TWM596355U - Optical image capturing system - Google Patents

Optical image capturing system Download PDF

Info

Publication number
TWM596355U
TWM596355U TW109200788U TW109200788U TWM596355U TW M596355 U TWM596355 U TW M596355U TW 109200788 U TW109200788 U TW 109200788U TW 109200788 U TW109200788 U TW 109200788U TW M596355 U TWM596355 U TW M596355U
Authority
TW
Taiwan
Prior art keywords
lens
optical axis
imaging system
optical
optical imaging
Prior art date
Application number
TW109200788U
Other languages
Chinese (zh)
Inventor
張永明
賴建勳
劉燿維
Original Assignee
先進光電科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 先進光電科技股份有限公司 filed Critical 先進光電科技股份有限公司
Priority to TW109200788U priority Critical patent/TWM596355U/en
Publication of TWM596355U publication Critical patent/TWM596355U/en

Links

Images

Abstract

The invention discloses a five-piece optical lens for capturing image and a five-piece optical module for capturing image. In order from an object side to an image side, the optical lens along the optical axis comprises a first lens with refractive power; a second lens with refractive power; a third lens with refractive power; a fourth lens with refractive power; a fifth lens with refractive power; and at least one of the image-side surface and object-side surface of each of the five lens elements is aspheric. The optical lens can increase aperture value and improve the imagining quality for use in compact cameras.

Description

光學成像系統Optical imaging system

本創作是有關於一種光學成像系統組,且特別是有關於一種應用於電子產品上的小型化光學成像系統組。This creation is about an optical imaging system group, and particularly about a miniaturized optical imaging system group applied to electronic products.

近年來,隨著具有攝影功能的可攜式電子產品的興起,光學系統的需求日漸提高。一般光學系統的感光元件不外乎是感光耦合元件(Charge Coupled Device; CCD)或互補性金屬氧化半導體元件(Complementary Metal-Oxide Semiconductor Sensor;CMOS Sensor)兩種,且隨著半導體製程技術的精進,使得感光元件的畫素尺寸縮小,光學系統逐漸往高畫素領域發展,因此對成像品質的要求也日益增加。In recent years, with the rise of portable electronic products with photographic functions, the demand for optical systems has been increasing. The photosensitive element of the general optical system is nothing more than a photosensitive coupled device (Charge Coupled Device; CCD) or a complementary metal oxide semiconductor device (Complementary Metal-Oxide Semiconductor Sensor; CMOS Sensor), and with the advancement of semiconductor manufacturing technology, As a result, the pixel size of the photosensitive element is reduced, and the optical system is gradually developing in the field of high pixels, so the requirements for imaging quality are also increasing.

傳統搭載於可攜式裝置上的光學系統,多採用三片或四片式透鏡結構為主,然而由於可攜式裝置不斷朝提昇畫素並且終端消費者對大光圈的需求例如微光與夜拍功能,習知的光學成像系統已無法滿足更高階的攝影要求。The traditional optical systems mounted on portable devices mostly use three- or four-piece lens structures. However, as portable devices continue to improve pixels and end consumers demand large apertures such as low light and night With the shooting function, the conventional optical imaging system has been unable to meet the higher-level photography requirements.

因此,如何有效增加光學成像鏡頭的進光量,並進一步提高成像的品質,便成為一個相當重要的議題。Therefore, how to effectively increase the light input of the optical imaging lens and further improve the imaging quality has become a very important issue.

本創作實施例之態樣係針對一種光學成像系統及光學影像擷取鏡頭,能夠利用五個透鏡的屈光力、凸面與凹面的組合 (本創作所述凸面或凹面原則上係指各透鏡之物側面或像側面距離光軸不同高度的幾何形狀變化之描述),進而有效提高光學成像系統之進光量,同時提高成像品質,以應用於小型的電子產品上。The aspect of this creative embodiment is directed to an optical imaging system and optical image capturing lens, which can use the combination of the refractive power of five lenses, convex and concave surfaces (the convex or concave surface in this creation refers to the object side of each lens in principle) Or the description of the change of the geometric shape at different heights from the side of the optical axis, so as to effectively improve the light input of the optical imaging system and improve the imaging quality at the same time, so as to be applied to small electronic products.

本創作實施例相關之透鏡參數的用語與其代號詳列如下,作為後續描述的參考:The terms and code names of the lens parameters related to this creative example are listed in detail below as a reference for subsequent descriptions:

與長度或高度有關之透鏡參數 光學成像系統之成像高度以HOI表示;光學成像系統之高度以HOS表示;光學成像系統之第一透鏡物側面至第五透鏡像側面間的距離以InTL表示;光學成像系統之固定光欄 (光圈)至紅外光成像面間的距離以InS表示;光學成像系統之第一透鏡與第二透鏡間的距離以IN12表示(例示);光學成像系統之第一透鏡於光軸上的厚度以TP1表示(例示)。 Lens parameters related to length or height The imaging height of the optical imaging system is expressed by HOI; the height of the optical imaging system is expressed by HOS; the distance between the object side of the first lens of the optical imaging system and the image side of the fifth lens is expressed by InTL; the fixed diaphragm of the optical imaging system (aperture) ) The distance to the infrared imaging surface is expressed in InS; the distance between the first lens and the second lens of the optical imaging system is expressed by IN12 (exemplified); the thickness of the first lens of the optical imaging system on the optical axis is expressed by TP1 (Illustration).

與材料有關之透鏡參數 光學成像系統之第一透鏡的色散係數以NA1表示(例示);第一透鏡的折射律以Nd1表示(例示)。 Lens parameters related to materials The dispersion coefficient of the first lens of the optical imaging system is represented by NA1 (exemplified); the refraction law of the first lens is represented by Nd1 (exemplified).

與視角有關之透鏡參數 視角以AF表示;視角的一半以HAF表示;主光線角度以MRA表示。 Lens parameters related to viewing angle The angle of view is expressed in AF; half of the angle of view is expressed in HAF; the chief ray angle is expressed in MRA.

與出入瞳有關之透鏡參數 光學成像系統之入射瞳直徑以HEP表示;單一透鏡之任一表面的最大有效半徑係指系統最大視角入射光通過入射瞳最邊緣的光線於該透鏡表面交會點(Effective Half Diameter;EHD),該交會點與光軸之間的垂直高度。例如第一透鏡物側面的最大有效半徑以EHD11表示,第一透鏡像側面的最大有效半徑以EHD12表示。第二透鏡物側面的最大有效半徑以EHD21表示,第二透鏡像側面的最大有效半徑以EHD22表示。光學成像系統中其餘透鏡之任一表面的最大有效半徑表示方式以此類推。 Lens parameters related to entrance and exit pupils The diameter of the entrance pupil of the optical imaging system is expressed by HEP; the maximum effective radius of any surface of a single lens refers to the maximum angle of view of the system. The light rays passing through the edge of the entrance pupil at the intersection point of the lens surface (Effective Half Diameter; EHD), the The vertical height between the intersection point and the optical axis. For example, the maximum effective radius of the object side of the first lens is represented by EHD11, and the maximum effective radius of the image side of the first lens is represented by EHD12. The maximum effective radius of the object side of the second lens is represented by EHD21, and the maximum effective radius of the image side of the second lens is represented by EHD22. The maximum effective radius of any surface of the remaining lenses in the optical imaging system can be expressed by analogy.

與透鏡面形深度有關之參數 第五透鏡物側面於光軸上的交點至第五透鏡物側面的最大有效半徑之終點為止,前述兩點間水平於光軸的距離以InRS51表示 (最大有效半徑深度);第五透鏡像側面於光軸上的交點至第五透鏡像側面的最大有效半徑之終點為止,前述兩點間水平於光軸的距離以InRS52表示 (最大有效半徑深度)。其他透鏡物側面或像側面之最大有效半徑的深度 (沉陷量) 表示方式比照前述。 Parameters related to the depth of lens profile From the intersection of the fifth lens object side on the optical axis to the end of the maximum effective radius of the fifth lens object side, the distance between the two points above the optical axis is expressed by InRS51 (maximum effective radius depth); fifth lens image side From the point of intersection on the optical axis to the end of the maximum effective radius of the image side of the fifth lens, the distance between the aforementioned two points horizontally to the optical axis is represented by InRS52 (maximum effective radius depth). The expression of the depth of the maximum effective radius (sinking amount) of the object side or image side of other lenses is the same as the above.

與透鏡面型有關之參數 臨界點C係指特定透鏡表面上,除與光軸的交點外,一與光軸相垂直之切面相切的點。承上,例如第四透鏡物側面的臨界點C41與光軸的垂直距離為HVT41(例示),第四透鏡像側面的臨界點C42與光軸的垂直距離為HVT42(例示),第五透鏡物側面的臨界點C51與光軸的垂直距離為HVT51(例示),第五透鏡像側面的臨界點C52與光軸的垂直距離為HVT52(例示)。其他透鏡之物側面或像側面上的臨界點及其與光軸的垂直距離的表示方式比照前述。 Parameters related to lens profile Critical point C refers to a point on a particular lens surface, except for the intersection with the optical axis, a tangent plane perpendicular to the optical axis. For example, the vertical distance between the critical point C41 on the side of the fourth lens object and the optical axis is HVT41 (exemplified), the vertical distance between the critical point C42 on the image side of the fourth lens and the optical axis is HVT42 (exemplified), and the fifth lens object The vertical distance between the critical point C51 on the side and the optical axis is HVT51 (illustrated), and the vertical distance between the critical point C52 on the image side of the fifth lens and the optical axis is HVT52 (illustrated). The expression method of the critical point on the object side or the image side of other lenses and the vertical distance from the optical axis is as described above.

第五透鏡物側面上最接近光軸的反曲點為IF511,該點沉陷量SGI511(例示),SGI511亦即第五透鏡物側面於光軸上的交點至第五透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離,IF511該點與光軸間的垂直距離為HIF511(例示)。第五透鏡像側面上最接近光軸的反曲點為IF521,該點沉陷量SGI521(例示),SGI511亦即第五透鏡像側面於光軸上的交點至第五透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離,IF521該點與光軸間的垂直距離為HIF521(例示)。The inflection point closest to the optical axis on the object side of the fifth lens is IF511, and the amount of depression at this point is SGI511 (exemplified), that is, the intersection point of the object side of the fifth lens on the optical axis to the closest optical axis of the object side of the fifth lens The horizontal displacement distance between the inflexion point and the optical axis is parallel. The vertical distance between the point and the optical axis of IF511 is HIF511 (example). The inflection point closest to the optical axis on the image side of the fifth lens is IF521, and the amount of depression at this point is SGI521 (example), that is, the intersection of the image side of the fifth lens on the optical axis and the closest optical axis of the image side of the fifth lens The horizontal displacement distance between the inflexion point and the optical axis is parallel, and the vertical distance between the point and the optical axis of IF521 is HIF521 (illustrated).

第五透鏡物側面上第二接近光軸的反曲點為IF512,該點沉陷量SGI512(例示),SGI512亦即第五透鏡物側面於光軸上的交點至第五透鏡物側面第二接近光軸的反曲點之間與光軸平行的水平位移距離,IF512該點與光軸間的垂直距離為 HIF512(例示)。第五透鏡像側面上第二接近光軸的反曲點為IF522,該點沉陷量SGI522(例示),SGI522亦即第五透鏡像側面於光軸上的交點至第五透鏡像側面第二接近光軸的反曲點之間與光軸平行的水平位移距離,IF522該點與光軸間的垂直距離為HIF522(例示)。The inflection point of the second lens on the side of the fifth lens close to the optical axis is IF512, and the amount of depression at this point is SGI512 (example), that is, the intersection point of the fifth lens on the optical axis to the second closest to the fifth lens The horizontal displacement distance between the reflex point of the optical axis and the optical axis is parallel. The vertical distance between this point and the optical axis is IF512 (illustrated). The inflection point of the second lens on the image side of the fifth lens close to the optical axis is IF522, and the amount of depression at this point is SGI522 (example), that is, the intersection of the image side of the fifth lens on the optical axis and the second closest to the image side of the fifth lens The horizontal displacement distance between the reflex point of the optical axis and the optical axis is parallel, and the vertical distance between the point and the optical axis of IF522 is HIF522 (illustrated).

第五透鏡物側面上第三接近光軸的反曲點為IF513,該點沉陷量SGI513(例示),SGI513亦即第五透鏡物側面於光軸上的交點至第五透鏡物側面第三接近光軸的反曲點之間與光軸平行的水平位移距離,IF513該點與光軸間的垂直距離為 HIF513(例示)。第五透鏡像側面上第三接近光軸的反曲點為IF523,該點沉陷量SGI523(例示),SGI523亦即第五透鏡像側面於光軸上的交點至第五透鏡像側面第三接近光軸的反曲點之間與光軸平行的水平位移距離,IF523該點與光軸間的垂直距離為HIF523(例示)。The inflection point of the third approaching optical axis on the object side of the fifth lens is IF513, and the amount of depression at this point is SGI513 (example), that is, the intersection of the object side of the fifth lens on the optical axis and the third approaching of the object side of the fifth lens The horizontal displacement distance between the reflex point of the optical axis and the optical axis is parallel, and the vertical distance between this point and the optical axis is HIF513 (illustrated). The inflection point of the third near optical axis on the image side of the fifth lens is IF523, and the amount of depression at this point is SGI523 (exemplified), that is, the intersection of the image side of the fifth lens on the optical axis and the third closest to the image side of the fifth lens The horizontal displacement distance between the reflex point of the optical axis and the optical axis is parallel. The vertical distance between this point and the optical axis is IF523 (illustrated).

第五透鏡物側面上第四接近光軸的反曲點為IF514,該點沉陷量SGI514(例示),SGI514亦即第五透鏡物側面於光軸上的交點至第五透鏡物側面第四接近光軸的反曲點之間與光軸平行的水平位移距離,IF514該點與光軸間的垂直距離為 HIF514(例示)。第五透鏡像側面上第四接近光軸的反曲點為IF524,該點沉陷量SGI524(例示),SGI524亦即第五透鏡像側面於光軸上的交點至第五透鏡像側面第四接近光軸的反曲點之間與光軸平行的水平位移距離,IF524該點與光軸間的垂直距離為HIF524(例示)。The fourth inflection point on the object side of the fifth lens close to the optical axis is IF514, and the amount of depression at this point is SGI514 (exemplified), that is, the intersection of the object side of the fifth lens on the optical axis and the fourth closest to the object side of the fifth lens The horizontal displacement distance between the reflex point of the optical axis and the optical axis is parallel, and the vertical distance between the point and the optical axis of IF514 is HIF514 (illustrated). The fourth inflection point on the image side of the fifth lens near the optical axis is IF524, and the amount of depression at this point is SGI524 (example), which is the intersection of the image side of the fifth lens on the optical axis to the fourth closest to the image side of the fifth lens The horizontal displacement distance between the reflex point of the optical axis and the optical axis, and the vertical distance between the point and the optical axis of IF524 is HIF524 (illustrated).

其他透鏡物側面或像側面上的反曲點及其與光軸的垂直距離或其沉陷量的表示方式比照前述。The expressions of the inflection points on the object side or image side of other lenses and their vertical distance from the optical axis or the amount of their sinking are the same as those described above.

與像差有關之變數 光學成像系統之光學畸變 (Optical Distortion) 以ODT表示;其TV畸變 (TV Distortion)以TDT表示,並且可以進一步限定描述在成像50%至100%視野間像差偏移的程度;球面像差偏移量以DFS表示;慧星像差偏移量以DFC表示。 Variables related to aberrations The optical distortion of the optical imaging system (Optical Distortion) is expressed by ODT; the TV distortion (TV Distortion) is expressed by TDT, and it can be further limited to describe the degree of aberration shift between 50% and 100% of the field of view; spherical aberration The shift is expressed in DFS; the comet aberration offset is expressed in DFC.

光學成像系統之調制轉換函數特性圖(Modulation Transfer Function; MTF),用來測試與評估系統成像之反差對比度及銳利度。調制轉換函數特性圖之垂直座標軸表示對比轉移率(數值從 0 到 1),水平座標軸則表示空間頻率(cycles/mm;lp/mm;line pairs per mm)。完美的成像系統理論上能 100% 呈現被攝物體的線條對比,然而實際的成像系統,其垂直軸的對比轉移率數值小於1。此外,一般而言成像之邊緣區域會比中心區域較難得到精細的還原度。紅外光頻譜在紅外光成像面上,光軸、0.3視場以及0.7視場三處於空間頻率55 cycles/mm之對比轉移率(MTF數值)分別以MTFE0、MTFE3以及MTFE7表示,光軸、0.3視場以及0.7視場三處於空間頻率110 cycles/mm之對比轉移率(MTF數值)分別以MTFQ0、MTFQ3以及MTFQ7表示,光軸、0.3視場以及0.7視場三處於空間頻率220 cycles/mm之對比轉移率(MTF數值)分別以MTFH0、MTFH3以及MTFH7表示,光軸、0.3視場以及0.7視場三處於空間頻率440 cycles/mm之對比轉移率(MTF數值)分別以MTF0、MTF3以及MTF7表示,前述此三個視場對於鏡頭的中心、內視場以及外視場具有代表性,因此可用以評價特定光學成像系統之性能是否優異。若光學成像系統的設計係對應畫素大小(Pixel Size)為含1.12微米以下之感光元件,因此調制轉換函數特性圖之四分之一空間頻率、半數空間頻率(半頻)以及完全空間頻率(全頻)分別至少為110 cycles/mm、220 cycles/mm以及440 cycles/mm。The modulation transfer function (MTF) of the optical imaging system is used to test and evaluate the contrast and sharpness of the imaging system. The vertical axis of the modulation transfer function characteristic diagram represents the contrast transfer rate (value from 0 to 1), and the horizontal axis represents the spatial frequency (cycles/mm; lp/mm; line pairs per mm). The perfect imaging system can theoretically present 100% line contrast of the object being photographed. However, in the actual imaging system, the value of the contrast transfer rate on the vertical axis is less than 1. In addition, generally speaking, the edge area of the image will be more difficult to obtain a fine reduction degree than the center area. Infrared light spectrum On the infrared imaging surface, the optical axis, 0.3 field of view, and 0.7 field of view are at a spatial frequency of 55 cycles/mm. The contrast transfer rate (MTF value) is expressed as MTFE0, MTFE3, and MTFE7, respectively. The optical axis, 0.3 field of view The contrast transfer rate (MTF value) of the field and 0.7 field of view 3 at a spatial frequency of 110 cycles/mm are expressed in MTFQ0, MTFQ3 and MTFQ7, respectively. The comparison of the optical axis, 0.3 field of view and 0.7 field of view 3 at a spatial frequency of 220 cycles/mm The transfer rate (MTF value) is expressed in MTFH0, MTFH3 and MTFH7, respectively. The optical axis, 0.3 field of view and 0.7 field of view are at a spatial frequency of 440 cycles/mm. The comparative transfer rate (MTF value) is expressed in MTF0, MTF3 and MTF7, respectively. The aforementioned three fields of view are representative of the center of the lens, the inner field of view, and the outer field of view, so they can be used to evaluate whether the performance of a particular optical imaging system is excellent. If the design of the optical imaging system corresponds to a pixel size (Pixel Size) containing a photosensitive element below 1.12 microns, the modulation transfer function characteristic map has a quarter spatial frequency, half spatial frequency (half frequency), and full spatial frequency ( Full frequency) at least 110 cycles/mm, 220 cycles/mm and 440 cycles/mm.

針對紅外線頻譜的成像,例如用於低光源的夜視需求,所使用的工作波長可為850 nm至960 nm,由於主要功能在辨識黑白明暗所形成之物體輪廓,無須高解析度,因此可僅需選用小於110 cycles/mm之空間頻率評價特定光學成像系統在紅外線頻譜頻譜的性能是否優異。For infrared spectrum imaging, such as night vision requirements for low light sources, the working wavelength used can be 850 nm to 960 nm. Because the main function is to recognize the contours of objects formed by black and white light and dark, high resolution is not required, so only The spatial frequency of less than 110 cycles/mm needs to be selected to evaluate whether the performance of the specific optical imaging system in the infrared spectrum is excellent.

本創作提供一種光學成像系統,其第五透鏡的物側面或像側面設置有反曲點,可有效調整各視場入射於第五透鏡的角度,並針對光學畸變與TV畸變進行補正。另外,第五透鏡的表面可具備更佳的光路調節能力,以提升成像品質。This creation provides an optical imaging system in which the fifth lens has an inflexion point on the object side or image side, which can effectively adjust the angle of incidence of each field of view on the fifth lens and correct the optical distortion and TV distortion. In addition, the surface of the fifth lens can have better optical path adjustment capability to improve imaging quality.

依據本創作提供一種光學成像系統,由物側至像側依序包含第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡以及一紅外光成像面。該第一透鏡至該第五透鏡中至少一透鏡具有正屈折力,該第一透鏡至該第五透鏡的焦距分別為f1、f2、f3、f4、f5,該光學成像系統的焦距為f,該光學成像系統之入射瞳直徑為HEP,該第一透鏡物側面至該紅外光成像面於光軸上具有一距離HOS,該第一透鏡物側面至該第五透鏡像側面於光軸上具有一距離InTL,該光學成像系統之最大可視角度的一半為HAF,該第一透鏡至該第五透鏡於1/2 HEP高度且平行於光軸之厚度分別為ETP1、ETP2、ETP3、ETP4以及ETP5,前述ETP1至ETP5的總和為SETP,該第一透鏡至該第五透鏡於光軸之厚度分別為TP1、TP2、TP3、TP4以及TP5,前述TP1至TP5的總和為STP,其滿足下列條件:0.5≦f/HEP≦1.8;0 deg>HAF≦50 deg以及0.5≦SETP/STP >1。According to the present invention, an optical imaging system is provided, which includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and an infrared light imaging surface in order from the object side to the image side. At least one of the first lens to the fifth lens has a positive refractive power, the focal lengths of the first lens to the fifth lens are f1, f2, f3, f4, f5, and the focal length of the optical imaging system is f, The entrance pupil diameter of the optical imaging system is HEP, the first lens object side to the infrared light imaging plane has a distance HOS on the optical axis, and the first lens object side to the fifth lens image side have a distance on the optical axis At a distance of InTL, half of the maximum viewing angle of the optical imaging system is HAF, and the thicknesses of the first lens to the fifth lens at a height of 1/2 HEP and parallel to the optical axis are ETP1, ETP2, ETP3, ETP4, and ETP5, respectively The sum of the aforementioned ETP1 to ETP5 is SETP, and the thicknesses of the first lens to the fifth lens on the optical axis are TP1, TP2, TP3, TP4, and TP5, respectively. The sum of the aforementioned TP1 to TP5 is STP, which satisfies the following conditions: 0.5≦f/HEP≦1.8; 0 deg>HAF≦50 deg and 0.5≦SETP/STP>1.

依據本創作另提供一種光學成像系統,由物側至像側依序包含第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡以及一紅外光成像面。且該第一透鏡至該第五透鏡中至少一透鏡之至少一表面具有至少一反曲點,該第一透鏡至該第五透鏡的焦距分別為f1、f2、f3、f4、f5,該光學成像系統的焦距為f,該光學成像系統之入射瞳直徑為HEP,該第一透鏡物側面至該紅外光成像面於光軸上具有一距離HOS,該第一透鏡物側面至該第五透鏡像側面於光軸上具有一距離InTL,該光學成像系統之最大可視角度的一半為HAF,該第一透鏡物側面上於1/2 HEP高度的座標點至該紅外光成像面間平行於光軸之水平距離為ETL,該第一透鏡物側面上於1/2 HEP高度的座標點至該第五透鏡像側面上於1/2 HEP高度的座標點間平行於光軸之水平距離為EIN,其滿足下列條件:0.5≦f/HEP≦1.5;0 deg>HAF≦50 deg以及0.2≦EIN/ETL> 1According to the present invention, an optical imaging system is further provided, which includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and an infrared imaging surface in order from the object side to the image side. And at least one surface of at least one of the first lens to the fifth lens has at least one inflection point. The focal lengths of the first lens to the fifth lens are f1, f2, f3, f4, and f5, respectively. The focal length of the imaging system is f, the diameter of the entrance pupil of the optical imaging system is HEP, the distance from the object side of the first lens to the imaging surface of the infrared light is a distance HOS on the optical axis, and the object side of the first lens to the fifth transmission The mirror image side has a distance InTL on the optical axis, half of the maximum viewing angle of the optical imaging system is HAF, the coordinate point at the height of 1/2 HEP on the object side of the first lens to the infrared imaging surface is parallel to the light The horizontal distance of the axis is ETL, and the horizontal distance between the coordinate point at the height of 1/2 HEP on the object side of the first lens and the coordinate point at the height of 1/2 HEP on the image side of the fifth lens is EIN , Which satisfies the following conditions: 0.5≦f/HEP≦1.5; 0 deg>HAF≦50 deg and 0.2≦EIN/ETL> 1

依據本創作再提供一種光學成像系統,由物側至像側依序包含第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡以及一紅外光成像面。其中該光學成像系統具有屈折力的透鏡為五枚且該第一透鏡至該第五透鏡中至少一透鏡之至少一表面具有至少一反曲點,至該第五透鏡的焦距分別為f1、f2、f3、f4、f5,該光學成像系統的焦距為f,該光學成像系統之入射瞳直徑為HEP,該第一透鏡物側面至該紅外光成像面於光軸上具有一距離HOS,該第一透鏡物側面至該第五透鏡像側面於光軸上具有一距離InTL,該光學成像系統之最大可視角度的一半為HAF,該光學成像系統於該紅外光成像面上垂直於光軸具有一最大成像高度HOI,該第一透鏡物側面上於1/2 HEP高度的座標點至該紅外光成像面間平行於光軸之水平距離為ETL,該第一透鏡物側面上於1/2 HEP高度的座標點至該第五透鏡像側面上於1/2 HEP高度的座標點間平行於光軸之水平距離為EIN,其滿足下列條件:0.5≦f/HEP≦1.3;10 deg≦HAF≦50 deg以及0.2≦EIN/ETL> 1。According to the present invention, an optical imaging system is further provided, which includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and an infrared imaging surface in order from the object side to the image side. There are five lenses with refractive power in the optical imaging system and at least one surface of at least one lens from the first lens to the fifth lens has at least one inflection point, and the focal lengths to the fifth lens are f1 and f2, respectively , F3, f4, f5, the focal length of the optical imaging system is f, the diameter of the entrance pupil of the optical imaging system is HEP, the distance from the object side of the first lens to the infrared light imaging surface on the optical axis is HOS, the first A lens object side to the fifth lens image side has a distance InTL on the optical axis, half of the maximum viewing angle of the optical imaging system is HAF, the optical imaging system has a perpendicular to the optical axis on the infrared imaging surface The maximum imaging height HOI, the horizontal distance between the coordinate point at the height of 1/2 HEP on the object side of the first lens and the infrared light imaging plane parallel to the optical axis is ETL, and the object side at the first lens is at 1/2 HEP The horizontal distance between the coordinate point of the height and the coordinate point at the height of 1/2 HEP on the image side of the fifth lens parallel to the optical axis is EIN, which satisfies the following conditions: 0.5≦f/HEP≦1.3; 10 deg≦HAF≦ 50 deg and 0.2≦EIN/ETL> 1.

單一透鏡在1/2入射瞳直徑(HEP)高度之厚度,特別影響該1/2入射瞳直徑(HEP)範圍內各光線視場共用區域之修正像差以及各視場光線間光程差的能力,厚度越大則修正像差的能力提升,然而同時亦會增加生產製造上的困難度,因此必須控制單一透鏡在1/2入射瞳直徑(HEP)高度之厚度,特別是控制該透鏡在1/2入射瞳直徑(HEP)高度的厚度(ETP)與該表面所屬之該透鏡於光軸上之厚度(TP)間的比例關係(ETP/ TP)。例如第一透鏡在1/2入射瞳直徑(HEP)高度的厚度以ETP1表示。第二透鏡在1/2入射瞳直徑(HEP)高度的厚度以ETP2表示。光學成像系統中其餘透鏡在1/2入射瞳直徑(HEP)高度的厚度,其表示方式以此類推。前述ETP1至ETP5的總和為SETP,本創作之實施例可滿足下列公式:0.3≦SETP/EIN> 1。The thickness of a single lens at the height of 1/2 entrance pupil diameter (HEP), which particularly affects the correction aberration of the common field of view of each ray within the range of 1/2 entrance pupil diameter (HEP) and the optical path difference between the rays of each field The greater the thickness, the greater the ability to correct aberrations, but at the same time it will increase the difficulty of manufacturing. Therefore, it is necessary to control the thickness of a single lens at a height of 1/2 entrance pupil diameter (HEP), especially to control the lens at The ratio between the thickness (ETP) of the height of 1/2 the entrance pupil diameter (HEP) and the thickness (TP) of the lens on the optical axis to which the surface belongs (ETP/TP). For example, the thickness of the first lens at a height of 1/2 the entrance pupil diameter (HEP) is represented by ETP1. The thickness of the second lens at a height of 1/2 the entrance pupil diameter (HEP) is represented by ETP2. The thickness of the remaining lenses in the optical imaging system at a height of 1/2 the entrance pupil diameter (HEP), which is expressed in the same way. The sum of the foregoing ETP1 to ETP5 is SETP, and the embodiment of the present invention can satisfy the following formula: 0.3≦SETP/EIN>1.

為同時權衡提升修正像差的能力以及降低生產製造上的困難度,特別需控制該透鏡在1/2入射瞳直徑(HEP)高度的厚度 (ETP)與該透鏡於光軸上之厚度(TP)間的比例關係(ETP / TP)。例如第一透鏡在1/2入射瞳直徑(HEP)高度之厚度以ETP1表示,第一透鏡於光軸上之厚度為TP1,兩者間的比值為ETP1 / TP1。第二透鏡在1/2入射瞳直徑(HEP)高度之厚度以ETP2表示,第二透鏡於光軸上之厚度為TP2,兩者間的比值為ETP2 / TP2。光學成像系統中其餘透鏡在1/2入射瞳直徑(HEP)高度之厚度與該透鏡於光軸上之厚度(TP)間的比例關係,其表示方式以此類推。本創作之實施例可滿足下列公式:0 > ETP/TP≦5。In order to balance the improvement of the ability to correct aberration and the difficulty of manufacturing, it is necessary to control the thickness of the lens (ETP) at the height of 1/2 entrance pupil diameter (HEP) and the thickness of the lens on the optical axis (TP ) Between the ratio (ETP / TP). For example, the thickness of the first lens at the height of 1/2 the entrance pupil diameter (HEP) is represented by ETP1, the thickness of the first lens on the optical axis is TP1, and the ratio between the two is ETP1/TP1. The thickness of the second lens at the height of 1/2 the entrance pupil diameter (HEP) is represented by ETP2, and the thickness of the second lens on the optical axis is TP2, and the ratio between the two is ETP2/TP2. The ratio between the thickness of the remaining lens in the optical imaging system at the height of 1/2 the entrance pupil diameter (HEP) and the thickness of the lens on the optical axis (TP), and so on. The embodiment of this creation can satisfy the following formula: 0> ETP/TP≦5.

相鄰兩透鏡在1/2入射瞳直徑(HEP)高度之水平距離以ED表示,前述水平距離(ED)係平行於光學成像系統之光軸,並且特別影響該1/2入射瞳直徑(HEP)位置各光線視場共用區域之修正像差以及各視場光線間光程差的能力,水平距離越大則修正像差之能力的可能性將提升,然而同時亦會增加生產製造上的困難度以及限制光學成像系統之長度”微縮”的程度,因此必須控制特定相鄰兩透鏡在1/2入射瞳直徑(HEP)高度之水平距離 (ED)。The horizontal distance between two adjacent lenses at the height of 1/2 entrance pupil diameter (HEP) is represented by ED. The aforementioned horizontal distance (ED) is parallel to the optical axis of the optical imaging system and particularly affects the 1/2 entrance pupil diameter (HEP) ) The ability to correct aberrations in the common area of each field of view and the optical path difference between each field of view. The greater the horizontal distance, the more likely the ability to correct aberrations will increase, but it will also increase manufacturing difficulties. Degree and limit the degree of "minimization" of the length of the optical imaging system, it is necessary to control the horizontal distance (ED) of the two adjacent lenses at the height of 1/2 entrance pupil diameter (HEP).

為同時權衡提升修正像差的能力以及降低光學成像系統之長度”微縮”的困難度,特別需控制該相鄰兩透鏡在1/2入射瞳直徑(HEP)高度的水平距離(ED)與該相鄰兩透鏡於光軸上之水平距離 (IN)間的比例關係(ED/ IN)。例如第一透鏡與第二透鏡在1/2入射瞳直徑(HEP)高度之水平距離以ED12表示,第一透鏡與第二透鏡於光軸上之水平距離為IN12,兩者間的比值為ED12 / IN12。第二透鏡與第三透鏡在1/2入射瞳直徑(HEP)高度之水平距離以ED23表示,第二透鏡與第三透鏡於光軸上之水平距離為IN23,兩者間的比值為ED23 / IN23。光學成像系統中其餘相鄰兩透鏡在1/2入射瞳直徑(HEP)高度之水平距離與該相鄰兩透鏡於光軸上之水平距離兩者間的比例關係,其表示方式以此類推。In order to balance the improvement of the ability to correct aberrations and the difficulty of reducing the length of the optical imaging system, it is necessary to control the horizontal distance (ED) of the two adjacent lenses at the height of 1/2 entrance pupil diameter (HEP) and the The proportional relationship (ED/IN) between the horizontal distance (IN) of two adjacent lenses on the optical axis. For example, the horizontal distance between the first lens and the second lens at the height of 1/2 the entrance pupil diameter (HEP) is represented by ED12, the horizontal distance between the first lens and the second lens on the optical axis is IN12, and the ratio between the two is ED12 / IN12. The horizontal distance between the second lens and the third lens at the height of 1/2 the entrance pupil diameter (HEP) is represented by ED23, the horizontal distance between the second lens and the third lens on the optical axis is IN23, and the ratio between the two is ED23 / IN23. In the optical imaging system, the ratio between the horizontal distance between the remaining two adjacent lenses at the height of 1/2 the entrance pupil diameter (HEP) and the horizontal distance between the adjacent two lenses on the optical axis is expressed in the same way.

該第五透鏡像側面上於1/2 HEP高度的座標點至該紅外光成像面間平行於光軸之水平距離為EBL,該第五透鏡像側面上與光軸之交點至該紅外光成像面平行於光軸之水平距離為BL,本創作之實施例為同時權衡提升修正像差的能力以及預留其他光學元件之容納空間,可滿足下列公式:0.1≦EBL/BL≦1.5。The horizontal distance between the coordinate point at the height of 1/2 HEP on the image side of the fifth lens and the infrared light imaging plane parallel to the optical axis is EBL, and the intersection of the image side of the fifth lens with the optical axis to the infrared light imaging The horizontal distance of the plane parallel to the optical axis is BL. The embodiment of the present invention is to simultaneously balance the ability to improve aberration correction and reserve space for other optical components. The following formula can be satisfied: 0.1≦EBL/BL≦1.5.

光學成像系統可更包括一濾光元件,該濾光元件位於該第五透鏡以及該紅外光成像面之間,該第五透鏡像側面上於1/2 HEP高度的座標點至該濾光元件間平行於光軸之距離為EIR,該第五透鏡像側面上與光軸之交點至該濾光元件間平行於光軸之距離為PIR,本創作之實施例可滿足下列公式: 0.1≦EIR/PIR≦1.1。The optical imaging system may further include a filter element located between the fifth lens and the infrared imaging surface, the coordinate point of the fifth lens image side at a height of 1/2 HEP to the filter element The distance between the parallel to the optical axis is EIR, and the distance between the intersection of the fifth lens image side and the optical axis and the filter element parallel to the optical axis is PIR. The embodiment of the present invention can satisfy the following formula: 0.1≦EIR /PIR≦1.1.

當│f1│>f5時,光學成像系統的系統總高度(HOS; Height of Optic System)可以適當縮短以達到微型化之目的。When │f1│>f5, the total height of the optical imaging system (HOS; Height of Optic System) can be shortened properly to achieve the purpose of miniaturization.

當│f2│+│f3│+│f4│以及∣f1│+∣f5│滿足上述條件時,藉由第二透鏡至第四透鏡中至少一透鏡具有弱的正屈折力或弱的負屈折力。所稱弱屈折力,係指特定透鏡之焦距的絕對值大於10。當本創作第二透鏡至第四透鏡中至少一透鏡具有弱的正屈折力,其可有效分擔第一透鏡之正屈折力而避免不必要的像差過早出現,反之若第二透鏡至第四透鏡中至少一透鏡具有弱的負屈折力,則可以微調補正系統的像差。When │f2│+│f3│+│f4│ and ∣f1│+∣f5│ meet the above conditions, at least one of the second lens to the fourth lens has a weak positive refractive power or a weak negative refractive power . The so-called weak refractive power means that the absolute value of the focal length of a particular lens is greater than 10. When at least one of the second lens to the fourth lens has a weak positive refractive power, it can effectively share the positive refractive power of the first lens and avoid unnecessary aberrations from appearing prematurely; otherwise, if the second lens to the fourth lens At least one of the four lenses has a weak negative refractive power, and the aberration of the correction system can be fine-tuned.

此外,第五透鏡可具有負屈折力,其像側面可為凹面。藉此,有利於縮短其後焦距以維持小型化。另外,第五透鏡的至少一表面可具有至少一反曲點,可有效地壓制離軸視場光線入射的角度,進一步可修正離軸視場的像差。In addition, the fifth lens may have negative refractive power, and its image side may be concave. In this way, it is beneficial to shorten the back focal length to maintain miniaturization. In addition, at least one surface of the fifth lens may have at least one inflection point, which can effectively suppress the angle of incidence of the off-axis field of view and further correct the aberration of the off-axis field of view.

一種光學成像系統組,由物側至像側依序包含具屈折力 的第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡以及一紅外光成像面。光學成像系統更可包含一影像感測元件,其設置於紅外光成像面。An optical imaging system group includes, in order from the object side to the image side, a refractive first lens, a second lens, a third lens, a fourth lens, a fifth lens, and an infrared imaging surface. The optical imaging system may further include an image sensing element, which is disposed on the infrared imaging surface.

光學成像系統可使用三個紅外線工作波長進行設計,分別為850 nm、940 nm、960 nm,其中940 nm為主要參考波長為主要提取技術特徵之參考波長。The optical imaging system can be designed using three infrared operating wavelengths, namely 850 nm, 940 nm, and 960 nm, of which 940 nm is the main reference wavelength and the main reference wavelength for extracting technical features.

光學成像系統的焦距f與每一片具有正屈折力之透鏡的焦距fp之比值PPR,光學成像系統的焦距f與每一片具有負屈折力之透鏡的焦距fn之比值NPR,所有正屈折力之透鏡的PPR總和為ΣPPR,所有負屈折力之透鏡的NPR總和為ΣNPR,當滿足下列條件時有助於控制光學成像系統的總屈折力以及總長度:0.5≦ΣPPR/│ΣNPR│≦3.0,較佳地,可滿足下列條件:1≦ΣPPR/│ΣNPR│≦2.5。The ratio of the focal length f of the optical imaging system to the focal length fp of each lens with positive refractive power PPR, the ratio of the focal length f of the optical imaging system to the focal length fn of each lens with negative refractive power NPR, all lenses with positive refractive power The sum of PPR is ΣPPR, and the sum of NPR of all lenses with negative refractive power is ΣNPR. It helps to control the total refractive power and total length of the optical imaging system when the following conditions are met: 0.5≦ΣPPR/│ΣNPR│≦3.0, preferably Ground, the following conditions can be satisfied: 1≦ΣPPR/│ΣNPR│≦2.5.

光學成像系統可更包含一影像感測元件,其設置於紅外光成像面。影像感測元件有效感測區域對角線長的一半(即為光學成像系統之成像高度或稱最大像高) 為HOI,第一透鏡物側面至紅外光成像面於光軸上的距離為HOS,其滿足下列條件:HOS/HOI≦25;以及0.5≦HOS/f≦25。較佳地,可滿足下列條件:1≦HOS/HOI≦20;以及1≦HOS/f≦20。藉此,可維持光學成像系統的小型化,以搭載於輕薄可攜式的電子產品上。The optical imaging system may further include an image sensing element, which is disposed on the infrared imaging surface. The half of the diagonal length of the effective sensing area of the image sensing element (that is, the imaging height or maximum image height of the optical imaging system) is HOI, and the distance from the object side of the first lens to the infrared imaging surface on the optical axis is HOS , Which satisfies the following conditions: HOS/HOI≦25; and 0.5≦HOS/f≦25. Preferably, the following conditions can be satisfied: 1≦HOS/HOI≦20; and 1≦HOS/f≦20. In this way, the miniaturization of the optical imaging system can be maintained for mounting on thin and light portable electronic products.

另外,本創作的光學成像系統中,依需求可設置至少一光圈,以減少雜散光,有助於提昇影像品質。In addition, in the optical imaging system of the present invention, at least one aperture can be set according to requirements to reduce stray light and help improve image quality.

本創作的光學成像系統中,光圈配置可為前置光圈或中置光圈,其中前置光圈意即光圈設置於被攝物與第一透鏡間,中置光圈則表示光圈設置於第一透鏡與紅外光成像面間。若光圈為前置光圈,可使光學成像系統的出瞳與紅外光成像面產生較長的距離而容置更多光學元件,並可增加影像感測元件接收影像的效率;若為中置光圈,係有助於擴大系統的視場角,使光學成像系統具有廣角鏡頭的優勢。前述光圈至紅外光成像面間的距離為InS,其滿足下列條件:0.2≦InS/HOS≦1.1。藉此,可同時兼顧維持光學成像系統的小型化以及具備廣角的特性。In the optical imaging system of this creation, the aperture configuration can be a front aperture or a center aperture, where the front aperture means the aperture is set between the subject and the first lens, and the center aperture means the aperture is set between the first lens and Between infrared imaging surfaces. If the aperture is the front aperture, the exit pupil of the optical imaging system and the infrared imaging surface can form a longer distance to accommodate more optical elements, and the efficiency of the image sensing element to receive images can be increased; if it is a central aperture It is helpful to expand the angle of view of the system, so that the optical imaging system has the advantage of a wide-angle lens. The distance from the aforementioned aperture to the infrared imaging surface is InS, which satisfies the following condition: 0.2≦InS/HOS≦1.1. With this, it is possible to simultaneously maintain the miniaturization of the optical imaging system and the characteristics of having a wide angle.

本創作的光學成像系統中,第一透鏡物側面至第五透鏡像側面間的距離為InTL,於光軸上所有具屈折力之透鏡的厚度總和為ΣTP,其滿足下列條件:0.1≦ΣTP/InTL≦0.9。藉此,當可同時兼顧系統成像的對比度以及透鏡製造的良率並提供適當的後焦距以容置其他元件。In the optical imaging system of this creation, the distance between the object side of the first lens and the image side of the fifth lens is InTL, and the total thickness of all lenses with refractive power on the optical axis is ΣTP, which satisfies the following conditions: 0.1≦ΣTP/ InTL≦0.9. In this way, the contrast of system imaging and the yield of lens manufacturing can be taken into account at the same time, and an appropriate back focal length can be provided to accommodate other components.

第一透鏡物側面的曲率半徑為R1,第一透鏡像側面的曲率半徑為R2,其滿足下列條件:0.01>│R1/R2│>100。藉此,第一透鏡的具備適當正屈折力強度,避免球差增加過速。較佳地,可滿足下列條件:0.05>│R1/R2│>80。The radius of curvature of the object side of the first lens is R1, and the radius of curvature of the image side of the first lens is R2, which satisfies the following conditions: 0.01>│R1/R2│>100. In this way, the first lens has an appropriate positive refractive power strength to prevent the spherical aberration from increasing too fast. Preferably, the following conditions can be satisfied: 0.05>│R1/R2│>80.

第五透鏡物側面的曲率半徑為R9,第五透鏡像側面的曲率半徑為R10,其滿足下列條件:-50 >(R9-R10)/(R9+R10)>50。藉此,有利於修正光學成像系統所產生的像散。The radius of curvature of the object side of the fifth lens is R9, and the radius of curvature of the image side of the fifth lens is R10, which satisfies the following condition: -50>(R9-R10)/(R9+R10)>50. In this way, it is beneficial to correct the astigmatism generated by the optical imaging system.

第一透鏡與第二透鏡於光軸上的間隔距離為IN12,其滿足下列條件:IN12 / f ≦5.0。藉此,有助於改善透鏡的色差以提升其性能。The separation distance between the first lens and the second lens on the optical axis is IN12, which satisfies the following condition: IN12 / f ≦5.0. This helps to improve the chromatic aberration of the lens to improve its performance.

第四透鏡與第五透鏡於光軸上的間隔距離為IN45,其滿足下列條件:IN45 / f ≦5.0。藉此,有助於改善透鏡的色差以提升其性能。The separation distance between the fourth lens and the fifth lens on the optical axis is IN45, which satisfies the following condition: IN45 / f ≦5.0. This helps to improve the chromatic aberration of the lens to improve its performance.

第一透鏡與第二透鏡於光軸上的厚度分別為TP1以及TP2,其滿足下列條件:0.1≦(TP1+IN12) / TP2≦50.0。藉此,有助於控制光學成像系統製造的敏感度並提升其性能。The thickness of the first lens and the second lens on the optical axis are TP1 and TP2, respectively, which satisfy the following conditions: 0.1≦(TP1+IN12) / TP2≦50.0. In this way, it helps to control the sensitivity of optical imaging system manufacturing and improve its performance.

第四透鏡與第五透鏡於光軸上的厚度分別為TP4以及TP5,前述兩透鏡於光軸上的間隔距離為IN45,其滿足下列條件:0.1≦(TP5+IN45) / TP4≦50.0。藉此,有助於控制光學成像系統製造的敏感度並降低系統總高度。The thicknesses of the fourth lens and the fifth lens on the optical axis are TP4 and TP5, respectively. The separation distance between the two lenses on the optical axis is IN45, which satisfies the following conditions: 0.1≦(TP5+IN45) / TP4≦50.0. In this way, it helps to control the sensitivity of optical imaging system manufacturing and reduce the overall height of the system.

第二透鏡、第三透鏡與第四透鏡於光軸上的厚度分別為TP2、TP3以及TP4,第二透鏡與第三透鏡於光軸上的間隔距離為IN23,第三透鏡與第四透鏡於光軸上的間隔距離為IN34,第一透鏡物側面至第五透鏡像側面間的距離為InTL,其滿足下列條件:0.1≦TP3/ (IN23+TP3+IN34)>1。藉此,有助層層微幅修正入射光行進過程所產生的像差並降低系統總高度。The thickness of the second lens, the third lens, and the fourth lens on the optical axis are TP2, TP3, and TP4, respectively. The distance between the second lens and the third lens on the optical axis is IN23, and the distance between the third lens and the fourth lens is The separation distance on the optical axis is IN34, and the distance between the object side of the first lens and the image side of the fifth lens is InTL, which satisfies the following condition: 0.1≦TP3/ (IN23+TP3+IN34)>1. In this way, it helps layer by layer to slightly correct the aberration generated by the incident light traveling process and reduce the total height of the system.

本創作的光學成像系統中,第五透鏡物側面的臨界點C51與光軸的垂直距離為 HVT51,第五透鏡像側面的臨界點C52與光軸的垂直距離為HVT52,第五透鏡物側面於光軸上的交點至臨界點C51位置於光軸的水平位移距離為SGC51,第五透鏡像側面於光軸上的交點至臨界點C52位置於光軸的水平位移距離為SGC52,其滿足下列條件:0 mm≦HVT51≦3 mm;0 mm > HVT52≦6 mm;0≦HVT51/HVT52;0 mm≦∣SGC51∣≦0.5 mm;0 mm>∣SGC52∣≦2 mm;以及0 >∣SGC52∣/(∣SGC52∣+TP5)≦0.9。藉此,可有效修正離軸視場的像差。In the optical imaging system of this invention, the vertical distance between the critical point C51 of the fifth lens object side and the optical axis is HVT51, the vertical distance between the critical point C52 of the fifth lens image side and the optical axis is HVT52, and the fifth lens object side is The horizontal displacement distance from the intersection point on the optical axis to the critical point C51 at the optical axis is SGC51, and the horizontal displacement distance from the intersection point on the optical axis of the fifth lens image side to the critical point C52 at the optical axis is SGC52, which satisfies the following conditions : 0 mm≦HVT51≦3 mm; 0 mm> HVT52≦6 mm; 0≦HVT51/HVT52; 0 mm≦∣SGC51∣≦0.5 mm; 0 mm>∣SGC52∣≦2 mm; and 0 >∣SGC52∣/ (∣SGC52∣+TP5)≦0.9. With this, the aberration of the off-axis field of view can be effectively corrected.

本創作的光學成像系統其滿足下列條件:0.2≦HVT52/ HOI≦0.9。較佳地,可滿足下列條件:0.3≦HVT52/ HOI≦0.8。藉此,有助於光學成像系統之週邊視場的像差修正。The optical imaging system of this creation meets the following conditions: 0.2≦HVT52/ HOI≦0.9. Preferably, the following condition can be satisfied: 0.3≦HVT52/ HOI≦0.8. This helps to correct the aberration of the peripheral field of view of the optical imaging system.

本創作的光學成像系統其滿足下列條件:0≦HVT52/ HOS≦0.5。較佳地,可滿足下列條件:0.2≦HVT52/ HOS≦0.45。藉此,有助於光學成像系統之週邊視場的像差修正。The optical imaging system of this creation meets the following conditions: 0≦HVT52/ HOS≦0.5. Preferably, the following condition can be satisfied: 0.2≦HVT52/HOS≦0.45. This helps to correct the aberration of the peripheral field of view of the optical imaging system.

本創作的光學成像系統中,第五透鏡物側面於光軸上的交點至第五透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI511表示,第五透鏡像側面於光軸上的交點至第五透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI521表示,其滿足下列條件:0 > SGI511 /( SGI511+TP5)≦0.9;0 > SGI521 /( SGI521+TP5)≦0.9。較佳地,可滿足下列條件:0.1≦SGI511 /( SGI511+TP5)≦0.6;0.1≦SGI521 /( SGI521+TP5)≦0.6。In the optical imaging system of the present invention, the horizontal displacement distance between the intersection point of the fifth lens object side on the optical axis and the inflection point of the closest optical axis of the fifth lens object side parallel to the optical axis is represented by SGI511, and the fifth lens image The horizontal displacement distance between the intersection point of the side on the optical axis and the reflex point of the closest optical axis of the fifth lens image side parallel to the optical axis is represented by SGI521, which satisfies the following conditions: 0> SGI511 /( SGI511+TP5)≦0.9 ; 0> SGI521 /( SGI521+TP5)≦0.9. Preferably, the following conditions can be satisfied: 0.1≦SGI511 /( SGI511+TP5)≦0.6; 0.1≦SGI521 /( SGI521+TP5)≦0.6.

第五透鏡物側面於光軸上的交點至第五透鏡物側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI512表示,第五透鏡像側面於光軸上的交點至第五透鏡像側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI522表示,其滿足下列條件:0 > SGI512/( SGI512+TP5)≦0.9;0 > SGI522 /( SGI522+TP5)≦0.9。較佳地,可滿足下列條件:0.1≦SGI512 /( SGI512+TP5)≦0.6;0.1≦SGI522 /( SGI522+TP5)≦0.6。The horizontal displacement distance between the intersection point of the fifth lens object side on the optical axis and the reflex point of the second lens object side near the optical axis parallel to the optical axis is expressed by SGI512. The image side of the fifth lens on the optical axis The horizontal displacement distance between the intersection point and the reflex point near the optical axis of the fifth lens image side parallel to the optical axis is represented by SGI522, which satisfies the following conditions: 0> SGI512/( SGI512+TP5)≦0.9; 0> SGI522 /( SGI522+TP5)≦0.9. Preferably, the following conditions can be satisfied: 0.1≦SGI512 /( SGI512+TP5)≦0.6; 0.1≦SGI522 /( SGI522+TP5)≦0.6.

第五透鏡物側面最近光軸的反曲點與光軸間的垂直距離以HIF511表示,第五透鏡像側面於光軸上的交點至第五透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF521表示,其滿足下列條件:0.001 mm≦│HIF511∣≦5 mm;0.001 mm≦│HIF521∣≦5 mm。較佳地,可滿足下列條件: 0.1 mm≦│HIF511∣≦3.5 mm;1.5 mm≦│HIF521∣≦3.5 mm。The vertical distance between the reflex point of the closest optical axis of the fifth lens object side and the optical axis is represented by HIF511, the intersection point of the fifth lens image side on the optical axis to the reflex point and optical axis of the closest optical axis of the fifth lens image side The vertical distance between them is expressed by HIF521, which meets the following conditions: 0.001 mm≦│HIF511∣≦5 mm; 0.001 mm≦│HIF521∣≦5 mm. Preferably, the following conditions can be satisfied: 0.1 mm≦│HIF511∣≦3.5 mm; 1.5 mm≦│HIF521∣≦3.5 mm.

第五透鏡物側面第二接近光軸的反曲點與光軸間的垂直距離以HIF512表示,第五透鏡像側面於光軸上的交點至第五透鏡像側面第二接近光軸的反曲點與光軸間的垂直距離以HIF522表示,其滿足下列條件:0.001 mm≦│HIF512∣≦5 mm;0.001 mm≦│HIF522∣≦5 mm。較佳地,可滿足下列條件:0.1 mm≦│HIF522∣≦3.5 mm;0.1 mm≦│HIF512∣≦3.5 mm。The vertical distance between the second reflex point near the optical axis of the fifth lens object side and the optical axis is expressed by HIF512, and the intersection point of the fifth lens image side on the optical axis to the second lens side reflex of the fifth lens image side The vertical distance between the point and the optical axis is expressed by HIF522, which meets the following conditions: 0.001 mm≦│HIF512∣≦5 mm; 0.001 mm≦│HIF522∣≦5 mm. Preferably, the following conditions can be satisfied: 0.1 mm≦│HIF522∣≦3.5 mm; 0.1 mm≦│HIF512∣≦3.5 mm.

第五透鏡物側面第三接近光軸的反曲點與光軸間的垂直距離以HIF513表示,第五透鏡像側面於光軸上的交點至第五透鏡像側面第三接近光軸的反曲點與光軸間的垂直距離以HIF523表示,其滿足下列條件:0.001 mm≦│HIF513∣≦5 mm;0.001 mm≦│HIF523∣≦5 mm。較佳地,可滿足下列條件:0.1 mm≦│HIF523∣≦3.5 mm;0.1 mm≦│HIF513∣≦3.5 mm。The vertical distance between the third reflex point near the optical axis of the fifth lens object side and the optical axis is represented by HIF513, and the intersection point of the fifth lens image side on the optical axis to the third near optical axis recurve of the fifth lens image side The vertical distance between the point and the optical axis is expressed by HIF523, which satisfies the following conditions: 0.001 mm≦│HIF513∣≦5 mm; 0.001 mm≦│HIF523∣≦5 mm. Preferably, the following conditions can be satisfied: 0.1 mm≦│HIF523∣≦3.5 mm; 0.1 mm≦│HIF513∣≦3.5 mm.

第五透鏡物側面第四接近光軸的反曲點與光軸間的垂直距離以HIF514表示,第五透鏡像側面於光軸上的交點至第五透鏡像側面第四接近光軸的反曲點與光軸間的垂直距離以HIF524表示,其滿足下列條件:0.001 mm≦│HIF514∣≦5 mm;0.001 mm≦│HIF524∣≦5 mm。較佳地,可滿足下列條件:0.1 mm≦│HIF524∣≦3.5 mm;0.1 mm≦│HIF514∣≦3.5 mm。The vertical distance between the fourth inflection point of the fifth lens object side near the optical axis and the optical axis is represented by HIF514, and the intersection of the fifth lens image side on the optical axis to the fourth lens side image inversion of the fifth lens side The vertical distance between the point and the optical axis is represented by HIF524, which meets the following conditions: 0.001 mm≦│HIF514∣≦5 mm; 0.001 mm≦│HIF524∣≦5 mm. Preferably, the following conditions can be satisfied: 0.1 mm≦│HIF524∣≦3.5 mm; 0.1 mm≦│HIF514∣≦3.5 mm.

本創作的光學成像系統之一種實施方式,可藉由具有高色散係數與低色散係數之透鏡交錯排列,而助於光學成像系統色差的修正。An embodiment of the optical imaging system of the present invention can help to correct the chromatic aberration of the optical imaging system by staggering the lenses with high and low dispersion coefficients.

上述非球面之方程式係為: z=ch 2/[1+[1-(k+1)c 2h 2] 0.5]+A4h 4+A6h 6+A8h 8+A10h 10+A12h 12+A14h 14+A16h 16+A18h 18+A20h 20+…    (1) 其中,z為沿光軸方向在高度為h的位置以表面頂點作參考的位置值,k為錐面係數,c為曲率半徑的倒數,且A4、A6、A8、A10、A12、A14、A16、A18以及A20為高階非球面係數。 The above equation of aspheric surface is: z=ch 2 /[1+[1-(k+1)c 2 h 2 ] 0.5 ]+A4h 4 +A6h 6 +A8h 8 +A10h 10 +A12h 12 +A14h 14 + A16h 16 +A18h 18 +A20h 20 +… (1) where z is the position value along the optical axis at the height h with the surface vertex as a reference, k is the cone coefficient, and c is the reciprocal of the radius of curvature, and A4, A6, A8, A10, A12, A14, A16, A18 and A20 are high-order aspheric coefficients.

本創作提供的光學成像系統中,透鏡的材質可為塑膠或玻璃。當透鏡材質為塑膠,可以有效降低生產成本與重量。另當透鏡的材質為玻璃,則可以控制熱效應並且增加光學成像系統屈折力配置的設計空間。此外,光學成像系統中第一透鏡至第五透鏡的物側面及像側面可為非球面,其可獲得較多的控制變數,除用以消減像差外,相較於傳統玻璃透鏡的使用甚至可縮減透鏡使用的數目,因此能有效降低本創作光學成像系統的總高度。In the optical imaging system provided by this creation, the lens can be made of plastic or glass. When the lens material is plastic, it can effectively reduce the production cost and weight. In addition, when the material of the lens is glass, the thermal effect can be controlled and the design space for the configuration of the refractive power of the optical imaging system can be increased. In addition, the object side and the image side of the first lens to the fifth lens in the optical imaging system can be aspherical, which can obtain more control variables. In addition to reducing aberrations, compared with the use of traditional glass lenses, even The number of lenses used can be reduced, so the total height of the original optical imaging system can be effectively reduced.

再者,本創作提供的光學成像系統中,若透鏡表面係為凸面,原則上表示透鏡表面於近光軸處為凸面;若透鏡表面係為凹面,原則上表示透鏡表面於近光軸處為凹面。Furthermore, in the optical imaging system provided by this work, if the lens surface is convex, in principle, the lens surface is convex at the low optical axis; if the lens surface is concave, in principle, the lens surface is at the low optical axis. Concave.

本創作的光學成像系統更可視需求應用於移動對焦的光學系統中,並兼具優良像差修正與良好成像品質的特色,從而擴大應用層面。The optical imaging system of this creation can be applied to the mobile focusing optical system according to the visual demand, and has the characteristics of excellent aberration correction and good imaging quality, thereby expanding the application level.

本創作的光學成像系統更可視需求包括一驅動模組,該驅動模組可與該些透鏡相耦合並使該些透鏡產生位移。前述驅動模組可以是音圈馬達(VCM)用於帶動鏡頭進行對焦,或者為光學防手振元件(OIS)用於降低拍攝過程因鏡頭振動所導致失焦的發生頻率。The more visible requirements of the optical imaging system of the present invention include a driving module, which can be coupled with the lenses and displace the lenses. The aforementioned driving module may be a voice coil motor (VCM) for driving the lens to focus, or an optical anti-shake element (OIS) for reducing the frequency of out-of-focus caused by lens vibration during the shooting process.

本創作的光學成像系統更可視需求令第一透鏡、第二透鏡、第三透鏡、第四透鏡及第五透鏡中至少一透鏡為波長小於500nm之光線濾除元件,其可藉由該特定具濾除功能之透鏡的至少一表面上鍍膜或該透鏡本身即由具可濾除短波長之材質所製作而達成。The optical imaging system of the present invention can make the first lens, the second lens, the third lens, the fourth lens, and the fifth lens at least one lens a light filtering element with a wavelength less than 500 nm according to the demand, which can be determined by the specific tool The coating on at least one surface of the lens with the filtering function or the lens itself is made of a material with a filterable short wavelength.

本創作的光學成像系統之紅外光成像面更可視需求選擇為一平面或一曲面。當紅外光成像面為一曲面 (例如具有一曲率半徑的球面),有助於降低聚焦光線於紅外光成像面所需之入射角,除有助於達成微縮光學成像系統之長度(TTL)外,對於提升相對照度同時有所助益。The infrared imaging surface of the optical imaging system of this creation can be selected as a flat surface or a curved surface according to the demand. When the infrared imaging surface is a curved surface (such as a spherical surface with a radius of curvature), it helps to reduce the angle of incidence required to focus light on the infrared imaging surface, in addition to helping to achieve the length of the miniature optical imaging system (TTL) , At the same time help to increase the relative illumination.

本創作的光學成像系統可應用於立體影像擷取,藉由具特定特徵之光線投射至物體,經物體表面反射後再由鏡頭接收並運算分析,以得物體各位置與鏡頭之間的距離,進而判斷出立體影像的資訊。投射光線多採用特定波段之紅外線以減少干擾,進而達成更加準確之量測。前述立體影像擷取3D感測方式可採用飛時測距 (time-of-flight;TOF)或結構光(structured light)等技術,但不限於此。The optical imaging system of this creation can be applied to the acquisition of stereoscopic images. By projecting light with specific characteristics onto the object, after being reflected on the surface of the object, it is received by the lens and calculated and analyzed to obtain the distance between each position of the object and the lens. Then determine the information of the stereoscopic image. Most of the projected light uses infrared rays of a specific wavelength band to reduce interference, thereby achieving more accurate measurement. The aforementioned 3D sensing method for capturing a stereoscopic image may use time-of-flight (TOF) or structured light technologies, but is not limited thereto.

根據上述實施方式,以下提出具體實施例並配合圖式予以詳細說明。According to the above-mentioned embodiments, specific examples are presented below and explained in detail in conjunction with the drawings.

第一實施例First embodiment

請參照第1A圖及第1B圖,其中第1A圖繪示依照本創作第一實施例的一種光學成像系統的示意圖,第1B圖由左至右依序為第一實施例的光學成像系統的球差、像散及光學畸變曲線圖。第1C圖係繪示本實施例之紅外光頻譜調制轉換特徵圖。由第1A圖可知,光學成像系統由物側至像側依序包含第一透鏡110、光圈100、第二透鏡120、第三透鏡130、第四透鏡140、第五透鏡150、紅外線濾光片170、紅外光成像面180以及影像感測元件190。Please refer to FIGS. 1A and 1B, in which FIG. 1A shows a schematic diagram of an optical imaging system according to the first embodiment of the present creation, and FIG. 1B is from left to right in order for the optical imaging system of the first embodiment. Graph of spherical aberration, astigmatism and optical distortion. FIG. 1C is a characteristic diagram of infrared light spectrum modulation conversion in this embodiment. As can be seen from FIG. 1A, the optical imaging system includes a first lens 110, an aperture 100, a second lens 120, a third lens 130, a fourth lens 140, a fifth lens 150, and an infrared filter in order from the object side to the image side 170. Infrared imaging surface 180 and image sensing element 190.

第一透鏡110具有負屈折力,且為塑膠材質,其物側面112為凸面,其像側面114為凹面,並皆為非球面,且其物側面112具有一反曲點。第一透鏡於光軸上之厚度為TP1,第一透鏡在1/2入射瞳直徑(HEP)高度的厚度以ETP1表示。The first lens 110 has negative refractive power and is made of plastic material. Its object side 112 is convex, its image side 114 is concave, and both are aspherical, and its object side 112 has an inflexion point. The thickness of the first lens on the optical axis is TP1, and the thickness of the first lens at the height of 1/2 the entrance pupil diameter (HEP) is represented by ETP1.

第一透鏡物側面於光軸上的交點至第一透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI111表示,第一透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI121表示,其滿足下列條件:SGI111= 1.96546 mm;∣SGI111∣/(∣SGI111∣+TP1)= 0.72369。The horizontal displacement distance between the intersection of the first lens object side on the optical axis and the reflex point of the closest optical axis of the first lens side parallel to the optical axis is represented by SGI111, and the reflex point of the closest optical axis of the first lens image side The horizontal displacement distance parallel to the optical axis is expressed by SGI121, which satisfies the following conditions: SGI111 = 1.96546 mm; ∣SGI111∣/(∣SGI111∣+TP1) = 0.72369.

第一透鏡物側面最近光軸的反曲點與光軸間的垂直距離以HIF111表示,第一透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF121表示,其滿足下列條件:HIF111= 3.38542 mm;HIF111/ HOI= 0.90519。The vertical distance between the reflex point of the closest optical axis of the object side of the first lens and the optical axis is represented by HIF111, and the vertical distance between the reflex point of the closest optical axis of the image side of the first lens and the optical axis is represented by HIF121, which satisfies the following conditions : HIF111 = 3.38542 mm; HIF111/ HOI = 0.90519.

第二透鏡120具有正屈折力,且為塑膠材質,其物側面122為凸面,其像側面124為凹面,並皆為非球面。第二透鏡於光軸上之厚度為TP2,第二透鏡在1/2入射瞳直徑(HEP)高度的厚度以ETP2表示。The second lens 120 has positive refractive power and is made of plastic material. Its object side 122 is convex, and its image side 124 is concave, and both are aspherical. The thickness of the second lens on the optical axis is TP2, and the thickness of the second lens at the height of 1/2 the entrance pupil diameter (HEP) is represented by ETP2.

第二透鏡物側面於光軸上的交點至第二透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI211表示,第二透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI221表示。The horizontal displacement distance between the intersection of the second lens object side on the optical axis and the reflex point of the closest optical axis of the second lens object side parallel to the optical axis is represented by SGI211, and the reflex point of the closest optical axis of the second lens image side The horizontal displacement distance between the parallel to the optical axis is represented by SGI221.

第二透鏡物側面最近光軸的反曲點與光軸間的垂直距離以HIF211表示,第二透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF221表示。The vertical distance between the reflex point of the closest optical axis of the object side of the second lens and the optical axis is represented by HIF211, and the vertical distance between the reflex point of the closest optical axis of the image side of the second lens and the optical axis is represented by HIF221.

第三透鏡130具有正屈折力,且為塑膠材質,其物側面132為凸面,其像側面134為凸面,並皆為非球面,且其物側面132具有一反曲點。第三透鏡於光軸上之厚度為TP3,第三透鏡在1/2入射瞳直徑(HEP)高度的厚度以ETP3表示。The third lens 130 has a positive refractive power and is made of plastic material. Its object side 132 is convex, its image side 134 is convex, and both are aspherical, and its object side 132 has an inflection point. The thickness of the third lens on the optical axis is TP3, and the thickness of the third lens at the height of 1/2 the entrance pupil diameter (HEP) is represented by ETP3.

第三透鏡物側面於光軸上的交點至第三透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI311表示,第三透鏡像側面於光軸上的交點至第三透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI321表示,其滿足下列條件:SGI311= 0.00388 mm;∣SGI311∣ /(∣SGI311∣+TP3)= 0.00414。The horizontal displacement distance between the intersection point of the third lens object side on the optical axis and the reflex point of the closest optical axis of the third lens object side parallel to the optical axis is represented by SGI311, and the intersection point of the third lens image side on the optical axis to The horizontal displacement distance between the reflex points of the closest optical axis of the third lens image side and the optical axis is expressed as SGI321, which satisfies the following conditions: SGI311= 0.00388 mm; ∣SGI311∣ /(∣SGI311∣+TP3)= 0.00414

第三透鏡物側面於光軸上的交點至第三透鏡物側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI312表示,第三透鏡像側面於光軸上的交點至第三透鏡像側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI322表示。The horizontal displacement distance between the intersection point of the third lens object side on the optical axis and the second lens object side's inflection point near the optical axis parallel to the optical axis is represented by SGI312, and the third lens image side on the optical axis The horizontal displacement distance parallel to the optical axis between the intersection point and the second lens-side reflex point near the optical axis of the third lens image is represented by SGI322.

第三透鏡物側面最近光軸的反曲點與光軸間的垂直距離以HIF311表示,第三透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF321表示,其滿足下列條件:HIF311= 0.38898 mm;HIF311/ HOI= 0.10400。The vertical distance between the reflex point of the closest optical axis of the third lens object side and the optical axis is represented by HIF311, and the vertical distance between the reflex point of the closest optical axis of the third lens image side and the optical axis is represented by HIF321, which satisfies the following conditions : HIF311= 0.38898 mm; HIF311/ HOI= 0.10400.

第三透鏡物側面第二接近光軸的反曲點與光軸間的垂直距離以HIF412表示,第四透鏡像側面第二接近光軸的反曲點與光軸間的垂直距離以HIF422表示。The vertical distance between the second reflex point near the optical axis of the third lens object side and the optical axis is represented by HIF412, and the vertical distance between the second reflex point near the optical axis of the fourth lens image side and the optical axis is represented by HIF422.

第四透鏡140具有正屈折力,且為塑膠材質,其物側面142為凸面,其像側面144為凸面,並皆為非球面,且其物側面142具有一反曲點。第四透鏡於光軸上之厚度為TP4,第四透鏡在1/2入射瞳直徑(HEP)高度的厚度以ETP4表示。The fourth lens 140 has a positive refractive power and is made of plastic material. Its object side 142 is convex, its image side 144 is convex, and both are aspherical, and its object side 142 has an inflection point. The thickness of the fourth lens on the optical axis is TP4, and the thickness of the fourth lens at the height of 1/2 the entrance pupil diameter (HEP) is represented by ETP4.

第四透鏡物側面於光軸上的交點至第四透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI411表示,第四透鏡像側面於光軸上的交點至第四透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI421表示,其滿足下列條件:SGI421= 0.06508 mm;∣SGI421∣/(∣SGI421∣+TP4)= 0.03459。The horizontal displacement distance between the intersection point of the fourth lens object side on the optical axis and the reflex point of the closest optical axis of the fourth lens object side parallel to the optical axis is represented by SGI411, and the intersection point of the fourth lens image side on the optical axis to The horizontal displacement distance between the reflex points of the closest optical axis of the fourth lens image side and the optical axis is expressed as SGI421, which satisfies the following conditions: SGI421 = 0.06508 mm; ∣SGI421∣/(∣SGI421∣+TP4) = 0.03459.

第四透鏡物側面於光軸上的交點至第四透鏡物側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI412表示,第四透鏡像側面於光軸上的交點至第四透鏡像側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI422表示。The horizontal displacement distance between the intersection point of the fourth lens object side on the optical axis and the second lens object side deflector point close to the optical axis parallel to the optical axis is represented by SGI412, and the fourth lens image side on the optical axis The horizontal displacement distance parallel to the optical axis between the intersection point and the second lens-side reflex point near the optical axis of the fourth lens is represented by SGI422.

第四透鏡物側面最近光軸的反曲點與光軸間的垂直距離以HIF411表示,第四透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF421表示,其滿足下列條件:HIF421= 0.85606 mm;HIF421/ HOI= 0.22889。The vertical distance between the reflex point of the closest optical axis of the fourth lens object side and the optical axis is represented by HIF411, and the vertical distance between the reflex point of the closest optical axis of the fourth lens image side and the optical axis is represented by HIF421, which satisfies the following conditions : HIF421 = 0.85606 mm; HIF421/ HOI = 0.22889.

第四透鏡物側面第二接近光軸的反曲點與光軸間的垂直距離以HIF412表示,第四透鏡像側面第二接近光軸的反曲點與光軸間的垂直距離以HIF422表示。The vertical distance between the second reflex point near the optical axis of the fourth lens object side and the optical axis is represented by HIF412, and the vertical distance between the second reflex point near the optical axis of the fourth lens image side and the optical axis is represented by HIF422.

第五透鏡150具有負屈折力,且為塑膠材質,其物側面152為凹面,其像側面154為凹面,並皆為非球面,且其物側面152以及像側面154均具有一反曲點。第五透鏡於光軸上之厚度為TP5,第五透鏡在1/2入射瞳直徑(HEP)高度的厚度以ETP5表示。The fifth lens 150 has negative refractive power and is made of plastic material. Its object side 152 is concave, its image side 154 is concave, and both are aspherical, and its object side 152 and image side 154 both have an inflection point. The thickness of the fifth lens on the optical axis is TP5, and the thickness of the fifth lens at the height of 1/2 the entrance pupil diameter (HEP) is represented by ETP5.

第五透鏡物側面於光軸上的交點至第五透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI511表示,第五透鏡像側面於光軸上的交點至第五透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI521表示,其滿足下列條件:SGI511= -1.51505 mm;∣SGI511∣/(∣SGI511∣+TP5)= 0.70144;SGI521= 0.01229 mm;∣SGI521∣/(∣SGI521∣+TP5)= 0.01870。The horizontal displacement distance between the intersection of the fifth lens object side on the optical axis and the reflex point of the closest optical axis of the fifth lens object side parallel to the optical axis is represented by SGI511, and the intersection point of the fifth lens image side on the optical axis to The horizontal displacement distance between the reflex point of the closest optical axis of the fifth lens image side and the optical axis is represented by SGI521, which satisfies the following conditions: SGI511= -1.51505 mm; ∣SGI511∣/(∣SGI511∣+TP5)= 0.70144 ; SGI521 = 0.01229 mm; ∣SGI521∣/(∣SGI521∣+TP5) = 0.01870.

第五透鏡物側面於光軸上的交點至第五透鏡物側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI512表示,第五透鏡像側面於光軸上的交點至第五透鏡像側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI522表示。The horizontal displacement distance between the intersection point of the fifth lens object side on the optical axis and the reflex point of the second lens object side near the optical axis parallel to the optical axis is expressed by SGI512. The image side of the fifth lens on the optical axis The horizontal displacement distance between the intersection point and the inflection point of the fifth lens image side near the optical axis, which is parallel to the optical axis, is represented by SGI522.

第五透鏡物側面最近光軸的反曲點與光軸間的垂直距離以HIF511表示,第五透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF521表示,其滿足下列條件:HIF511= 2.25435 mm;HIF511/ HOI= 0.60277;HIF521= 0.82313 mm;HIF521/ HOI= 0.22009。The vertical distance between the reflex point of the closest optical axis of the fifth lens object side and the optical axis is represented by HIF511, and the vertical distance between the reflex point of the closest optical axis of the fifth lens image side and the optical axis is represented by HIF521, which satisfies the following conditions : HIF511= 2.25435 mm; HIF511/ HOI= 0.60277; HIF521= 0.82313 mm; HIF521/ HOI= 0.22009.

第五透鏡物側面第二接近光軸的反曲點與光軸間的垂直距離以HIF512表示,第五透鏡像側面第二接近光軸的反曲點與光軸間的垂直距離以HIF522表示。The vertical distance between the second reflex point near the optical axis of the fifth lens object side and the optical axis is represented by HIF512, and the vertical distance between the second reflex point near the optical axis of the fifth lens image side and the optical axis is represented by HIF522.

本實施例第一透鏡物側面上於1/2 HEP高度的座標點至該紅外光成像面間平行於光軸之距離為ETL,第一透鏡物側面上於1/2 HEP高度的座標點至該第四透鏡像側面上於1/2 HEP高度的座標點間平行於光軸之水平距離為EIN,其滿足下列條件:ETL=10.449 mm;EIN= 9.752 mm;EIN/ETL=0.933。In this embodiment, the distance from the coordinate point at the height of 1/2 HEP on the side of the first lens object to the infrared light imaging plane parallel to the optical axis is ETL, and the coordinate point at the height of 1/2 HEP on the side of the first lens object is The horizontal distance between the coordinate points at the height of 1/2 HEP on the image side of the fourth lens parallel to the optical axis is EIN, which satisfies the following conditions: ETL=10.449 mm; EIN= 9.752 mm; EIN/ETL=0.933.

本實施例滿足下列條件,ETP1=0.870 mm;ETP2=0.780 mm;ETP3=0.825 mm;ETP4=1.562 mm;ETP5=0.923 mm。前述ETP1至ETP5的總和SETP=4.960 mm。TP1=0.750 mm;TP2=0.895 mm;TP3=0.932 mm;TP4=1.816 mm;TP5=0.645 mm;前述TP1至TP5的總和STP=5.039 mm。SETP/STP= 0.984。This embodiment satisfies the following conditions, ETP1=0.870 mm; ETP2=0.780 mm; ETP3=0.825 mm; ETP4=1.562 mm; ETP5=0.923 mm. The sum of the aforementioned ETP1 to ETP5 SETP = 4.960 mm. TP1=0.750 mm; TP2=0.895 mm; TP3=0.932 mm; TP4=1.816 mm; TP5=0.645 mm; the sum of the aforementioned TP1 to TP5 STP=5.039 mm. SETP/STP = 0.984.

本實施例為特別控制各該透鏡在1/2入射瞳直徑(HEP)高度的厚度(ETP)與該表面所屬之該透鏡於光軸上之厚度(TP)間的比例關係(ETP/ TP),以在製造性以及修正像差能力間取得平衡,其滿足下列條件,ETP1 / TP1=1.160;ETP2 / TP2=0.871;ETP3 / TP3=0.885;ETP4 / TP4=0.860;ETP5 / TP5=1.431。This embodiment specifically controls the proportional relationship (ETP/TP) between the thickness (ETP) of each lens at 1/2 the entrance pupil diameter (HEP) height and the thickness (TP) of the lens on the optical axis to which the surface belongs In order to achieve a balance between manufacturability and ability to correct aberrations, it satisfies the following conditions, ETP1/TP1=1.160; ETP2/TP2=0.871; ETP3/TP3=0.885; ETP4/TP4=0.860; ETP5/TP5=1.431.

本實施例為控制各相鄰兩透鏡在1/2入射瞳直徑(HEP)高度之水平距離,以在光學成像系統之長度HOS”微縮”程度、製造性以及修正像差能力三者間取得平衡,特別是控制該相鄰兩透鏡在1/2入射瞳直徑(HEP)高度的水平距離(ED)與該相鄰兩透鏡於光軸上之水平距離 (IN)間的比例關係(ED/IN),其滿足下列條件,第一透鏡與第二透鏡間在1/2入射瞳直徑(HEP)高度之平行於光軸的水平距離為ED12=3.152 mm;第二透鏡與第三透鏡間在1/2入射瞳直徑(HEP)高度之平行於光軸的水平距離為ED23= 0.478 mm;第三透鏡與第四透鏡間在1/2入射瞳直徑(HEP)高度之平行於光軸的水平距離為ED34=0.843 mm;第四透鏡與第五透鏡間在1/2入射瞳直徑(HEP)高度之平行於光軸的水平距離為ED45= 0.320 mm。前述ED12至ED45的總和以SED表示並且SED=4.792 mm。This embodiment is to control the horizontal distance of each adjacent two lenses at the height of 1/2 entrance pupil diameter (HEP), in order to balance the length of the optical imaging system HOS "miniature" degree, manufacturability, and the ability to correct aberrations , In particular, the ratio between the horizontal distance (ED) of the two adjacent lenses at the height of 1/2 the entrance pupil diameter (HEP) and the horizontal distance (IN) of the two adjacent lenses on the optical axis (ED/IN) ), which satisfies the following conditions, the horizontal distance between the first lens and the second lens parallel to the optical axis at the height of 1/2 the entrance pupil diameter (HEP) is ED12=3.152 mm; the distance between the second lens and the third lens is 1 The horizontal distance of /2 entrance pupil diameter (HEP) height parallel to the optical axis is ED23 = 0.478 mm; the horizontal distance between the third lens and the fourth lens at 1/2 entrance pupil diameter (HEP) height parallel to the optical axis ED34=0.843 mm; the horizontal distance between the fourth lens and the fifth lens at the height of 1/2 the entrance pupil diameter (HEP) parallel to the optical axis is ED45=0.320 mm. The sum of the aforementioned ED12 to ED45 is expressed in SED and SED=4.792 mm.

第一透鏡與第二透鏡於光軸上之水平距離為IN12=3.190 mm,ED12 / IN12=0.988。第二透鏡與第三透鏡於光軸上之水平距離為IN23=0.561 mm,ED23 / IN23=0.851。第三透鏡與第四透鏡於光軸上之水平距離為IN34=0.656 mm,ED34 / IN34=1.284。第四透鏡與第五透鏡於光軸上之水平距離為IN45=0.405 mm,ED45 / IN45=0.792。前述IN12至IN45的總和以SIN表示並且SIN= 0.999 mm。SED/SIN=1.083。The horizontal distance between the first lens and the second lens on the optical axis is IN12=3.190 mm, ED12 / IN12=0.988. The horizontal distance between the second lens and the third lens on the optical axis is IN23=0.561 mm, ED23 / IN23=0.851. The horizontal distance between the third lens and the fourth lens on the optical axis is IN34=0.656 mm, ED34 / IN34=1.284. The horizontal distance between the fourth lens and the fifth lens on the optical axis is IN45=0.405 mm, ED45 / IN45=0.792. The sum of the aforementioned IN12 to IN45 is represented by SIN and SIN = 0.999 mm. SED/SIN=1.083.

本實施另滿足以下條件:ED12 / ED23=6.599;ED23 / ED34=0.567;ED34 / ED45=2.630;IN12 / IN23=5.687;IN23 / IN34=0.855;IN34 / IN45=1.622。This implementation also meets the following conditions: ED12 / ED23=6.599; ED23 / ED34=0.567; ED34 / ED45=2.630; IN12 / IN23=5.687; IN23 / IN34=0.855; IN34 / IN45=1.622.

第五透鏡像側面上於1/2 HEP高度的座標點至該紅外光成像面間平行於光軸之水平距離為EBL= 0.697 mm,第五透鏡像側面上與光軸之交點至該紅外光成像面之間平行於光軸的水平距離為BL= 0.71184 mm,本創作之實施例可滿足下列公式:EBL/BL=0.979152。本實施例第五透鏡像側面上於1/2 HEP高度的座標點至紅外線濾光片之間平行於光軸的距離為EIR= 0.085 mm,第五透鏡像側面上與光軸之交點至紅外線濾光片之間平行於光軸的距離為PIR=0.100 mm,並滿足下列公式:EIR/PIR= 0.847。The horizontal distance between the coordinate point at the height of 1/2 HEP on the image side of the fifth lens and the infrared light imaging plane parallel to the optical axis is EBL = 0.697 mm, and the point of intersection between the image side of the fifth lens and the optical axis to the infrared light The horizontal distance between the imaging planes parallel to the optical axis is BL = 0.71184 mm. The embodiment of the present invention can satisfy the following formula: EBL/BL=0.979152. In this embodiment, the distance from the coordinate point at the height of 1/2 HEP on the image side of the fifth lens to the infrared filter parallel to the optical axis is EIR = 0.085 mm, and the intersection between the image side of the fifth lens and the optical axis to the infrared The distance between the filters parallel to the optical axis is PIR=0.100 mm and meets the following formula: EIR/PIR= 0.847.

紅外線濾光片170為玻璃材質,其設置於第五透鏡150及紅外光成像面180間且不影響光學成像系統的焦距。The infrared filter 170 is made of glass, which is disposed between the fifth lens 150 and the infrared imaging surface 180 and does not affect the focal length of the optical imaging system.

本實施例的光學成像系統中,光學成像系統的焦距為f,光學成像系統之入射瞳直徑為HEP,光學成像系統中最大視角的一半為HAF,其數值如下:f= 3.03968 mm;f/HEP=1.6;以及HAF=50.001度與tan(HAF)=1.1918。In the optical imaging system of this embodiment, the focal length of the optical imaging system is f, the diameter of the entrance pupil of the optical imaging system is HEP, and the half of the maximum angle of view in the optical imaging system is HAF. The values are as follows: f = 3.03968 mm; f/HEP =1.6; and HAF=50.001 degrees and tan(HAF)=1.1918.

本實施例的光學成像系統中,第一透鏡110的焦距為f1,第五透鏡150的焦距為f5,其滿足下列條件:f1= -9.24529 mm;∣f/f1│= 0.32878;f5= -2.32439;以及│f1│>f5。In the optical imaging system of this embodiment, the focal length of the first lens 110 is f1, and the focal length of the fifth lens 150 is f5, which satisfies the following conditions: f1= -9.24529 mm; ∣f/f1│= 0.32878; f5= -2.32439 ; And │f1│>f5.

本實施例的光學成像系統中,第二透鏡120至第五透鏡150的焦距分別為f2、f3、f4、f5,其滿足下列條件:│f2│+│f3│+│f4│= 17.3009 mm;∣f1│+∣f5│= 11.5697 mm以及│f2│+│f3│+│f4│>∣f1│+∣f5│。In the optical imaging system of this embodiment, the focal lengths of the second lens 120 to the fifth lens 150 are f2, f3, f4, and f5, respectively, which satisfy the following conditions: │f2│+│f3│+│f4│= 17.3009 mm; ∣f1│+∣f5│= 11.5697 mm and │f2│+│f3│+│f4│>∣f1│+∣f5│.

光學成像系統的焦距f與每一片具有正屈折力之透鏡的焦距fp之比值PPR,光學成像系統的焦距f與每一片具有負屈折力之透鏡的焦距fn之比值NPR,本實施例的光學成像系統中,所有正屈折力之透鏡的PPR總和為ΣPPR=f/f2+f/f3+f/f4 = 1.86768,所有負屈折力之透鏡的NPR總和為ΣNPR= f/f1+f/f5= -1.63651,ΣPPR/│ΣNPR│= 1.14125。同時亦滿足下列條件:∣f/f2│=0.47958;∣f/f3│=0.38289;∣f/f4│=1.00521;∣f/f5│= 1.30773。The ratio PPR of the focal length f of the optical imaging system to the focal length fp of each lens with positive refractive power, the ratio NPR of the focal length f of the optical imaging system to the focal length fn of each lens with negative refractive power, optical imaging in this embodiment In the system, the total PPR of all positive refractive power lenses is ΣPPR=f/f2+f/f3+f/f4 = 1.86768, and the total NPR of all negative refractive power lenses is ΣNPR= f/f1+f/f5=- 1.63651, ΣPPR/│ΣNPR│ = 1.14125. It also meets the following conditions: ∣f/f2│=0.47958; ∣f/f3│=0.38289; ∣f/f4│=1.00521; ∣f/f5│= 1.30773.

本實施例的光學成像系統中,第一透鏡物側面112至第五透鏡像側面154間的距離為InTL,第一透鏡物側面112至紅外光成像面180間的距離為HOS,光圈100至紅外光成像面180間的距離為InS,影像感測元件190有效感測區域對角線長的一半為HOI,第五透鏡像側面154至紅外光成像面180間的距離為BFL,其滿足下列條件:InTL+BFL=HOS;HOS= 10.56320 mm;HOI= 3.7400 mm;HOS/HOI= 2.8244;HOS/f= 3.4751;InS= 6.21073 mm;以及InS/HOS= 0.5880。In the optical imaging system of this embodiment, the distance between the first lens object side 112 to the fifth lens image side 154 is InTL, the distance between the first lens object side 112 to the infrared light imaging surface 180 is HOS, and the aperture 100 to infrared The distance between the optical imaging surface 180 is InS, the half of the diagonal length of the effective sensing area of the image sensing element 190 is HOI, and the distance between the image side surface 154 of the fifth lens and the infrared imaging surface 180 is BFL, which satisfies the following conditions : InTL+BFL=HOS; HOS= 10.56320 mm; HOI= 3.7400 mm; HOS/HOI= 2.8244; HOS/f= 3.4751; InS= 6.21073 mm; and InS/HOS= 0.5880.

本實施例的光學成像系統中,於光軸上所有具屈折力之透鏡的厚度總和為ΣTP,其滿足下列條件:ΣTP= 5.0393 mm;InTL=9.8514 mm以及ΣTP/InTL= 0.5115。藉此,當可同時兼顧系統成像的對比度以及透鏡製造的良率並提供適當的後焦距以容置其他元件。In the optical imaging system of this embodiment, the total thickness of all lenses with refractive power on the optical axis is ΣTP, which satisfies the following conditions: ΣTP = 5.0393 mm; InTL = 9.8514 mm and ΣTP/InTL = 0.5115. In this way, the contrast of system imaging and the yield of lens manufacturing can be taken into account at the same time, and an appropriate back focal length can be provided to accommodate other components.

本實施例的光學成像系統中,第一透鏡物側面112的曲率半徑為R1,第一透鏡像側面114的曲率半徑為R2,其滿足下列條件:│R1/R2│= 1.9672。藉此,第一透鏡的具備適當正屈折力強度,避免球差增加過速。In the optical imaging system of this embodiment, the radius of curvature of the object side 112 of the first lens is R1, and the radius of curvature of the image side 114 of the first lens is R2, which satisfies the following conditions: │R1/R2│= 1.9672. In this way, the first lens has an appropriate positive refractive power strength to prevent the spherical aberration from increasing too fast.

本實施例的光學成像系統中,第五透鏡物側面152的曲率半徑為R9,第五透鏡像側面154的曲率半徑為R10,其滿足下列條件:(R9-R10)/(R9+R10)= -1.1505。藉此,有利於修正光學成像系統所產生的像散。In the optical imaging system of this embodiment, the curvature radius of the fifth lens object side 152 is R9, and the curvature radius of the fifth lens image side 154 is R10, which satisfies the following conditions: (R9-R10)/(R9+R10)= -1.1505. In this way, it is beneficial to correct the astigmatism generated by the optical imaging system.

本實施例的光學成像系統中,所有具正屈折力的透鏡之焦距總和為ΣPP,其滿足下列條件:ΣPP= f2+f3+f4 = 17.30090 mm;以及f2/ (f2+f3+f4)= 0.36635。藉此,有助於適當分配第二透鏡120之正屈折力至其他正透鏡,以抑制入射光線行進過程顯著像差的產生。In the optical imaging system of this embodiment, the sum of focal lengths of all lenses with positive refractive power is ΣPP, which meets the following conditions: ΣPP = f2+f3+f4 = 17.30090 mm; and f2/ (f2+f3+f4) = 0.36635 . In this way, it is helpful to appropriately distribute the positive refractive power of the second lens 120 to other positive lenses, so as to suppress the generation of significant aberrations in the process of the incident light.

本實施例的光學成像系統中,所有具負屈折力的透鏡之焦距總和為ΣNP,其滿足下列條件:ΣNP= f1+f5= -11.56968 mm;以及f5/ (f1+f5)= 0.20090。藉此,有助於適當分配第五透鏡之負屈折力至其他負透鏡,以抑制入射光線行進過程顯著像差的產生。In the optical imaging system of this embodiment, the sum of focal lengths of all lenses with negative refractive power is ΣNP, which satisfies the following conditions: ΣNP= f1+f5= -11.56968 mm; and f5/ (f1+f5)= 0.20090. In this way, it is helpful to appropriately distribute the negative refractive power of the fifth lens to other negative lenses, so as to suppress the generation of significant aberrations in the process of the incident light.

本實施例的光學成像系統中,第一透鏡110與第二透鏡120於光軸上的間隔距離為IN12,其滿足下列條件:IN12= 3.19016 mm;IN12 / f = 1.04951。藉此,有助於改善透鏡的色差以提升其性能。In the optical imaging system of this embodiment, the separation distance between the first lens 110 and the second lens 120 on the optical axis is IN12, which satisfies the following conditions: IN12 = 3.19016 mm; IN12 / f = 1.04951. This helps to improve the chromatic aberration of the lens to improve its performance.

本實施例的光學成像系統中,第四透鏡140與第五透鏡150於光軸上的間隔距離為IN45,其滿足下列條件:IN45= 0.40470 mm;IN45 / f = 0.13314。藉此,有助於改善透鏡的色差以提升其性能。In the optical imaging system of this embodiment, the separation distance between the fourth lens 140 and the fifth lens 150 on the optical axis is IN45, which satisfies the following conditions: IN45 = 0.40470 mm; IN45 / f = 0.13314. This helps to improve the chromatic aberration of the lens to improve its performance.

本實施例的光學成像系統中,第一透鏡110、第二透鏡120以及第三透鏡130於光軸上的厚度分別為TP1、TP2以及TP3,其滿足下列條件:TP1= 0.75043 mm;TP2= 0.89543 mm;TP3= 0.93225 mm;以及(TP1+IN12) / TP2= 4.40078。藉此,有助於控制光學成像系統製造的敏感度並提升其性能。In the optical imaging system of this embodiment, the thickness of the first lens 110, the second lens 120, and the third lens 130 on the optical axis are TP1, TP2, and TP3, respectively, which satisfy the following conditions: TP1 = 0.75043 mm; TP2 = 0.89543 mm; TP3 = 0.93225 mm; and (TP1+IN12) / TP2 = 4.40078. In this way, it helps to control the sensitivity of optical imaging system manufacturing and improve its performance.

本實施例的光學成像系統中,第四透鏡140與第五透鏡150於光軸上的厚度分別為TP4以及TP5,前述兩透鏡於光軸上的間隔距離為IN45,其滿足下列條件:TP4= 1.81634 mm;TP5= 0.64488 mm ;以及(TP5+IN45) / TP4= 0.57785。藉此,有助於控制光學成像系統製造的敏感度並降低系統總高度。In the optical imaging system of this embodiment, the thicknesses of the fourth lens 140 and the fifth lens 150 on the optical axis are TP4 and TP5, respectively. The separation distance between the two lenses on the optical axis is IN45, which satisfies the following conditions: TP4= 1.81634 mm; TP5 = 0.64488 mm; and (TP5+IN45) / TP4 = 0.57785. In this way, it helps to control the sensitivity of optical imaging system manufacturing and reduce the overall height of the system.

本實施例的光學成像系統中,第三透鏡130與第四透鏡140於光軸上的間隔距離為IN34,第一透鏡物側面112至第五透鏡像側面164間的距離為InTL,其滿足下列條件:TP2/TP3= 0.96051;TP3/TP4= 0.51325;TP4/TP5= 2.81657;以及TP3 / (IN23+TP3+IN34)= 0.43372。藉此有助於層層微幅修正入射光行進過程所產生的像差並降低系統總高度。In the optical imaging system of this embodiment, the distance between the third lens 130 and the fourth lens 140 on the optical axis is IN34, and the distance between the first lens object side 112 and the fifth lens image side 164 is InTL, which satisfies the following Conditions: TP2/TP3 = 0.96051; TP3/TP4 = 0.51325; TP4/TP5 = 2.81657; and TP3 / (IN23+TP3+IN34) = 0.43372. This helps to slightly correct the aberrations caused by the incident light traveling and reduce the total height of the system.

本實施例的光學成像系統中,第四透鏡物側面142於光軸上的交點至第四透鏡物側面142的最大有效半徑位置於光軸的水平位移距離為InRS41,第四透鏡像側面144於光軸上的交點至第五透鏡像側面144的最大有效半徑位置於光軸的水平位移距離為InRS42,第四透鏡140於光軸上的厚度為TP4,其滿足下列條件:InRS41= -0.09737 mm;InRS42= -1.31040 mm;│InRS41∣/ TP4 = 0.05361以及│InRS42∣/ TP4= 0.72145。藉此,有利於鏡片的製作與成型,並有效維持其小型化。In the optical imaging system of this embodiment, the horizontal displacement distance from the intersection point of the fourth lens object side 142 on the optical axis to the maximum effective radius position of the fourth lens object side 142 on the optical axis is InRS41, and the fourth lens image side 144 is The horizontal displacement distance from the intersection point on the optical axis to the maximum effective radius position of the fifth lens image side 144 on the optical axis is InRS42, and the thickness of the fourth lens 140 on the optical axis is TP4, which satisfies the following conditions: InRS41= -0.09737 mm ; InRS42 = -1.31040 mm; │InRS41∣/ TP4 = 0.05361 and │InRS42∣/ TP4 = 0.72145. In this way, it is conducive to the production and molding of the lens and effectively maintains its miniaturization.

本實施例的光學成像系統中,第四透鏡物側面142的臨界點與光軸的垂直距離為 HVT41,第四透鏡像側面144的臨界點與光軸的垂直距離為HVT42,其滿足下列條件:HVT41=1.41740 mm;HVT42=0In the optical imaging system of this embodiment, the vertical distance between the critical point of the fourth lens object side 142 and the optical axis is HVT41, and the vertical distance between the critical point of the fourth lens image side 144 and the optical axis is HVT42, which satisfies the following conditions: HVT41=1.41740 mm; HVT42=0

本實施例的光學成像系統中,第五透鏡物側面152於光軸上的交點至第五透鏡物側面152的最大有效半徑位置於光軸的水平位移距離為InRS51,第五透鏡像側面154於光軸上的交點至第五透鏡像側面154的最大有效半徑位置於光軸的水平位移距離為InRS52,第五透鏡150於光軸上的厚度為TP5,其滿足下列條件:InRS51= -1.63543 mm;InRS52= -0.34495 mm;│InRS51∣/ TP5 = 2.53604以及│InRS52∣/ TP5 = 0.53491。藉此,有利於鏡片的製作與成型,並有效維持其小型化。In the optical imaging system of this embodiment, the horizontal displacement distance from the intersection of the fifth lens object side 152 on the optical axis to the maximum effective radius position of the fifth lens object side 152 on the optical axis is InRS51, and the fifth lens image side 154 is The horizontal displacement distance from the intersection point on the optical axis to the maximum effective radius position of the fifth lens image side 154 on the optical axis is InRS52, and the thickness of the fifth lens 150 on the optical axis is TP5, which satisfies the following conditions: InRS51= -1.63543 mm ; InRS52= -0.34495 mm; │InRS51∣/ TP5 = 2.53604 and │InRS52∣/ TP5 = 0.53491. In this way, it is conducive to the production and molding of the lens and effectively maintains its miniaturization.

本實施例的光學成像系統中,第五透鏡物側面162的臨界點與光軸的垂直距離為 HVT51,第五透鏡像側面154的臨界點與光軸的垂直距離為HVT52,其滿足下列條件:HVT51= 0;HVT52= 1.35891 mm;以及HVT51/HVT52= 0。In the optical imaging system of this embodiment, the vertical distance between the critical point of the fifth lens object side 162 and the optical axis is HVT51, and the vertical distance between the critical point of the fifth lens image side 154 and the optical axis is HVT52, which satisfies the following conditions: HVT51 = 0; HVT52 = 1.35891 mm; and HVT51/HVT52 = 0.

本實施例的光學成像系統中,其滿足下列條件:HVT52/ HOI= 0.36334。藉此,有助於光學成像系統之週邊視場的像差修正。In the optical imaging system of this embodiment, it satisfies the following condition: HVT52/ HOI = 0.36334. This helps to correct the aberration of the peripheral field of view of the optical imaging system.

本實施例的光學成像系統中,其滿足下列條件:HVT52/ HOS= 0.12865。藉此,有助於光學成像系統之週邊視場的像差修正。In the optical imaging system of this embodiment, it satisfies the following conditions: HVT52/HOS = 0.12865. This helps to correct the aberration of the peripheral field of view of the optical imaging system.

本實施例的光學成像系統中,第三透鏡以及第五透鏡具有負屈折力,第三透鏡的色散係數為NA3,第五透鏡的色散係數為NA5,其滿足下列條件:NA5/ NA3=0.368966。藉此,有助於光學成像系統色差的修正。In the optical imaging system of this embodiment, the third lens and the fifth lens have negative refractive power, the third lens has a dispersion coefficient of NA3, and the fifth lens has a dispersion coefficient of NA5, which satisfies the following condition: NA5/NA3=0.368966. This helps to correct the chromatic aberration of the optical imaging system.

本實施例的光學成像系統中,光學成像系統於結像時之TV畸變為TDT,結像時之光學畸變為ODT,其滿足下列條件:│TDT│= 0.63350 %;│ODT│= 2.06135 %。In the optical imaging system of this embodiment, the TV distortion of the optical imaging system during image formation becomes TDT, and the optical distortion during image formation becomes ODT, which satisfies the following conditions: │TDT│= 0.63350 %; │ODT│= 2.06135 %.

本實施例的光學成像系統中,紅外線工作波長850 nm當聚焦在紅外光成像面上,影像在該紅外光成像面上之光軸、0.3HOI以及0.7HOI三處於空間頻率(55 cycles/mm)之調制轉換對比轉移率(MTF數值)分別以MTFI0、MTFI3以及MTFI7表示,其滿足下列條件:MTFI0約為0.05;MTFI3約為0.12;以及MTFI7約為0.11。In the optical imaging system of this embodiment, when the infrared operating wavelength of 850 nm is focused on the infrared imaging surface, the optical axis, 0.3HOI and 0.7HOI of the image on the infrared imaging surface are at the spatial frequency (55 cycles/mm) The modulation conversion contrast transfer rate (MTF value) is expressed as MTFI0, MTFI3, and MTFI7, respectively, which satisfy the following conditions: MTFI0 is about 0.05; MTFI3 is about 0.12; and MTFI7 is about 0.11.

再配合參照下列表一以及表二。 表一                        第 一 實 施 例 透 鏡 數 據 f(焦距)= 3.03968 mm ; f/HEP =1.6; HAF(半視角)= 50.0010 deg 表面 曲率半徑 厚度 (mm) 材質 折射率 色散係數 焦距 0 被攝物 平面 無窮遠         1 第一透鏡 4.01438621 0.750 塑膠 1.514 56.80 -9.24529 2 2.040696375 3.602         3 光圈 平面 -0.412         4 第二透鏡 2.45222384 0.895 塑膠 1.565 58.00 6.33819 5   6.705898264 0.561         6 第三透鏡 16.39663088 0.932 塑膠 1.565 58.00 7.93877 7   -6.073735083 0.656         8 第四透鏡 4.421363446 1.816 塑膠 1.565 58.00 3.02394 9   -2.382933539 0.405         10 第五透鏡 -1.646639396 0.645 塑膠 1.650 21.40 -2.32439 11   23.53222697 0.100         12 紅外線 濾光片 1E+18 0.200 BK7_SCH 1.517 64.20   13   1E+18 0.412         14 紅外光成像面 1E+18           參考波長為555 nm 表二、第一實施例之非球面係數 表二 非球面係數 表面 1 2 4 5 6 7 8 k -1.882119E-01 -1.927558E+00 -6.483417E+00 1.766123E+01 -5.000000E+01 -3.544648E+01 -3.167522E+01 A4 7.686381E-04 3.070422E-02 5.439775E-02 7.241691E-03 -2.985209E-02 -6.315366E-02 -1.903506E-03 A6 4.630306E-04 -3.565153E-03 -7.980567E-03 -8.359563E-03 -7.175713E-03 6.038040E-03 -1.806837E-03 A8 3.178966E-05 2.062259E-03 -3.537039E-04 1.303430E-02 4.284107E-03 4.674156E-03 -1.670351E-03 A10 -1.773597E-05 -1.571117E-04 2.844845E-03 -6.951350E-03 -5.492349E-03 -8.031117E-03 4.791024E-04 A12 1.620619E-06 -4.694004E-05 -1.025049E-03 1.366262E-03 1.232072E-03 3.319791E-03 -5.594125E-05 A14 -4.916041E-08 7.399980E-06 1.913679E-04 3.588298E-04 -4.107269E-04 -5.356799E-04 3.704401E-07 A16 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 A18 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 A20 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 表二 非球面係數 表面 8 9 10         k -2.470764E+00 -1.570351E+00 4.928899E+01         A4 -2.346908E-04 -4.250059E-04 -4.625703E-03         A6 2.481207E-03 -1.591781E-04 -7.108872E-04         A8 -5.862277E-04 -3.752177E-05 3.429244E-05         A10 -1.955029E-04 -9.210114E-05 2.887298E-06         A12 1.880941E-05 -1.101797E-05 3.684628E-07         A14 1.132586E-06 3.536320E-06 -4.741322E-08         A16 0.000000E+00 0.000000E+00 0.000000E+00         A18 0.000000E+00 0.000000E+00 0.000000E+00         A20 0.000000E+00 0.000000E+00 0.000000E+00         Refer to Table 1 and Table 2 below. Table 1 lens data of the first embodiment f (focal length) = 3.03968 mm; f/HEP = 1.6; HAF (half angle of view) = 50.0010 deg surface Radius of curvature Thickness (mm) Material Refractive index Dispersion coefficient focal length 0 Subject flat Infinity 1 First lens 4.01438621 0.750 plastic 1.514 56.80 -9.24529 2 2.040696375 3.602 3 aperture flat -0.412 4 Second lens 2.45222384 0.895 plastic 1.565 58.00 6.33819 5 6.705898264 0.561 6 Third lens 16.39663088 0.932 plastic 1.565 58.00 7.93877 7 -6.073735083 0.656 8 Fourth lens 4.421363446 1.816 plastic 1.565 58.00 3.02394 9 -2.382933539 0.405 10 Fifth lens -1.646639396 0.645 plastic 1.650 21.40 -2.32439 11 23.53222697 0.100 12 Infrared filter 1E+18 0.200 BK7_SCH 1.517 64.20 13 1E+18 0.412 14 Infrared imaging surface 1E+18 Reference wavelength is 555 nm Table 2. Aspheric coefficients of the first embodiment Table 2 Aspheric coefficients surface 1 2 4 5 6 7 8 k -1.882119E-01 -1.927558E+00 -6.483417E+00 1.766123E+01 -5.000000E+01 -3.544648E+01 -3.167522E+01 A4 7.686381E-04 3.070422E-02 5.439775E-02 7.241691E-03 -2.985209E-02 -6.315366E-02 -1.903506E-03 A6 4.630306E-04 -3.565153E-03 -7.980567E-03 -8.359563E-03 -7.175713E-03 6.038040E-03 -1.806837E-03 A8 3.178966E-05 2.062259E-03 -3.537039E-04 1.303430E-02 4.284107E-03 4.674156E-03 -1.670351E-03 A10 -1.773597E-05 -1.571117E-04 2.844845E-03 -6.951350E-03 -5.492349E-03 -8.031117E-03 4.791024E-04 A12 1.620619E-06 -4.694004E-05 -1.025049E-03 1.366262E-03 1.232072E-03 3.319791E-03 -5.594125E-05 A14 -4.916041E-08 7.399980E-06 1.913679E-04 3.588298E-04 -4.107269E-04 -5.356799E-04 3.704401E-07 A16 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 A18 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 A20 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 Table 2 Aspheric coefficients surface 8 9 10 k -2.470764E+00 -1.570351E+00 4.928899E+01 A4 -2.346908E-04 -4.250059E-04 -4.625703E-03 A6 2.481207E-03 -1.591781E-04 -7.108872E-04 A8 -5.862277E-04 -3.752177E-05 3.429244E-05 A10 -1.955029E-04 -9.210114E-05 2.887298E-06 A12 1.880941E-05 -1.101797E-05 3.684628E-07 A14 1.132586E-06 3.536320E-06 -4.741322E-08 A16 0.000000E+00 0.000000E+00 0.000000E+00 A18 0.000000E+00 0.000000E+00 0.000000E+00 A20 0.000000E+00 0.000000E+00 0.000000E+00

表一為第1圖第一實施例詳細的結構數據,其中曲率半徑、厚度、距離及焦距的單位為mm,且表面0-16依序表示由物側至像側的表面。表二為第一實施例中的非球面數據,其中,k表非球面曲線方程式中的錐面係數,A1-A20則表示各表面第1-20階非球面係數。此外,以下各實施例表格乃對應各實施例的示意圖與像差曲線圖,表格中數據的定義皆與第一實施例的表一及表二的定義相同,在此不加贅述。Table 1 is the detailed structural data of the first embodiment of FIG. 1, in which the units of radius of curvature, thickness, distance and focal length are mm, and surfaces 0-16 sequentially represent the surface from the object side to the image side. Table 2 is the aspherical data in the first embodiment, where k is the conical coefficient in the aspherical curve equation, and A1-A20 represents the aspherical coefficients of the 1st to 20th orders of each surface. In addition, the following tables of the embodiments correspond to the schematic diagrams and aberration curve diagrams of the embodiments. The definitions of the data in the tables are the same as the definitions of Table 1 and Table 2 of the first embodiment, and are not repeated here.

第二實施例 請參照第2A圖及第2B圖,其中第2A圖繪示依照本創作第二實施例的一種光學成像系統的示意圖,第2B圖由左至右依序為第二實施例的光學成像系統的球差、像散及光學畸變曲線圖。第2C圖係繪示本實施例之紅外光頻譜調制轉換特徵圖。由第2A圖可知,光學成像系統由物側至像側依序包含光圈200、第一透鏡210、第二透鏡220、第三透鏡230、第四透鏡240、第五透鏡250、紅外線濾光片270、紅外光成像面280以及影像感測元件290。 Second embodiment Please refer to FIG. 2A and FIG. 2B, wherein FIG. 2A shows a schematic diagram of an optical imaging system according to the second embodiment of the present creation, and FIG. 2B is from left to right in order for the optical imaging system of the second embodiment. Graph of spherical aberration, astigmatism and optical distortion. FIG. 2C is a characteristic diagram of infrared light spectrum modulation conversion in this embodiment. As can be seen from FIG. 2A, the optical imaging system includes an aperture 200, a first lens 210, a second lens 220, a third lens 230, a fourth lens 240, a fifth lens 250, and an infrared filter in order from the object side to the image side 270, an infrared imaging surface 280, and an image sensing element 290.

第一透鏡210具有正屈折力,且為塑膠材質,其物側面212為凸面,其像側面214為凹面,並皆為非球面,且其物側面212以及像側面214均具有一反曲點。The first lens 210 has positive refractive power and is made of plastic material. Its object side 212 is convex, its image side 214 is concave, and both are aspherical, and both its object side 212 and image side 214 have an inflection point.

第二透鏡220具有正屈折力,且為塑膠材質,其物側面222為凹面,其像側面224為凸面,並皆為非球面,且其物側面222以及像側面224均具有二反曲點。The second lens 220 has a positive refractive power and is made of plastic material. Its object side 222 is concave, its image side 224 is convex, and both are aspherical, and its object side 222 and image side 224 have two inflexions.

第三透鏡230具有正屈折力,且為塑膠材質,其物側面232為凸面,其像側面234為凹面,並皆為非球面,且其物側面232具有一反曲點以及像側面234具有二反曲點。The third lens 230 has a positive refractive power and is made of plastic material. Its object side 232 is convex, its image side 234 is concave, and both are aspherical, and its object side 232 has an inflexion point and the image side 234 has two Recurve point.

第四透鏡240具有正屈折力,且為塑膠材質,其物側面242為凹面,其像側面244為凸面,並皆為非球面,且其物側面242具有二反曲點以及像側面244具有三反曲點。The fourth lens 240 has a positive refractive power and is made of plastic material. Its object side 242 is concave, its image side 244 is convex, and both are aspherical, and its object side 242 has two inflexions and the image side 244 has three Recurve point.

第五透鏡250具有負屈折力,且為塑膠材質,其物側面252為凸面,其像側面254為凹面,並皆為非球面,且其物側面252以及像側面254均具有二反曲點。藉此,有利於縮短其後焦距以維持小型化。另外,可有效地壓制離軸視場光線入射的角度,進一步可修正離軸視場的像差。The fifth lens 250 has a negative refractive power and is made of plastic. Its object side 252 is convex, its image side 254 is concave, and both are aspherical, and its object side 252 and image side 254 both have a double inflection point. In this way, it is beneficial to shorten the back focal length to maintain miniaturization. In addition, it can effectively suppress the angle of incidence of the off-axis field of view, and can further correct the aberration of the off-axis field of view.

紅外線濾光片270為玻璃材質,其設置於第五透鏡250及紅外光成像面280間且不影響光學成像系統的焦距。The infrared filter 270 is made of glass, which is disposed between the fifth lens 250 and the infrared imaging surface 280 and does not affect the focal length of the optical imaging system.

請配合參照下列表三以及表四。 表三                        第 二 實 施 例 透 鏡 數 據 f(焦距)= 2.9745 mm ; f/HEP =0.9 ; HAF(半視角)= 35.0 deg 表面 曲率半徑 厚度(mm) 材質 折射率 色散係數 焦距 0 被攝物 1E+18 1E+18         1 光圈 1E+18 0.536         2 第一透鏡 2.783916016 0.778 塑膠 1.661 20.390 5.72931 3   9.699706974 0.318         4 第二透鏡 -2.87366872 0.574 塑膠 1.661 20.390 19.7653 5   -2.535299643 0.025         6 第三透鏡 1.086748693 0.293 塑膠 1.661 20.390 16.204 7 1.082454613 0.630         8 第四透鏡 -5.067356718 0.666 塑膠 1.661 20.390 2.95718 9   -1.469970162 0.177         10 第五透鏡 5.236111736 0.415 塑膠 1.661 20.390 -3.31323 11   1.482316918 0.413         12 紅外線 濾光片 1E+18 0.125 NBK7       13   1E+18 0.380         14 紅外光成像面 1E+18 0.000         參考波長為940 nm; 擋光位置: 第5面其通光半徑1.800 mm; 第6面其通光半徑1.450 mm; 第11面其通光半徑1.800 mm 表四、第二實施例之非球面係數 表四 非球面係數 表面 2 3 4 5 6 7 8 k 1.593690E+00 2.697454E+01 3.465905E-17 5.030659E-01 -6.417137E-01 -5.323393E-01 -9.000000E+01 A4 -3.003049E-02 -3.380210E-02 1.362964E-01 7.986673E-02 -1.061838E-01 -9.510344E-02 2.253081E-02 A6 -1.627245E-02 -2.705232E-02 -1.692707E-01 -9.326553E-02 -4.525690E-03 7.348059E-02 1.289369E-01 A8 -5.849225E-03 -3.314322E-02 9.337756E-02 9.493576E-02 -4.278588E-02 -2.741517E-01 -2.149225E-01 A10 1.064875E-02 4.662520E-02 -5.129589E-03 -4.450284E-02 1.220400E-02 2.831786E-01 2.310671E-01 A12 -1.200214E-02 -2.179400E-02 -1.193757E-02 9.832331E-03 1.071322E-02 -1.547919E-01 -1.424939E-01 A14 5.117206E-03 4.658936E-03 4.049349E-03 -9.334366E-04 -6.108465E-03 4.422648E-02 4.582858E-02 A16 -7.583331E-04 -3.949062E-04 -4.344462E-04 2.022178E-05 8.949384E-04 -5.301173E-03 -6.196864E-03 表四 非球面係數 表面 9 10 11         k -1.679640E-01 6.926229E+00 -4.211404E-01         A4 3.479956E-01 9.958660E-02 -1.836656E-01         A6 -4.464230E-01 -3.976687E-01 1.211541E-02         A8 5.774122E-01 4.169792E-01 2.756993E-02         A10 -4.943258E-01 -2.592580E-01 -2.187309E-02         A12 2.769709E-01 9.490728E-02 7.182626E-03         A14 -8.610039E-02 -1.819251E-02 -1.119505E-03         A16 1.098568E-02 1.398015E-03 6.159703E-05         Please refer to Table 3 and Table 4 below. Table 3 Lens data of the second embodiment f (focal length) = 2.9745 mm; f/HEP = 0.9; HAF (half viewing angle) = 35.0 deg surface Radius of curvature Thickness (mm) Material Refractive index Dispersion coefficient focal length 0 Subject 1E+18 1E+18 1 aperture 1E+18 0.536 2 First lens 2.783916016 0.778 plastic 1.661 20.390 5.72931 3 9.699706974 0.318 4 Second lens -2.87366872 0.574 plastic 1.661 20.390 19.7653 5 -2.535299643 0.025 6 Third lens 1.086748693 0.293 plastic 1.661 20.390 16.204 7 1.082454613 0.630 8 Fourth lens -5.067356718 0.666 plastic 1.661 20.390 2.95718 9 -1.469970162 0.177 10 Fifth lens 5.236111736 0.415 plastic 1.661 20.390 -3.31323 11 1.482316918 0.413 12 Infrared filter 1E+18 0.125 NBK7 13 1E+18 0.380 14 Infrared imaging surface 1E+18 0.000 Reference wavelength is 940 nm; light blocking position: the clear radius of the first side is 1.800 mm; the clear radius of the sixth side is 1.450 mm; the clear radius of the 11th side is 1.800 mm Table 4. Aspheric coefficients of the second embodiment Table 4 Aspheric coefficients surface 2 3 4 5 6 7 8 k 1.593690E+00 2.697454E+01 3.465905E-17 5.030659E-01 -6.417137E-01 -5.323393E-01 -9.000000E+01 A4 -3.003049E-02 -3.380210E-02 1.362964E-01 7.986673E-02 -1.061838E-01 -9.510344E-02 2.253081E-02 A6 -1.627245E-02 -2.705232E-02 -1.692707E-01 -9.326553E-02 -4.525690E-03 7.348059E-02 1.289369E-01 A8 -5.849225E-03 -3.314322E-02 9.337756E-02 9.493576E-02 -4.278588E-02 -2.741517E-01 -2.149225E-01 A10 1.064875E-02 4.662520E-02 -5.129589E-03 -4.450284E-02 1.220400E-02 2.831786E-01 2.310671E-01 A12 -1.200214E-02 -2.179400E-02 -1.193757E-02 9.832331E-03 1.071322E-02 -1.547919E-01 -1.424939E-01 A14 5.117206E-03 4.658936E-03 4.049349E-03 -9.334366E-04 -6.108465E-03 4.422648E-02 4.582858E-02 A16 -7.583331E-04 -3.949062E-04 -4.344462E-04 2.022178E-05 8.949384E-04 -5.301173E-03 -6.196864E-03 Table 4 Aspheric coefficients surface 9 10 11 k -1.679640E-01 6.926229E+00 -4.211404E-01 A4 3.479956E-01 9.958660E-02 -1.836656E-01 A6 -4.464230E-01 -3.976687E-01 1.211541E-02 A8 5.774122E-01 4.169792E-01 2.756993E-02 A10 -4.943258E-01 -2.592580E-01 -2.187309E-02 A12 2.769709E-01 9.490728E-02 7.182626E-03 A14 -8.610039E-02 -1.819251E-02 -1.119505E-03 A16 1.098568E-02 1.398015E-03 6.159703E-05

第二實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。In the second embodiment, the curve equation of the aspherical surface is expressed as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and will not be repeated here.

依據表三及表四可得到下列條件式數値: 第二實施例 (使用主要參考波長 940 nm) MTFE0 MTFE3 MTFE7 MTFQ0 MTFQ3 MTFQ7 0.9 0.86 0.78 0.79 0.66 0.58 ETP1 ETP2 ETP3 ETP4 ETP5 BL 0.466 0.507 0.338 0.373 0.725 0.8422 ETP1/TP1 ETP2/TP2 ETP3/TP3 ETP4/TP4 ETP5/TP5 EBL/BL 0.600 0.884 1.155 0.560 1.747 0.8122 ETL EBL EIN EIR PIR EIN/ETL 4.649 0.684 3.966 0.179 0.413 0.853 SETP/EIN EIR/PIR SETP STP SETP /STP SED /SIN 0.607 0.433 2.409 2.724 0.884 1.354 ED12 ED23 ED34 ED45 SED SIN 0.278 0.812 0.207 0.259 1.557 1.149 ED12/IN12 ED23/IN23 ED34/IN34 ED45/IN45 HVT31 HVT32 0.874 32.479 0.329 1.468 0 0 ∣f/f1│ ∣f/f2│ ∣f/f3│ ∣f/f4│ ∣f/f5│ ∣f1/f2│ 0.51918 0.15049 0.18357 1.00586 0.89777 0.28987 ΣPPR ΣNPR ΣPPR /│ΣNPR∣ IN12 / f IN45 / f ∣f2/f3│ 1.1564 1.6005 0.7225 0.1069 0.0594 1.2198 TP3 / (IN23+TP3+IN34) (TP1+IN12)/ TP2 (TP5+IN45)/ TP4 0.30882 1.90973 0.88866 HOS InTL HOS / HOI InS/ HOS ODT% TDT% 4.71594 3.87371 2.35797 1.11355 3.11877 0.530551 HVT11 HVT12 HVT21 HVT22 HVT31 HVT32 1.22939 0.689511 0 0 0 0 HVT41 HVT42 HVT51 HVT52 HVT52/ HOI HVT52/ HOS 0.69890 1.15831 0.84858 1.32378 0.42429 0.17994 TP2 / TP3 TP3 / TP4 InRS51 InRS52 │InRS51│/TP5 │InRS52│/TP5 1.96037 0.43967 -0.104915 0.154754 0.25293 0.37308 According to Table 3 and Table 4, the following conditional formula values can be obtained: Second embodiment (using the main reference wavelength of 940 nm) MTFE0 MTFE3 MTFE7 MTFQ0 MTFQ3 MTFQ7 0.9 0.86 0.78 0.79 0.66 0.58 ETP1 ETP2 ETP3 ETP4 ETP5 BL 0.466 0.507 0.338 0.373 0.725 0.8422 ETP1/TP1 ETP2/TP2 ETP3/TP3 ETP4/TP4 ETP5/TP5 EBL/BL 0.600 0.884 1.155 0.560 1.747 0.8122 ETL EBL EIN EIR PIR EIN/ETL 4.649 0.684 3.966 0.179 0.413 0.853 SETP/EIN EIR/PIR SETP STP SETP /STP SED /SIN 0.607 0.433 2.409 2.724 0.884 1.354 ED12 ED23 ED34 ED45 SED SIN 0.278 0.812 0.207 0.259 1.557 1.149 ED12/IN12 ED23/IN23 ED34/IN34 ED45/IN45 HVT31 HVT32 0.874 32.479 0.329 1.468 0 0 ∣f/f1│ ∣f/f2│ ∣f/f3│ ∣f/f4│ ∣f/f5│ ∣f1/f2│ 0.51918 0.15049 0.18357 1.00586 0.89777 0.28987 ΣPPR ΣNPR ΣPPR /│ΣNPR∣ IN12 / f IN45 / f ∣f2/f3│ 1.1564 1.6005 0.7225 0.1069 0.0594 1.2198 TP3 / (IN23+TP3+IN34) (TP1+IN12)/ TP2 (TP5+IN45)/ TP4 0.30882 1.90973 0.88866 HOS InTL HOS / HOI InS/ HOS ODT% TDT% 4.71594 3.87371 2.35797 1.11355 3.11877 0.530551 HVT11 HVT12 HVT21 HVT22 HVT31 HVT32 1.22939 0.689511 0 0 0 0 HVT41 HVT42 HVT51 HVT52 HVT52/ HOI HVT52/ HOS 0.69890 1.15831 0.84858 1.32378 0.42429 0.17994 TP2 / TP3 TP3 / TP4 InRS51 InRS52 │InRS51│/TP5 │InRS52│/TP5 1.96037 0.43967 -0.104915 0.154754 0.25293 0.37308

依據表三及表四可得到下列數値: 第二實施例反曲點相關數值 (使用主要參考波長940 nm) HIF111 0.8308 HIF111/HOI 0.4154 SGI111 0.1118 │SGI111∣/(│SGI111∣+TP1) 0.1257 HIF121 0.4332 HIF121/HOI 0.2166 SGI121 0.0084 ∣SGI121│/(∣SGI121│+TP1) 0.0107 HIF211 1.0186 HIF211/HOI 0.5093 SGI211 -0.1371 │SGI211∣/(│SGI211∣+TP2) 0.1929 HIF212 1.4516 HIF212/HOI 0.7258 SGI212 -0.2112 │SGI212∣/(│SGI212∣+TP2) 0.2691 HIF221 0.9848 HIF221/HOI 0.4924 SGI221 -0.1603 ∣SGI221│/(∣SGI221│+TP2) 0.2184 HIF222 1.2602 HIF222/HOI 0.6301 SGI222 -0.2324 ∣SGI222│/(∣SGI222│+TP2) 0.2883 HIF311 0.8133 HIF311/HOI 0.4066 SGI311 0.2675 │SGI311∣/(│SGI311∣+TP3) 0.4776 HIF312 1.3551 HIF312/HOI 0.6776 SGI312 0.4932 │SGI312∣/(│SGI312∣+TP3) 0.6276 HIF321 0.8535 HIF321/HOI 0.4267 SGI321 0.3054 ∣SGI321│/(∣SGI321│+TP3) 0.5107 HIF322 1.4089 HIF322/HOI 0.7044 SGI322 0.5538 ∣SGI322│/(∣SGI322│+TP3) 0.6543 HIF411 0.3969 HIF411/HOI 0.1985 SGI411 -0.0129 │SGI411∣/(│SGI411∣+TP4) 0.0190 HIF412 1.2719 HIF412/HOI 0.6360 SGI412 0.0877 │SGI412∣/(│SGI412∣+TP4) 0.1164 HIF421 0.7211 HIF421/HOI 0.3605 SGI421 -0.1273 ∣SGI421│/(∣SGI421│+TP4) 0.1606 HIF422 1.4109 HIF422/HOI 0.7055 SGI422 -0.1623 ∣SGI422│/(∣SGI422│+TP4) 0.1960 HIF423 1.4680 HIF423/HOI 0.7340 SGI423 -0.1445 ∣SGI423│/(∣SGI423│+TP4) 0.1783 HIF511 0.5322 HIF511/HOI 0.2661 SGI511 0.0288 │SGI511∣/(│SGI511∣+TP5) 0.0650 HIF512 1.3461 HIF512/HOI 0.6730 SGI512 -0.0483 │SGI512∣/(│SGI512∣+TP5) 0.1044 HIF521 0.6528 HIF521/HOI 0.3264 SGI521 0.1162 ∣SGI521│/(∣SGI521│+TP5) 0.2189 HIF522 1.7251 HIF522/HOI 0.8626 SGI522 0.1742 ∣SGI522│/(∣SGI522│+TP5) 0.2958 According to Table 3 and Table 4, the following values can be obtained: The second embodiment is the value related to the inflexion point (using the main reference wavelength of 940 nm) HIF111 0.8308 HIF111/HOI 0.4154 SGI111 0.1118 │SGI111∣/(│SGI111∣+TP1) 0.1257 HIF121 0.4332 HIF121/HOI 0.2166 SGI121 0.0084 ∣SGI121│/(∣SGI121│+TP1) 0.0107 HIF211 1.0186 HIF211/HOI 0.5093 SGI211 -0.1371 │SGI211∣/(│SGI211∣+TP2) 0.1929 HIF212 1.4516 HIF212/HOI 0.7258 SGI212 -0.2112 │SGI212∣/(│SGI212∣+TP2) 0.2691 HIF221 0.9848 HIF221/HOI 0.4924 SGI221 -0.1603 ∣SGI221│/(∣SGI221│+TP2) 0.2184 HIF222 1.2602 HIF222/HOI 0.6301 SGI222 -0.2324 ∣SGI222│/(∣SGI222│+TP2) 0.2883 HIF311 0.8133 HIF311/HOI 0.4066 SGI311 0.2675 │SGI311∣/(│SGI311∣+TP3) 0.4776 HIF312 1.3551 HIF312/HOI 0.6776 SGI312 0.4932 │SGI312∣/(│SGI312∣+TP3) 0.6276 HIF321 0.8535 HIF321/HOI 0.4267 SGI321 0.3054 ∣SGI321│/(∣SGI321│+TP3) 0.5107 HIF322 1.4089 HIF322/HOI 0.7044 SGI322 0.5538 ∣SGI322│/(∣SGI322│+TP3) 0.6543 HIF411 0.3969 HIF411/HOI 0.1985 SGI411 -0.0129 │SGI411∣/(│SGI411∣+TP4) 0.0190 HIF412 1.2719 HIF412/HOI 0.6360 SGI412 0.0877 │SGI412∣/(│SGI412∣+TP4) 0.1164 HIF421 0.7211 HIF421/HOI 0.3605 SGI421 -0.1273 ∣SGI421│/(∣SGI421│+TP4) 0.1606 HIF422 1.4109 HIF422/HOI 0.7055 SGI422 -0.1623 ∣SGI422│/(∣SGI422│+TP4) 0.1960 HIF423 1.4680 HIF423/HOI 0.7340 SGI423 -0.1445 ∣SGI423│/(∣SGI423│+TP4) 0.1783 HIF511 0.5322 HIF511/HOI 0.2661 SGI511 0.0288 │SGI511∣/(│SGI511∣+TP5) 0.0650 HIF512 1.3461 HIF512/HOI 0.6730 SGI512 -0.0483 │SGI512∣/(│SGI512∣+TP5) 0.1044 HIF521 0.6528 HIF521/HOI 0.3264 SGI521 0.1162 ∣SGI521│/(∣SGI521│+TP5) 0.2189 HIF522 1.7251 HIF522/HOI 0.8626 SGI522 0.1742 ∣SGI522│/(∣SGI522│+TP5) 0.2958

第三實施例 請參照第3A圖及第3B圖,其中第3A圖繪示依照本創作第三實施例的一種光學成像系統的示意圖,第3B圖由左至右依序為第三實施例的光學成像系統的球差、像散及光學畸變曲線圖。第3C圖係繪示本實施例之紅外光頻譜調制轉換特徵圖。由第3A圖可知,光學成像系統由物側至像側依序包含第一透鏡310、光圈300、第二透鏡320、第三透鏡330、第四透鏡340、第五透鏡350、紅外線濾光片370、紅外光成像面380以及影像感測元件390。 Third embodiment Please refer to FIG. 3A and FIG. 3B, wherein FIG. 3A shows a schematic diagram of an optical imaging system according to the third embodiment of the present creation, and FIG. 3B is from left to right in order for the optical imaging system of the third embodiment. Graph of spherical aberration, astigmatism and optical distortion. FIG. 3C is a characteristic diagram of infrared light spectrum modulation conversion in this embodiment. As can be seen from FIG. 3A, the optical imaging system includes a first lens 310, an aperture 300, a second lens 320, a third lens 330, a fourth lens 340, a fifth lens 350, and an infrared filter in order from the object side to the image side 370. Infrared imaging surface 380 and image sensing element 390.

第一透鏡310具有負屈折力,且為塑膠材質,其物側面312為凸面,其像側面314為凸面,並皆為非球面,且其像側面314具有一反曲點。The first lens 310 has a negative refractive power and is made of plastic material. Its object side 312 is convex, its image side 314 is convex, and both are aspherical, and its image side 314 has an inflection point.

第二透鏡320具有正屈折力,且為塑膠材質,其物側面322為凸面,其像側面324為凹面,並皆為非球面,且其物側面322具有一反曲點以及像側面324具有二反曲點。The second lens 320 has a positive refractive power and is made of plastic material. Its object side 322 is convex, its image side 324 is concave, and both are aspherical, and its object side 322 has an inflection point and the image side 324 has two Recurve point.

第三透鏡330具有負屈折力,且為塑膠材質,其物側面332為凸面,其像側面334為凹面,並皆為非球面,且其物側面332以及像側面334均具有二反曲點。The third lens 330 has negative refractive power and is made of plastic material. Its object side 332 is convex, its image side 334 is concave, and both are aspherical, and both its object side 332 and image side 334 have a double inflection point.

第四透鏡340具有負屈折力,且為塑膠材質,其物側面342為凸面,其像側面344為凸面,並皆為非球面,且其物側面342以及像側面344均具有二反曲點。The fourth lens 340 has negative refractive power and is made of plastic material. Its object side 342 is convex, its image side 344 is convex, and both are aspherical, and its object side 342 and image side 344 both have a double inflection point.

第五透鏡350具有正屈折力,且為塑膠材質,其物側面352為凹面,其像側面354為凸面,並皆為非球面,且其物側面352以及像側面354均具有一反曲點。藉此,有利於縮短其後焦距以維持小型化。The fifth lens 350 has positive refractive power and is made of plastic material. Its object side 352 is concave, its image side 354 is convex, and both are aspherical, and its object side 352 and image side 354 both have an inflection point. In this way, it is beneficial to shorten the back focal length to maintain miniaturization.

紅外線濾光片370為玻璃材質,其設置於第五透鏡350及紅外光成像面380間且不影響光學成像系統的焦距。The infrared filter 370 is made of glass, which is disposed between the fifth lens 350 and the infrared imaging surface 380 and does not affect the focal length of the optical imaging system.

請配合參照下列表五以及表六。 表五                        第 三 實 施 例 透 鏡 數 據 f(焦距)= 4.4855 mm ; f/HEP =0.9; HAF(半視角)= 35.4165 deg 表面 曲率半徑 厚度(mm) 材質 折射率 色散係數 焦距 0 被攝物 1E+18 1E+18         1 第一透鏡 4.728166107 0.728 塑膠 1.661 20.390 -22.513 2   3.359600032 0.672         3 光圈 1E+18 0.025         4 第二透鏡 3.545728266 1.582 塑膠 1.661 20.390 6.20095 5   23.61125425 1.024         6 第三透鏡 -1.939604308 0.429 塑膠 1.584 29.890 -41.6516 7   -2.280488919 0.060         8 第四透鏡 7.163876962 1.594 塑膠 1.661 20.390 -22.2468 9   4.37529607 0.385         10 第五透鏡 1.501472698 1.198 塑膠 1.661 20.390 3.95426 11   2.459451582 0.780         12 紅外線 濾光片 1E+18 0.215 BK_7 1.517 23.89   13   1E+18 0.749         14 紅外光成像面 1E+18 0.000         參考波長為940 nm; 擋光位置: 第1面其通光半徑2.600 mm; 第1面其通光半徑2.420 mm;第7面其通光半徑2.600 mm; 第8面其通光半徑2.700 mm; 第11面其通光半徑3.200 mm 表六、第三實施例之非球面係數 表六 非球面係數 表面 1 2 4 5 6 7 8 k 8.728288E-01 6.543236E-01 9.390313E-01 8.445844E+01 -9.921677E-01 -4.031430E-01 -6.203837E+01 A4 -1.355366E-02 -4.189049E-02 -2.312252E-02 -1.553982E-02 2.099630E-02 4.573828E-02 1.558567E-02 A6 -7.364970E-04 1.039168E-02 -4.656588E-03 -6.601903E-03 -2.647195E-02 -3.428234E-02 -1.005099E-02 A8 2.438920E-03 -2.687114E-03 3.197904E-03 2.700347E-03 1.753815E-02 1.944390E-02 4.000787E-03 A10 -9.277409E-04 6.579992E-04 -1.567512E-03 -6.809685E-04 -5.309843E-03 -5.439089E-03 -1.015102E-03 A12 1.694673E-04 -1.423150E-04 4.087334E-04 1.194612E-04 8.525850E-04 8.089113E-04 1.443513E-04 A14 -1.531728E-05 1.968519E-05 -5.802422E-05 -1.259711E-05 -7.153456E-05 -6.205946E-05 -1.021286E-05 A16 5.518327E-07 -1.226595E-06 3.342162E-06 5.702277E-07 2.482085E-06 1.952253E-06 2.814575E-07 表六 非球面係數 表面 9 10 11         k -8.999985E+01 -5.679687E+00 -6.409168E-01         A4 -4.447668E-02 4.442842E-02 1.327452E-02         A6 1.036192E-02 -2.994081E-02 -2.236679E-02         A8 -1.256354E-03 8.118871E-03 6.707407E-03         A10 6.904855E-07 -1.340317E-03 -1.155388E-03         A12 2.282086E-05 1.361315E-04 1.167457E-04         A14 -3.020187E-06 -7.734135E-06 -6.403567E-06         A16 1.553855E-07 1.871928E-07 1.468206E-07         第三實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。 Please refer to Table 5 and Table 6 below. Table 5 Third embodiment lens data f (focal length) = 4.4855 mm; f/HEP = 0.9; HAF (half viewing angle) = 35.4165 deg surface Radius of curvature Thickness (mm) Material Refractive index Dispersion coefficient focal length 0 Subject 1E+18 1E+18 1 First lens 4.728166107 0.728 plastic 1.661 20.390 -22.513 2 3.359600032 0.672 3 aperture 1E+18 0.025 4 Second lens 3.545728266 1.582 plastic 1.661 20.390 6.20095 5 23.61125425 1.024 6 Third lens -1.939604308 0.429 plastic 1.584 29.890 -41.6516 7 -2.280488919 0.060 8 Fourth lens 7.163876962 1.594 plastic 1.661 20.390 -22.2468 9 4.37529607 0.385 10 Fifth lens 1.501472698 1.198 plastic 1.661 20.390 3.95426 11 2.459451582 0.780 12 Infrared filter 1E+18 0.215 BK_7 1.517 23.89 13 1E+18 0.749 14 Infrared imaging surface 1E+18 0.000 The reference wavelength is 940 nm; light blocking position: the first side has a clear radius of 2.600 mm; the first side has a clear radius of 2.420 mm; the seventh face has a clear radius of 2.600 mm; the eighth face has a clear radius of 2.700 mm; The 11th side has a clear radius of 3.200 mm Table 6. Aspheric coefficients of the third embodiment Table 6 Aspheric coefficients surface 1 2 4 5 6 7 8 k 8.728288E-01 6.543236E-01 9.390313E-01 8.445844E+01 -9.921677E-01 -4.031430E-01 -6.203837E+01 A4 -1.355366E-02 -4.189049E-02 -2.312252E-02 -1.553982E-02 2.099630E-02 4.573828E-02 1.558567E-02 A6 -7.364970E-04 1.039168E-02 -4.656588E-03 -6.601903E-03 -2.647195E-02 -3.428234E-02 -1.005099E-02 A8 2.438920E-03 -2.687114E-03 3.197904E-03 2.700347E-03 1.753815E-02 1.944390E-02 4.000787E-03 A10 -9.277409E-04 6.579992E-04 -1.567512E-03 -6.809685E-04 -5.309843E-03 -5.439089E-03 -1.015102E-03 A12 1.694673E-04 -1.423150E-04 4.087334E-04 1.194612E-04 8.525850E-04 8.089113E-04 1.443513E-04 A14 -1.531728E-05 1.968519E-05 -5.802422E-05 -1.259711E-05 -7.153456E-05 -6.205946E-05 -1.021286E-05 A16 5.518327E-07 -1.226595E-06 3.342162E-06 5.702277E-07 2.482085E-06 1.952253E-06 2.814575E-07 Table 6 Aspheric coefficients surface 9 10 11 k -8.999985E+01 -5.679687E+00 -6.409168E-01 A4 -4.447668E-02 4.442842E-02 1.327452E-02 A6 1.036192E-02 -2.994081E-02 -2.236679E-02 A8 -1.256354E-03 8.118871E-03 6.707407E-03 A10 6.904855E-07 -1.340317E-03 -1.155388E-03 A12 2.282086E-05 1.361315E-04 1.167457E-04 A14 -3.020187E-06 -7.734135E-06 -6.403567E-06 A16 1.553855E-07 1.871928E-07 1.468206E-07 In the third embodiment, the curve equation of the aspherical surface is expressed as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and will not be repeated here.

依據表五及表六可得到下列條件式數値: 第三實施例 (使用主要參考波長 940 nm) MTFE0 MTFE3 MTFE7 MTFQ0 MTFQ3 MTFQ7 0.39 0.22 0.06 0.05 0.07 0.02 ETP1 ETP2 ETP3 ETP4 ETP5 BL 0.694 1.130 0.682 1.111 1.202 1.6419 ETP1/TP1 ETP2/TP2 ETP3/TP3 ETP4/TP4 ETP5/TP5 EBL/BL 0.955 0.714 1.588 0.697 1.003 0.6913 ETL EBL EIN EIR PIR EIN/ETL 8.935 1.135 7.800 0.170 0.780 0.873 SETP/EIN EIR/PIR SETP STP SETP /STP SED /SIN 0.618 0.218 4.820 5.531 0.871 1.376 ED12 ED23 ED34 ED45 SED SIN 0.205 0.433 1.098 1.244 2.980 2.165 ED12/IN12 ED23/IN23 ED34/IN34 ED45/IN45 HVT31 HVT32 0.294 0.423 18.316 3.232 0 0 ∣f/f1│ ∣f/f2│ ∣f/f3│ ∣f/f4│ ∣f/f5│ ∣f1/f2│ 0.19924 0.72336 0.10769 0.20162 1.13435 3.63057 ΣPPR ΣNPR ΣPPR /│ΣNPR∣ IN12 / f IN45 / f ∣f2/f3│ 2.0593 0.3069 6.7094 0.1553 0.0858 0.1489 TP3 / (IN23+TP3+IN34) (TP1+IN12)/ TP2 (TP5+IN45)/ TP4 0.10858 0.28374 0.90038 HOS InTL HOS / HOI InS/ HOS ODT % TDT % 9.33806 7.69612 2.82972 0.85016 3.45797 2.44413 HVT11 HVT12 HVT21 HVT22 HVT31 HVT32 0 0 1.71775 0.750306 0 0 HVT41 HVT42 HVT51 HVT52 HVT52/ HOI HVT52/ HOS 0 0.88550 2.18167 2.37836 0.66111 0.23363 TP2 / TP3 TP3 / TP4 InRS51 InRS52 │InRS51│/TP5 │InRS52│/TP5 3.68437 0.26933 0.470244 0.384968 0.39242 0.32126 According to Table 5 and Table 6, the following conditional formula values can be obtained: Third embodiment (using the main reference wavelength of 940 nm) MTFE0 MTFE3 MTFE7 MTFQ0 MTFQ3 MTFQ7 0.39 0.22 0.06 0.05 0.07 0.02 ETP1 ETP2 ETP3 ETP4 ETP5 BL 0.694 1.130 0.682 1.111 1.202 1.6419 ETP1/TP1 ETP2/TP2 ETP3/TP3 ETP4/TP4 ETP5/TP5 EBL/BL 0.955 0.714 1.588 0.697 1.003 0.6913 ETL EBL EIN EIR PIR EIN/ETL 8.935 1.135 7.800 0.170 0.780 0.873 SETP/EIN EIR/PIR SETP STP SETP /STP SED /SIN 0.618 0.218 4.820 5.531 0.871 1.376 ED12 ED23 ED34 ED45 SED SIN 0.205 0.433 1.098 1.244 2.980 2.165 ED12/IN12 ED23/IN23 ED34/IN34 ED45/IN45 HVT31 HVT32 0.294 0.423 18.316 3.232 0 0 ∣f/f1│ ∣f/f2│ ∣f/f3│ ∣f/f4│ ∣f/f5│ ∣f1/f2│ 0.19924 0.72336 0.10769 0.20162 1.13435 3.63057 ΣPPR ΣNPR ΣPPR /│ΣNPR∣ IN12 / f IN45 / f ∣f2/f3│ 2.0593 0.3069 6.7094 0.1553 0.0858 0.1489 TP3 / (IN23+TP3+IN34) (TP1+IN12)/ TP2 (TP5+IN45)/ TP4 0.10858 0.28374 0.90038 HOS InTL HOS / HOI InS/ HOS ODT% TDT% 9.33806 7.69612 2.82972 0.85016 3.45797 2.44413 HVT11 HVT12 HVT21 HVT22 HVT31 HVT32 0 0 1.71775 0.750306 0 0 HVT41 HVT42 HVT51 HVT52 HVT52/ HOI HVT52/ HOS 0 0.88550 2.18167 2.37836 0.66111 0.23363 TP2 / TP3 TP3 / TP4 InRS51 InRS52 │InRS51│/TP5 │InRS52│/TP5 3.68437 0.26933 0.470244 0.384968 0.39242 0.32126

依據表五及表六可得到下列條件式數値: 第三實施例反曲點相關數值 (使用主要參考波長 940 nm) HIF121 2.2153 HIF121/HOI 0.6713 SGI121 0.4374 ∣SGI121│/(∣SGI121│+TP1) 0.3755 HIF211 1.0490 HIF211/HOI 0.3179 SGI211 0.1309 │SGI211∣/(│SGI211∣+TP2) 0.0765 HIF221 0.4485 HIF221/HOI 0.1359 SGI221 0.0036 ∣SGI221│/(∣SGI221│+TP2) 0.0023 HIF222 2.4091 HIF222/HOI 0.7300 SGI222 -0.5444 ∣SGI222│/(∣SGI222│+TP2) 0.2561 HIF311 1.5801 HIF311/HOI 0.4788 SGI311 -0.5922 │SGI311∣/(│SGI311∣+TP3) 0.5797 HIF312 1.9528 HIF312/HOI 0.5918 SGI312 -0.8269 │SGI312∣/(│SGI312∣+TP3) 0.6582 HIF321 1.4573 HIF321/HOI 0.4416 SGI321 -0.3967 ∣SGI321│/(∣SGI321│+TP3) 0.4803 HIF322 1.8059 HIF322/HOI 0.5472 SGI322 -0.5535 ∣SGI322│/(∣SGI322│+TP3) 0.5632 HIF411 1.5084 HIF411/HOI 0.4571 SGI411 0.1332 │SGI411∣/(│SGI411∣+TP4) 0.0771 HIF412 2.1733 HIF412/HOI 0.6586 SGI412 0.2150 │SGI412∣/(│SGI412∣+TP4) 0.1188 HIF421 0.4324 HIF421/HOI 0.1310 SGI421 0.0166 ∣SGI421│/(∣SGI421│+TP4) 0.0103 HIF422 2.1929 HIF422/HOI 0.6645 SGI422 -0.2108 ∣SGI422│/(∣SGI422│+TP4) 0.1168 HIF511 1.1222 HIF511/HOI 0.3401 SGI511 0.3165 │SGI511∣/(│SGI511∣+TP5) 0.2089 HIF521 1.2763 HIF521/HOI 0.3867 SGI521 0.3141 ∣SGI521│/(∣SGI521│+TP5) 0.2077 According to Table 5 and Table 6, the following conditional formula values can be obtained: The third embodiment is the value related to the inflection point (using the main reference wavelength of 940 nm) HIF121 2.2153 HIF121/HOI 0.6713 SGI121 0.4374 ∣SGI121│/(∣SGI121│+TP1) 0.3755 HIF211 1.0490 HIF211/HOI 0.3179 SGI211 0.1309 │SGI211∣/(│SGI211∣+TP2) 0.0765 HIF221 0.4485 HIF221/HOI 0.1359 SGI221 0.0036 ∣SGI221│/(∣SGI221│+TP2) 0.0023 HIF222 2.4091 HIF222/HOI 0.7300 SGI222 -0.5444 ∣SGI222│/(∣SGI222│+TP2) 0.2561 HIF311 1.5801 HIF311/HOI 0.4788 SGI311 -0.5922 │SGI311∣/(│SGI311∣+TP3) 0.5797 HIF312 1.9528 HIF312/HOI 0.5918 SGI312 -0.8269 │SGI312∣/(│SGI312∣+TP3) 0.6582 HIF321 1.4573 HIF321/HOI 0.4416 SGI321 -0.3967 ∣SGI321│/(∣SGI321│+TP3) 0.4803 HIF322 1.8059 HIF322/HOI 0.5472 SGI322 -0.5535 ∣SGI322│/(∣SGI322│+TP3) 0.5632 HIF411 1.5084 HIF411/HOI 0.4571 SGI411 0.1332 │SGI411∣/(│SGI411∣+TP4) 0.0771 HIF412 2.1733 HIF412/HOI 0.6586 SGI412 0.2150 │SGI412∣/(│SGI412∣+TP4) 0.1188 HIF421 0.4324 HIF421/HOI 0.1310 SGI421 0.0166 ∣SGI421│/(∣SGI421│+TP4) 0.0103 HIF422 2.1929 HIF422/HOI 0.6645 SGI422 -0.2108 ∣SGI422│/(∣SGI422│+TP4) 0.1168 HIF511 1.1222 HIF511/HOI 0.3401 SGI511 0.3165 │SGI511∣/(│SGI511∣+TP5) 0.2089 HIF521 1.2763 HIF521/HOI 0.3867 SGI521 0.3141 ∣SGI521│/(∣SGI521│+TP5) 0.2077

第四實施例 請參照第4A圖及第4B圖,其中第4A圖繪示依照本創作第四實施例的一種光學成像系統的示意圖,第4B圖由左至右依序為第四實施例的光學成像系統的球差、像散及光學畸變曲線圖。第4C圖係繪示本實施例之紅外光頻譜調制轉換特徵圖。由第4A圖可知,光學成像系統由物側至像側依序包含第一透鏡410、光圈400、第二透鏡420、第三透鏡430、第四透鏡440、第五透鏡450、紅外線濾光片470、紅外光成像面480以及影像感測元件490。 Fourth embodiment Please refer to FIGS. 4A and 4B, in which FIG. 4A shows a schematic diagram of an optical imaging system according to the fourth embodiment of the present creation, and FIG. 4B is from left to right in order for the optical imaging system of the fourth embodiment. Graph of spherical aberration, astigmatism and optical distortion. FIG. 4C is a diagram showing the infrared spectrum modulation conversion characteristic of this embodiment. As can be seen from FIG. 4A, the optical imaging system includes a first lens 410, an aperture 400, a second lens 420, a third lens 430, a fourth lens 440, a fifth lens 450, and an infrared filter in order from the object side to the image side 470, infrared imaging surface 480, and image sensing element 490.

第一透鏡410具有正屈折力,且為塑膠材質,其物側面412為凸面,其像側面414為凸面,並皆為非球面,且其物側面412以及像側面414均具有一反曲點。The first lens 410 has positive refractive power and is made of plastic material. Its object side 412 is convex, its image side 414 is convex, and both are aspherical, and both its object side 412 and image side 414 have an inflection point.

第二透鏡420具有負屈折力,且為塑膠材質,其物側面422為凸面,其像側面424為凹面,並皆為非球面,且其物側面422以及像側面424均具有一反曲點。The second lens 420 has negative refractive power and is made of plastic material. Its object side 422 is convex, its image side 424 is concave, and both are aspherical, and its object side 422 and image side 424 both have an inflection point.

第三透鏡430具有正屈折力,且為塑膠材質,其物側面432為凸面,其像側面434為凸面,並皆為非球面,且其物側面432具有一反曲點及像側面434具有二反曲點。The third lens 430 has a positive refractive power and is made of plastic. Its object side 432 is convex, its image side 434 is convex, and both are aspherical, and its object side 432 has an inflection point and the image side 434 has two Recurve point.

第四透鏡440具有正屈折力,且為塑膠材質,其物側面442為凹面,其像側面444為凸面,並皆為非球面,且其物側面442具有三反曲點以及像側面444具有一反曲點。The fourth lens 440 has a positive refractive power and is made of plastic material. Its object side 442 is concave, its image side 444 is convex, and both are aspherical, and its object side 442 has a tri-reflection point and the image side 444 has a Recurve point.

第五透鏡450具有負屈折力,且為塑膠材質,其物側面452為凸面,其像側面454為凹面,並皆為非球面,且其物側面452以及像側面454均具有一反曲點。藉此,有利於縮短其後焦距以維持小型化。The fifth lens 450 has negative refractive power and is made of plastic material. Its object side 452 is convex, its image side 454 is concave, and both are aspherical, and its object side 452 and image side 454 both have an inflection point. In this way, it is beneficial to shorten the back focal length to maintain miniaturization.

紅外線濾光片470為玻璃材質,其設置於第五透鏡450及紅外光成像面480間且不影響光學成像系統的焦距。The infrared filter 470 is made of glass, which is disposed between the fifth lens 450 and the infrared imaging surface 480 and does not affect the focal length of the optical imaging system.

請配合參照下列表七以及表八。 表七                        第 四 實 施 例 透 鏡 數 據 f(焦距)= 3.7375 mm ; f/HEP =0.9 ; HAF(半視角)= 40.0 deg 表面 曲率半徑 厚度(mm) 材質 折射率 色散係數 焦距 0 被攝物 1E+18 1E+18         1 第一透鏡 6.639990197 1.132 塑膠 1.661 20.390 5.86765 2   -8.404194369 0.292         3 光圈 1E+18 0.026         4 第二透鏡 5.582903484 0.276 塑膠 1.584 29.890 -8.29441 5   2.474329642 0.397         6 第三透鏡 5.630788647 0.960 塑膠 1.661 20.390 6.83377 7   -19.74554188 0.226         8 第四透鏡 -2.958448239 1.371 塑膠 1.661 20.390 6.31234 9   -2.036680821 0.050         10 第五透鏡 2.621058282 0.900 塑膠 1.661 20.390 -33.3476 11   2.022023734 0.719         12 紅外線 濾光片 1E+18 0.215 BK_7       13   1E+18 0.750         14 紅外光成像面 1E+18 0.000         參考波長為940 nm; 擋光位置: 第1面其通光半徑2.650 mm; 第7面其通光半徑2.240 mm; 第11面其通光半徑3.200 mm 表八、第四實施例之非球面係數 表八 非球面係數 表面 1 2 4 5 6 7 8 k 3.860456E+00 -6.741883E+01 2.143984E+00 -2.688272E-01 -7.753847E+00 -1.574199E+01 -2.779203E+00 A4 -7.549090E-03 -8.038252E-04 -6.189103E-02 -1.035005E-01 -8.835968E-03 3.435062E-02 7.156201E-02 A6 3.907000E-03 9.724105E-04 5.407646E-02 3.691991E-02 -2.408256E-02 -9.770166E-04 -3.430538E-02 A8 -2.169167E-03 8.740952E-04 -4.810557E-02 -1.556006E-02 2.476770E-02 -1.154149E-03 2.931102E-02 A10 6.848064E-04 -6.349056E-04 3.097083E-02 3.277084E-03 -2.304949E-02 -2.854454E-03 -1.654238E-02 A12 -1.215338E-04 1.812762E-04 -1.214271E-02 -4.090561E-04 1.062859E-02 1.200497E-03 4.383475E-03 A14 1.174107E-05 -2.342057E-05 2.492343E-03 7.761500E-05 -2.245366E-03 -1.755367E-04 -5.372325E-04 A16 -4.797204E-07 1.119576E-06 -2.075099E-04 -1.206673E-05 1.760683E-04 9.053857E-06 2.502191E-05 表八 非球面係數 表面 9 10 11         k -1.265437E+00 -2.588700E+00 -5.943835E+00         A4 3.948290E-02 -1.979829E-02 -2.376332E-03         A6 -3.057765E-02 1.606013E-02 1.307309E-02         A8 1.745063E-02 -9.004992E-03 -8.089183E-03         A10 -6.595221E-03 2.150697E-03 1.886571E-03         A12 1.508809E-03 -2.517956E-04 -2.191968E-04         A14 -1.864643E-04 1.413413E-05 1.276560E-05         A16 9.954648E-06 -2.945607E-07 -2.986422E-07         Please refer to Table 7 and Table 8 below. Table 7 Lens data of the fourth embodiment f (focal length) = 3.7375 mm; f/HEP = 0.9; HAF (half viewing angle) = 40.0 deg surface Radius of curvature Thickness (mm) Material Refractive index Dispersion coefficient focal length 0 Subject 1E+18 1E+18 1 First lens 6.639990197 1.132 plastic 1.661 20.390 5.86765 2 -8.404194369 0.292 3 aperture 1E+18 0.026 4 Second lens 5.582903484 0.276 plastic 1.584 29.890 -8.29441 5 2.474329642 0.397 6 Third lens 5.630788647 0.960 plastic 1.661 20.390 6.83377 7 -19.74554188 0.226 8 Fourth lens -2.958448239 1.371 plastic 1.661 20.390 6.31234 9 -2.036680821 0.050 10 Fifth lens 2.621058282 0.900 plastic 1.661 20.390 -33.3476 11 2.022023734 0.719 12 Infrared filter 1E+18 0.215 BK_7 13 1E+18 0.750 14 Infrared imaging surface 1E+18 0.000 The reference wavelength is 940 nm; the light blocking position: the clear radius of the first face is 2.650 mm; the clear radius of the seventh face is 2.240 mm; the clear radius of the eleventh face is 3.200 mm Table 8. Aspheric coefficients of the fourth embodiment Table 8 Aspheric coefficient surface 1 2 4 5 6 7 8 k 3.860456E+00 -6.741883E+01 2.143984E+00 -2.688272E-01 -7.753847E+00 -1.574199E+01 -2.779203E+00 A4 -7.549090E-03 -8.038252E-04 -6.189103E-02 -1.035005E-01 -8.835968E-03 3.435062E-02 7.156201E-02 A6 3.907000E-03 9.724105E-04 5.407646E-02 3.691991E-02 -2.408256E-02 -9.770166E-04 -3.430538E-02 A8 -2.169167E-03 8.740952E-04 -4.810557E-02 -1.556006E-02 2.476770E-02 -1.154149E-03 2.931102E-02 A10 6.848064E-04 -6.349056E-04 3.097083E-02 3.277084E-03 -2.304949E-02 -2.854454E-03 -1.654238E-02 A12 -1.215338E-04 1.812762E-04 -1.214271E-02 -4.090561E-04 1.062859E-02 1.200497E-03 4.383475E-03 A14 1.174107E-05 -2.342057E-05 2.492343E-03 7.761500E-05 -2.245366E-03 -1.755367E-04 -5.372325E-04 A16 -4.797204E-07 1.119576E-06 -2.075099E-04 -1.206673E-05 1.760683E-04 9.053857E-06 2.502191E-05 Table 8 Aspheric coefficient surface 9 10 11 k -1.265437E+00 -2.588700E+00 -5.943835E+00 A4 3.948290E-02 -1.979829E-02 -2.376332E-03 A6 -3.057765E-02 1.606013E-02 1.307309E-02 A8 1.745063E-02 -9.004992E-03 -8.089183E-03 A10 -6.595221E-03 2.150697E-03 1.886571E-03 A12 1.508809E-03 -2.517956E-04 -2.191968E-04 A14 -1.864643E-04 1.413413E-05 1.276560E-05 A16 9.954648E-06 -2.945607E-07 -2.986422E-07

第四實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。In the fourth embodiment, the curve equation of the aspherical surface is expressed as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and will not be repeated here.

依據表七及表八可得到下列條件式數値: 第四實施例 (使用主要參考波長 940 nm) MTFE0 MTFE3 MTFE7 MTFQ0 MTFQ3 MTFQ7 0.09 0.09 0.16 0.07 0.02 0.06 ETP1 ETP2 ETP3 ETP4 ETP5 BL 0.788 0.259 1.068 0.912 0.992 1.5828 ETP1/TP1 ETP2/TP2 ETP3/TP3 ETP4/TP4 ETP5/TP5 EBL/BL 0.696 0.937 1.112 0.665 1.102 0.7436 ETL EBL EIN EIR PIR EIN/ETL 7.068 1.177 5.891 0.212 0.719 0.834 SETP/EIN EIR/PIR SETP STP SETP /STP SED /SIN 0.682 0.294 4.019 4.640 0.866 1.890 ED12 ED23 ED34 ED45 SED SIN 0.412 0.211 0.093 1.156 1.872 0.991 ED12/IN12 ED23/IN23 ED34/IN34 ED45/IN45 HVT31 HVT32 1.298 0.533 0.410 22.992 1.10775 0 ∣f/f1│ ∣f/f2│ ∣f/f3│ ∣f/f4│ ∣f/f5│ ∣f1/f2│ 0.63697 0.45061 0.54692 0.59210 0.11208 0.70742 ΣPPR ΣNPR ΣPPR /│ΣNPR∣ IN12 / f IN45 / f ∣f2/f3│ 1.1548 1.1839 0.9754 0.0849 0.0135 1.2137 TP3 / (IN23+TP3+IN34) (TP1+IN12)/ TP2 (TP5+IN45)/ TP4 0.60651 5.25513 0.69343 HOS InTL HOS / HOI InS/ HOS ODT% TDT% 7.21294 5.63017 2.18574 0.80259 3.9371 2.63497 HVT11 HVT12 HVT21 HVT22 HVT31 HVT32 0 1.83879 1.49617 1.30353 1.10775 0 HVT41 HVT42 HVT51 HVT52 HVT52/ HOI HVT52/ HOS 2.14095 2.15748 2.16966 2.24000 0.65747 0.30080 TP2 / TP3 TP3 / TP4 InRS51 InRS52 │InRS51│/TP5 │InRS52│/TP5 0.28725 0.70058 0.409379 0.411832 0.45474 0.45746 According to Table 7 and Table 8, the following conditional formula values can be obtained: Fourth embodiment (using the main reference wavelength of 940 nm) MTFE0 MTFE3 MTFE7 MTFQ0 MTFQ3 MTFQ7 0.09 0.09 0.16 0.07 0.02 0.06 ETP1 ETP2 ETP3 ETP4 ETP5 BL 0.788 0.259 1.068 0.912 0.992 1.5828 ETP1/TP1 ETP2/TP2 ETP3/TP3 ETP4/TP4 ETP5/TP5 EBL/BL 0.696 0.937 1.112 0.665 1.102 0.7436 ETL EBL EIN EIR PIR EIN/ETL 7.068 1.177 5.891 0.212 0.719 0.834 SETP/EIN EIR/PIR SETP STP SETP /STP SED /SIN 0.682 0.294 4.019 4.640 0.866 1.890 ED12 ED23 ED34 ED45 SED SIN 0.412 0.211 0.093 1.156 1.872 0.991 ED12/IN12 ED23/IN23 ED34/IN34 ED45/IN45 HVT31 HVT32 1.298 0.533 0.410 22.992 1.10775 0 ∣f/f1│ ∣f/f2│ ∣f/f3│ ∣f/f4│ ∣f/f5│ ∣f1/f2│ 0.63697 0.45061 0.54692 0.59210 0.11208 0.70742 ΣPPR ΣNPR ΣPPR /│ΣNPR∣ IN12 / f IN45 / f ∣f2/f3│ 1.1548 1.1839 0.9754 0.0849 0.0135 1.2137 TP3 / (IN23+TP3+IN34) (TP1+IN12)/ TP2 (TP5+IN45)/ TP4 0.60651 5.25513 0.69343 HOS InTL HOS / HOI InS/ HOS ODT% TDT% 7.21294 5.63017 2.18574 0.80259 3.9371 2.63497 HVT11 HVT12 HVT21 HVT22 HVT31 HVT32 0 1.83879 1.49617 1.30353 1.10775 0 HVT41 HVT42 HVT51 HVT52 HVT52/ HOI HVT52/ HOS 2.14095 2.15748 2.16966 2.24000 0.65747 0.30080 TP2 / TP3 TP3 / TP4 InRS51 InRS52 │InRS51│/TP5 │InRS52│/TP5 0.28725 0.70058 0.409379 0.411832 0.45474 0.45746

依據表七及表八可得到下列條件式數値: 第四實施例反曲點相關數值 (使用主要參考波長 940 nm) HIF111 2.6272 HIF111/HOI 0.7961 SGI111 0.5782 │SGI111∣/(│SGI111∣+TP1) 0.3380 HIF121 1.0656 HIF121/HOI 0.3229 SGI121 -0.054446 ∣SGI121│/(∣SGI121│+TP1) 0.0459 HIF211 0.8371 HIF211/HOI 0.2537 SGI211 0.0445 │SGI211∣/(│SGI211∣+TP2) 0.1390 HIF221 0.7159 HIF221/HOI 0.2169 SGI221 0.0820262 ∣SGI221│/(∣SGI221│+TP2) 0.2292 HIF311 0.7078 HIF311/HOI 0.2145 SGI311 0.0390949 │SGI311∣/(│SGI311∣+TP3) 0.0391 HIF321 0.3514 HIF321/HOI 0.1065 SGI321 -0.0026 ∣SGI321│/(∣SGI321│+TP3) 0.0027 HIF322 1.1479 HIF322/HOI 0.3479 SGI322 0.0148 ∣SGI322│/(∣SGI322│+TP3) 0.0152 HIF411 0.6964 HIF411/HOI 0.2110 SGI411 -0.065894 │SGI411∣/(│SGI411∣+TP4) 0.0459 HIF412 1.3042 HIF412/HOI 0.3952 SGI412 -0.1323 │SGI412∣/(│SGI412∣+TP4) 0.0880 HIF413 1.8697 HIF413/HOI 0.5666 SGI413 -0.2313 │SGI413∣/(│SGI413∣+TP4) 0.1444 HIF421 1.7423 HIF421/HOI 0.5280 SGI421 -0.6124 ∣SGI421│/(∣SGI421│+TP4) 0.3088 HIF511 1.2516 HIF511/HOI 0.3793 SGI511 0.251587 │SGI511∣/(│SGI511∣+TP5) 0.2184 HIF521 1.3168 HIF521/HOI 0.3990 SGI521 0.322797 ∣SGI521│/(∣SGI521│+TP5) 0.2639 According to Table 7 and Table 8, the following conditional formula values can be obtained: The fourth embodiment is the value related to the inflection point (using the main reference wavelength of 940 nm) HIF111 2.6272 HIF111/HOI 0.7961 SGI111 0.5782 │SGI111∣/(│SGI111∣+TP1) 0.3380 HIF121 1.0656 HIF121/HOI 0.3229 SGI121 -0.054446 ∣SGI121│/(∣SGI121│+TP1) 0.0459 HIF211 0.8371 HIF211/HOI 0.2537 SGI211 0.0445 │SGI211∣/(│SGI211∣+TP2) 0.1390 HIF221 0.7159 HIF221/HOI 0.2169 SGI221 0.0820262 ∣SGI221│/(∣SGI221│+TP2) 0.2292 HIF311 0.7078 HIF311/HOI 0.2145 SGI311 0.0390949 │SGI311∣/(│SGI311∣+TP3) 0.0391 HIF321 0.3514 HIF321/HOI 0.1065 SGI321 -0.0026 ∣SGI321│/(∣SGI321│+TP3) 0.0027 HIF322 1.1479 HIF322/HOI 0.3479 SGI322 0.0148 ∣SGI322│/(∣SGI322│+TP3) 0.0152 HIF411 0.6964 HIF411/HOI 0.2110 SGI411 -0.065894 │SGI411∣/(│SGI411∣+TP4) 0.0459 HIF412 1.3042 HIF412/HOI 0.3952 SGI412 -0.1323 │SGI412∣/(│SGI412∣+TP4) 0.0880 HIF413 1.8697 HIF413/HOI 0.5666 SGI413 -0.2313 │SGI413∣/(│SGI413∣+TP4) 0.1444 HIF421 1.7423 HIF421/HOI 0.5280 SGI421 -0.6124 ∣SGI421│/(∣SGI421│+TP4) 0.3088 HIF511 1.2516 HIF511/HOI 0.3793 SGI511 0.251587 │SGI511∣/(│SGI511∣+TP5) 0.2184 HIF521 1.3168 HIF521/HOI 0.3990 SGI521 0.322797 ∣SGI521│/(∣SGI521│+TP5) 0.2639

第五實施例 請參照第5A圖及第5B圖,其中第5A圖繪示依照本創作第五實施例的一種光學成像系統的示意圖,第5B圖由左至右依序為第五實施例的光學成像系統的球差、像散及光學畸變曲線圖。第5C圖係繪示本實施例之紅外光頻譜調制轉換特徵圖。由第5A圖可知,光學成像系統由物側至像側依序包含第一透鏡510、光圈500、第二透鏡520、第三透鏡530、第四透鏡540、第五透鏡550、紅外線濾光片570、紅外光成像面580以及影像感測元件590。 Fifth embodiment Please refer to FIGS. 5A and 5B, wherein FIG. 5A shows a schematic diagram of an optical imaging system according to the fifth embodiment of the present invention, and FIG. 5B is the optical imaging system of the fifth embodiment in order from left to right. Graph of spherical aberration, astigmatism and optical distortion. FIG. 5C is a characteristic diagram of infrared spectrum modulation conversion in this embodiment. As can be seen from FIG. 5A, the optical imaging system includes, from the object side to the image side, a first lens 510, an aperture 500, a second lens 520, a third lens 530, a fourth lens 540, a fifth lens 550, and an infrared filter 570, an infrared imaging surface 580, and an image sensing element 590.

第一透鏡510具有正屈折力,且為塑膠材質,其物側面512為凸面,其像側面514為凸面,並皆為非球面。The first lens 510 has positive refractive power and is made of plastic material. Its object side 512 is convex, and its image side 514 is convex, and both are aspherical.

第二透鏡520具有負屈折力,且為塑膠材質,其物側面522為凸面,其像側面524為凹面,並皆為非球面,且其物側面522以及像側面524均具有一反曲點。The second lens 520 has a negative refractive power and is made of plastic. Its object side 522 is convex, its image side 524 is concave, and both are aspherical, and its object side 522 and image side 524 both have an inflection point.

第三透鏡530具有正屈折力,且為塑膠材質,其物側面532為凸面,其像側面534為凸面,並皆為非球面,且其物側面532具有具有一反曲點。The third lens 530 has a positive refractive power and is made of plastic material. Its object side 532 is convex, its image side 534 is convex, and both are aspherical, and its object side 532 has an inflexion point.

第四透鏡540具有正屈折力,且為塑膠材質,其物側面542為凹面,其像側面544為凸面,並皆為非球面,且其像側面544以及像側面544均具有一反曲點。The fourth lens 540 has positive refractive power and is made of plastic material. Its object side 542 is concave, its image side 544 is convex, and both are aspherical, and both its image side 544 and image side 544 have an inflection point.

第五透鏡550具有正屈折力,且為塑膠材質,其物側面552為凸面,其像側面554為凹面,並皆為非球面,且其像側面554以及像側面554均具有一反曲點。藉此,有利於縮短其後焦距以維持小型化。The fifth lens 550 has a positive refractive power and is made of plastic material. Its object side 552 is convex, its image side 554 is concave, and both are aspherical, and both its image side 554 and image side 554 have an inflection point. In this way, it is beneficial to shorten the back focal length to maintain miniaturization.

紅外線濾光片570為玻璃材質,其設置於第五透鏡550及紅外光成像面580間且不影響光學成像系統的焦距。The infrared filter 570 is made of glass, which is disposed between the fifth lens 550 and the infrared imaging surface 580 and does not affect the focal length of the optical imaging system.

請配合參照下列表九以及表十。 表九                        第 五 實 施 例 透 鏡 數 據 f(焦距)= 3.7323 mm ; f/HEP =1.3 ; HAF(半視角)= 40.0 deg 表面 曲率半徑 厚度(mm) 材質 折射率 色散係數 焦距 0 被攝物 1E+18 1E+18         1 第一透鏡 13.69792597 0.502 塑膠 1.661 20.390 9.76332 2   -11.73817016 0.025         3 光圈 1E+18 0.025         4 第二透鏡 2.90908358 0.416 塑膠 1.661 20.390 -67.1252 5   2.573850988 0.582         6 第三透鏡 11.78078656 1.160 塑膠 1.661 20.390 9.38263 7   -12.2516735 0.511         8 第四透鏡 -1.701375863 0.824 塑膠 1.661 20.390 12.2112 9   -1.669988314 0.050         10 第五透鏡 1.711982254 0.866 塑膠 1.661 20.390 28.5378 11   1.508741986 0.839         12 紅外線 濾光片 1E+18 0.215   1.517 64.13   13   1E+18 0.750         14 紅外光成像面 1E+18 0.000         參考波長為940 nm; 擋光位置: 第7面其通光半徑2.240 mm; 第11面其通光半徑3.200 mm 表十、第五實施例之非球面係數 表十 非球面係數 表面 1 2 4 5 6 7 8 k -9.000000E+01 -8.999353E+01 -1.834303E-01 -1.281539E-01 -1.829434E+01 2.766666E+01 -6.228892E+00 A4 1.668066E-02 0.000000E+00 -6.635996E-02 -8.777918E-02 -1.651917E-02 1.506490E-02 -2.304016E-04 A6 -4.575165E-03 0.000000E+00 9.908556E-03 1.408125E-04 -2.424212E-02 -1.750159E-02 -2.354460E-02 A8 -4.244476E-03 0.000000E+00 6.213225E-03 1.172314E-02 2.374257E-02 1.578092E-02 3.277495E-02 A10 5.251807E-03 0.000000E+00 -1.489843E-02 -1.709067E-02 -2.463636E-02 -9.784463E-03 -1.709753E-02 A12 -2.429540E-03 0.000000E+00 1.106141E-02 1.033375E-02 1.131118E-02 2.750614E-03 4.321690E-03 A14 5.337470E-04 0.000000E+00 -4.015732E-03 -3.034933E-03 -2.229627E-03 -3.542046E-04 -5.284499E-04 A16 -4.607969E-05 0.000000E+00 5.675739E-04 3.592691E-04 1.523757E-04 1.701515E-05 2.527004E-05 表十 非球面係數 表面 9 10 11         k -3.260151E+00 -1.854287E+00 -7.848022E-01         A4 -5.474072E-02 -6.500228E-02 -1.082420E-01         A6 2.050674E-02 2.721995E-02 3.551303E-02         A8 -1.288539E-03 -8.524146E-03 -1.060399E-02         A10 -2.633605E-03 1.558680E-03 2.015819E-03         A12 1.436740E-03 -1.616950E-04 -2.366056E-04         A14 -2.926964E-04 8.031032E-06 1.536828E-05         A16 2.182593E-05 -1.050004E-07 -4.249358E-07         Please refer to Table 9 and Table 10 below. Table 9 Lens data of the fifth embodiment f (focal length) = 3.7323 mm; f/HEP = 1.3; HAF (half angle of view) = 40.0 deg surface Radius of curvature Thickness (mm) Material Refractive index Dispersion coefficient focal length 0 Subject 1E+18 1E+18 1 First lens 13.69792597 0.502 plastic 1.661 20.390 9.76332 2 -11.73817016 0.025 3 aperture 1E+18 0.025 4 Second lens 2.90908358 0.416 plastic 1.661 20.390 -67.1252 5 2.573850988 0.582 6 Third lens 11.78078656 1.160 plastic 1.661 20.390 9.38263 7 -12.2516735 0.511 8 Fourth lens -1.701375863 0.824 plastic 1.661 20.390 12.2112 9 -1.669988314 0.050 10 Fifth lens 1.711982254 0.866 plastic 1.661 20.390 28.5378 11 1.508741986 0.839 12 Infrared filter 1E+18 0.215 1.517 64.13 13 1E+18 0.750 14 Infrared imaging surface 1E+18 0.000 The reference wavelength is 940 nm; light blocking position: the clear radius of the face 7 is 2.240 mm; the clear radius of the face 11 is 3.200 mm Table 10. Aspheric coefficients of the fifth embodiment Table 10 Aspheric coefficients surface 1 2 4 5 6 7 8 k -9.000000E+01 -8.999353E+01 -1.834303E-01 -1.281539E-01 -1.829434E+01 2.766666E+01 -6.228892E+00 A4 1.668066E-02 0.000000E+00 -6.635996E-02 -8.777918E-02 -1.651917E-02 1.506490E-02 -2.304016E-04 A6 -4.575165E-03 0.000000E+00 9.908556E-03 1.408125E-04 -2.424212E-02 -1.750159E-02 -2.354460E-02 A8 -4.244476E-03 0.000000E+00 6.213225E-03 1.172314E-02 2.374257E-02 1.578092E-02 3.277495E-02 A10 5.251807E-03 0.000000E+00 -1.489843E-02 -1.709067E-02 -2.463636E-02 -9.784463E-03 -1.709753E-02 A12 -2.429540E-03 0.000000E+00 1.106141E-02 1.033375E-02 1.131118E-02 2.750614E-03 4.321690E-03 A14 5.337470E-04 0.000000E+00 -4.015732E-03 -3.034933E-03 -2.229627E-03 -3.542046E-04 -5.284499E-04 A16 -4.607969E-05 0.000000E+00 5.675739E-04 3.592691E-04 1.523757E-04 1.701515E-05 2.527004E-05 Table 10 Aspheric coefficients surface 9 10 11 k -3.260151E+00 -1.854287E+00 -7.848022E-01 A4 -5.474072E-02 -6.500228E-02 -1.082420E-01 A6 2.050674E-02 2.721995E-02 3.551303E-02 A8 -1.288539E-03 -8.524146E-03 -1.060399E-02 A10 -2.633605E-03 1.558680E-03 2.015819E-03 A12 1.436740E-03 -1.616950E-04 -2.366056E-04 A14 -2.926964E-04 8.031032E-06 1.536828E-05 A16 2.182593E-05 -1.050004E-07 -4.249358E-07

第五實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。In the fifth embodiment, the curve equation of the aspherical surface is expressed as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and will not be repeated here.

依據表九及表十可得到下列條件式數値: 第五實施例 (使用主要參考波長 940 nm) MTFE0 MTFE3 MTFE7 MTFQ0 MTFQ3 MTFQ7 0.86 0.73 0.7 0.67 0.34 0.47 ETP1 ETP2 ETP3 ETP4 ETP5 BL 0.334 0.343 1.186 0.624 0.919 1.7074 ETP1/TP1 ETP2/TP2 ETP3/TP3 ETP4/TP4 ETP5/TP5 EBL/BL 0.665 0.825 1.022 0.757 1.061 0.7959 ETL EBL EIN EIR PIR EIN/ETL 6.668 1.359 5.309 0.394 0.839 0.796 SETP/EIN EIR/PIR SETP STP SETP /STP SED /SIN 0.642 0.470 3.406 3.767 0.904 1.595 ED12 ED23 ED34 ED45 SED SIN 0.253 0.390 0.235 1.025 1.903 1.193 ED12/IN12 ED23/IN23 ED34/IN34 ED45/IN45 HVT31 HVT32 5.066 0.669 0.461 20.492 0.802735 0 ∣f/f1│ ∣f/f2│ ∣f/f3│ ∣f/f4│ ∣f/f5│ ∣f1/f2│ 0.38228 0.05560 0.39779 0.30565 0.13079 0.14545 ΣPPR ΣNPR ΣPPR /│ΣNPR∣ IN12 / f IN45 / f ∣f2/f3│ 0.4920 0.7801 0.6308 0.0134 0.0134 7.1542 TP3 / (IN23+TP3+IN34) (TP1+IN12)/ TP2 (TP5+IN45)/ TP4 0.51473 1.32626 1.11225 HOS InTL HOS / HOI InS/ HOS ODT % TDT % 6.66816 4.96072 2.02065 0.92100 3.35224 1.21318 HVT11 HVT12 HVT21 HVT22 HVT31 HVT32 0 0 1.29877 1.1141 0.802735 0 HVT41 HVT42 HVT51 HVT52 HVT52/ HOI HVT52/ HOS 2.03371 2.00425 2.09732 2.30622 0.63555 0.31453 TP2 / TP3 TP3 / TP4 InRS51 InRS52 │InRS51│/TP5 │InRS52│/TP5 0.35871 1.40841 0.40586 0.424344 0.46868 0.49002 According to Table 9 and Table 10, the following conditional formula values can be obtained: Fifth embodiment (using the main reference wavelength of 940 nm) MTFE0 MTFE3 MTFE7 MTFQ0 MTFQ3 MTFQ7 0.86 0.73 0.7 0.67 0.34 0.47 ETP1 ETP2 ETP3 ETP4 ETP5 BL 0.334 0.343 1.186 0.624 0.919 1.7074 ETP1/TP1 ETP2/TP2 ETP3/TP3 ETP4/TP4 ETP5/TP5 EBL/BL 0.665 0.825 1.022 0.757 1.061 0.7959 ETL EBL EIN EIR PIR EIN/ETL 6.668 1.359 5.309 0.394 0.839 0.796 SETP/EIN EIR/PIR SETP STP SETP /STP SED /SIN 0.642 0.470 3.406 3.767 0.904 1.595 ED12 ED23 ED34 ED45 SED SIN 0.253 0.390 0.235 1.025 1.903 1.193 ED12/IN12 ED23/IN23 ED34/IN34 ED45/IN45 HVT31 HVT32 5.066 0.669 0.461 20.492 0.802735 0 ∣f/f1│ ∣f/f2│ ∣f/f3│ ∣f/f4│ ∣f/f5│ ∣f1/f2│ 0.38228 0.05560 0.39779 0.30565 0.13079 0.14545 ΣPPR ΣNPR ΣPPR /│ΣNPR∣ IN12 / f IN45 / f ∣f2/f3│ 0.4920 0.7801 0.6308 0.0134 0.0134 7.1542 TP3 / (IN23+TP3+IN34) (TP1+IN12)/ TP2 (TP5+IN45)/ TP4 0.51473 1.32626 1.11225 HOS InTL HOS / HOI InS/ HOS ODT% TDT% 6.66816 4.96072 2.02065 0.92100 3.35224 1.21318 HVT11 HVT12 HVT21 HVT22 HVT31 HVT32 0 0 1.29877 1.1141 0.802735 0 HVT41 HVT42 HVT51 HVT52 HVT52/ HOI HVT52/ HOS 2.03371 2.00425 2.09732 2.30622 0.63555 0.31453 TP2 / TP3 TP3 / TP4 InRS51 InRS52 │InRS51│/TP5 │InRS52│/TP5 0.35871 1.40841 0.40586 0.424344 0.46868 0.49002

依據表九及表十可得到下列條件式數値: 第五實施例反曲點相關數值 (使用主要參考波長 940 nm) HIF211 0.7617 HIF211/HOI 0.2308 SGI211 0.0808161 │SGI211∣/(│SGI211∣+TP2) 0.1626 HIF221 0.6457 HIF221/HOI 0.1957 SGI221 0.0671 ∣SGI221│/(∣SGI221│+TP2) 0.1388 HIF311 0.4989 HIF311/HOI 0.1512 SGI311 0.0091551 │SGI311∣/(│SGI311∣+TP3) 0.0078 HIF411 1.0798 HIF411/HOI 0.3272 SGI411 -0.2526 │SGI411∣/(│SGI411∣+TP4) 0.2347 HIF421 1.4306 HIF421/HOI 0.4335 SGI421 -0.568273 ∣SGI421│/(∣SGI421│+TP4) 0.4083 HIF511 1.1520 HIF511/HOI 0.3491 SGI511 0.2843 │SGI511∣/(│SGI511∣+TP5) 0.2471 HIF521 1.2031 HIF521/HOI 0.3646 SGI521 0.3425 ∣SGI521│/(∣SGI521│+TP5) 0.2834 According to Table 9 and Table 10, the following conditional formula values can be obtained: Fifth embodiment inverse curve related value (using the main reference wavelength of 940 nm) HIF211 0.7617 HIF211/HOI 0.2308 SGI211 0.0808161 │SGI211∣/(│SGI211∣+TP2) 0.1626 HIF221 0.6457 HIF221/HOI 0.1957 SGI221 0.0671 ∣SGI221│/(∣SGI221│+TP2) 0.1388 HIF311 0.4989 HIF311/HOI 0.1512 SGI311 0.0091551 │SGI311∣/(│SGI311∣+TP3) 0.0078 HIF411 1.0798 HIF411/HOI 0.3272 SGI411 -0.2526 │SGI411∣/(│SGI411∣+TP4) 0.2347 HIF421 1.4306 HIF421/HOI 0.4335 SGI421 -0.568273 ∣SGI421│/(∣SGI421│+TP4) 0.4083 HIF511 1.1520 HIF511/HOI 0.3491 SGI511 0.2843 │SGI511∣/(│SGI511∣+TP5) 0.2471 HIF521 1.2031 HIF521/HOI 0.3646 SGI521 0.3425 ∣SGI521│/(∣SGI521│+TP5) 0.2834

第六實施例 請參照第6A圖及第6B圖,其中第6A圖繪示依照本創作第六實施例的一種光學成像系統的示意圖,第6B圖由左至右依序為第六實施例的光學成像系統的球差、像散及光學畸變曲線圖。第6C圖係繪示本實施例之紅外光頻譜調制轉換特徵圖。由第6A圖可知,光學成像系統由物側至像側依序包含第一透鏡610、第二透鏡620、光圈600、第三透鏡630、第四透鏡640、第五透鏡650、紅外線濾光片670、紅外光成像面680以及影像感測元件690。 Sixth embodiment Please refer to FIGS. 6A and 6B, in which FIG. 6A shows a schematic diagram of an optical imaging system according to the sixth embodiment of the present creation, and FIG. 6B is from left to right in order for the optical imaging system of the sixth embodiment. Graph of spherical aberration, astigmatism and optical distortion. FIG. 6C is a characteristic diagram of infrared light spectrum modulation conversion in this embodiment. As can be seen from FIG. 6A, the optical imaging system includes a first lens 610, a second lens 620, an aperture 600, a third lens 630, a fourth lens 640, a fifth lens 650, and an infrared filter in order from the object side to the image side 670. Infrared imaging surface 680 and image sensing element 690.

第一透鏡610具有負屈折力,且為塑膠材質,其物側面612為凹面,其像側面614為凹面,並皆為非球面,且其物側面612具有一反曲點。The first lens 610 has a negative refractive power and is made of plastic. Its object side 612 is concave, its image side 614 is concave, and both are aspherical, and its object side 612 has an inflexion point.

第二透鏡620具有正屈折力,且為塑膠材質,其物側面622為凸面,其像側面624為凹面,並皆為非球面。The second lens 620 has a positive refractive power and is made of plastic material. Its object side 622 is convex, and its image side 624 is concave, and both are aspherical.

第三透鏡630具有正屈折力,且為塑膠材質,其物側面632為凸面,其像側面634為凸面,並皆為非球面,且其物側面632具有一反曲點。The third lens 630 has positive refractive power and is made of plastic material. Its object side 632 is convex, its image side 634 is convex, and both are aspherical, and its object side 632 has an inflexion point.

第四透鏡640具有正屈折力,且為塑膠材質,其物側面642為凹面,其像側面644為凸面,並皆為非球面,且其物側面632以及像側面644均具有一反曲點。The fourth lens 640 has a positive refractive power and is made of plastic material. Its object side 642 is concave, its image side 644 is convex, and both are aspherical, and its object side 632 and image side 644 both have an inflection point.

第五透鏡650具有負屈折力,且為塑膠材質,其物側面652為凸面,其像側面654為凹面,並皆為非球面,且其物側面652以及像側面644均具有一反曲點。藉此,有利於縮短其後焦距以維持小型化。另外,亦可有效地壓制離軸視場光線入射的角度,進一步可修正離軸視場的像差。The fifth lens 650 has negative refractive power and is made of plastic material. Its object side 652 is convex, its image side 654 is concave, and both are aspherical, and both its object side 652 and image side 644 have an inflection point. In this way, it is beneficial to shorten the back focal length to maintain miniaturization. In addition, it can also effectively suppress the angle of incidence of the off-axis field of view, and can further correct the aberration of the off-axis field of view.

紅外線濾光片670為玻璃材質,其設置於第五透鏡650及紅外光成像面680間且不影響光學成像系統的焦距。The infrared filter 670 is made of glass, which is disposed between the fifth lens 650 and the infrared imaging surface 680 and does not affect the focal length of the optical imaging system.

請配合參照下列表十一以及表十二。 表十一                        第 六 實 施 例 透 鏡 數 據 f(焦距)= 3.1259 mm ; f/HEP = 1.3 ; HAF(半視角)= 45.8012 deg 表面 曲率半徑 厚度(mm) 材質 折射率 色散係數 焦距 0 被攝物 1E+18 1E+18         1 第一透鏡 -10.05209031 0.300 塑膠 1.661 20.390 -3.74176 2   3.262965631 0.371         3 第二透鏡 2.164609314 0.603 塑膠 1.661 20.390 4.27224 4   8.618919172 1.058         5 光圈 1E+18 0.438         6 第三透鏡 15.98454745 1.382 塑膠 1.661 20.390 4.74317 7   -3.707216122 1.442         8 第四透鏡 -2.65419837 0.592 塑膠 1.661 20.390 9.77548 9   -2.039356685 0.025         10 第五透鏡 2.116197716 0.872 塑膠 1.661 20.390 -79.5084 11   1.702583506 0.703         12 紅外線 濾光片 1E+18 0.215 BK_7 1.517 64.13   13   1E+18 0.750         14 紅外光成像面 1E+18 0.000         參考波長為940 nm; 擋光位置: 第1面其通光半徑3.750 mm; 第8面其通光半徑2.200 mm; 第11面其通光半徑3.150 mm 表十二、第六實施例之非球面係數 表十二 非球面係數 表面 1 2 3 4 6 7 8 k -4.388763E+00 -9.861234E-02 -5.303288E-01 2.082031E+01 -2.800078E+01 -2.026502E+00 -1.937394E+00 A4 1.583807E-02 -4.046074E-02 -2.263208E-02 4.549734E-02 -3.285306E-03 -8.490334E-03 6.879109E-02 A6 7.635954E-04 2.970980E-02 7.949813E-03 -4.719477E-02 2.402142E-03 -4.610214E-05 -5.679364E-02 A8 -1.081049E-03 -1.488603E-02 4.639826E-03 6.721614E-02 -3.000109E-03 -4.145148E-04 3.015703E-02 A10 2.557801E-04 4.016857E-03 -4.419942E-03 -4.762429E-02 1.566111E-03 5.765182E-05 -9.733632E-03 A12 -2.889000E-05 -6.033827E-04 1.241969E-03 1.856408E-02 -4.572590E-04 1.009566E-05 1.930755E-03 A14 1.635983E-06 4.806011E-05 -1.349240E-04 -3.791093E-03 6.585500E-05 -5.089814E-06 -2.096630E-04 A16 -3.641999E-08 -1.575257E-06 3.759921E-06 3.269176E-04 -3.598493E-06 4.189958E-07 9.442000E-06 表十二 非球面係數 表面 9 10 11         k -1.073361E+00 -4.782827E-01 -1.317170E+00         A4 2.125608E-02 -8.490463E-02 -8.665980E-02         A6 -6.895599E-03 2.402824E-02 3.239299E-02         A8 3.243184E-03 -6.669311E-03 -9.496669E-03         A10 -8.400800E-04 1.091283E-03 1.806951E-03         A12 1.705811E-04 -9.896273E-05 -2.093190E-04         A14 -1.626733E-05 4.007586E-06 1.327478E-05         A16 5.190320E-07 -6.523434E-08 -3.545020E-07         Please refer to Table 11 and Table 12 below. Table 11: Lens data of the sixth embodiment f (focal length) = 3.1259 mm; f/HEP = 1.3; HAF (half angle of view) = 45.8012 deg surface Radius of curvature Thickness (mm) Material Refractive index Dispersion coefficient focal length 0 Subject 1E+18 1E+18 1 First lens -10.05209031 0.300 plastic 1.661 20.390 -3.74176 2 3.262965631 0.371 3 Second lens 2.164609314 0.603 plastic 1.661 20.390 4.27224 4 8.618919172 1.058 5 aperture 1E+18 0.438 6 Third lens 15.98454745 1.382 plastic 1.661 20.390 4.74317 7 -3.707216122 1.442 8 Fourth lens -2.65419837 0.592 plastic 1.661 20.390 9.77548 9 -2.039356685 0.025 10 Fifth lens 2.116197716 0.872 plastic 1.661 20.390 -79.5084 11 1.702583506 0.703 12 Infrared filter 1E+18 0.215 BK_7 1.517 64.13 13 1E+18 0.750 14 Infrared imaging surface 1E+18 0.000 The reference wavelength is 940 nm; the light blocking position: the clear radius of the first face is 3.750 mm; the clear radius of the eighth face is 2.200 mm; the clear radius of the eleventh face is 3.150 mm Table 12. Aspheric coefficients of the sixth embodiment Table 12 Aspheric coefficients surface 1 2 3 4 6 7 8 k -4.388763E+00 -9.861234E-02 -5.303288E-01 2.082031E+01 -2.800078E+01 -2.026502E+00 -1.937394E+00 A4 1.583807E-02 -4.046074E-02 -2.263208E-02 4.549734E-02 -3.285306E-03 -8.490334E-03 6.879109E-02 A6 7.635954E-04 2.970980E-02 7.949813E-03 -4.719477E-02 2.402142E-03 -4.610214E-05 -5.679364E-02 A8 -1.081049E-03 -1.488603E-02 4.639826E-03 6.721614E-02 -3.000109E-03 -4.145148E-04 3.015703E-02 A10 2.557801E-04 4.016857E-03 -4.419942E-03 -4.762429E-02 1.566111E-03 5.765182E-05 -9.733632E-03 A12 -2.889000E-05 -6.033827E-04 1.241969E-03 1.856408E-02 -4.572590E-04 1.009566E-05 1.930755E-03 A14 1.635983E-06 4.806011E-05 -1.349240E-04 -3.791093E-03 6.585500E-05 -5.089814E-06 -2.096630E-04 A16 -3.641999E-08 -1.575257E-06 3.759921E-06 3.269176E-04 -3.598493E-06 4.189958E-07 9.442000E-06 Table 12 Aspheric coefficients surface 9 10 11 k -1.073361E+00 -4.782827E-01 -1.317170E+00 A4 2.125608E-02 -8.490463E-02 -8.665980E-02 A6 -6.895599E-03 2.402824E-02 3.239299E-02 A8 3.243184E-03 -6.669311E-03 -9.496669E-03 A10 -8.400800E-04 1.091283E-03 1.806951E-03 A12 1.705811E-04 -9.896273E-05 -2.093190E-04 A14 -1.626733E-05 4.007586E-06 1.327478E-05 A16 5.190320E-07 -6.523434E-08 -3.545020E-07

第六實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。In the sixth embodiment, the curve equation of the aspherical surface is expressed as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and will not be repeated here.

依據表十一及表十二可得到下列條件式數値: 第六實施例 (使用主要參考波長 940 nm) MTFE0 MTFE3 MTFE7 MTFQ0 MTFQ3 MTFQ7 0.67 0.17 0.57 0.25 0.05 0.28 ETP1 ETP2 ETP3 ETP4 ETP5 BL 0.541 0.438 1.118 0.468 0.940 1.5707 ETP1/TP1 ETP2/TP2 ETP3/TP3 ETP4/TP4 ETP5/TP5 EBL/BL 1.804 0.727 0.808 0.791 1.079 0.8659 ETL EBL EIN EIR PIR EIN/ETL 8.790 1.360 7.430 0.394 0.703 0.845 SETP/EIN EIR/PIR SETP STP SETP /STP SED /SIN 0.472 0.561 3.506 3.749 0.935 1.177 ED12 ED23 ED34 ED45 SED SIN 0.519 1.350 1.453 0.603 3.924 3.334 ED12/IN12 ED23/IN23 ED34/IN34 ED45/IN45 HVT31 HVT32 1.399 0.902 1.007 24.132 0 0 ∣f/f1│ ∣f/f2│ ∣f/f3│ ∣f/f4│ ∣f/f5│ ∣f1/f2│ 0.83542 0.73169 0.65904 0.31977 0.03932 0.87583 ΣPPR ΣNPR ΣPPR /│ΣNPR∣ IN12 / f IN45 / f ∣f2/f3│ 1.4300 1.1552 1.2379 0.1186 0.0080 0.9007 TP3 / (IN23+TP3+IN34) (TP1+IN12)/ TP2 (TP5+IN45)/ TP4 0.31997 1.11291 1.51478 HOS InTL HOS / HOI InS/ HOS ODT% TDT% 8.65290 7.08216 2.62209 0.73063 2.65618 2.2625 HVT11 HVT12 HVT21 HVT22 HVT31 HVT32 1.31587 0 0 0 0 0 HVT41 HVT42 HVT51 HVT52 HVT52/ HOI HVT52/ HOS 1.93589 1.98905 1.91389 2.25556 0.57997 0.22118 TP2 / TP3 TP3 / TP4 InRS51 InRS52 │InRS51│/TP5 │InRS52│/TP5 0.43593 2.33550 0.170615 0.197312 0.19575 0.22638 According to Table 11 and Table 12, the following conditional formula values can be obtained: Sixth embodiment (using the main reference wavelength of 940 nm) MTFE0 MTFE3 MTFE7 MTFQ0 MTFQ3 MTFQ7 0.67 0.17 0.57 0.25 0.05 0.28 ETP1 ETP2 ETP3 ETP4 ETP5 BL 0.541 0.438 1.118 0.468 0.940 1.5707 ETP1/TP1 ETP2/TP2 ETP3/TP3 ETP4/TP4 ETP5/TP5 EBL/BL 1.804 0.727 0.808 0.791 1.079 0.8659 ETL EBL EIN EIR PIR EIN/ETL 8.790 1.360 7.430 0.394 0.703 0.845 SETP/EIN EIR/PIR SETP STP SETP /STP SED /SIN 0.472 0.561 3.506 3.749 0.935 1.177 ED12 ED23 ED34 ED45 SED SIN 0.519 1.350 1.453 0.603 3.924 3.334 ED12/IN12 ED23/IN23 ED34/IN34 ED45/IN45 HVT31 HVT32 1.399 0.902 1.007 24.132 0 0 ∣f/f1│ ∣f/f2│ ∣f/f3│ ∣f/f4│ ∣f/f5│ ∣f1/f2│ 0.83542 0.73169 0.65904 0.31977 0.03932 0.87583 ΣPPR ΣNPR ΣPPR /│ΣNPR∣ IN12 / f IN45 / f ∣f2/f3│ 1.4300 1.1552 1.2379 0.1186 0.0080 0.9007 TP3 / (IN23+TP3+IN34) (TP1+IN12)/ TP2 (TP5+IN45)/ TP4 0.31997 1.11291 1.51478 HOS InTL HOS / HOI InS/ HOS ODT% TDT% 8.65290 7.08216 2.62209 0.73063 2.65618 2.2625 HVT11 HVT12 HVT21 HVT22 HVT31 HVT32 1.31587 0 0 0 0 0 HVT41 HVT42 HVT51 HVT52 HVT52/ HOI HVT52/ HOS 1.93589 1.98905 1.91389 2.25556 0.57997 0.22118 TP2 / TP3 TP3 / TP4 InRS51 InRS52 │InRS51│/TP5 │InRS52│/TP5 0.43593 2.33550 0.170615 0.197312 0.19575 0.22638

依據表十一及表十二可得到下列條件式數値: 第六實施例反曲點相關數值 (使用主要參考波長 940 nm) HIF111 0.7168 HIF111/HOI 0.2172 SGI111 -0.0212 │SGI111∣/(│SGI111∣+TP1) 0.0661 HIF311 1.0598 HIF311/HOI 0.3212 SGI311 0.0307 │SGI311∣/(│SGI311∣+TP3) 0.0217 HIF411 1.3392 HIF411/HOI 0.4058 SGI411 -0.2420 │SGI411∣/(│SGI411∣+TP4) 0.2902 HIF421 1.4089 HIF421/HOI 0.4269 SGI421 -0.4196 ∣SGI421│/(∣SGI421│+TP4) 0.4148 HIF511 0.9674 HIF511/HOI 0.2931 SGI511 0.1684 │SGI511∣/(│SGI511∣+TP5) 0.1619 HIF521 1.0864 HIF521/HOI 0.3292 SGI521 0.2538 ∣SGI521│/(∣SGI521│+TP5) 0.2255 According to Table 11 and Table 12, the following conditional formula values can be obtained: Sixth embodiment inverse curve related value (main reference wavelength 940 nm is used) HIF111 0.7168 HIF111/HOI 0.2172 SGI111 -0.0212 │SGI111∣/(│SGI111∣+TP1) 0.0661 HIF311 1.0598 HIF311/HOI 0.3212 SGI311 0.0307 │SGI311∣/(│SGI311∣+TP3) 0.0217 HIF411 1.3392 HIF411/HOI 0.4058 SGI411 -0.2420 │SGI411∣/(│SGI411∣+TP4) 0.2902 HIF421 1.4089 HIF421/HOI 0.4269 SGI421 -0.4196 ∣SGI421│/(∣SGI421│+TP4) 0.4148 HIF511 0.9674 HIF511/HOI 0.2931 SGI511 0.1684 │SGI511∣/(│SGI511∣+TP5) 0.1619 HIF521 1.0864 HIF521/HOI 0.3292 SGI521 0.2538 ∣SGI521│/(∣SGI521│+TP5) 0.2255

雖然本創作已以實施方式揭露如上,然其並非用以限定本創作,任何熟習此技藝者,在不脫離本創作的精神和範圍內,當可作各種的更動與潤飾,因此本創作的保護範圍當視後附的申請專利範圍所界定者為準。Although this creation has been disclosed as above by way of implementation, it is not intended to limit this creation. Anyone who is familiar with this skill can make various changes and modifications within the spirit and scope of this creation, so the protection of this creation is protected The scope shall be determined by the scope of the attached patent application.

雖然本創作已參照其例示性實施例而特別地顯示及描述,將為所屬技術領域具通常知識者所理解的是,於不脫離以下申請專利範圍及其等效物所定義之本創作之精神與範疇下可對其進行形式與細節上之各種變更。Although this creation has been specifically shown and described with reference to its exemplary embodiments, it will be understood by those of ordinary skill in the art that it does not deviate from the spirit of this creation as defined by the following patent applications and their equivalents Various changes in form and detail can be made under the category.

10,20,30,40,50,60:光學成像系統 100,200,300,400,500,600:光圈 110,210,310,410,510,610:第一透鏡 112,212,312,412,512,612:物側面 114,214,314,414,514,614:像側面 120,220,320,420,520,620:第二透鏡 122,222,322,422,522,622:物側面 124,224,324,424,524,624:像側面 130,230,330,430,530,630:第三透鏡 132,232,332,432,532,632:物側面 134,234,334,434,534,634:像側面 140,240,340,440,540,640:第四透鏡 142,242,342,442,542,642:物側面 144,244,344,444,544,644:像側面 150,250,350,450,550,650:第五透鏡 152,252,352,452,552,652:物側面 154,254,354,454,554,654:像側面 170,270,370,470,570,670:紅外線濾光片 180,280,380,480,580,680:紅外光成像面 190,290,390,490,590,690:影像感測元件 f:光學成像系統之焦距 f1:第一透鏡的焦距 f2:第二透鏡的焦距 f3:第三透鏡的焦距 f4:第四透鏡的焦距 f5:第五透鏡的焦距 f/HEP:光學成像系統之光圈値 HAF:光學成像系統之最大視角的一半 NA1:第一透鏡的色散係數 NA2,NA3,NA4,NA5:第二透鏡至第五透鏡的色散係數 R1,R2:第一透鏡物側面以及像側面的曲率半徑 R3,R4:第二透鏡物側面以及像側面的曲率半徑 R5,R6:第三透鏡物側面以及像側面的曲率半徑 R7,R8:第四透鏡物側面以及像側面的曲率半徑 R9,R10:第五透鏡物側面以及像側面的曲率半徑 TP1:第一透鏡於光軸上的厚度 TP2,TP3,TP4,TP5:第二至第五透鏡於光軸上的厚度 ΣTP:所有具屈折力之透鏡的厚度總和 IN12:第一透鏡與第二透鏡於光軸上的間隔距離 IN23:第二透鏡與第三透鏡於光軸上的間隔距離 IN34:第三透鏡與第四透鏡於光軸上的間隔距離 IN45:第四透鏡與第五透鏡於光軸上的間隔距離 InRS51:第五透鏡物側面於光軸上的交點至第五透鏡物側面的最大有效半徑位置於光軸的水平位移距離 IF511:第五透鏡物側面上最接近光軸的反曲點 SGI511:IF511沉陷量 HIF511:第五透鏡物側面上最接近光軸的反曲點與光軸間的垂直距離 IF521:第五透鏡像側面上最接近光軸的反曲點 SGI521:IF521沉陷量 HIF521:第五透鏡像側面上最接近光軸的反曲點與光軸間的垂直距離 IF512:第五透鏡物側面上第二接近光軸的反曲點 SGI512:IF512沉陷量 HIF512:第五透鏡物側面第二接近光軸的反曲點與光軸間的垂直距離 IF522:第五透鏡像側面上第二接近光軸的反曲點 SGI522:IF522沉陷量 HIF522:第五透鏡像側面第二接近光軸的反曲點與光軸間的垂直距離 C51:第五透鏡物側面的臨界點 C52:第五透鏡像側面的臨界點 SGC51:第五透鏡物側面的臨界點與光軸的水平位移距離 SGC52:第五透鏡像側面的臨界點與光軸的水平位移距離 HVT51:第五透鏡物側面的臨界點與光軸的垂直距離 HVT52:第五透鏡像側面的臨界點與光軸的垂直距離 HOS:系統總高度 (第一透鏡物側面至紅外光成像面於光軸上的距離) InS:光圈至紅外光成像面的距離 InTL:第一透鏡物側面至該第五透鏡像側面的距離 InB:第五透鏡像側面至該紅外光成像面的距離 HOI:影像感測元件有效感測區域對角線長的一半 (最大像高) TDT:光學成像系統於結像時之TV畸變 (TV Distortion) ODT:光學成像系統於結像時之光學畸變 (Optical Distortion) 10,20,30,40,50,60: optical imaging system 100,200,300,400,500,600: aperture 110,210,310,410,510,610: the first lens 112,212,312,412,512,612: Object side 114,214,314,414,514,614: like profile 120,220,320,420,520,620: second lens 122,222,322,422,522,622: Object side 124,224,324,424,524,624: like side 130,230,330,430,530,630: third lens 132,232,332,432,532,632: object side 134,234,334,434,534,634: like profile 140,240,340,440,540,640: fourth lens 142,242,342,442,542,642: Object side 144,244,344,444,544,644: like side 150,250,350,450,550,650: fifth lens 152,252,352,452,552,652: Object side 154,254,354,454,554,654: like profile 170,270,370,470,570,670: Infrared filter 180,280,380,480,580,680: infrared imaging surface 190,290,390,490,590,690: image sensing element f: focal length of optical imaging system f1: focal length of the first lens f2: focal length of the second lens f3: focal length of the third lens f4: focal length of the fourth lens f5: focal length of the fifth lens f/HEP: Aperture value of optical imaging system HAF: half of the maximum angle of view of the optical imaging system NA1: dispersion coefficient of the first lens NA2, NA3, NA4, NA5: the dispersion coefficient of the second lens to the fifth lens R1, R2: radius of curvature of the object side and image side of the first lens R3, R4: radius of curvature of the object side and image side of the second lens R5, R6: radius of curvature of the object side and image side of the third lens R7, R8: radius of curvature of the object side and image side of the fourth lens R9, R10: radius of curvature of the object side and image side of the fifth lens TP1: the thickness of the first lens on the optical axis TP2, TP3, TP4, TP5: the thickness of the second to fifth lenses on the optical axis ΣTP: the sum of the thickness of all lenses with refractive power IN12: the distance between the first lens and the second lens on the optical axis IN23: the distance between the second lens and the third lens on the optical axis IN34: the distance between the third lens and the fourth lens on the optical axis IN45: the distance between the fourth lens and the fifth lens on the optical axis InRS51: the horizontal displacement distance from the intersection point of the fifth lens object side on the optical axis to the maximum effective radius position of the fifth lens object side on the optical axis IF511: the inflection point closest to the optical axis on the side of the fifth lens object SGI511: IF511 subsidence HIF511: the vertical distance between the reflex point closest to the optical axis and the optical axis on the side of the fifth lens object IF521: the inflection point closest to the optical axis on the image side of the fifth lens SGI521: IF521 subsidence HIF521: the vertical distance between the reflex point closest to the optical axis on the image side of the fifth lens and the optical axis IF512: the second reflex point close to the optical axis on the object side of the fifth lens SGI512: IF512 subsidence HIF512: The vertical distance between the inflection point of the second lens object side near the optical axis and the optical axis IF522: the second reflex point close to the optical axis on the image side of the fifth lens SGI522: IF522 sinking amount HIF522: the vertical distance between the reflex point of the fifth lens image side near the optical axis and the optical axis C51: Critical point on the side of the fifth lens object C52: Critical point on the side of the fifth lens image SGC51: The horizontal displacement distance between the critical point on the side of the fifth lens object and the optical axis SGC52: The horizontal displacement distance between the critical point on the image side of the fifth lens and the optical axis HVT51: The vertical distance between the critical point on the side of the fifth lens object and the optical axis HVT52: The vertical distance between the critical point on the image side of the fifth lens and the optical axis HOS: total height of the system (distance from the side of the first lens object to the infrared imaging surface on the optical axis) InS: distance from aperture to infrared imaging surface InTL: distance from the object side of the first lens to the image side of the fifth lens InB: the distance from the side of the fifth lens image to the infrared imaging surface HOI: The image sensor effectively senses half the diagonal length of the area (maximum image height) TDT: TV Distortion of Optical Imaging System at the Formation of Image (TV Distortion) ODT: Optical Distortion of Optical Imaging System at the End of Image Formation (Optical Distortion)

本創作上述及其他特徵將藉由參照附圖詳細說明。 第1A圖係繪示本創作第一實施例之光學成像系統的示意圖; 第1B圖由左至右依序繪示本創作第一實施例之光學成像系統的球差、像散以及光學畸變之曲線圖; 第1C圖係繪示本創作第一實施例光學成像系統之紅外光頻譜調制轉換特徵圖; 第2A圖係繪示本創作第二實施例之光學成像系統的示意圖; 第2B圖由左至右依序繪示本創作第二實施例之光學成像系統的球差、像散以及光學畸變之曲線圖; 第2C圖係繪示本創作第二實施例光學成像系統之紅外光頻譜調制轉換特徵圖; 第3A圖係繪示本創作第三實施例之光學成像系統的示意圖; 第3B圖由左至右依序繪示本創作第三實施例之光學成像系統的球差、像散以及光學畸變之曲線圖; 第3C圖係繪示本創作第三實施例光學成像系統之紅外光頻譜調制轉換特徵圖; 第4A圖係繪示本創作第四實施例之光學成像系統的示意圖; 第4B圖由左至右依序繪示本創作第四實施例之光學成像系統的球差、像散以及光學畸變之曲線圖; 第4C圖係繪示本創作第四實施例光學成像系統之紅外光頻譜調制轉換特徵圖; 第5A圖係繪示本創作第五實施例之光學成像系統的示意圖; 第5B圖由左至右依序繪示本創作第五實施例之光學成像系統的球差、像散以及光學畸變之曲線圖; 第5C圖係繪示本創作第五實施例光學成像系統之紅外光頻譜調制轉換特徵圖; 第6A圖係繪示本創作第六實施例之光學成像系統的示意圖; 第6B圖由左至右依序繪示本創作第六實施例之光學成像系統的球差、像散以及光學畸變之曲線圖; 第6C圖係繪示本創作第六實施例光學成像系統之紅外光頻譜調制轉換特徵圖。 The above and other features of this creation will be explained in detail by referring to the drawings. FIG. 1A is a schematic diagram showing the optical imaging system of the first embodiment of the present creation; FIG. 1B is a graph showing the spherical aberration, astigmatism, and optical distortion of the optical imaging system of the first embodiment of the present invention in order from left to right; FIG. 1C is a diagram showing the infrared spectrum modulation conversion characteristics of the optical imaging system of the first embodiment of the present invention; FIG. 2A is a schematic diagram showing the optical imaging system of the second embodiment of the present invention; Figure 2B is a graph showing the spherical aberration, astigmatism, and optical distortion of the optical imaging system of the second embodiment of the present invention in order from left to right; FIG. 2C is a diagram showing the infrared spectrum modulation conversion characteristics of the optical imaging system of the second embodiment of the present invention; FIG. 3A is a schematic diagram showing the optical imaging system of the third embodiment of the present invention; FIG. 3B shows the graphs of spherical aberration, astigmatism, and optical distortion of the optical imaging system of the third embodiment in this order from left to right; FIG. 3C is a diagram showing infrared spectrum modulation conversion characteristics of the optical imaging system of the third embodiment of the present invention; FIG. 4A is a schematic diagram showing the optical imaging system of the fourth embodiment of the present invention; FIG. 4B shows the graphs of spherical aberration, astigmatism, and optical distortion of the optical imaging system of the fourth embodiment in this order from left to right; FIG. 4C is a diagram showing the infrared spectrum modulation conversion characteristics of the optical imaging system of the fourth embodiment of the present invention; FIG. 5A is a schematic diagram showing the optical imaging system of the fifth embodiment of the present invention; FIG. 5B shows the graphs of spherical aberration, astigmatism, and optical distortion of the optical imaging system of the fifth embodiment in this order from left to right; FIG. 5C is a diagram showing the infrared spectrum modulation conversion characteristics of the optical imaging system of the fifth embodiment of the present invention; FIG. 6A is a schematic diagram showing the optical imaging system of the sixth embodiment of the present invention; FIG. 6B shows the graphs of spherical aberration, astigmatism and optical distortion of the optical imaging system of the sixth embodiment of the present invention in order from left to right; FIG. 6C is a diagram showing the infrared spectrum modulation conversion characteristics of the optical imaging system of the sixth embodiment of the present invention.

30:光學成像系統 30: Optical imaging system

300:光圈 300: aperture

310:第一透鏡 310: the first lens

312:物側面 312: Object side

314:像側面 314: like side

320:第二透鏡 320: second lens

322:物側面 322: Object side

324:像側面 324: like side

330:第三透鏡 330: third lens

332:物側面 332: Object side

334:像側面 334: like side

340:第四透鏡 340: fourth lens

342:物側面 342: Object side

344:像側面 344: like side

350:第五透鏡 350: fifth lens

352:物側面 352: Object side

354:像側面 354: like side

370:紅外線濾光片 370: Infrared filter

380:紅外光成像面 380: Infrared imaging surface

390:影像感測元件 390: Image sensor

Claims (25)

一種光學成像系統,由物側至像側依序包含: 一第一透鏡,具有屈折力; 一第二透鏡,具有屈折力; 一第三透鏡,具有屈折力; 一第四透鏡,具有屈折力; 一第五透鏡,具有屈折力;以及 一紅外光成像面,其中該光學成像系統具有屈折力的透鏡為五枚,且,該第一透鏡至該第五透鏡中至少一透鏡具有正屈折力,該光學成像系統的焦距為f,該光學成像系統之入射瞳直徑為HEP,該第一透鏡物側面至該紅外光成像面於光軸上具有一距離HOS,該光學成像系統之最大可視角度的一半為HAF,該第一透鏡至該第五透鏡於1/2 HEP高度且平行於光軸之厚度分別為ETP1、ETP2、ETP3、ETP4以及ETP5,前述ETP1至ETP5的總和為SETP,該第一透鏡至該第五透鏡於光軸之厚度分別為TP1、TP2、TP3、TP4以及TP5,前述TP1至TP5的總和為STP,其滿足下列條件:0.5≦f/HEP≦1.8;0 deg>HAF≦50 deg以及0.5≦SETP/STP >1。 An optical imaging system, in order from the object side to the image side, includes: A first lens with refractive power; A second lens with refractive power; A third lens with refractive power; A fourth lens with refractive power; A fifth lens with refractive power; and An infrared imaging surface, wherein the optical imaging system has five lenses with refractive power, and at least one of the first lens to the fifth lens has positive refractive power, and the focal length of the optical imaging system is f, the The diameter of the entrance pupil of the optical imaging system is HEP, the distance from the object side of the first lens to the imaging surface of the infrared light is a distance HOS on the optical axis, and half of the maximum viewing angle of the optical imaging system is HAF. The thickness of the fifth lens at the height of 1/2 HEP and parallel to the optical axis is ETP1, ETP2, ETP3, ETP4, and ETP5, respectively. The sum of the foregoing ETP1 to ETP5 is SETP. Thicknesses are TP1, TP2, TP3, TP4 and TP5, respectively. The sum of TP1 to TP5 is STP, which meets the following conditions: 0.5≦f/HEP≦1.8; 0 deg>HAF≦50 deg and 0.5≦SETP/STP >1 . 如請求項1所述之光學成像系統,其中該紅外光的波長介於850nm至960nm以及該第一空間頻率以SP1表示,其滿足下列條件:SP1≦220 cycles/mm。The optical imaging system according to claim 1, wherein the wavelength of the infrared light is between 850 nm and 960 nm and the first spatial frequency is represented by SP1, which satisfies the following condition: SP1≦220 cycles/mm. 如請求項1所述之光學成像系統,其中該第一透鏡物側面上於1/2 HEP高度的座標點至該紅外光成像面間平行於光軸之水平距離為ETL,該第一透鏡物側面上於1/2 HEP高度的座標點至該第五透鏡像側面上於1/2 HEP高度的座標點間平行於光軸之水平距離為EIN,其滿足下列條件:0.2≦EIN/ETL >1。The optical imaging system according to claim 1, wherein the horizontal distance between the coordinate point at the height of 1/2 HEP on the side of the first lens object and the infrared light imaging plane parallel to the optical axis is ETL, and the first lens object The horizontal distance between the coordinate point at the height of 1/2 HEP on the side and the coordinate point at the height of 1/2 HEP on the side of the fifth lens image parallel to the optical axis is EIN, which satisfies the following conditions: 0.2≦EIN/ETL> 1. 如請求項1所述之光學成像系統,其中滿足下列公式:0.3≦SETP/EIN>1。The optical imaging system according to claim 1, wherein the following formula is satisfied: 0.3≦SETP/EIN>1. 如請求項1所述之光學成像系統,其中紅外光在該紅外光成像面上之光軸、0.3HOI以及0.7HOI三處於空間頻率55 cycles/mm之調制轉換對比轉移率(MTF數值)分別以MTFE0、MTFE3以及MTFE7表示,其滿足下列條件:MTFE0≧0.01;MTFE3≧0.01;以及MTFE7≧0.01。The optical imaging system according to claim 1, wherein the optical axis of the infrared light on the imaging surface of the infrared light, 0.3HOI and 0.7HOI are at a spatial frequency of 55 cycles/mm modulation conversion contrast transfer rate (MTF value) respectively MTFE0, MTFE3 and MTFE7 indicate that they meet the following conditions: MTFE0≧0.01; MTFE3≧0.01; and MTFE7≧0.01. 如請求項1所述之光學成像系統,其中該第一透鏡與該第二透鏡之間於光軸上的距離為IN12,該第四透鏡與該第五透鏡之間於光軸上的距離為IN45,其滿足下列條件:IN12> IN45。The optical imaging system according to claim 1, wherein the distance between the first lens and the second lens on the optical axis is IN12, and the distance between the fourth lens and the fifth lens on the optical axis is IN45, which meets the following conditions: IN12> IN45. 如請求項1所述之光學成像系統,其中該第二透鏡與該第三透鏡之間於光軸上的距離為IN23,該第四透鏡與該第五透鏡之間於光軸上的距離為IN45,其滿足下列條件:IN23> IN45。The optical imaging system according to claim 1, wherein the distance between the second lens and the third lens on the optical axis is IN23, and the distance between the fourth lens and the fifth lens on the optical axis is IN45, which meets the following conditions: IN23> IN45. 如請求項1所述之光學成像系統,其中該第三透鏡與該第四透鏡之間於光軸上的距離為IN34,該第四透鏡與該第五透鏡之間於光軸上的距離為IN45,其滿足下列條件:IN34> IN45。The optical imaging system according to claim 1, wherein the distance between the third lens and the fourth lens on the optical axis is IN34, and the distance between the fourth lens and the fifth lens on the optical axis is IN45, which meets the following conditions: IN34> IN45. 如請求項1所述之光學成像系統,其中更包括一光圈,並且於該光圈至該紅外光成像面於光軸上具有一距離InS,其滿足下列公式:0.2≦InS/HOS≦1.1。The optical imaging system according to claim 1, further comprising an aperture, and a distance InS on the optical axis from the aperture to the infrared imaging surface, which satisfies the following formula: 0.2≦InS/HOS≦1.1. 一種光學成像系統,由物側至像側依序包含: 一第一透鏡,具有屈折力; 一第二透鏡,具有屈折力; 一第三透鏡,具有屈折力; 一第四透鏡,具有屈折力; 一第五透鏡,具有屈折力;以及 一紅外光成像面,其中該光學成像系統具有屈折力的透鏡為五枚,且該第一透鏡至該第五透鏡中至少一透鏡之至少一表面具有至少一反曲點,該光學成像系統的焦距為f,該光學成像系統之入射瞳直徑為HEP,該第一透鏡物側面至該紅外光成像面於光軸上具有一距離HOS,該光學成像系統之最大可視角度的一半為HAF,該第一透鏡物側面上於1/2 HEP高度的座標點至該紅外光成像面間平行於光軸之水平距離為ETL,該第一透鏡物側面上於1/2 HEP高度的座標點至該第五透鏡像側面上於1/2 HEP高度的座標點間平行於光軸之水平距離為EIN,其滿足下列條件:0.5≦f/HEP≦1.5;0 deg>HAF≦50 deg以及0.2≦EIN/ETL> 1。 An optical imaging system, in order from the object side to the image side, includes: A first lens with refractive power; A second lens with refractive power; A third lens with refractive power; A fourth lens with refractive power; A fifth lens with refractive power; and An infrared imaging surface, wherein the optical imaging system has five lenses with refractive power, and at least one surface of at least one lens from the first lens to the fifth lens has at least one inflection point. The focal length is f, the entrance pupil diameter of the optical imaging system is HEP, the first lens object side surface and the infrared light imaging surface have a distance HOS on the optical axis, and half of the maximum viewing angle of the optical imaging system is HAF. The horizontal distance between the coordinate point at the height of 1/2 HEP on the object side of the first lens and the infrared light imaging plane parallel to the optical axis is ETL, and the coordinate point at the height of 1/2 HEP on the object side of the first lens is to the The horizontal distance between the coordinate points at the height of 1/2 HEP on the image side of the fifth lens parallel to the optical axis is EIN, which satisfies the following conditions: 0.5≦f/HEP≦1.5; 0 deg>HAF≦50 deg and 0.2≦EIN /ETL> 1. 如請求項10所述之光學成像系統,其中紅外光在該紅外光成像面上之光軸、0.3HOI以及0.7HOI三處於空間頻率110 cycles/mm之調制轉換對比轉移率(MTF數值)分別以MTFQ0、MTFQ3以及MTFQ7表示,其滿足下列條件:MTFQ0≧0.01;MTFQ3≧0.01;以及MTFQ7≧0.01。The optical imaging system according to claim 10, wherein the optical axis of infrared light on the imaging surface of the infrared light, 0.3 HOI and 0.7 HOI are at a spatial frequency of 110 cycles/mm modulation conversion contrast transfer rate (MTF value) respectively MTFQ0, MTFQ3 and MTFQ7 indicate that they meet the following conditions: MTFQ0≧0.01; MTFQ3≧0.01; and MTFQ7≧0.01. 如請求項10所述之光學成像系統,其中該光學成像系統於該紅外光成像面上垂直於光軸具有一最大成像高度HOI,其滿足下列條件:0.5≦HOS/HOI≦3。The optical imaging system according to claim 10, wherein the optical imaging system has a maximum imaging height HOI perpendicular to the optical axis on the infrared imaging surface, which satisfies the following conditions: 0.5≦HOS/HOI≦3. 如請求項10所述之光學成像系統,其中更包括一光圈,該光圈位於該第一透鏡像側面之後。The optical imaging system according to claim 10, further comprising an aperture, the aperture is located behind the image side of the first lens. 如請求項10所述之光學成像系統,其中該第四透鏡之像側面於光軸上為凸面。The optical imaging system according to claim 10, wherein the image side of the fourth lens is convex on the optical axis. 如請求項10所述之光學成像系統,其中該第五透鏡之物側面於光軸上為凹面以及像側面於光軸上為凸面。The optical imaging system according to claim 10, wherein the object side of the fifth lens is concave on the optical axis and the image side is convex on the optical axis. 如請求項10所述之光學成像系統,其中該第二透鏡之物側面於光軸上為凸面。The optical imaging system according to claim 10, wherein the object side of the second lens is convex on the optical axis. 如請求項10所述之光學成像系統,其中該第四透鏡像側面上於1/2 HEP高度的座標點至該第五透鏡物側面上於1/2 HEP高度的座標點間平行於光軸之水平距離為ED45,該第四透鏡與該第五透鏡之間於光軸上的距離為IN45,其滿足下列條件:0> ED45/ IN45≦50。The optical imaging system according to claim 10, wherein the coordinate point at the height of 1/2 HEP on the image side of the fourth lens to the coordinate point at the height of 1/2 HEP on the object side of the fifth lens is parallel to the optical axis The horizontal distance is ED45, and the distance between the fourth lens and the fifth lens on the optical axis is IN45, which satisfies the following conditions: 0>ED45/IN45≦50. 如請求項10所述之光學成像系統,其中該第一透鏡像側面上於1/2 HEP高度的座標點至該第二透鏡物側面上於1/2 HEP高度的座標點間平行於光軸之水平距離為ED12,該第一透鏡與該第二透鏡之間於光軸上的距離為IN12,其滿足下列條件:0> ED12/ IN12≦10。The optical imaging system according to claim 10, wherein the coordinate point at the height of 1/2 HEP on the image side of the first lens to the coordinate point at the height of 1/2 HEP on the object side of the second lens is parallel to the optical axis The horizontal distance is ED12, and the distance between the first lens and the second lens on the optical axis is IN12, which satisfies the following conditions: 0>ED12/IN12≦10. 如請求項10所述之光學成像系統,其中該第五透鏡於1/2 HEP高度且平行於光軸之厚度為ETP5,該第五透鏡於光軸上的厚度為TP5,其滿足下列條件:0> ETP5/ TP5≦5。The optical imaging system according to claim 10, wherein the thickness of the fifth lens at a height of 1/2 HEP and parallel to the optical axis is ETP5, and the thickness of the fifth lens on the optical axis is TP5, which satisfies the following conditions: 0> ETP5/ TP5≦5. 一種光學成像系統,由物側至像側依序包含: 一第一透鏡,具有屈折力; 一第二透鏡,具有屈折力; 一第三透鏡,具有屈折力; 一第四透鏡,具有屈折力; 一第五透鏡,具有屈折力;以及 一紅外光成像面,其中該光學成像系統具有屈折力的透鏡為五枚,且該第一透鏡至該第五透鏡中至少二透鏡其個別之至少一表面具有至少一反曲點,該光學成像系統的焦距為f,該光學成像系統之入射瞳直徑為HEP,該第一透鏡物側面至該紅外光成像面於光軸上具有一距離HOS,該光學成像系統之最大可視角度的一半為HAF,該光學成像系統於該紅外光成像面上垂直於光軸具有一最大成像高度HOI,該第一透鏡物側面上於1/2 HEP高度的座標點至該紅外光成像面間平行於光軸之水平距離為ETL,該第一透鏡物側面上於1/2 HEP高度的座標點至該第五透鏡像側面上於1/2 HEP高度的座標點間平行於光軸之水平距離為EIN,其滿足下列條件:0.5≦f/HEP≦1.3;10 deg≦HAF≦50 deg;以及0.2≦EIN/ETL> 1。 An optical imaging system, in order from the object side to the image side, includes: A first lens with refractive power; A second lens with refractive power; A third lens with refractive power; A fourth lens with refractive power; A fifth lens with refractive power; and An infrared imaging surface, wherein the optical imaging system has five lenses with refractive power, and at least two surfaces of at least two of the first lens to the fifth lens have at least one inflection point, the optical imaging The focal length of the system is f, the diameter of the entrance pupil of the optical imaging system is HEP, the distance from the object side of the first lens to the imaging surface of the infrared light is a distance HOS on the optical axis, and half of the maximum viewing angle of the optical imaging system is HAF , The optical imaging system has a maximum imaging height HOI perpendicular to the optical axis on the infrared imaging surface, the coordinate point at the height of 1/2 HEP on the object side of the first lens to the infrared imaging surface is parallel to the optical axis The horizontal distance is ETL, and the horizontal distance between the coordinate point at the height of 1/2 HEP on the object side of the first lens and the coordinate point at the height of 1/2 HEP on the image side of the fifth lens is EIN, It satisfies the following conditions: 0.5≦f/HEP≦1.3; 10 deg≦HAF≦50 deg; and 0.2≦EIN/ETL> 1. 如請求項20所述之光學成像系統,其中該光學成像系統滿足下列公式:0 mm>HOS≦10 mm。The optical imaging system according to claim 20, wherein the optical imaging system satisfies the following formula: 0 mm>HOS≦10 mm. 如請求項20所述之光學成像系統,其中該紅外光的波長介於850nm至960nm以及該第一空間頻率以SP1表示,其滿足下列條件:SP1≦220 cycles/mm。The optical imaging system according to claim 20, wherein the wavelength of the infrared light is between 850 nm and 960 nm and the first spatial frequency is represented by SP1, which satisfies the following condition: SP1≦220 cycles/mm. 如請求項20所述之光學成像系統,其中該第一透鏡至該第五透鏡之材質均為塑膠。The optical imaging system according to claim 20, wherein the materials of the first lens to the fifth lens are plastic. 如請求項20所述之光學成像系統,其中該第一透鏡與該第二透鏡之間於光軸上的距離為IN12,該第二透鏡與該第三透鏡之間於光軸上的距離為IN23,該第三透鏡與該第四透鏡之間於光軸上的距離為IN34,該第四透鏡與該第五透鏡之間於光軸上的距離為IN45,其滿足下列條件:IN12> IN45;IN34> IN45;以及IN23> IN45。The optical imaging system according to claim 20, wherein the distance between the first lens and the second lens on the optical axis is IN12, and the distance between the second lens and the third lens on the optical axis is IN23, the distance between the third lens and the fourth lens on the optical axis is IN34, and the distance between the fourth lens and the fifth lens on the optical axis is IN45, which satisfies the following conditions: IN12> IN45 ; IN34> IN45; and IN23> IN45. 如請求項20所述之光學成像系統,其中該光學成像系統更包括一光圈、一影像感測元件以及一驅動模組,該影像感測元件設置於該紅外光成像面,並且於該光圈至該紅外光成像面於光軸上具有一距離InS,該驅動模組可與該些透鏡相耦合並使該些透鏡產生位移,其滿足下列公式:0.2≦InS/HOS≦1.1。The optical imaging system according to claim 20, wherein the optical imaging system further includes an aperture, an image sensing element, and a driving module, the image sensing element is disposed on the infrared imaging surface, and extends from the aperture to The infrared imaging surface has a distance InS on the optical axis. The driving module can couple with the lenses and cause the lenses to shift, which satisfies the following formula: 0.2≦InS/HOS≦1.1.
TW109200788U 2020-01-17 2020-01-17 Optical image capturing system TWM596355U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109200788U TWM596355U (en) 2020-01-17 2020-01-17 Optical image capturing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109200788U TWM596355U (en) 2020-01-17 2020-01-17 Optical image capturing system

Publications (1)

Publication Number Publication Date
TWM596355U true TWM596355U (en) 2020-06-01

Family

ID=72177165

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109200788U TWM596355U (en) 2020-01-17 2020-01-17 Optical image capturing system

Country Status (1)

Country Link
TW (1) TWM596355U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI772737B (en) * 2020-01-17 2022-08-01 先進光電科技股份有限公司 Optical image capturing system
US11899172B2 (en) 2020-03-30 2024-02-13 Largan Precision Co., Ltd. Imaging optical lens assembly including five lenses +−++−, −++−, −−++−, +−+++, +++−+, +−+−+, +−+−−, or −++−+ of refractive powers, imaging apparatus and electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI772737B (en) * 2020-01-17 2022-08-01 先進光電科技股份有限公司 Optical image capturing system
US11747600B2 (en) 2020-01-17 2023-09-05 Ability opto-electronics technology co., ltd Optical image capturing system
US11899172B2 (en) 2020-03-30 2024-02-13 Largan Precision Co., Ltd. Imaging optical lens assembly including five lenses +−++−, −++−, −−++−, +−+++, +++−+, +−+−+, +−+−−, or −++−+ of refractive powers, imaging apparatus and electronic device

Similar Documents

Publication Publication Date Title
TW201825958A (en) Optical Image Capturing System
TW201901227A (en) Optical imaging system (2)
TW201802523A (en) Optical image capturing system
TW201825952A (en) Optical image capturing system
TW201825950A (en) Optical Image Capturing System
TW202004250A (en) Optical image capturing system
TW201730613A (en) Optical image capturing system
TWI788621B (en) Optical image capturing system
TW201818110A (en) Optical image capturing system
TWI685689B (en) Optical image capturing system
TW201825948A (en) Optical Image Capturing System
TW202004253A (en) Optical image capturing system
TW201947270A (en) Optical image capturing system
TW201935065A (en) Optical image capturing system
TWI631362B (en) Optical image capturing system
TW201802525A (en) Optical image capturing system
TWI772737B (en) Optical image capturing system
TWI813849B (en) Optical image capturing system
TWM596355U (en) Optical image capturing system
TW202004248A (en) Optical image capturing system
TW201940918A (en) Optical image capturing system
TWM596356U (en) Optical image capturing system
TWM594155U (en) Optical image capturing system
TWI826701B (en) Optical image capturing system
TWI780432B (en) Optical image capturing system