間隔距離為IN67,其滿足下列條件:0.1≦(TP7+IN67)/TP6≦10。 藉此,有助於控制光學成像系統製造的敏感度並降低系統總高度。 The thickness of the sixth lens and the seventh lens on the optical axis are TP6 and TP7, respectively. The separation distance between the two lenses on the optical axis is IN67, which satisfies the following condition: 0.1≦(TP7+IN67)/TP6≦10. This helps to control the sensitivity of the optical imaging system manufacturing and reduce the overall height of the system.
第三透鏡、第四透鏡與第五透鏡於光軸上的厚度分別為TP3、TP4以及TP5,第三透鏡與第四透鏡於光軸上的間隔距離為IN34,第四透鏡與第五透鏡於光軸上的間隔距離為IN45,第一透鏡物側面至第七透鏡像側面間的距離為 InTL,其滿足下列條件:0.1≦TP4/(IN34+TP4+IN45)<1。藉此,有助層層微幅修正入射光行進過程所產生的像差並降低系統總高度。 The thickness of the third lens, the fourth lens, and the fifth lens on the optical axis are TP3, TP4, and TP5, respectively. The distance between the third lens and the fourth lens on the optical axis is IN34, and the fourth lens and the fifth lens are at The separation distance on the optical axis is IN45, and the distance from the object side of the first lens to the image side of the seventh lens is InTL, it meets the following conditions: 0.1≦TP4/(IN34+TP4+IN45)<1. In this way, it helps to slightly correct the aberrations caused by the incident light traveling process and reduce the overall height of the system.
本創作的光學成像系統中,第七透鏡物側面的臨界點C71與光軸的垂直距離為HVT71,第七透鏡像側面的臨界點C72與光軸的垂直距離為HVT72,第七透鏡物側面於光軸上的交點至臨界點C71位置於光軸的水平位移距離為SGC71,第七透鏡像側面於光軸上的交點至臨界點C72位置於光軸的水平位移距離為SGC72,可滿足下列條件:0mm≦HVT71≦3mm;0mm<HVT72≦6mm;0≦HVT71/HVT72;0mm≦|SGC71|≦0.5mm;0mm<|SGC72|≦2mm;以及0<|SGC72|/(|SGC72|+TP7)≦0.9。藉此,可有效修正離軸視場的像差。 In the optical imaging system of this creation, the vertical distance between the critical point C71 on the object side of the seventh lens and the optical axis is HVT71; the vertical distance between the critical point C72 on the image side of the seventh lens and the optical axis is HVT72; The horizontal displacement distance from the intersection on the optical axis to the critical point C71 on the optical axis is SGC71, and the horizontal displacement from the intersection of the seventh lens image side on the optical axis to the critical point C72 on the optical axis is SGC72, which can meet the following conditions :0mm≦HVT71≦3mm; 0mm<HVT72≦6mm; 0≦HVT71/HVT72; 0mm≦|SGC71|≦0.5mm; 0mm<|SGC72|≦2mm; and 0<|SGC72|/(|SGC72|+TP7) ≦0.9. In this way, the aberration of the off-axis field of view can be effectively corrected.
本創作的光學成像系統其滿足下列條件:0.2≦HVT72/HOI≦0.9。 較佳地,可滿足下列條件:0.3≦HVT72/HOI≦0.8。藉此,有助於光學成像系統之週邊視場的像差修正。 The optical imaging system of this creation satisfies the following conditions: 0.2≦HVT72/HOI≦0.9. Preferably, the following conditions can be satisfied: 0.3≦HVT72/HOI≦0.8. This helps to correct the aberration of the peripheral field of view of the optical imaging system.
本創作的光學成像系統其滿足下列條件:0≦HVT72/HOS≦0.5。較佳地,可滿足下列條件:0.2≦HVT72/HOS≦0.45。藉此,有助於光學成像系統之週邊視場的像差修正。 The optical imaging system of this creation meets the following conditions: 0≦HVT72/HOS≦0.5. Preferably, the following condition can be satisfied: 0.2≦HVT72/HOS≦0.45. This helps to correct the aberration of the peripheral field of view of the optical imaging system.
本創作的光學成像系統中,第七透鏡物側面於光軸上的交點至第七透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI711表示,第七透鏡像側面於光軸上的交點至第七透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI721表示,其滿足下列條件:0<SGI711/(SGI711+TP7)≦0.9;0<SGI721/(SGI721+TP7)≦0.9。較佳地,可滿足下列條件:0.1≦SGI711/(SGI711+TP7)≦0.6;0.1≦SGI721/(SGI721+TP7)≦0.6。 In the optical imaging system of this creation, the horizontal displacement distance parallel to the optical axis between the intersection of the object side of the seventh lens on the optical axis and the inflection point of the closest optical axis of the object side of the seventh lens is represented by SGI711, and the seventh lens image The horizontal displacement distance parallel to the optical axis from the intersection point of the side surface on the optical axis to the inflection point of the nearest optical axis of the seventh lens image side is expressed as SGI721, which satisfies the following conditions: 0<SGI711/(SGI711+TP7)≦0.9 ; 0<SGI721/(SGI721+TP7)≦0.9. Preferably, the following conditions can be satisfied: 0.1≦SGI711/(SGI711+TP7)≦0.6; 0.1≦SGI721/(SGI721+TP7)≦0.6.
第七透鏡物側面於光軸上的交點至第七透鏡物側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI712表示,第七透鏡像側面於光軸上的交點至第七透鏡像側面第二接近光軸的反曲點之間與光軸平行的水平位移 距離以SGI722表示,其滿足下列條件:0<SGI712/(SGI712+TP7)≦0.9;0<SGI722/(SGI722+TP7)≦0.9。較佳地,可滿足下列條件:0.1≦SGI712/(SGI712+TP7)≦0.6;0.1≦SGI722/(SGI722+TP7)≦0.6。 The horizontal displacement distance parallel to the optical axis from the intersection of the object side of the seventh lens on the optical axis to the second inflection point on the object side of the seventh lens, which is close to the optical axis, is represented by SGI712. The image side of the seventh lens is on the optical axis. Horizontal displacement parallel to the optical axis from the intersection point to the second inflection point on the image side of the seventh lens, which is close to the optical axis The distance is represented by SGI722, which meets the following conditions: 0<SGI712/(SGI712+TP7)≦0.9; 0<SGI722/(SGI722+TP7)≦0.9. Preferably, the following conditions can be satisfied: 0.1≦SGI712/(SGI712+TP7)≦0.6; 0.1≦SGI722/(SGI722+TP7)≦0.6.
第七透鏡物側面最近光軸的反曲點與光軸間的垂直距離以HIF711表示,第七透鏡像側面於光軸上的交點至第七透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF721表示,其滿足下列條件:0.001mm≦|HIF711|≦5mm;0.001mm≦|HIF721|≦5mm。較佳地,可滿足下列條件:0.1mm≦|HIF711|≦3.5mm;1.5mm≦|HIF721|≦3.5mm。 The vertical distance between the inflection point of the closest optical axis on the object side of the seventh lens and the optical axis is represented by HIF711. The intersection of the image side of the seventh lens on the optical axis to the inflection point of the closest optical axis on the image side of the seventh lens and the optical axis The vertical distance between the two is represented by HIF721, which meets the following conditions: 0.001mm≦|HIF711|≦5mm; 0.001mm≦|HIF721|≦5mm. Preferably, the following conditions can be satisfied: 0.1mm≦|HIF711|≦3.5mm; 1.5mm≦|HIF721|≦3.5mm.
第七透鏡物側面第二接近光軸的反曲點與光軸間的垂直距離以HIF712表示,第七透鏡像側面於光軸上的交點至第七透鏡像側面第二接近光軸的反曲點與光軸間的垂直距離以HIF722表示,其滿足下列條件:0.001mm≦|HIF712|≦5mm;0.001mm≦|HIF722|≦5mm。較佳地,可滿足下列條件:0.1mm≦|HIF722|≦3.5mm;0.1mm≦|HIF712|≦3.5mm。 The vertical distance between the reflex point of the seventh lens object side second close to the optical axis and the optical axis is represented by HIF712. The intersection of the image side of the seventh lens on the optical axis to the second recurve near the optical axis of the seventh lens image side The vertical distance between the point and the optical axis is represented by HIF722, which meets the following conditions: 0.001mm≦|HIF712|≦5mm; 0.001mm≦|HIF722|≦5mm. Preferably, the following conditions can be satisfied: 0.1mm≦|HIF722|≦3.5mm; 0.1mm≦|HIF712|≦3.5mm.
第七透鏡物側面第三接近光軸的反曲點與光軸間的垂直距離以HIF713表示,第七透鏡像側面於光軸上的交點至第七透鏡像側面第三接近光軸的反曲點與光軸間的垂直距離以HIF723表示,其滿足下列條件:0.001mm≦|HIF713|≦5mm;0.001mm≦|HIF723|≦5mm。較佳地,可滿足下列條件:0.1mm≦|HIF723|≦3.5mm;0.1mm≦|HIF713|≦3.5mm。 The vertical distance between the third point of inflection on the object side of the seventh lens near the optical axis and the optical axis is represented by HIF713. The intersection of the image side of the seventh lens on the optical axis to the third near the optical axis of the seventh lens. The vertical distance between the point and the optical axis is represented by HIF723, which meets the following conditions: 0.001mm≦|HIF713|≦5mm; 0.001mm≦|HIF723|≦5mm. Preferably, the following conditions can be satisfied: 0.1mm≦|HIF723|≦3.5mm; 0.1mm≦|HIF713|≦3.5mm.
第七透鏡物側面第四接近光軸的反曲點與光軸間的垂直距離以HIF714表示,第七透鏡像側面於光軸上的交點至第七透鏡像側面第四接近光軸的反曲點與光軸間的垂直距離以HIF724表示,其滿足下列條件:0.001mm≦|HIF714|≦5mm;0.001mm≦|HIF724|≦5mm。較佳地,可滿足下列條件:0.1mm≦|HIF724|≦3.5mm;0.1mm≦|HIF714|≦3.5mm。 The vertical distance between the inflection point of the fourth near the optical axis of the seventh lens on the object side and the optical axis is represented by HIF714. The intersection of the image side of the seventh lens on the optical axis to the fourth near the optical axis of the seventh lens. The vertical distance between the point and the optical axis is represented by HIF724, which meets the following conditions: 0.001mm≦|HIF714|≦5mm; 0.001mm≦|HIF724|≦5mm. Preferably, the following conditions can be satisfied: 0.1mm≦|HIF724|≦3.5mm; 0.1mm≦|HIF714|≦3.5mm.
本創作的光學成像系統之一種實施方式,可藉由具有高色散係數與 低色散係數之透鏡交錯排列,而助於光學成像系統色差的修正。 An implementation of the optical imaging system of this creation can be achieved by having high dispersion coefficient and The lenses with low dispersion coefficient are arranged staggered to help correct the chromatic aberration of the optical imaging system.
上述非球面之方程式係為: z=ch2/[1+[1(k+1)c2h2]0.5]+A4h4+A6h6+A8h8+A10h10+A12h12+A14h14+A16h16+A18h18+A20h20+... (1) The equation system of the above aspheric surface is: z=ch2/[1+[1(k+1)c2h2]0.5]+A4h4+A6h6+A8h8+A10h10+A12h12+A14h14+A16h16+A18h18+A20h20+... (1)
其中,z為沿光軸方向在高度為h的位置以表面頂點作參考的位置值,k為錐面係數,c為曲率半徑的倒數,且A4、A6、A8、A10、A12、A14、A16、A18以及A20為高階非球面係數。 Among them, z is the position value referenced by the surface vertex at the height of h along the optical axis, k is the conical coefficient, c is the reciprocal of the radius of curvature, and A4, A6, A8, A10, A12, A14, A16 , A18 and A20 are high-order aspheric coefficients.
本創作提供的光學成像系統中,透鏡的材質可為塑膠或玻璃。當透鏡材質為塑膠,可以有效降低生產成本與重量。另當透鏡的材質為玻璃,則可以控制熱效應並且增加光學成像系統屈折力配置的設計空間。此外,光學成像系統中第一透鏡至第七透鏡的物側面及像側面可為非球面,其可獲得較多的控制變數,除用以消減像差外,相較於傳統玻璃透鏡的使用甚至可縮減透鏡使用的數目,因此能有效降低本創作光學成像系統的總高度。 In the optical imaging system provided by this creation, the material of the lens can be plastic or glass. When the lens material is plastic, the production cost and weight can be effectively reduced. In addition, when the lens material is glass, the thermal effect can be controlled and the design space for the refractive power configuration of the optical imaging system can be increased. In addition, the object side and image side of the first lens to the seventh lens in the optical imaging system can be aspherical, which can obtain more control variables. In addition to reducing aberrations, compared to the use of traditional glass lenses, The number of lenses used can be reduced, so the total height of the optical imaging system of the creative can be effectively reduced.
再者,本創作提供的光學成像系統中,若透鏡表面係為凸面,原則上表示透鏡表面於近光軸處為凸面;若透鏡表面係為凹面,原則上表示透鏡表面於近光軸處為凹面。 Furthermore, in the optical imaging system provided by this creation, if the lens surface is convex, in principle it means that the lens surface is convex at the near optical axis; if the lens surface is concave, it means that the lens surface is in principle at the near optical axis. Concave.
本創作的光學成像系統更可視需求應用於移動對焦的光學系統中,並兼具優良像差修正與良好成像品質的特色,從而擴大應用層面。 The optical imaging system of this creation can be applied to a mobile focusing optical system based on demand, and has the characteristics of excellent aberration correction and good imaging quality, thereby expanding the application level.
本創作的光學成像系統更可視需求包括一驅動模組,該驅動模組可與該些透鏡相耦合並使該些透鏡產生位移。前述驅動模組可以是音圈馬達(VCM)用於帶動鏡頭進行對焦,或者為光學防手振元件(OIS)用於降低拍攝過程因鏡頭振動所導致失焦的發生頻率。 The optical imaging system of the present invention may further include a driving module as required, and the driving module can be coupled with the lenses and displace the lenses. The aforementioned driving module may be a voice coil motor (VCM) for driving the lens to focus, or an optical anti-vibration element (OIS) for reducing the frequency of out-of-focus caused by lens vibration during shooting.
本創作的光學成像系統更可視需求令第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡、第六透鏡及第七透鏡中至少一透鏡為波長小於500nm 之光線濾除元件,其可藉由該特定具濾除功能之透鏡的至少一表面上鍍膜或該透鏡本身即由具可濾除短波長之材質所製作而達成。 The optical imaging system of this creation can also make at least one of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens and the seventh lens have a wavelength less than 500nm depending on the needs. The light filtering element can be achieved by coating at least one surface of the specific lens with filtering function or the lens itself is made of a material capable of filtering short wavelengths.
本創作的光學成像系統之成像面更可視需求選擇為一平面或一曲面。當成像面為一曲面(例如具有一曲率半徑的球面),有助於降低聚焦光線於成像面所需之入射角,除有助於達成微縮光學成像系統之長度(TTL)外,對於提升相對照度同時有所助益。 The imaging surface of the optical imaging system of this creation can be selected as a flat surface or a curved surface according to requirements. When the imaging surface is a curved surface (for example, a spherical surface with a radius of curvature), it helps to reduce the incident angle required to focus the light on the imaging surface. In addition to helping to achieve the length of the miniature optical imaging system (TTL), it also helps to improve the relative The illuminance also helps.
根據上述實施方式,以下提出具體實施例並配合圖式予以詳細說明。 According to the above-mentioned embodiments, specific examples are presented below and described in detail in conjunction with the drawings.
第一實施例 First embodiment
請參照第1A圖及第1B圖,其中第1A圖繪示依照本創作第一實施例的一種光學成像系統的示意圖,第1B圖由左至右依序為第一實施例的光學成像系統的球差、像散及光學畸變曲線圖。第1C圖為第一實施例的光學成像系統之子午面光扇以及弧矢面光扇,最長工作波長以及最短工作波長通過光圈邊緣於0.7視場處之橫向像差圖。由第1A圖可知,光學成像系統由物側至像側依序包含第一透鏡110、光圈100、第二透鏡120、第三透鏡130、第四透鏡140、第五透鏡150、第六透鏡160以及第七透鏡170、紅外線濾光片180、成像面190以及影像感測元件192。
Please refer to Figures 1A and 1B. Figure 1A shows a schematic diagram of an optical imaging system according to the first embodiment of the present invention. Figure 1B shows the optical imaging system of the first embodiment in order from left to right. Graphs of spherical aberration, astigmatism and optical distortion. Fig. 1C is the transverse aberration diagram of the meridian surface fan and the sagittal surface fan of the optical imaging system of the first embodiment, the longest working wavelength and the shortest working wavelength passing through the edge of the aperture at the 0.7 field of view. It can be seen from Figure 1A that the optical imaging system includes a
第一透鏡110具有負屈折力,且為塑膠材質,其物側面112為凹面,其像側面114為凹面,並皆為非球面,且其物側面112具有一反曲點以及像側面114具有二反曲點。第一透鏡物側面的最大有效半徑之輪廓曲線長度以ARS11表示,第一透鏡像側面的最大有效半徑之輪廓曲線長度以ARS12表示。第一透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE11表示,第一透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE12表示。第一透鏡於光軸上之厚度為TP1。
The
第一透鏡物側面於光軸上的交點至第一透鏡物側面最近光軸的反曲 點之間與光軸平行的水平位移距離以SGI111表示,第一透鏡像側面於光軸上的交點至第一透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI121表示,其滿足下列條件:SGI111=-0.1110mm;SGI121=2.7120mm;TP1=2.2761mm;|SGI111|/(|SGI111|+TP1)=0.0465;|SGI121|/(|SGI121|+TP1)=0.5437。 The intersection of the object side of the first lens on the optical axis to the reflex of the closest optical axis of the object side of the first lens The horizontal displacement distance between the points parallel to the optical axis is represented by SGI111. The horizontal displacement distance between the intersection of the image side surface of the first lens on the optical axis and the inflection point of the closest optical axis of the image side surface of the first lens is parallel to the optical axis. SGI121 indicates that it meets the following conditions: SGI111=-0.1110mm; SGI121=2.7120mm; TP1=2.2761mm; |SGI111|/(|SGI111|+TP1)=0.0465;|SGI121|/(|SGI121|+TP1)= 0.5437.
第一透鏡物側面於光軸上的交點至第一透鏡物側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI112表示,第一透鏡像側面於光軸上的交點至第一透鏡像側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI122表示,其滿足下列條件:SGI112=0mm;SGI122=4.2315mm;|SGI112|/(|SGI112|+TP1)=0;|SGI122|/(|SGI122|+TP1)=0.6502。 The horizontal displacement distance parallel to the optical axis from the intersection of the object side of the first lens on the optical axis to the second inflection point close to the optical axis of the object side of the first lens is represented by SGI112. The horizontal displacement distance parallel to the optical axis from the intersection point to the second inflection point on the image side surface of the first lens that is parallel to the optical axis is represented by SGI122, which satisfies the following conditions: SGI112=0mm; SGI122=4.2315mm; |SGI112|/(| SGI112|+TP1)=0; |SGI122|/(|SGI122|+TP1)=0.6502.
第一透鏡物側面最近光軸的反曲點與光軸間的垂直距離以HIF111表示,第一透鏡像側面於光軸上的交點至第一透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF121表示,其滿足下列條件:HIF111=12.8432mm;HIF111/HOI=1.7127;HIF121=7.1744mm;HIF121/HOI=0.9567。 The vertical distance between the reflex point of the closest optical axis on the object side of the first lens and the optical axis is represented by HIF111. The intersection of the image side of the first lens on the optical axis to the reflex point of the closest optical axis on the image side of the first lens and the optical axis The vertical distance between the two is represented by HIF121, which meets the following conditions: HIF111=12.8432mm; HIF111/HOI=1.7127; HIF121=7.1744mm; HIF121/HOI=0.9567.
第一透鏡物側面第二接近光軸的反曲點與光軸間的垂直距離以HIF112表示,第一透鏡像側面於光軸上的交點至第一透鏡像側面最第二接近光軸的反曲點與光軸間的垂直距離以HIF122表示,其滿足下列條件:HIF112=0mm;HIF112/HOI=0;HIF122=9.8592mm;HIF122/HOI=1.3147。 The vertical distance between the inflection point of the second near the optical axis on the object side of the first lens and the optical axis is represented by HIF112. The intersection of the image side of the first lens on the optical axis to the second closest to the optical axis of the image side of the first lens The vertical distance between the curved point and the optical axis is represented by HIF122, which meets the following conditions: HIF112=0mm; HIF112/HOI=0; HIF122=9.8592mm; HIF122/HOI=1.3147.
第二透鏡120具有正屈折力,且為塑膠材質,其物側面122為凸面,其像側面124為凹面,並皆為非球面。第二透鏡物側面的最大有效半徑之輪廓曲線長度以ARS21表示,第二透鏡像側面的最大有效半徑之輪廓曲線長度以ARS22表示。第二透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE21表示,第二透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE22表示。第二透鏡於光軸上之厚度為TP2。
The
第二透鏡物側面於光軸上的交點至第二透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI211表示,第二透鏡像側面於光軸上的交點至第二透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI221表示。 The horizontal displacement distance parallel to the optical axis between the intersection point of the second lens object side surface on the optical axis and the closest optical axis inflection point of the second lens object side surface is represented by SGI211, and the intersection point of the second lens image side surface on the optical axis to The horizontal displacement distance between the closest inflection point of the optical axis of the second lens image side and the optical axis parallel to the optical axis is represented by SGI221.
第二透鏡物側面最近光軸的反曲點與光軸間的垂直距離以HIF211表示,第二透鏡像側面於光軸上的交點至第二透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF221表示。 The vertical distance between the reflex point of the closest optical axis on the object side of the second lens and the optical axis is represented by HIF211. The intersection of the second lens image side on the optical axis to the reflex point of the closest optical axis on the second lens image side and the optical axis The vertical distance between the two is represented by HIF221.
第三透鏡130具有負屈折力,且為塑膠材質,其物側面132為凸面,其像側面134為凹面,並皆為非球面。第三透鏡物側面的最大有效半徑之輪廓曲線長度以ARS31表示,第三透鏡像側面的最大有效半徑之輪廓曲線長度以ARS32表示。第三透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE31表示,第三透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE32表示。第三透鏡於光軸上之厚度為TP3。
The
第三透鏡物側面於光軸上的交點至第三透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI311表示,第三透鏡像側面於光軸上的交點至第三透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI321表示。 The horizontal displacement distance parallel to the optical axis between the intersection of the object side of the third lens on the optical axis and the inflection point of the closest optical axis of the object side of the third lens is represented by SGI311, and the intersection of the image side of the third lens on the optical axis to The horizontal displacement distance between the closest inflection point of the optical axis of the third lens image side and the optical axis parallel to the optical axis is represented by SGI321.
第三透鏡物側面於光軸上的交點至第三透鏡物側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI312表示,第三透鏡像側面於光軸上的交點至第三透鏡像側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI322表示。 The horizontal displacement distance parallel to the optical axis from the intersection of the object side of the third lens on the optical axis to the second inflection point on the object side of the third lens that is close to the optical axis is represented by SGI312. The horizontal displacement distance parallel to the optical axis from the intersection point to the second inflection point on the image side surface of the third lens that is parallel to the optical axis is represented by SGI322.
第三透鏡物側面最近光軸的反曲點與光軸間的垂直距離以HIF311表示,第三透鏡像側面於光軸上的交點至第三透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF321表示。 The vertical distance between the inflection point of the closest optical axis on the object side of the third lens and the optical axis is represented by HIF311. The intersection point of the image side of the third lens on the optical axis to the inflection point of the closest optical axis on the image side of the third lens and the optical axis The vertical distance between the two is represented by HIF321.
第三透鏡物側面第二接近光軸的反曲點與光軸間的垂直距離以HIF312表示,第三透鏡像側面於光軸上的交點至第三透鏡像側面第二接近光軸的反曲點與光軸間的垂直距離以HIF322表示。 The vertical distance between the second near-to-optical axis reflex point of the third lens on the object side and the optical axis is represented by HIF312. The intersection of the third lens’s image side on the optical axis to the second near-to the third reflex on the image side of the third lens The vertical distance between the point and the optical axis is represented by HIF322.
第四透鏡140具有正屈折力,且為塑膠材質,其物側面142為凸面,其像側面144為凸面,並皆為非球面,且其物側面142具有一反曲點。第四透鏡物側面的最大有效半徑之輪廓曲線長度以ARS41表示,第四透鏡像側面的最大有效半徑之輪廓曲線長度以ARS42表示。第四透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE41表示,第四透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE42表示。第四透鏡於光軸上之厚度為TP4。
The
第四透鏡物側面於光軸上的交點至第四透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI411表示,第四透鏡像側面於光軸上的交點至第四透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI421表示,其滿足下列條件:SGI411=0.0018mm;|SGI411|/(|SGI411|+TP4)=0.0009。 The horizontal displacement distance parallel to the optical axis from the intersection of the object side of the fourth lens on the optical axis to the inflection point of the closest optical axis of the object side of the fourth lens is represented by SGI411, and the intersection of the image side of the fourth lens on the optical axis to The horizontal displacement distance parallel to the optical axis between the closest inflection point of the fourth lens image side surface and the optical axis is represented by SGI421, which meets the following conditions: SGI411=0.0018mm; |SGI411|/(|SGI411|+TP4)=0.0009.
第四透鏡物側面於光軸上的交點至第四透鏡物側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI412表示,第四透鏡像側面於光軸上的交點至第四透鏡像側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI422表示。 The horizontal displacement distance parallel to the optical axis from the intersection of the object side of the fourth lens on the optical axis to the second inflection point on the object side of the fourth lens that is close to the optical axis is represented by SGI412. The image side of the fourth lens is on the optical axis. The horizontal displacement distance from the intersection point to the second inflection point on the image side surface of the fourth lens that is parallel to the optical axis and the optical axis is represented by SGI422.
第四透鏡物側面最近光軸的反曲點與光軸間的垂直距離以HIF411表示,第四透鏡像側面於光軸上的交點至第四透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF421表示,其滿足下列條件:HIF411=0.7191mm;HIF411/HOI=0.0959。 The vertical distance between the inflection point of the closest optical axis of the fourth lens on the object side and the optical axis is represented by HIF411. The intersection of the image side of the fourth lens on the optical axis to the inflection point of the closest optical axis on the image side of the fourth lens and the optical axis The vertical distance between the two is represented by HIF421, which meets the following conditions: HIF411=0.7191mm; HIF411/HOI=0.0959.
第四透鏡物側面第二接近光軸的反曲點與光軸間的垂直距離以HIF412表示,第四透鏡像側面於光軸上的交點至第四透鏡像側面第二接近光軸 的反曲點與光軸間的垂直距離以HIF422表示。 The vertical distance between the inflection point of the second near the optical axis of the fourth lens on the object side and the optical axis is represented by HIF412. The intersection of the image side of the fourth lens on the optical axis to the second near the optical axis of the fourth lens The vertical distance between the inflection point and the optical axis is represented by HIF422.
第五透鏡150具有正屈折力,且為塑膠材質,其物側面152為凹面,其像側面154為凸面,並皆為非球面,且其物側面152以及像側面154均具有一反曲點。第五透鏡物側面的最大有效半徑之輪廓曲線長度以ARS51表示,第五透鏡像側面的最大有效半徑之輪廓曲線長度以ARS52表示。第五透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE51表示,第五透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE52表示。第五透鏡於光軸上之厚度為TP5。
The
第五透鏡物側面於光軸上的交點至第五透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI511表示,第五透鏡像側面於光軸上的交點至第五透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI521表示,其滿足下列條件:SGI511=-0.1246mm;SGI521=-2.1477mm;|SGI511|/(|SGI511|+TP5)=0.0284;|SGI521|/(|SGI521|+TP5)=0.3346。 The horizontal displacement distance parallel to the optical axis between the intersection of the object side surface of the fifth lens on the optical axis and the inflection point of the closest optical axis of the object side of the fifth lens is represented by SGI511, and the intersection point of the image side surface of the fifth lens on the optical axis to The horizontal displacement distance between the inflection point of the closest optical axis of the fifth lens image side and parallel to the optical axis is represented by SGI521, which meets the following conditions: SGI511=-0.1246mm; SGI521=-2.1477mm; |SGI511|/(|SGI511 |+TP5)=0.0284; |SGI521|/(|SGI521|+TP5)=0.3346.
第五透鏡物側面於光軸上的交點至第五透鏡物側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI512表示,第五透鏡像側面於光軸上的交點至第五透鏡像側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI522表示。 The horizontal displacement distance parallel to the optical axis from the intersection point of the object side surface of the fifth lens on the optical axis to the second inflection point of the object side surface of the fifth lens that is parallel to the optical axis is represented by SGI512. The horizontal displacement distance parallel to the optical axis from the intersection point to the second inflection point on the image side surface of the fifth lens, which is parallel to the optical axis, is represented by SGI522.
第五透鏡物側面最近光軸的反曲點與光軸間的垂直距離以HIF511表示,第五透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF521表示,其滿足下列條件:HIF511=3.8179mm;HIF521=4.5480mm;HIF511/HOI=0.5091;HIF521/HOI=0.6065。 The vertical distance between the reflex point of the closest optical axis on the object side of the fifth lens and the optical axis is represented by HIF511, and the vertical distance between the reflex point of the closest optical axis on the image side of the fifth lens and the optical axis is represented by HIF521, which meets the following conditions : HIF511=3.8179mm; HIF521=4.5480mm; HIF511/HOI=0.5091; HIF521/HOI=0.6065.
第五透鏡物側面第二接近光軸的反曲點與光軸間的垂直距離以HIF512表示,第五透鏡像側面第二接近光軸的反曲點與光軸間的垂直距離以HIF522表示。 The vertical distance between the second inflection point on the object side of the fifth lens near the optical axis and the optical axis is represented by HIF512, and the vertical distance between the second inflection point on the image side of the fifth lens and the optical axis is represented by HIF522.
第六透鏡160具有負屈折力,且為塑膠材質,其物側面162為凸面,
其像側面164為凹面,且其物側面162以及像側面164均具有一反曲點。藉此,可有效調整各視場入射於第六透鏡的角度而改善像差。第六透鏡物側面的最大有效半徑之輪廓曲線長度以ARS61表示,第六透鏡像側面的最大有效半徑之輪廓曲線長度以ARS62表示。第六透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE61表示,第六透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE62表示。第六透鏡於光軸上之厚度為TP6。
The
第六透鏡物側面於光軸上的交點至第六透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI611表示,第六透鏡像側面於光軸上的交點至第六透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI621表示,其滿足下列條件:SGI611=0.3208mm;SGI621=0.5937mm;|SGI611|/(|SGI611|+TP6)=0.5167;|SGI621|/(|SGI621|+TP6)=0.6643。 The horizontal displacement distance parallel to the optical axis between the intersection point of the sixth lens object side surface on the optical axis and the closest optical axis inflection point of the sixth lens object side surface is represented by SGI611, and the sixth lens image side surface intersection point on the optical axis to The horizontal displacement distance between the inflection point of the closest optical axis of the sixth lens image side and the optical axis parallel to the optical axis is represented by SGI621, which meets the following conditions: SGI611=0.3208mm; SGI621=0.5937mm; |SGI611|/(|SGI611|+ TP6)=0.5167; |SGI621|/(|SGI621|+TP6)=0.6643.
第六透鏡物側面最近光軸的反曲點與光軸間的垂直距離以HIF611表示,第六透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF621表示,其滿足下列條件:HIF611=1.9655mm;HIF621=2.0041mm;HIF611/HOI=0.2621;HIF621/HOI=0.2672。 The vertical distance between the reflex point of the closest optical axis of the sixth lens on the object side and the optical axis is represented by HIF611, and the vertical distance between the reflex point of the closest optical axis on the image side of the sixth lens and the optical axis is represented by HIF621, which meets the following conditions : HIF611=1.9655mm; HIF621=2.0041mm; HIF611/HOI=0.2621; HIF621/HOI=0.2672.
第七透鏡170具有正屈折力,且為塑膠材質,其物側面172為凸面,其像側面174為凹面。藉此,有利於縮短其後焦距以維持小型化。另外,其物側面172以及像側面174均具有一反曲點。第七透鏡物側面的最大有效半徑之輪廓曲線長度以ARS71表示,第七透鏡像側面的最大有效半徑之輪廓曲線長度以ARS72表示。第七透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE71表示,第七透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE72表示。第七透鏡於光軸上之厚度為TP7。
The
第七透鏡物側面於光軸上的交點至第七透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI711表示,第七透鏡像側面於光軸上的 交點至第七透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI721表示,其滿足下列條件:SGI711=0.5212mm;SGI721=0.5668mm;|SGI711|/(|SGI711|+TP7)=0.3179;|SGI721|/(|SGI721|+TP7)=0.3364。 The horizontal displacement distance parallel to the optical axis from the intersection of the object side of the seventh lens on the optical axis to the inflection point of the closest optical axis of the object side of the seventh lens is represented by SGI711, and the image side of the seventh lens is on the optical axis. The horizontal displacement distance parallel to the optical axis from the point of intersection to the inflection point of the closest optical axis on the image side of the seventh lens is represented by SGI721, which satisfies the following conditions: SGI711=0.5212mm; SGI721=0.5668mm; |SGI711|/(|SGI711 |+TP7)=0.3179; |SGI721|/(|SGI721|+TP7)=0.3364.
第七透鏡物側面最近光軸的反曲點與光軸間的垂直距離以HIF711表示,第七透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF721表示,其滿足下列條件:HIF711=1.6707mm;HIF721=1.8616mm;HIF711/HOI=0.2228;HIF721/HOI=0.2482。 The vertical distance between the reflex point of the closest optical axis on the object side of the seventh lens and the optical axis is represented by HIF711, and the vertical distance between the reflex point of the closest optical axis on the image side of the seventh lens and the optical axis is represented by HIF721, which meets the following conditions : HIF711=1.6707mm; HIF721=1.8616mm; HIF711/HOI=0.2228; HIF721/HOI=0.2482.
本實施例以下所述以及反曲點相關特徵依主要參考波長555nm所得。 The following description and related features of the inflection point in this embodiment are obtained based on the main reference wavelength of 555 nm.
紅外線濾光片180為玻璃材質,其設置於第七透鏡170及成像面190間且不影響光學成像系統的焦距。
The
本實施例的光學成像系統中,光學成像系統的焦距為f,光學成像系統之入射瞳直徑為HEP,光學成像系統中最大視角的一半為HAF,其數值如下:f=4.3019mm;f/HEP=1.2;以及HAF=59.9968度與tan(HAF)=1.7318。 In the optical imaging system of this embodiment, the focal length of the optical imaging system is f, the entrance pupil diameter of the optical imaging system is HEP, half of the maximum viewing angle in the optical imaging system is HAF, and the value is as follows: f=4.3019mm; f/HEP =1.2; and HAF=59.9968 degrees and tan(HAF)=1.7318.
本實施例的光學成像系統中,第一透鏡110的焦距為f1,第七透鏡170的焦距為f7,其滿足下列條件:f1=-14.5286mm;|f/f1|=0.2961;f7=8.2933;|f1|>f7;以及|f1/f7|=1.7519。
In the optical imaging system of this embodiment, the focal length of the
本實施例的光學成像系統中,第二透鏡120至第六透鏡160的焦距分別為f2、f3、f4、f5、f6,其滿足下列條件:|f2|+|f3|+|f4|+|f5|+|f6|=144.7494;|f1|+|f7|=22.8219以及|f2|+|f3|+|f4|+|f5|+|f6|>|f1|+|f7|。
In the optical imaging system of this embodiment, the focal lengths of the
光學成像系統的焦距f與每一片具有正屈折力之透鏡的焦距fp之比值PPR,光學成像系統的焦距f與每一片具有負屈折力之透鏡的焦距fn之比值NPR,本實施例的光學成像系統中,所有正屈折力之透鏡的PPR總和為 ΣPPR=f/f2+f/f4+f/f5+f/f7=1.7384,所有負屈折力之透鏡的NPR總和為ΣNPR=f/f1+f/f3+f/f6=-0.9999,ΣPPR/|ΣNPR|=1.7386。同時亦滿足下列條件:|f/f2|=0.1774;|f/f3|=0.0443;|f/f4|=0.4411;|f/f5|=0.6012;|f/f6|=0.6595;|f/f7|=0.5187。 The ratio of the focal length f of the optical imaging system to the focal length fp of each lens with positive refractive power PPR, the ratio of the focal length f of the optical imaging system to the focal length fn of each lens with negative refractive power NPR, the optical imaging of this embodiment In the system, the sum of PPR of all lenses with positive refractive power is ΣPPR=f/f2+f/f4+f/f5+f/f7=1.7384, the sum of NPR of all lenses with negative refractive power is ΣNPR=f/f1+f/f3+f/f6=-0.9999, ΣPPR/| ΣNPR|=1.7386. At the same time, the following conditions are also met: |f/f2|=0.1774; |f/f3|=0.0443; |f/f4|=0.4411; |f/f5|=0.6012; |f/f6|=0.6595;|f/f7 |=0.5187.
本實施例的光學成像系統中,第一透鏡物側面112至第七透鏡像側面174間的距離為InTL,第一透鏡物側面112至成像面190間的距離為HOS,光圈100至成像面180間的距離為InS,影像感測元件192有效感測區域對角線長的一半為HOI,第七透鏡像側面174至成像面190間的距離為BFL,其滿足下列條件:InTL+BFL=HOS;HOS=26.9789mm;HOI=7.5mm;HOS/HOI=3.5977;HOS/f=6.2715;InS=12.4615mm;以及InS/HOS=0.4619。
In the optical imaging system of this embodiment, the distance between the
本實施例的光學成像系統中,於光軸上所有具屈折力之透鏡的厚度總和為ΣTP,其滿足下列條件:ΣTP=16.0446mm;以及ΣTP/InTL=0.6559。藉此,當可同時兼顧系統成像的對比度以及透鏡製造的良率並提供適當的後焦距以容置其他元件。 In the optical imaging system of this embodiment, the total thickness of all refractive lenses on the optical axis is ΣTP, which meets the following conditions: ΣTP=16.0446 mm; and ΣTP/InTL=0.6559. In this way, the contrast of the system imaging and the yield rate of lens manufacturing can be taken into account at the same time, and an appropriate back focus can be provided to accommodate other components.
本實施例的光學成像系統中,第一透鏡物側面112的曲率半徑為R1,第一透鏡像側面114的曲率半徑為R2,其滿足下列條件:|R1/R2|=129.9952。
藉此,第一透鏡的具備適當正屈折力強度,避免球差增加過速。
In the optical imaging system of this embodiment, the curvature radius of the first
本實施例的光學成像系統中,第七透鏡物側面172的曲率半徑為R13,第七透鏡像側面174的曲率半徑為R14,其滿足下列條件:(R13-R14)/(R13+R14)=-0.0806。藉此,有利於修正光學成像系統所產生的像散。
In the optical imaging system of this embodiment, the curvature radius of the seventh lens
本實施例的光學成像系統中,所有具正屈折力的透鏡之焦距總和為ΣPP,其滿足下列條件:ΣPP=f2+f4+f5+f7=49.4535mm;以及f4/(f2+f4+f5+f7)=0.1972。藉此,有助於適當分配第四透鏡140之正屈折力至其他正透鏡,以抑制入射光線行進過程顯著像差的產生。
In the optical imaging system of this embodiment, the total focal length of all lenses with positive refractive power is ΣPP, which satisfies the following conditions: ΣPP=f2+f4+f5+f7=49.4535mm; and f4/(f2+f4+f5+ f7)=0.1972. Thereby, it is helpful to appropriately distribute the positive refractive power of the
本實施例的光學成像系統中,所有具負屈折力的透鏡之焦距總和為ΣNP,其滿足下列條件:ΣNP=f1+f3+f6=-118.1178mm;以及f1/(f1+f3+f6)=0.1677。藉此,有助於適當分配第一透鏡之負屈折力至其他負透鏡,以抑制入射光線行進過程顯著像差的產生。 In the optical imaging system of this embodiment, the sum of the focal lengths of all lenses with negative refractive power is ΣNP, which meets the following conditions: ΣNP=f1+f3+f6=-118.1178mm; and f1/(f1+f3+f6)= 0.1677. This helps to appropriately distribute the negative refractive power of the first lens to other negative lenses, so as to suppress the generation of significant aberrations in the process of the incident light rays.
本實施例的光學成像系統中,第一透鏡110與第二透鏡120於光軸上的間隔距離為IN12,其滿足下列條件:IN12=4.5524mm;IN12/f=1.0582。藉此,有助於改善透鏡的色差以提升其性能。
In the optical imaging system of this embodiment, the separation distance between the
本實施例的光學成像系統中,第一透鏡110與第二透鏡120於光軸上的厚度分別為TP1以及TP2,其滿足下列條件:TP1=2.2761mm;TP2=0.2398mm;以及(TP1+IN12)/TP2=1.3032。藉此,有助於控制光學成像系統製造的敏感度並提升其性能。
In the optical imaging system of this embodiment, the thicknesses of the
本實施例的光學成像系統中,第六透鏡160與第七透鏡170於光軸上的厚度分別為TP6以及TP7,前述兩透鏡於光軸上的間隔距離為IN67,其滿足下列條件:TP6=0.3000mm;TP7=1.1182mm;以及(TP7+IN67)/TP6=4.4322。
藉此,有助於控制光學成像系統製造的敏感度並降低系統總高度。
In the optical imaging system of this embodiment, the thickness of the
本實施例的光學成像系統中,第三透鏡130、第四透鏡140與第五透鏡150於光軸上的厚度分別為TP3、TP4以及TP5,第三透鏡130與第四透鏡140於光軸上的間隔距離為IN34,第四透鏡140與第五透鏡150於光軸上的間隔距離為IN45,第一透鏡物側面112至第七透鏡像側面174間的距離為InTL,其滿足下列條件:TP3=0.8369mm;TP4=2.0022mm;TP5=4.2706mm;IN34=1.9268mm;IN45=1.5153mm;以及TP4/(IN34+TP4+IN45)=0.3678。藉此,有助於層層微幅修正入射光線行進過程所產生的像差並降低系統總高度。
In the optical imaging system of this embodiment, the thicknesses of the
本實施例的光學成像系統中,第六透鏡物側面162於光軸上的交點至第六透鏡物側面162的最大有效半徑位置於光軸的水平位移距離為InRS61,第六
透鏡像側面164於光軸上的交點至第六透鏡像側面164的最大有效半徑位置於光軸的水平位移距離為InRS62,第六透鏡160於光軸上的厚度為TP6,其滿足下列條件:InRS61=-0.7823mm;InRS62=-0.2166mm;以及|InRS62|/TP6=0.722。
藉此,有利於鏡片的製作與成型,並有效維持其小型化。
In the optical imaging system of this embodiment, the horizontal displacement distance from the intersection of the sixth lens
本實施例的光學成像系統中,第六透鏡物側面162的臨界點與光軸的垂直距離為HVT61,第六透鏡像側面164的臨界點與光軸的垂直距離為HVT62,其滿足下列條件:HVT61=3.3498mm;HVT62=3.9860mm;以及HVT61/HVT62=0.8404。
In the optical imaging system of this embodiment, the vertical distance between the critical point of the sixth lens
本實施例的光學成像系統中,第七透鏡物側面172於光軸上的交點至第七透鏡物側面172的最大有效半徑位置於光軸的水平位移距離為InRS71,第七透鏡像側面174於光軸上的交點至第七透鏡像側面174的最大有效半徑位置於光軸的水平位移距離為InRS72,第七透鏡170於光軸上的厚度為TP7,其滿足下列條件:InRS71=-0.2756mm;InRS72=-0.0938mm;以及|InRS72|/TP7=0.0839。藉此,有利於鏡片的製作與成型,並有效維持其小型化。
In the optical imaging system of this embodiment, the horizontal displacement distance from the intersection of the seventh lens
本實施例的光學成像系統中,第七透鏡物側面172的臨界點與光軸的垂直距離為HVT71,第七透鏡像側面174的臨界點與光軸的垂直距離為HVT72,其滿足下列條件:HVT71=3.6822mm;HVT72=4.0606mm;以及HVT71/HVT72=0.9068。藉此,可有效修正離軸視場的像差。
In the optical imaging system of this embodiment, the vertical distance between the critical point of the seventh lens
本實施例的光學成像系統中,其滿足下列條件:HVT72/HOI=0.5414。藉此,有助於光學成像系統之週邊視場的像差修正。 In the optical imaging system of this embodiment, it satisfies the following condition: HVT72/HOI=0.5414. This helps to correct the aberration of the peripheral field of view of the optical imaging system.
本實施例的光學成像系統中,其滿足下列條件:HVT72/HOS=0.1505。藉此,有助於光學成像系統之週邊視場的像差修正。 In the optical imaging system of this embodiment, it satisfies the following condition: HVT72/HOS=0.1505. This helps to correct the aberration of the peripheral field of view of the optical imaging system.
本實施例的光學成像系統中,第二透鏡、第三透鏡以及第七透鏡具有負屈折力,第二透鏡的色散係數為NA2,第三透鏡的色散係數為NA3,第七透 鏡的色散係數為NA7,其滿足下列條件:1≦NA7/NA2。藉此,有助於光學成像系統色差的修正。 In the optical imaging system of this embodiment, the second lens, the third lens, and the seventh lens have negative refractive power, the dispersion coefficient of the second lens is NA2, the dispersion coefficient of the third lens is NA3, and the seventh lens has negative refractive power. The dispersion coefficient of the mirror is NA7, which satisfies the following conditions: 1≦NA7/NA2. This helps correct the chromatic aberration of the optical imaging system.
本實施例的光學成像系統中,光學成像系統於結像時之TV畸變為TDT,結像時之光學畸變為ODT,其滿足下列條件:|TDT|=2.5678%;|ODT|=2.1302%。 In the optical imaging system of this embodiment, the TV distortion of the optical imaging system is TDT when the image is set, and the optical distortion when the image is set is ODT, which meets the following conditions: |TDT|=2.5678%; |ODT|=2.1302%.
本實施例的光學成像系統中,正向子午面光扇圖之可見光最短工作波長通過光圈邊緣入射在成像面上0.7視場之橫向像差以PSTA表示,其為0.00040mm,正向子午面光扇圖之可見光最長工作波長通過光圈邊緣入射在成像面上0.7視場之橫向像差以PLTA表示,其為-0.009mm,負向子午面光扇圖之可見光最短工作波長通過光圈邊緣入射在成像面上0.7視場之橫向像差以NSTA表示,其為-0.002mm,負向子午面光扇圖之可見光最長工作波長通過光圈邊緣入射在成像面上0.7視場之橫向像差以NLTA表示,其為-0.016mm。弧矢面光扇圖之可見光最短工作波長通過光圈邊緣入射在成像面上0.7視場之橫向像差以SSTA表示,其為0.018mm,弧矢面光扇圖之可見光最長工作波長通過光圈邊緣入射在成像面上0.7視場之橫向像差以SLTA表示,其為0.016mm。 In the optical imaging system of this embodiment, the shortest working wavelength of visible light of the forward meridian light fan image is incident on the imaging surface through the edge of the aperture. The lateral aberration of 0.7 field of view is expressed in PSTA, which is 0.00040mm, and the forward meridian light The longest working wavelength of visible light in the fan image is incident on the imaging surface through the edge of the aperture. The lateral aberration of 0.7 field of view is expressed in PLTA, which is -0.009mm. The shortest working wavelength of visible light in the negative meridian fan image is incident on the image through the edge of the aperture. The lateral aberration of the 0.7 field of view on the surface is expressed in NSTA, which is -0.002mm. The longest working wavelength of visible light in the negative meridian fan image is incident on the imaging surface through the edge of the aperture. The lateral aberration of the 0.7 field of view is expressed in NLTA. It is -0.016mm. The shortest working wavelength of visible light in the sagittal plane fan diagram is incident on the imaging surface through the edge of the aperture. The lateral aberration of 0.7 field of view is expressed in SSTA, which is 0.018mm. The longest working wavelength of visible light in the sagittal plane fan diagram is incident on the imaging surface through the edge of the aperture. The lateral aberration of 0.7 field of view on the surface is represented by SLTA, which is 0.016 mm.
再配合參照下列表一以及表二。 Refer to Table 1 and Table 2 below for cooperation.
依據表一及表二可得到下列輪廓曲線長度相關之數值:
表一為第1圖第一實施例詳細的結構數據,其中曲率半徑、厚度、距離及焦距的單位為mm,且表面0-16依序表示由物側至像側的表面。表二為第一實施例中的非球面數據,其中,k表非球面曲線方程式中的錐面係數,A1-A20則表示各表面第1-20階非球面係數。此外,以下各實施例表格乃對應各實施例的示意圖與像差曲線圖,表格中數據的定義皆與第一實施例的表一及表二的定義相同,在此不加贅述。 Table 1 is the detailed structural data of the first embodiment in Figure 1, where the unit of curvature radius, thickness, distance and focal length is mm, and surface 0-16 indicates the surface from the object side to the image side in sequence. Table 2 is the aspheric surface data in the first embodiment, where k represents the conical surface coefficient in the aspheric curve equation, and A1-A20 represent the 1-20th order aspheric surface coefficients of each surface. In addition, the following embodiment tables correspond to the schematic diagrams and aberration curve diagrams of the respective embodiments, and the definitions of the data in the tables are the same as those in Table 1 and Table 2 of the first embodiment, and will not be repeated here.
第二實施例 Second embodiment
請參照第2A圖及第2B圖,其中第2A圖繪示依照本創作第二實施例的一種光學成像系統的示意圖,第2B圖由左至右依序為第二實施例的光學成像系統的球差、像散及光學畸變曲線圖。第2C圖為第二實施例的光學成像系統於0.7視場處之橫向像差圖。由第2A圖可知,光學成像系統由物側至像側依序包含光圈200、第一透鏡210、第二透鏡220、第三透鏡230、第四透鏡240、第五透鏡250、第六透鏡260以及第七透鏡270、紅外線濾光片280、成像面290以及影像感測元件292。
Please refer to Figures 2A and 2B. Figure 2A shows a schematic diagram of an optical imaging system according to the second embodiment of the present invention. Figure 2B shows the optical imaging system of the second embodiment in order from left to right. Graphs of spherical aberration, astigmatism and optical distortion. Figure 2C is a lateral aberration diagram of the optical imaging system of the second embodiment at a field of view of 0.7. It can be seen from Figure 2A that the optical imaging system from the object side to the image side sequentially includes the
第一透鏡210具有正屈折力,且為塑膠材質,其物側面212為凸面,其像側面214為凹面,並皆為非球面,其物側面212以及像側面214均具有一反曲點。
The
第二透鏡220具有負屈折力,且為塑膠材質,其物側面222為凸面,其像側面224為凹面,並皆為非球面,其物側面222以及像側面224均具有一反曲點。
The
第三透鏡230具有正屈折力,且為塑膠材質,其物側面232為凸面,
其像側面234為凹面,並皆為非球面,其物側面232具有一反曲點。
The
第四透鏡240具有負屈折力,且為塑膠材質,其物側面242為凹面,其像側面244為凸面,並皆為非球面,且其物側面242具有一反曲點以及像側面244具有二反曲點。
The
第五透鏡250具有正屈折力,且為塑膠材質,其物側面252為凸面,其像側面254為凹面,並皆為非球面,且其物側面252以及像側面254均具有一反曲點。
The
第六透鏡260具有正屈折力,且為塑膠材質,其物側面262為凹面,其像側面264為凸面,並皆為非球面,且其物側面262以及像側面264均具有二反曲點。藉此,可有效調整各視場入射於第六透鏡260的角度而改善像差。
The
第七透鏡270具有負屈折力,且為塑膠材質,其物側面272為凸面,其像側面274為凹面。藉此,有利於縮短其後焦距以維持小型化。另外,第七透鏡物側面272以及像側面274均具有一反曲點,可有效地壓制離軸視場光線入射的角度,進一步可修正離軸視場的像差。
The
紅外線濾光片280為玻璃材質,其設置於第七透鏡270及成像面290間且不影響光學成像系統的焦距。
The
請配合參照下列表三以及表四。 Please refer to Table 3 and Table 4 below for cooperation.
第二實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。 In the second embodiment, the curve equation of the aspheric surface is expressed as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and will not be repeated here.
依據表三及表四可得到下列條件式數值:
依據表三及表四可得到下列條件式數值:依據表一及表二可得到下
列輪廓曲線長度相關之數值:
依據表三及表四可得到下列條件式數值:
第三實施例 The third embodiment
請參照第3A圖及第3B圖,其中第3A圖繪示依照本創作第三實施例的一種光學成像系統的示意圖,第3B圖由左至右依序為第三實施例的光學成像系統的球差、像散及光學畸變曲線圖。第3C圖為第三實施例的光學成像系統於0.7視場處之橫向像差圖。由第3A圖可知,光學成像系統由物側至像側依序包含光圈300、第一透鏡310、第二透鏡320、第三透鏡330、第四透鏡340、第五透鏡350、
第六透鏡360以及第七透鏡370、紅外線濾光片380、成像面390以及影像感測元件392。
Please refer to Figures 3A and 3B. Figure 3A shows a schematic diagram of an optical imaging system according to the third embodiment of the present invention. Figure 3B shows the optical imaging system of the third embodiment in order from left to right. Graphs of spherical aberration, astigmatism and optical distortion. Figure 3C is a lateral aberration diagram of the optical imaging system of the third embodiment at a field of view of 0.7. It can be seen from Fig. 3A that the optical imaging system includes an
第一透鏡310具有正屈折力,且為玻璃材質,其物側面312為凸面,其像側面314為凹面,並皆為非球面。
The
第二透鏡320具有負屈折力,且為塑膠材質,其物側面322為凸面,其像側面324為凹面,並皆為非球面,其物側面322以及像側面324均具有一反曲點。
The
第三透鏡330具有正屈折力,且為塑膠材質,其物側面332為凹面,其像側面334為凸面,並皆為非球面。
The
第四透鏡340具有負屈折力,且為塑膠材質,其物側面342為凸面,其像側面344為凹面,並皆為非球面,其物側面342以及像側面344均具有二反曲點。
The
第五透鏡350具有正屈折力,且為塑膠材質,其物側面352為凹面,其像側面354為凸面,並皆為非球面,且其物側面352具有一反曲點。
The
第六透鏡360具有正屈折力,且為塑膠材質,其物側面362為凹面,其像側面364為凸面,並皆為非球面,其像側面364具有二反曲點。藉此,可有效調整各視場入射於第六透鏡360的角度而改善像差。
The
第七透鏡370具有負屈折力,且為塑膠材質,其物側面372為凸面,其像側面374為凹面,並皆為非球面。藉此,有利於縮短其後焦距以維持小型化。
The
另外,其物側面372以及像側面374均具有一反曲點,可有效地壓制離軸視場光線入射的角度,進一步可修正離軸視場的像差。
In addition, both the
紅外線濾光片380為玻璃材質,其設置於第七透鏡370及成像面390間且不影響光學成像系統的焦距。
The
請配合參照下列表五以及表六。 Please refer to Table 5 and Table 6 below for cooperation.
第三實施例中,非球面的曲線方程式表示如第一實施例的形式。此 外,下表參數的定義皆與第一實施例相同,在此不加以贅述。 In the third embodiment, the curve equation of the aspheric surface is expressed as in the first embodiment. this In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and will not be repeated here.
依據表五及表六可得到下列條件式數值:
依據表五及表六可得到下列輪廓曲線長度相關之數值:
依據表五及表六可得到下列條件式數值:
第四實施例 Fourth embodiment
請參照第4A圖及第4B圖,其中第4A圖繪示依照本創作第四實施例的一種光學成像系統的示意圖,第4B圖由左至右依序為第四實施例的光學成像系統的球差、像散及光學畸變曲線圖。第4C圖為第四實施例的光學成像系統於0.7視場處之橫向像差圖。由第4A圖可知,光學成像系統由物側至像側依序包含光圈400、第一透鏡410、第二透鏡420、第三透鏡430、第四透鏡440、第五透鏡450、第六透鏡460以及第七透鏡470、紅外線濾光片480、成像面490以及影像感測元件492。
Please refer to Figures 4A and 4B. Figure 4A shows a schematic diagram of an optical imaging system according to the fourth embodiment of the present invention. Figure 4B shows the optical imaging system of the fourth embodiment in order from left to right. Graphs of spherical aberration, astigmatism and optical distortion. Figure 4C is a lateral aberration diagram of the optical imaging system of the fourth embodiment at a field of view of 0.7. It can be seen from FIG. 4A that the optical imaging system includes an
第一透鏡410具有正屈折力,且為玻璃材質,其物側面412為凸面,其像側面414為凸面,並皆為非球面,其物側面412具有一反曲點以及像側面414具有二反曲點。
The
第二透鏡420具有負屈折力,且為塑膠材質,其物側面422為凹面,其像側面424為凹面,並皆為非球面,其物側面422以及像側面424均具有一反曲點。
The
第三透鏡430具有負屈折力,且為塑膠材質,其物側面432為凸面,其像側面434為凹面,並皆為非球面,其物側面432以及像側面434均具有一反曲
點。
The
第四透鏡440具有正屈折力,且為塑膠材質,其物側面442為凸面,其像側面444為凸面,並皆為非球面,其物側面442以及像側面444均具有一反曲點。
The
第五透鏡450具有負屈折力,且為塑膠材質,其物側面452為凹面,其像側面454為凸面,並皆為非球面,其物側面452以及像側面4524均具有一反曲點。
The
第六透鏡460具有正屈折力,且為塑膠材質,其物側面462為凸面,其像側面464為凸面,並皆為非球面,其物側面462具有一反曲點以及像側面464具有二反曲點。藉此,可有效調整各視場入射於第六透鏡460的角度而改善像差。
The
第七透鏡470具有負屈折力,且為塑膠材質,其物側面472為凸面,其像側面474為凹面,並皆為非球面,其物側面472以及像側面474均具有一反曲點。藉此,有利於縮短其後焦距以維持小型化。另外,可有效地壓制離軸視場光線入射的角度,進一步可修正離軸視場的像差。
The
紅外線濾光片480為玻璃材質,其設置於第七透鏡470及成像面490間且不影響光學成像系統的焦距。
The
請配合參照下列表七以及表八。 Please refer to Table 7 and Table 8 below for cooperation.
第四實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。 In the fourth embodiment, the curve equation of the aspheric surface is expressed as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and will not be repeated here.
依據表七及表八可得到下列條件式數值:
依據表七及表八可得到下列輪廓曲線長度相關之數值:
依據表七及表八可得到下列條件式數值:
第五實施例 Fifth embodiment
請參照第5A圖及第5B圖,其中第5A圖繪示依照本創作第五實施例的一種光學成像系統的示意圖,第5B圖由左至右依序為第五實施例的光學成像系統的球差、像散及光學畸變曲線圖。第5C圖為第五實施例的光學成像系統於0.7視場處之橫向像差圖。由第5A圖可知,光學成像系統由物側至像側依序包含光圈500、第一透鏡510、第二透鏡520、第三透鏡530、第四透鏡540、第五透鏡550、第六透鏡560以及第七透鏡570、紅外線濾光片580、成像面590以及影像感測元件592。
Please refer to Figures 5A and 5B, where Figure 5A shows a schematic diagram of an optical imaging system according to the fifth embodiment of the present invention, and Figure 5B shows the optical imaging system of the fifth embodiment in order from left to right. Graphs of spherical aberration, astigmatism and optical distortion. Figure 5C is a lateral aberration diagram of the optical imaging system of the fifth embodiment at a field of view of 0.7. It can be seen from Figure 5A that the optical imaging system from the object side to the image side sequentially includes the
第一透鏡510具有正屈折力,且為玻璃材質,其物側面512為凸面,
其像側面514為凹面,並皆為非球面。
The first lens 510 has positive refractive power and is made of glass, and its
第二透鏡520具有負屈折力,且為塑膠材質,其物側面522為凹面,其像側面524為凹面,並皆為非球面,其物側面522具有二反曲點以及像側面524具有一反曲點。
The
第三透鏡530具有負屈折力,且為塑膠材質,其物側面532為凸面,其像側面534為凹面,並皆為非球面,其物側面532以及像側面534均具有一反曲點。
The third lens 530 has a negative refractive power and is made of plastic. Its
第四透鏡540具有正屈折力,且為塑膠材質,其物側面542為凸面,其像側面544為凸面,並皆為為非球面,其物側面542以及像側面544均具有一反曲點。
The
第五透鏡550具有正屈折力,且為塑膠材質,其物側面552為凹面,其像側面554為凸面,並皆為非球面,且其物側面552具有一反曲點。
The
第六透鏡560可具有負屈折力,且為塑膠材質,其物側面562為凹面,其像側面564為凸面,並皆為非球面。藉此,可有效調整各視場入射於第六透鏡560的角度而改善像差。
The
第七透鏡570具有負屈折力,且為塑膠材質,其物側面572為凸面,其像側面574為凹面,且其物側面572以及像側面574均具有一反曲點。藉此,有利於縮短其後焦距以維持小型化。另外,可有效地壓制離軸視場光線入射的角度,並修正離軸視場的像差。
The
紅外線濾光片580為玻璃材質,其設置於第七透鏡570及成像面590間且不影響光學成像系統的焦距。
The
請配合參照下列表九以及表十。 Please refer to Table 9 and Table 10 below for cooperation.
第五實施例中,非球面的曲線方程式表示如第一實施例的形式。此 外,下表參數的定義皆與第一實施例相同,在此不加以贅述。 In the fifth embodiment, the aspherical curve equation is expressed as in the first embodiment. this In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and will not be repeated here.
依據表九及表十可得到下列條件式數值:
依據表九及表十可得到下列輪廓曲線長度相關之數值:
依據表九及表十可得到下列條件式數值:
第六實施例 Sixth embodiment
請參照第6A圖及第6B圖,其中第6A圖繪示依照本創作第六實施例的一種光學成像系統的示意圖,第6B圖由左至右依序為第六實施例的光學成像系統的球差、像散及光學畸變曲線圖。第6C圖為第六實施例的光學成像系統於0.7視場處之橫向像差圖。由第6A圖可知,光學成像系統由物側至像側依序包含光圈600、第一透鏡610、第二透鏡620、第三透鏡630、第四透鏡640、第五透鏡650、第六透鏡660、第七透鏡670、紅外線濾光片680、成像面690以及影像感測元件692。
Please refer to Figures 6A and 6B, where Figure 6A shows a schematic diagram of an optical imaging system according to the sixth embodiment of the present creation, and Figure 6B shows the optical imaging system of the sixth embodiment in order from left to right Graphs of spherical aberration, astigmatism and optical distortion. Figure 6C is a lateral aberration diagram of the optical imaging system of the sixth embodiment at a field of view of 0.7. It can be seen from Fig. 6A that the optical imaging system includes an
第一透鏡610具有正屈折力,且為玻璃材質,其物側面612為凸面,其像側面614為凹面,並皆為非球面。
The
第二透鏡620具有正屈折力,且為塑膠材質,其物側面622為凸面,其像側面624為凸面,並皆為非球面,其物側面622具有一反曲點。
The
第三透鏡630具有負屈折力,且為塑膠材質,其物側面632為凹面,其像側面634為凸面,並皆為非球面,其物側面632具有一反曲點。
The
第四透鏡640具有正屈折力,且為塑膠材質,其物側面642為凹面,其像側面644為凸面,並皆為非球面,其物側面642以及像側面644均具有一反曲點。
The
第五透鏡650具有正屈折力,且為塑膠材質,其物側面652為凸面,
其像側面654為凹面,並皆為非球面,其物側面652以及像側面654均具有一反曲點。
The
第六透鏡660具有正屈折力,且為塑膠材質,其物側面662為凹面,其像側面664為凸面,且其像側面664具有二反曲點。藉此,可有效調整各視場入射於第六透鏡660的角度而改善像差。
The
第七透鏡670具有負屈折力,且為塑膠材質,其物側面672為凸面,其像側面674為凹面,且其物側面672以及像側面674均具有一反曲點。藉此,有利於縮短其後焦距以維持小型化。另外,亦可有效地壓制離軸視場光線入射的角度,進一步可修正離軸視場的像差。
The
紅外線濾光片680為玻璃材質,其設置於第七透鏡670及成像面690間且不影響光學成像系統的焦距。
The
請配合參照下列表十一以及表十二。 Please refer to Table 11 and Table 12 below for cooperation.
第六實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。 In the sixth embodiment, the curve equation of the aspheric surface is expressed as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and will not be repeated here.
依據表十一及表十二可得到下列條件式數值:
依據表十一及表十二可得到下列輪廓曲線長度相關之數值:
依據表十一及表十二可得到下列條件式數值:
雖然本創作已以實施方式揭露如上,然其並非用以限定本創作,任何熟習此技藝者,在不脫離本創作的精神和範圍內,當可作各種的更動與潤飾, 因此本創作的保護範圍當視後附的申請專利範圍所界定者為準。 Although this creation has been disclosed in the implementation manner as above, it is not used to limit this creation. Anyone who is familiar with this art can make various changes and modifications without departing from the spirit and scope of this creation. Therefore, the scope of protection of this creation shall be subject to the scope of the attached patent application.
雖然本創作已參照其例示性實施例而特別地顯示及描述,將為所屬 技術領域具通常知識者所理解的是,於不脫離以下申請專利範圍及其等效物所定義之本創作之精神與範疇下可對其進行形式與細節上之各種變更。 Although this creation has been specifically shown and described with reference to its illustrative embodiments, it will belong to Those with ordinary knowledge in the technical field understand that various changes in form and details can be made without departing from the spirit and scope of the creation defined by the scope of the following patent application and its equivalents.
20:光學成像系統 20: Optical imaging system
200:光圈 200: aperture
210:第一透鏡 210: first lens
212:物側面 212: Object side
214:像側面 214: like side
220:第二透鏡 220: second lens
222:物側面 222: Object side
224:像側面 224: like side
230:第三透鏡 230: third lens
232:物側面 232: Object side
234:像側面 234: like side
240:第四透鏡 240: fourth lens
242:物側面 242: Object Side
244:像側面 244: like side
250:第五透鏡 250: fifth lens
252:物側面 252: thing side
254:像側面 254: like side
260:第六透鏡 260: sixth lens
262:物側面 262: thing side
264:像側面 264: like side
270:第七透鏡 270: seventh lens
272:物側面 272: Object Side
274:像側面 274: Like Side
280:成像面 280: imaging surface
290:紅外線濾光片 290: infrared filter
292:影像感測元件 292: Image sensor
Claims (25)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109201367U TWM599917U (en) | 2020-02-07 | 2020-02-07 | Optical image capturing system |
CN202021456648.7U CN214151193U (en) | 2020-02-07 | 2020-07-22 | Optical imaging system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109201367U TWM599917U (en) | 2020-02-07 | 2020-02-07 | Optical image capturing system |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM599917U true TWM599917U (en) | 2020-08-11 |
Family
ID=73003711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109201367U TWM599917U (en) | 2020-02-07 | 2020-02-07 | Optical image capturing system |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN214151193U (en) |
TW (1) | TWM599917U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11567299B2 (en) | 2020-02-07 | 2023-01-31 | Ability Opto-Electronics Technology Co., Ltd. | Optical image capturing system |
US12044829B2 (en) | 2020-07-30 | 2024-07-23 | Largan Precision Co., Ltd. | Image capturing lens assembly, imaging apparatus and electronic device |
-
2020
- 2020-02-07 TW TW109201367U patent/TWM599917U/en unknown
- 2020-07-22 CN CN202021456648.7U patent/CN214151193U/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11567299B2 (en) | 2020-02-07 | 2023-01-31 | Ability Opto-Electronics Technology Co., Ltd. | Optical image capturing system |
US12044829B2 (en) | 2020-07-30 | 2024-07-23 | Largan Precision Co., Ltd. | Image capturing lens assembly, imaging apparatus and electronic device |
Also Published As
Publication number | Publication date |
---|---|
CN214151193U (en) | 2021-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI645227B (en) | Optical image capturing system | |
TWI683128B (en) | Optical image capturing system | |
TWI650575B (en) | Optical imaging system (1) | |
TWI700512B (en) | Optical image capturing system | |
TWI629532B (en) | Optical image capturing system | |
TWI608247B (en) | Optical image capturing system | |
TWI629534B (en) | Optical image capturing system | |
TWI664461B (en) | Optical image capturing system | |
TWI716382B (en) | Optical image capturing system | |
TWI716383B (en) | Optical image capturing system | |
TWI646352B (en) | Optical imaging system (3) | |
TWI606258B (en) | Optical image capturing system | |
TWI729979B (en) | Optical image capturing system | |
TWI631364B (en) | Optical image capturing system | |
TWI622797B (en) | Optical image capturing system | |
TWI746435B (en) | Optical image capturing system | |
TW201730617A (en) | Optical image capturing system | |
TWI731231B (en) | Optical image capturing system | |
TW201730615A (en) | Optical image capturing system | |
TWI630413B (en) | Optical image capturing system | |
TWI703365B (en) | Optical image capturing system | |
TWM598418U (en) | Optical image capturing system | |
TW202303208A (en) | Optical image capturing system | |
TWM599917U (en) | Optical image capturing system | |
TW202144840A (en) | Optical image capturing system |