TWM590434U - Detection device for obstructive sleep apnea - Google Patents

Detection device for obstructive sleep apnea Download PDF

Info

Publication number
TWM590434U
TWM590434U TW108214964U TW108214964U TWM590434U TW M590434 U TWM590434 U TW M590434U TW 108214964 U TW108214964 U TW 108214964U TW 108214964 U TW108214964 U TW 108214964U TW M590434 U TWM590434 U TW M590434U
Authority
TW
Taiwan
Prior art keywords
electrocardiogram
detection device
data set
obstructive sleep
sleep apnea
Prior art date
Application number
TW108214964U
Other languages
Chinese (zh)
Inventor
林俊成
Original Assignee
國立勤益科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立勤益科技大學 filed Critical 國立勤益科技大學
Priority to TW108214964U priority Critical patent/TWM590434U/en
Publication of TWM590434U publication Critical patent/TWM590434U/en

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

A detection device for obstructive sleep apnea (OSA) is provided. The detection device includes a process, a storage medium, and a transceiver. The transceiver obtains a first ECG, wherein the first ECG includes a first data set corresponding to non-OSA and a second data set corresponding to the OSA. The processor accesses and executes a plurality of modules in the storage medium, wherein the plurality of modules include a training module and a detection module. The training module uses the first data set and the second data set as training data to train a machine learning model. The detection module obtains, via the transceiver, a second ECG of a subject, and determines, according to the machine learning model and the second ECG, whether the subject has the OSA.

Description

阻塞性睡眠呼吸暫停症狀的偵測裝置Device for detecting symptoms of obstructive sleep apnea

本揭露是有關於一種偵測裝置,且特別是有關於一種阻塞性睡眠呼吸暫停(obstructive sleep apnea,OSA)症狀的偵測裝置。The disclosure relates to a detection device, and particularly to a detection device for obstructive sleep apnea (OSA) symptoms.

OSA症狀是一種常見的睡眠障礙,其是在睡眠期間因為咽部塌陷造成完全或部分上呼吸道阻塞,而導致呼吸暫停或減弱的症狀。目前,要診斷阻塞型睡眠呼吸中止症,主要的依據是睡眠多項生理檢查(polysomnography,PSG)。進行PSG的檢查時,受試者必須到睡眠實驗室或睡眠中心睡一個晚上,在護理人員的監督下,在頭部、眼角、下巴、心臟、以及腿部貼上電極貼片,並且在胸部及腹部套上感應帶,在手指套上血氧測量器,在口鼻套上呼吸感應器,在手臂套上血壓計,以記錄整個晚上的睡眠生理資料。然而,並不是所有病患都有時間能在睡眠實驗室或睡眠中心過夜,並且患有OSA症狀的病患也不是每晚都會發生呼吸暫停(apnea)事件。因此,即使病患前往睡眠實驗室或睡眠中心過夜以測量睡眠生理資料,當夜所測量到的睡眠生理資料也有可能無法幫助醫生診斷出病患的OSA症狀。據此,如何提出一種簡化且方便的睡眠障礙診斷方法,是本領域人員致力的目標之一。The OSA symptom is a common sleep disorder, which is a symptom of complete or partial upper airway obstruction caused by collapse of the pharynx during sleep, resulting in apnea or weakening. At present, the main basis for diagnosing obstructive sleep apnea is polysomnography (PSG). During the PSG examination, the subject must go to a sleep laboratory or sleep center for one night, under the supervision of the nursing staff, apply electrode patches on the head, corners of the eyes, chin, heart, and legs, and put them on the chest Put a sensor belt on the abdomen, put a blood oxygen meter on the finger, put a breath sensor on the nose and nose, and put a sphygmomanometer on the arm to record the sleep physiological data throughout the night. However, not all patients have time to spend the night in a sleep laboratory or sleep center, and patients with OSA symptoms do not have apnea events every night. Therefore, even if the patient goes to a sleep laboratory or sleep center overnight to measure sleep physiology data, the sleep physiology data measured that night may not be able to help the doctor diagnose the patient's OSA symptoms. According to this, how to propose a simplified and convenient method for diagnosing sleep disorders is one of the goals of those skilled in the art.

本揭露提供一種OSA症狀的偵測裝置,可診斷受試者是否罹患OSA症狀。The present disclosure provides an OSA symptom detection device that can diagnose whether a subject suffers from OSA symptoms.

本揭露的阻塞性睡眠呼吸暫停症狀的偵測裝置,包括處理器、儲存媒體以及收發器。收發器取得第一心電圖,其中第一心電圖包括對應於非阻塞性睡眠呼吸暫停症狀的第一資料集合以及對應於阻塞性睡眠呼吸暫停症狀的第二資料集合。儲存媒體儲存多個模組。處理器耦接儲存媒體和收發器,並且存取和執行多個模組,其中多個模組包括訓練模組和偵測模組。訓練模組將第一資料集合以及第二資料集合作為訓練資料以訓練機器學習模型。偵測模組通過收發器取得受試者的第二心電圖,並且根據機器學習模型以及第二心電圖判斷受試者是否罹患阻塞性睡眠呼吸暫停症狀。The disclosed device for detecting obstructive sleep apnea symptoms includes a processor, a storage medium, and a transceiver. The transceiver obtains a first electrocardiogram, where the first electrocardiogram includes a first data set corresponding to non-obstructive sleep apnea symptoms and a second data set corresponding to obstructive sleep apnea symptoms. The storage medium stores multiple modules. The processor is coupled to the storage medium and the transceiver, and accesses and executes multiple modules. The multiple modules include a training module and a detection module. The training module uses the first data set and the second data set as training data to train the machine learning model. The detection module obtains the second electrocardiogram of the subject through the transceiver, and determines whether the subject suffers from obstructive sleep apnea symptoms according to the machine learning model and the second electrocardiogram.

在本揭露的一實施例中,上述的第一心電圖以及第二心電圖對應於非呼吸暫停事件。In an embodiment of the present disclosure, the above-mentioned first electrocardiogram and second electrocardiogram correspond to non-apnea events.

在本揭露的一實施例中,上述的機器學習模型為卷積神經網路模型。In an embodiment of the present disclosure, the aforementioned machine learning model is a convolutional neural network model.

在本揭露的一實施例中,上述的訓練模組根據第一心電圖產生對應的心源性呼吸訊號,根據第一心電圖測量多個RR間隔,根據多個RR間隔以及心源性呼吸訊號的至少其中之一產生第二訓練資料,並且根據第二訓練資料訓練支援向量機模型。In an embodiment of the present disclosure, the above-mentioned training module generates a corresponding cardiogenic respiratory signal according to the first electrocardiogram, measures a plurality of RR intervals according to the first electrocardiogram, and at least according to the plurality of RR intervals and at least the cardiogenic respiratory signal One of them generates second training data and trains the support vector machine model according to the second training data.

在本揭露的一實施例中,上述的偵測模組根據支援向量機模型、機器學習模型以及第二心電圖判斷受試者是否罹患阻塞性睡眠呼吸暫停症狀。In an embodiment of the present disclosure, the above detection module determines whether the subject suffers from obstructive sleep apnea symptoms based on the support vector machine model, the machine learning model, and the second electrocardiogram.

在本揭露的一實施例中,上述的訓練模組從多個RR間隔或心源性呼吸訊號萃取多個特徵,並且根據多個特徵產生第二訓練資料。In an embodiment of the present disclosure, the training module described above extracts multiple features from multiple RR intervals or cardiogenic respiratory signals, and generates second training data according to the multiple features.

在本揭露的一實施例中,上述的多個特徵關聯於下列的至少其中之一:RR間隔平均值、RR間隔的第二或第三序列相關係數、RR間隔對的數量,其中RR間隔對包括相鄰的兩個RR間隔,且兩個RR間隔之間的時間間隔超過50毫秒、相鄰的兩個RR間隔的標準差、RR間隔的正規化的極低頻範圍功率、心源性呼吸訊號的正規化的極低頻範圍功率、心源性呼吸訊號的正規化的低頻範圍功率以及心源性呼吸訊號的正規化的高頻範圍功率。In an embodiment of the present disclosure, the above-mentioned multiple features are associated with at least one of the following: the average value of the RR interval, the correlation coefficient of the second or third sequence of the RR interval, and the number of RR interval pairs, where the RR interval pair Including two adjacent RR intervals, and the time interval between the two RR intervals exceeds 50 milliseconds, the standard deviation of the two adjacent RR intervals, the normalized extreme low frequency range power of the RR interval, cardiogenic respiratory signal The normalized ultra-low frequency range power, the normalized low frequency range power of the cardiogenic respiratory signal, and the normalized high frequency range power of the cardiogenic respiratory signal.

在本揭露的一實施例中,上述的偵測模組響應於判斷受試者罹患阻塞性睡眠呼吸暫停症狀而通過收發器發出警示。In an embodiment of the present disclosure, the above-mentioned detection module issues a warning through the transceiver in response to determining that the subject suffers from obstructive sleep apnea symptoms.

基於上述,可利用受試者在正常狀況下(即:未發生非呼吸暫停事件)的心電圖來診斷受試者是否罹患OSA症狀。Based on the above, the ECG of the subject under normal conditions (ie, no non-apnea event) can be used to diagnose whether the subject suffers from OSA symptoms.

為了使本揭露之內容可以被更容易明瞭,以下特舉實施例作為本揭露確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。In order to make the contents of the disclosure easier to understand, the following specific embodiments are taken as examples on which the disclosure can indeed be implemented. In addition, wherever possible, elements/components/steps with the same reference numerals in the drawings and embodiments represent the same or similar components.

圖1根據本揭露的實施例繪示OSA症狀的偵測裝置100的示意圖。偵測裝置100包括處理器110、儲存媒體120以及收發器130。FIG. 1 illustrates a schematic diagram of an OSA symptom detection device 100 according to an embodiment of the present disclosure. The detection device 100 includes a processor 110, a storage medium 120 and a transceiver 130.

處理器110例如是中央處理單元(central processing unit,CPU),或是其他可程式化之一般用途或特殊用途的微控制單元(micro control unit,MCU)、微處理器(microprocessor)、數位信號處理器(digital signal processor,DSP)、可程式化控制器、特殊應用積體電路(application specific integrated circuit,ASIC)、圖形處理器(graphics processing unit,GPU)、算數邏輯單元(arithmetic logic unit,ALU)、複雜可程式邏輯裝置(complex programmable logic device,CPLD)、現場可程式化邏輯閘陣列(field programmable gate array,FPGA)或其他類似元件或上述元件的組合。處理器110可耦接至儲存媒體120以及收發器130,並且存取和執行儲存於儲存媒體120中的多個模組和各種應用程式。The processor 110 is, for example, a central processing unit (CPU), or other programmable general-purpose or special-purpose micro-control unit (MCU), microprocessor (microprocessor), and digital signal processing (Digital signal processor, DSP), programmable controller, application specific integrated circuit (ASIC), graphics processing unit (GPU), arithmetic logic unit (ALU) , Complex programmable logic device (CPLD), field programmable gate array (FPGA) or other similar components or a combination of the above components. The processor 110 may be coupled to the storage medium 120 and the transceiver 130, and access and execute multiple modules and various application programs stored in the storage medium 120.

儲存媒體120例如是任何型態的固定式或可移動式的隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟(hard disk drive,HDD)、固態硬碟(solid state drive,SSD)或類似元件或上述元件的組合,而用於儲存可由處理器110執行的多個模組或各種應用程式。在本實施例中,儲存媒體120可儲存包括訓練模組121以及偵測模組122等多個模組,其功能將於後續說明。The storage medium 120 is, for example, any type of fixed or removable random access memory (RAM), read-only memory (ROM), flash memory (flash memory) , A hard disk drive (HDD), a solid state drive (SSD), or a similar component or a combination of the above components, and is used to store multiple modules or various applications that can be executed by the processor 110. In this embodiment, the storage medium 120 may store a plurality of modules including a training module 121 and a detection module 122, the functions of which will be described later.

收發器130以無線或有線的方式傳送及接收訊號。收發器130還可以執行例如低噪聲放大、阻抗匹配、混頻、向上或向下頻率轉換、濾波、放大以及類似的操作。收發器130可用以接收作為訓練資料的第一心電圖或接收測量自受試者的第二心電圖。舉例來說,收發器130可通訊連接至黏貼於受試者身上的電極,其中所述電極可感測受試者的心跳以產生受試者的第二心電圖。舉例來說,收發器130可通過例如全球行動通信(global System for mobile communication,GSM)、個人手持式電話系統(personal handy-phone system,PHS)、碼多重擷取(code division multiple access,CDMA)系統、寬頻碼分多址(wideband code division multiple access,WCDMA)系統、長期演進(long term evolution,LTE)系統、全球互通微波存取(worldwide interoperability for microwave access,WiMAX)系統、無線保真(wireless fidelity,Wi-Fi)系統或藍牙(Bluetooth)等通訊技術接收作為訓練資料的第一心電圖,或接收由黏貼在受試者胸部的電極所測量到的第二心電圖。The transceiver 130 transmits and receives signals in a wireless or wired manner. The transceiver 130 may also perform operations such as low noise amplification, impedance matching, frequency mixing, up or down frequency conversion, filtering, amplification, and the like. The transceiver 130 may be used to receive a first electrocardiogram as training data or a second electrocardiogram measured from a subject. For example, the transceiver 130 may be communicatively connected to an electrode attached to the subject, where the electrode may sense the subject's heartbeat to generate the subject's second electrocardiogram. For example, the transceiver 130 may use, for example, global system for mobile communication (GSM), personal handy-phone system (PHS), and code division multiple access (CDMA) System, wideband code division multiple access (WCDMA) system, long term evolution (LTE) system, global interoperability for microwave access (WiMAX) system, wireless fidelity (wireless Fidelity, Wi-Fi) system or Bluetooth (Bluetooth) and other communication technologies receive the first electrocardiogram as training data, or the second electrocardiogram measured by electrodes attached to the chest of the subject.

作為訓練資料的第一心電圖可包括對應於非OSA症狀的第一資料集合以及對應於OSA症狀的第二資料集合,其中第一資料集合例如是測量自未罹患OSA症狀之人員在正常狀況(即:該名人員未發生呼吸暫停事件)下的心跳而產生的心電圖,並且第二資料集合例如是測量自重度OSA症狀患者在正常狀況(即:該名患者未發生呼吸暫停事件)下的心跳而產生的心電圖。在本實施例中,第一資料集合可包括對應於非OSA症狀的多個一分鐘長度的心電圖,且每一個心電圖測量的期間並未發生呼吸暫停事件。第二資料集合可包括對應於OSA症狀的多個一分鐘長度的心電圖,且每一個心電圖測量的期間並未發生呼吸暫停事件。The first electrocardiogram as training data may include a first data set corresponding to non-OSA symptoms and a second data set corresponding to OSA symptoms, where the first data set is measured, for example, from a person who has not suffered from OSA symptoms in normal conditions (ie : The person’s electrocardiogram due to the heartbeat under the apnea event, and the second data set is, for example, to measure the heartbeat of the patient with self-severe OSA symptoms under normal conditions (ie: the patient has no apnea event) The resulting ECG. In this embodiment, the first data set may include multiple one-minute ECGs corresponding to non-OSA symptoms, and no apnea event occurs during each ECG measurement period. The second data set may include multiple one-minute ECGs corresponding to OSA symptoms, and no apnea event occurs during each ECG measurement period.

訓練模組121可將第一資料集合和第二資料集合作為訓練資料以訓練機器學習模型,其中訓練好的機器學習模型可用以根據測量自受試者的第二心電圖判斷受試者是否罹患OSA症狀。值得注意的是,本實施例的訓練資料可以是未經小波轉換過的時域訊號,而非經小波轉換過的時頻訊號。由於時域訊號的維度較時頻訊號的維度為低,故使用時域訊號而非時頻訊號來訓練機器學習模型的訓練模組121將花費較少的運算力。The training module 121 can use the first data set and the second data set as training data to train the machine learning model, wherein the trained machine learning model can be used to determine whether the subject suffers from OSA according to the second electrocardiogram measured from the subject symptom. It is worth noting that the training data in this embodiment may be a time-domain signal that has not been transformed by wavelet, instead of a time-frequency signal that has been transformed by wavelet. Since the dimension of the time-domain signal is lower than that of the time-frequency signal, the training module 121 that uses the time-domain signal instead of the time-frequency signal to train the machine learning model will cost less computing power.

在一實施例中,作為訓練資料的第一心電圖更包括代表受到雜訊干擾之心電圖的第三資料集合。訓練模組121可將第一資料集合、第二資料集合和第三資料集合作為訓練資料以訓練機器學習模型。由第一資料集合、第二資料集合和第三資料集合所訓練出的機器學習模型不僅能根據測量自受試者的第二心電圖判斷受試者是否罹患OSA症狀,還能根據第二心電圖判斷由收發器130所接收的第二心電圖的資料可能受到雜訊干擾。因此,運算模組122在判斷受試者的OSA症狀的嚴重程度時,可先過濾掉受到雜訊干擾的資料。In one embodiment, the first electrocardiogram as training data further includes a third data set representing an electrocardiogram interfered by noise. The training module 121 may use the first data set, the second data set, and the third data set as training data to train the machine learning model. The machine learning model trained from the first data set, the second data set, and the third data set can not only determine whether the subject suffers from OSA symptoms based on the second ECG measured from the subject, but also based on the second ECG The second ECG data received by the transceiver 130 may be interfered by noise. Therefore, when determining the severity of the OSA symptom of the subject, the arithmetic module 122 may first filter out the data interfered by noise.

在訓練完機器學習模型後,偵測模組122可根據機器學習模型以及測量自受試者的第二心電圖判斷受試者是否罹患OSA症狀。After training the machine learning model, the detection module 122 can determine whether the subject suffers from OSA symptoms according to the machine learning model and the second electrocardiogram measured from the subject.

在一實施例中,若偵測模組122判斷受試者罹患OSA症狀,則偵測模組122可通過收發器130發出警示以提示受試者其已罹患OSA症狀。舉例來說,偵測模組122可在判斷了受試者罹患OSA症狀後,通過收發器130傳送警示訊息至受試者的行動裝置。In one embodiment, if the detection module 122 determines that the subject suffers from OSA symptoms, the detection module 122 may issue a warning through the transceiver 130 to alert the subject that he has suffered from OSA symptoms. For example, the detection module 122 may send a warning message to the subject's mobile device through the transceiver 130 after determining that the subject has OSA symptoms.

上述的機器學習模型例如是卷積神經網路(convolutional neural network,CNN)模型。卷積神經網路與傳統的多層感知網路最大的差異在於卷積神經網路多了卷積層與池化層,這兩層讓卷積神經網路具有能力可以萃取出輸入訊號的特徵。卷積層的設計具有多項特色。第一個特色是局部感知。在傳統神經網路中每個神經元都要與每個取樣點互相連接,因此需要大量的權重,使得訓練網路時的困難度極高。而在卷積神經網路中,每個神經元的權重數量都與卷積核的尺寸相同,因此相當於每個神經元只與對應的部分取樣點互相連接,因而能大幅地減少權重的數量。比較少的權重數量可以降低過度擬合(overfitting)的風險。第二個特色是權重共享機制。卷積神經網路是通過反向傳播誤差算法來訓練並更新最佳的卷積核權重,但是在卷積的過程中,卷積核的權重並不會改變。第三個特色是多卷積核。如果只使用一個卷積核則只能萃取訊號的部份特徵。如果使用多個卷積核則可以萃取輸入訊號的多個特徵。卷積層的數量越多,卷積神經網路所能萃取的特徵越多。The aforementioned machine learning model is, for example, a convolutional neural network (CNN) model. The biggest difference between the convolutional neural network and the traditional multi-layer perception network is that the convolutional neural network has more convolutional layers and pooling layers. These two layers give the convolutional neural network the ability to extract the characteristics of the input signal. The design of the convolutional layer has many characteristics. The first feature is local perception. In the traditional neural network, each neuron must be connected with each sampling point, so a large amount of weight is required, which makes the difficulty of training the network extremely high. In the convolutional neural network, the weight of each neuron is the same as the size of the convolution kernel, so it is equivalent to that each neuron is only connected to the corresponding part of the sampling point, which can greatly reduce the number of weights. . A relatively small number of weights can reduce the risk of overfitting. The second feature is the weight sharing mechanism. Convolutional neural network is to train and update the optimal weight of the convolution kernel through the back propagation error algorithm, but in the process of convolution, the weight of the convolution kernel will not change. The third feature is the multi-convolution kernel. If only one convolution kernel is used, only some features of the signal can be extracted. If multiple convolution kernels are used, multiple features of the input signal can be extracted. The more the number of convolutional layers, the more features the convolutional neural network can extract.

在輸入訊號經過由卷積層和激活函數進行的非線性轉換後,可產生特徵圖(feature map)。激活函數最重要的功能在於引入神經網路的非線性,因為如果沒有加入激活函數,卷積層與全連接層只是單純的線性運算,對於線性不可分的問題仍然是無解。After the input signal undergoes a non-linear transformation by the convolution layer and the activation function, a feature map can be generated. The most important function of the activation function is to introduce the nonlinearity of the neural network, because if no activation function is added, the convolutional layer and the fully connected layer are only simple linear operations, and there is still no solution to the problem of linear inseparability.

為了減少經卷積運算萃取出的特徵的維度並提高學習過程的速度,卷積層之後會接著一個池化層。池化層是一個壓縮特徵圖並保留重要資訊的方法。池化層採用的取樣方法可包括最大池化法(max pooling)或平均池化法(mean pooling)。最大池化法是選擇池化視窗中的最大值作為取樣值。平均池化法是將池化視窗中的所有值相加後取平均以作為取樣值。池化之後的特徵圖還是保留局部範圍比對的最大可能性。換言之,池化後的資訊更可以專注於特徵圖中是否存在相符的特徵,而不是專注於這些特徵所在的位置。因此,相較於傳統的神經網路,卷積神經網路更可以判斷出特徵圖中是否包含某項特徵,而不需考量到特徵所在的位置。因此,就算輸入訊號的特徵發生偏移,卷積神經網路也可辨識出該特徵。在池化層之後,全連接層會將前面經過多次卷積與池化後高度抽象化的特徵進行整合。然後再由輸出層對各種分類都輸出一個相對應的機率,其中所有分類的機率總和為1。In order to reduce the dimension of the features extracted by the convolution operation and increase the speed of the learning process, the convolution layer will be followed by a pooling layer. The pooling layer is a method of compressing feature maps and retaining important information. The sampling method adopted by the pooling layer may include a max pooling method or a mean pooling method. The maximum pooling method is to select the maximum value in the pooling window as the sampling value. The average pooling method is to add all the values in the pooling window and take the average as the sampling value. The feature map after pooling still retains the maximum possibility of local range comparison. In other words, the pooled information can focus on whether there are matching features in the feature map, rather than on the location of these features. Therefore, compared with the traditional neural network, the convolutional neural network can determine whether a feature is included in the feature map, without considering the location of the feature. Therefore, even if the feature of the input signal is shifted, the convolutional neural network can recognize the feature. After the pooling layer, the fully connected layer integrates highly abstracted features after multiple convolutions and pooling. Then, the output layer outputs a corresponding probability for each classification, in which the total probability of all classifications is 1.

圖2根據本揭露的實施例繪示卷積神經網路模型200的示意圖,其中卷積神經網路模型200是由訓練模組121所訓練出的機器學習模型中的一種態樣。卷積神經網路模型200可包括輸入層220、卷積層231、池化層232、卷積層241、池化層242、全連接層251、全連接層252以及輸出層260。如圖2所示的卷積神經網路模型200的輸入資料210例如是測量自受試者的第二心電圖,並且卷積神經網路模型200的輸出資料270代表是否罹患OSA症狀的判斷結果。2 illustrates a schematic diagram of a convolutional neural network model 200 according to an embodiment of the present disclosure, where the convolutional neural network model 200 is a form of a machine learning model trained by the training module 121. The convolutional neural network model 200 may include an input layer 220, a convolutional layer 231, a pooling layer 232, a convolutional layer 241, a pooling layer 242, a fully connected layer 251, a fully connected layer 252, and an output layer 260. The input data 210 of the convolutional neural network model 200 shown in FIG. 2 is, for example, a second electrocardiogram measured from a subject, and the output data 270 of the convolutional neural network model 200 represents the judgment result of whether or not suffering from OSA symptoms.

在本實施例中,輸入資料210為1分鐘的第二心電圖,並且輸入資料210包括在100Hz取樣頻率下取樣出的6,000個取樣點。卷積層231包括128個尺寸為

Figure 02_image001
的卷積核。經過卷積層231的輸入資料210會轉變為128個尺寸為
Figure 02_image003
的特徵圖。接著,池化層232使用尺寸為
Figure 02_image005
的滑動視窗對卷積層231輸出的特徵圖進行取樣以產生128個尺寸為
Figure 02_image007
的特徵圖。卷積層241包括64個尺寸16
Figure 02_image009
的卷積核。卷積層241進一步地對池化層232輸出的特徵圖進行卷積運算以產生64個尺寸為
Figure 02_image007
的特徵圖。接著,池化層242使用尺寸為
Figure 02_image011
的滑動視窗對卷積層241輸出的特徵圖進行取樣以產生64個尺寸為
Figure 02_image013
的特徵圖。而後,池化層242輸出的特徵圖依序地輸入至具有128個神經元的全連接層251以及具有64個神經元的全連接層252。輸出層260可根據Softmax激活函數來計算全連接層252的輸出的對應於罹患OSA症狀的第一機率以及對應於未罹患OSA症狀的第二機率。若第一機率大於第二機率,則偵測模組122可判斷輸入資料210對應於罹患OSA症狀的患者。反之,若第一機率小於或等於第二機率,則偵測模組122可判斷輸入資料210對應未罹患OSA症狀的人員。 In this embodiment, the input data 210 is a second electrocardiogram of 1 minute, and the input data 210 includes 6,000 sampling points sampled at a sampling frequency of 100 Hz. Convolution layer 231 includes 128 dimensions of
Figure 02_image001
Convolution kernel. The input data 210 through the convolution layer 231 will be transformed into 128 sizes of
Figure 02_image003
Feature map. Next, the pooling layer 232 uses a size of
Figure 02_image005
Of the sliding window samples the feature map output by the convolution layer 231 to produce 128 dimensions of
Figure 02_image007
Feature map. Convolutional layer 241 includes 64 sizes 16
Figure 02_image009
Convolution kernel. The convolution layer 241 further performs a convolution operation on the feature map output by the pooling layer 232 to generate 64 sizes of
Figure 02_image007
Feature map. Next, the pooling layer 242 uses a size of
Figure 02_image011
The sliding window samples the feature map output by the convolution layer 241 to produce 64 dimensions of
Figure 02_image013
Feature map. Then, the feature map output by the pooling layer 242 is sequentially input to the fully connected layer 251 with 128 neurons and the fully connected layer 252 with 64 neurons. The output layer 260 may calculate the first probability corresponding to the OSA symptom and the second probability corresponding to the OSA symptom output of the fully connected layer 252 according to the Softmax activation function. If the first probability is greater than the second probability, the detection module 122 may determine that the input data 210 corresponds to a patient suffering from OSA symptoms. Conversely, if the first probability is less than or equal to the second probability, the detection module 122 may determine that the input data 210 corresponds to a person who does not suffer from OSA symptoms.

值得注意的是,輸出層260所使用的激活函數可例如是softmax函數、sigmoid函數、hyperbolic tangent函數或線性整流單元(rectified linear unit,ReLU)函數,本揭露不限於此。It is worth noting that the activation function used by the output layer 260 may be, for example, a softmax function, a sigmoid function, a hyperbolic tangent function, or a rectified linear unit (ReLU) function, and the disclosure is not limited thereto.

在一實施例中,訓練模組121更可產生支援向量機(support vector machine,SVM)模型。偵測模組122可根據支援向量機模型、機器學習模型以及測量自受試者的第二心電圖判斷受試者是否罹患OSA症狀。舉例來說,若支援向量機模型以及機器學習模型的至少其中之一判斷受試者罹患OSA症狀,則偵測模組122可響應於支援向量機模型以及機器學習模型的至少其中之一判斷受試者罹患OSA症狀而輸出代表受試者罹患OSA症狀的判斷結果。In one embodiment, the training module 121 can further generate a support vector machine (SVM) model. The detection module 122 can determine whether the subject suffers from OSA symptoms according to the support vector machine model, the machine learning model, and the second electrocardiogram measured from the subject. For example, if at least one of the support vector machine model and the machine learning model determines that the subject suffers from OSA symptoms, the detection module 122 may respond to at least one of the support vector machine model and the machine learning model to determine The test subject suffers from OSA symptoms and outputs a judgment result representing that the subject suffers from OSA symptoms.

訓練模組121可根據第一心電圖訓練出前述的支援向量機模型。訓練模組121可根據作為訓練資料的第一心電圖產生對應的心源性呼吸(ECG-derived respiration,EDR)訊號。另一方面,訓練模組121可根據第一心電圖測量多個RR間隔。接著,訓練模組121可根據心源性呼吸訊號以及所述多個RR間隔的至少其中之一產生用以訓練支援向量機模型的第二訓練資料,並接著根據第二訓練資料來訓練前述的支援向量機模型。具體來說,訓練模組121可從心源性呼吸訊號或多個RR間隔萃取多個特徵,並且根據該些特徵產生第二訓練資料。所述多個特徵例如關聯於RR間隔平均值、RR間隔的第二或第三序列相關係數、RR間隔對的數量(RR間隔對包括相鄰的兩個RR間隔,且兩個RR間隔之間的時間間隔超過50毫秒)、相鄰的兩個RR間隔的標準差、RR間隔的正規化的極低頻範圍功率(very low frequency power,VLFP)、心源性呼吸訊號的正規化的極低頻範圍功率、心源性呼吸訊號的正規化的低頻範圍功率(low frequency power,LFP)或心源性呼吸訊號的正規化的高頻範圍功率(high frequency power,HFP),但本揭露不限於此。VLFP大約介於0.003-0.04Hz之間。上述的LFP大約介於0.04-0.15Hz之間並且HFP大約介於0.15-0.4Hz之間。The training module 121 can train the aforementioned support vector machine model according to the first electrocardiogram. The training module 121 may generate a corresponding ECG-derived respiration (EDR) signal according to the first electrocardiogram as training data. On the other hand, the training module 121 may measure multiple RR intervals according to the first electrocardiogram. Then, the training module 121 may generate second training data for training the support vector machine model according to at least one of the cardiogenic respiratory signal and the plurality of RR intervals, and then train the aforementioned training data according to the second training data Support vector machine model. Specifically, the training module 121 may extract multiple features from the cardiogenic respiration signal or multiple RR intervals, and generate second training data according to the features. The plurality of features are associated with, for example, the average value of the RR interval, the correlation coefficient of the second or third sequence of the RR interval, the number of RR interval pairs (the RR interval pair includes two adjacent RR intervals, and the two RR intervals Time interval of more than 50 milliseconds), the standard deviation of two adjacent RR intervals, the normalized very low frequency power (VLFP) of the RR interval, and the normalized very low frequency range of the cardiogenic respiratory signal Power, normalized low frequency power (LFP) of cardiogenic respiratory signals or normalized high frequency power (HFP) of cardiogenic respiratory signals, but the disclosure is not limited thereto. VLFP is approximately between 0.003-0.04 Hz. The above LFP is approximately between 0.04-0.15 Hz and HFP is approximately between 0.15-0.4 Hz.

圖3根據本揭露的實施例繪示OSA症狀的偵測方法的流程圖,其中所述偵測方法例如是由如圖1所示的偵測裝置100實施。在步驟S301中,取得第一心電圖,其中第一心電圖包括對應於非阻塞性睡眠呼吸暫停症狀的第一資料集合以及對應於阻塞性睡眠呼吸暫停症狀的第二資料集合。在步驟S302中,將第一資料集合以及第二資料集合作為訓練資料以訓練機器學習模型。在步驟S303中,取得受試者的第二心電圖。在步驟S304中,根據機器學習模型以及第二心電圖判斷受試者是否罹患阻塞性睡眠呼吸暫停症狀。FIG. 3 illustrates a flowchart of a method for detecting OSA symptoms according to an embodiment of the present disclosure, wherein the detection method is implemented by the detection device 100 shown in FIG. 1, for example. In step S301, a first electrocardiogram is obtained, where the first electrocardiogram includes a first data set corresponding to non-obstructive sleep apnea symptoms and a second data set corresponding to obstructive sleep apnea symptoms. In step S302, the first data set and the second data set are used as training data to train a machine learning model. In step S303, the second electrocardiogram of the subject is obtained. In step S304, it is determined whether the subject suffers from obstructive sleep apnea symptoms according to the machine learning model and the second electrocardiogram.

綜上所述,本揭露可將正常狀況(即:未發生呼吸暫停事件)下的非OSA症狀患者以及和OSA症狀患者的心電圖作為訓練資料以訓練機器學習模型。訓練好的機器學習模型可在受試者處於正常狀況下判斷出受試者是否罹患OSA症狀。換句話說,即使罹患OSA症狀的受試者未發生呼吸暫停事件,本揭露仍能根據該受試者的心電圖準確地預測該受試者罹患了OSA症狀,並進一步地提示該受試者前往醫院檢查。如此,則受試者的OSA症狀可被及早發現及治療。In summary, the present disclosure can use electrocardiograms of patients with non-OSA symptoms and patients with OSA symptoms under normal conditions (ie, no apnea event) as training materials to train machine learning models. The trained machine learning model can determine whether the subject suffers from OSA symptoms when the subject is under normal conditions. In other words, even if the subject suffering from OSA symptoms did not have an apnea event, the disclosure can still accurately predict the subject suffering from OSA symptoms based on the subject’s electrocardiogram and further prompt the subject to go to Hospital examination. In this way, the subject's OSA symptoms can be detected and treated early.

100‧‧‧偵測裝置 110‧‧‧處理器 120‧‧‧儲存媒體 121‧‧‧訓練模組 122‧‧‧偵測模組 130‧‧‧收發器 210‧‧‧輸入資料 220‧‧‧輸入層 231、241‧‧‧卷積層 232、242‧‧‧池化層 251、252‧‧‧全連接層 260‧‧‧輸出層 270‧‧‧輸出資料 S301、S302、S303、S304‧‧‧步驟100‧‧‧detection device 110‧‧‧ processor 120‧‧‧storage media 121‧‧‧Training Module 122‧‧‧detection module 130‧‧‧Transceiver 210‧‧‧Enter data 220‧‧‧ input layer 231, 241‧‧‧ Convolutional layer 232, 242‧‧‧ Pooling layer 251, 252‧‧‧ fully connected layer 260‧‧‧Output layer 270‧‧‧ Output data S301, S302, S303, S304 ‧‧‧ steps

圖1根據本揭露的實施例繪示OSA症狀的偵測裝置的示意圖。 圖2根據本揭露的實施例繪示卷積神經網路模型的示意圖。 圖3根據本揭露的實施例繪示OSA症狀的偵測方法的流程圖。 FIG. 1 is a schematic diagram of an OSA symptom detection device according to an embodiment of the present disclosure. FIG. 2 illustrates a schematic diagram of a convolutional neural network model according to an embodiment of the present disclosure. FIG. 3 illustrates a flowchart of a method for detecting OSA symptoms according to an embodiment of the present disclosure.

100‧‧‧偵測裝置 100‧‧‧detection device

110‧‧‧處理器 110‧‧‧ processor

120‧‧‧儲存媒體 120‧‧‧storage media

121‧‧‧訓練模組 121‧‧‧Training Module

122‧‧‧偵測模組 122‧‧‧detection module

130‧‧‧收發器 130‧‧‧Transceiver

Claims (8)

一種阻塞性睡眠呼吸暫停症狀的偵測裝置,包括: 收發器,取得第一心電圖,其中所述第一心電圖包括對應於非阻塞性睡眠呼吸暫停症狀的第一資料集合以及對應於所述阻塞性睡眠呼吸暫停症狀的第二資料集合; 儲存媒體,儲存多個模組;以及 處理器,耦接所述儲存媒體和所述收發器,並且存取和執行所述多個模組,其中所述多個模組包括: 訓練模組,將所述第一資料集合以及所述第二資料集合作為訓練資料以訓練機器學習模型;以及 偵測模組,通過所述收發器取得受試者的第二心電圖,並且根據所述機器學習模型以及所述第二心電圖判斷所述受試者是否罹患所述阻塞性睡眠呼吸暫停症狀。 A device for detecting symptoms of obstructive sleep apnea, including: The transceiver obtains a first electrocardiogram, wherein the first electrocardiogram includes a first data set corresponding to non-obstructive sleep apnea symptoms and a second data set corresponding to the obstructive sleep apnea symptoms; Storage media to store multiple modules; and A processor is coupled to the storage medium and the transceiver, and accesses and executes the plurality of modules, wherein the plurality of modules includes: A training module, using the first data set and the second data set as training data to train a machine learning model; and The detection module obtains a second electrocardiogram of the subject through the transceiver, and determines whether the subject suffers from the obstructive sleep apnea symptom according to the machine learning model and the second electrocardiogram. 如申請專利範圍第1項所述的偵測裝置,其中所述第一心電圖以及所述第二心電圖對應於非呼吸暫停事件。The detection device according to item 1 of the patent application scope, wherein the first electrocardiogram and the second electrocardiogram correspond to non-apnea events. 如申請專利範圍第1項所述的偵測裝置,其中所述機器學習模型為卷積神經網路模型。The detection device according to item 1 of the patent application scope, wherein the machine learning model is a convolutional neural network model. 如申請專利範圍第1項所述的偵測裝置,其中所述訓練模組根據所述第一心電圖產生對應的心源性呼吸訊號,根據所述第一心電圖測量多個RR間隔,根據所述多個RR間隔以及所述心源性呼吸訊號的至少其中之一產生第二訓練資料,並且根據所述第二訓練資料訓練支援向量機模型。The detection device according to item 1 of the patent application scope, wherein the training module generates a corresponding cardiogenic respiratory signal according to the first electrocardiogram, measures a plurality of RR intervals according to the first electrocardiogram, and according to the At least one of the plurality of RR intervals and the cardiogenic respiratory signal generates second training data, and trains a support vector machine model according to the second training data. 如申請專利範圍第4項所述的偵測裝置,其中所述偵測模組根據所述支援向量機模型、所述機器學習模型以及所述第二心電圖判斷所述受試者是否罹患所述阻塞性睡眠呼吸暫停症狀。The detection device according to item 4 of the patent application scope, wherein the detection module determines whether the subject suffers from the support vector machine model, the machine learning model, and the second electrocardiogram Obstructive sleep apnea symptoms. 如申請專利範圍第4項所述的偵測裝置,其中所述訓練模組從所述多個RR間隔或所述心源性呼吸訊號萃取多個特徵,並且根據所述多個特徵產生所述第二訓練資料。The detection device according to item 4 of the patent application scope, wherein the training module extracts a plurality of features from the plurality of RR intervals or the cardiogenic respiratory signal, and generates the Second training data. 如申請專利範圍第6項所述的偵測裝置,其中所述多個特徵關聯於下列的至少其中之一: RR間隔平均值、RR間隔的第二或第三序列相關係數、RR間隔對的數量,其中所述RR間隔對包括相鄰的兩個RR間隔,且所述兩個RR間隔之間的時間間隔超過50毫秒、相鄰的兩個RR間隔的標準差、RR間隔的正規化的極低頻範圍功率、心源性呼吸訊號的正規化的極低頻範圍功率、心源性呼吸訊號的正規化的低頻範圍功率以及心源性呼吸訊號的正規化的高頻範圍功率。 The detection device according to item 6 of the patent application scope, wherein the plurality of features are associated with at least one of the following: The average value of the RR interval, the correlation coefficient of the second or third sequence of the RR interval, and the number of RR interval pairs, wherein the RR interval pair includes two adjacent RR intervals, and the time interval between the two RR intervals More than 50 ms, standard deviation of two adjacent RR intervals, normalized low frequency range power of RR interval, normalized low frequency range power of cardiogenic respiratory signal, normalized low frequency of cardiogenic respiratory signal Range power and normalized high frequency range power of cardiogenic respiratory signals. 如申請專利範圍第1項所述的偵測裝置,其中所述偵測模組響應於判斷所述受試者罹患所述阻塞性睡眠呼吸暫停症狀而通過所述收發器發出警示。The detection device according to item 1 of the patent application scope, wherein the detection module issues a warning through the transceiver in response to determining that the subject suffers from the obstructive sleep apnea symptom.
TW108214964U 2019-11-12 2019-11-12 Detection device for obstructive sleep apnea TWM590434U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108214964U TWM590434U (en) 2019-11-12 2019-11-12 Detection device for obstructive sleep apnea

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108214964U TWM590434U (en) 2019-11-12 2019-11-12 Detection device for obstructive sleep apnea

Publications (1)

Publication Number Publication Date
TWM590434U true TWM590434U (en) 2020-02-11

Family

ID=70414606

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108214964U TWM590434U (en) 2019-11-12 2019-11-12 Detection device for obstructive sleep apnea

Country Status (1)

Country Link
TW (1) TWM590434U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733247B (en) * 2019-11-12 2021-07-11 國立勤益科技大學 Detection device and detection method for obstructive sleep apnea
TWI805928B (en) * 2020-05-19 2023-06-21 瑞昱半導體股份有限公司 Sleep monitoring device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733247B (en) * 2019-11-12 2021-07-11 國立勤益科技大學 Detection device and detection method for obstructive sleep apnea
TWI805928B (en) * 2020-05-19 2023-06-21 瑞昱半導體股份有限公司 Sleep monitoring device and method

Similar Documents

Publication Publication Date Title
Mendonça et al. Devices for home detection of obstructive sleep apnea: A review
Martinez-Ríos et al. A review of machine learning in hypertension detection and blood pressure estimation based on clinical and physiological data
WO2019161608A1 (en) Multi-parameter monitoring data analysis method and multi-parameter monitoring system
Kim et al. The coming era of a new auscultation system for analyzing respiratory sounds
TWM593240U (en) Detection device for apnea based on unipolar ecg
Gutiérrez-Tobal et al. Pattern recognition in airflow recordings to assist in the sleep apnoea–hypopnoea syndrome diagnosis
US20220175324A1 (en) Computer-based prediction of fetal and maternal outcomes
Sahu et al. Vital sign monitoring system for healthcare through IoT based personal service application
TWM590434U (en) Detection device for obstructive sleep apnea
Rahman et al. Automated assessment of pulmonary patients using heart rate variability from everyday wearables
Mendonça et al. A portable wireless device based on oximetry for sleep apnea detection
Marcos et al. Radial basis function classifiers to help in the diagnosis of the obstructive sleep apnoea syndrome from nocturnal oximetry
TWI733247B (en) Detection device and detection method for obstructive sleep apnea
TWM593242U (en) Detection device for apnea based on chest respiratory signal
TWI748281B (en) Detection method for apnea based on unipolar ecg
Mendonça et al. A method based on cardiopulmonary coupling analysis for sleep quality assessment with FPGA implementation
Wu et al. Improving the diagnostic ability of the sleep apnea screening system based on oximetry by using physical activity data
KR102340670B1 (en) Deep learning-based psychophysiological test system and method
TWI750531B (en) Detection device and detection method for apnea based on chest respiratory signal
TWI777650B (en) A method of monitoring apnea and hypopnea events based on the classification of the descent rate of heartbeat intervals
TWI772086B (en) A method of monitoring apnea and hypopnea events by using fully convolutional networks
TWI773385B (en) Monitoring system and monitoring method for sleep apnea
Nguyen-Hoang et al. Laboratory techniques for diagnosis of obstructive sleep apnea (OSA) in children
TWI807807B (en) Method for detecting apnoea and hypopnea by using a wave filtering set and neural network
TWI766471B (en) System capable of detecting sleep breathing intensity based on wavelet transformation and spectral intensity