TWM589312U - Product purchase evaluation system based on user web browsing history - Google Patents

Product purchase evaluation system based on user web browsing history Download PDF

Info

Publication number
TWM589312U
TWM589312U TW108213356U TW108213356U TWM589312U TW M589312 U TWM589312 U TW M589312U TW 108213356 U TW108213356 U TW 108213356U TW 108213356 U TW108213356 U TW 108213356U TW M589312 U TWM589312 U TW M589312U
Authority
TW
Taiwan
Prior art keywords
browsing
module
user
commodity
purchase
Prior art date
Application number
TW108213356U
Other languages
Chinese (zh)
Inventor
洪立全
Original Assignee
富邦人壽保險股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富邦人壽保險股份有限公司 filed Critical 富邦人壽保險股份有限公司
Priority to TW108213356U priority Critical patent/TWM589312U/en
Publication of TWM589312U publication Critical patent/TWM589312U/en

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一種依據使用者網路瀏覽紀錄的商品購買評估系統,商品購買評估系統用以與操作終端訊號連接,商品購買評估系統包含服務提供裝置,其中操作終端依據該瀏覽畫面產生一帆布指紋,服務提供裝置用以提供瀏覽內容、儲存瀏覽紀錄、提供歷史交易資料與使用者資料,並進行串接與擴充運算以產生至少一瀏覽紀錄特徵向量與至少一歷史交易特徵向量,依據商品資訊進行購買預測分析,並產生一購買預測分析結果以及一標籤,並將該標籤與該使用者身分代碼連結,依據使用者網路瀏覽紀錄進行商品購買評估從而實現結合線上瀏覽及線下購買行為進行商品購買之預測評估。A commodity purchase evaluation system based on a user's Internet browsing record. The commodity purchase evaluation system is used for signal connection with an operation terminal. The commodity purchase evaluation system includes a service providing device, wherein the operation terminal generates a canvas fingerprint based on the browsing screen, and the service providing device Used to provide browsing content, store browsing records, provide historical transaction data and user data, and perform concatenation and expansion operations to generate at least one browsing record feature vector and at least one historical transaction feature vector, and perform purchase prediction analysis based on product information, And generate a purchase prediction analysis result and a label, and link the label with the user's identity code, based on the user's Internet browsing history for product purchase evaluation to achieve the combination of online browsing and offline purchase behavior for product purchase prediction evaluation .

Description

依據使用者網路瀏覽紀錄的商品購買評估系統Commodity purchase evaluation system based on user's Internet browsing history

本案是關於一種依據使用者網路瀏覽紀錄的商品購買評估系統,尤其是一種利用帆布指紋與使用者線下行為進行購買評估的系統。This case is about a product purchase evaluation system based on the user's Internet browsing records, especially a system that uses canvas fingerprints and user offline behaviors to make purchase evaluations.

傳統商品之交易行為主要來自於實體通路,隨著科技的演進,網路通路也為使用者使用之管道之一,使用者線上瀏覽、線下接洽實體通路之行為也是常有的行為;然而,運用線上資料,只能觀察出瀏覽當下是否有購買,並無法有效分析瀏覽之後之線下購買行為;特別是金融商品的特性、目的、用途與效果與一般商品不同,金融商品有其複雜度且涉及使用者權益甚深,故以往銷售與購買多需要線下審核評估流程,使得金融商品之銷售與消費行為特性更有別於一般商品。另外,為了評估使用者的線下行為,目前常用的方法是通過使用者主動登入帳戶或利用瀏覽器的cookie來識別使用者,對使用者使用流覽器的瀏覽行為進行紀錄,以實現追蹤使用者行為。然而,使用者可能為保持裝置性能與減少儲存空間之需求,經常會進行清除cookie的操作,導致基於cookie來紀錄使用者行為的資訊因而丟失,或是在一般網路瀏覽過程中瀏覽到有興趣的商品,但因各種因素未即時登入或選購,使得使用者有興趣的商品未被紀錄或紀錄丟失,而無法評估使用者行為並主動提供給使用者參考。The trading behavior of traditional commodities mainly comes from physical channels. With the evolution of technology, network channels are also one of the channels used by users. It is also common for users to browse online and offline to contact physical channels; however, Using online information, you can only observe whether there is a purchase at the time of browsing, and you cannot effectively analyze the offline purchase behavior after browsing; in particular, the characteristics, purposes, uses and effects of financial commodities are different from general commodities. Financial commodities have their complexity and The rights and interests of users are very deep. Therefore, in the past, many sales and purchases required an offline review and evaluation process, which made the sales and consumption behavior of financial products different from those of ordinary products. In addition, in order to evaluate the user's offline behavior, the current commonly used method is to identify the user through the user's active login to the account or use the browser's cookie to record the user's browsing behavior using the browser to achieve tracking usage Person behavior. However, in order to maintain the performance of the device and reduce the storage space, users may often clear the cookies, resulting in the loss of information based on cookies to record user behaviors, or during the general Internet browsing process to browse the interested Products, but due to various factors that are not logged in or purchased in real time, the products that the user is interested in are not recorded or the records are lost, and the user's behavior cannot be evaluated and provided to the user for reference.

因此,如何有效地結合線上線下之異質資料,經由歷史資料之訓練結果,對於使用者未來是否可能購買商品給予評估與預測,以作為一般商品與金融商品銷售時之參考,實為相關業者目前所亟須解決的問題。Therefore, how to effectively combine online and offline heterogeneous data, through the training results of historical data, to evaluate and predict whether the user may purchase commodities in the future, as a reference for the sale of general commodities and financial commodities Problems that must be solved urgently.

有鑑於此,本創作提出一種依據使用者網路瀏覽紀錄的商品購買評估系統。In view of this, this author proposes a product purchase evaluation system based on the user's Internet browsing history.

根據本創作之一實施例,依據使用者網路瀏覽紀錄的商品購買評估系統,其中依據使用者網路瀏覽紀錄的商品購買評估系統用以與一操作終端訊號連接,依據使用者網路瀏覽紀錄的商品購買評估系統包含一操作終端以及一服務提供裝置,該操作終端包含一輸入模組、一顯示模組及一帆布指紋產生模組,其中該輸入模組用以提供一瀏覽請求,該顯示模組用以顯示一瀏覽畫面,該帆布指紋產生模組用以依據該瀏覽畫面產生時之該操作終端之使用者環境產生一帆布指紋;該服務提供裝置包含一內容提供模組、一瀏覽紀錄模組、一使用者資料模組、一歷史交易模組、一特徵擴充模組以及一商品模組,其中該內容提供模組,儲存有複數個內容資訊,依據該瀏覽請求提供相應之瀏覽內容資訊至該操作終端,並產生一瀏覽紀錄;該瀏覽紀錄模組,用以儲存該瀏覽紀錄與該帆布指紋;該使用者資料模組,用以儲存至少一使用者資料,該使用者資料至少包含一使用者身分代碼;該歷史交易模組,用以儲存複數個對應於該使用者資料之歷史交易資料;該商品模組連接,用以儲存複數個商品資訊;以及該特徵擴充模組,依據該帆布指紋查詢對應之該使用者身分代碼,並該使用者身分代碼與一分析區間查詢該使用者於該分析區間之歷史交易資料,且該特徵擴充模組依據該瀏覽紀錄與該歷史交易資料進行擴充運算,產生至少一瀏覽紀錄特徵向量與至少一歷史交易特徵向量,該特徵擴充模組依據該瀏覽紀錄特徵向量、該歷史交易特徵向量與一商品資訊進行購買預測分析,於分析後產生一購買預測分析結果以及一標籤,並將該標籤與該使用者身分代碼連結。According to an embodiment of the present invention, a product purchase evaluation system based on the user's Internet browsing record, wherein the product purchase evaluation system based on the user's Internet browsing record is used to connect with an operation terminal signal and based on the user's network browsing record The commodity purchase evaluation system includes an operation terminal and a service providing device. The operation terminal includes an input module, a display module and a canvas fingerprint generation module, wherein the input module is used to provide a browsing request and the display The module is used to display a browsing screen, and the canvas fingerprint generating module is used to generate a canvas fingerprint according to the user environment of the operation terminal when the browsing screen is generated; the service providing device includes a content providing module and a browsing record Module, a user data module, a historical transaction module, a feature expansion module and a commodity module, wherein the content providing module stores a plurality of content information and provides corresponding browsing content according to the browsing request Information to the operation terminal and generate a browsing record; the browsing record module to store the browsing record and the canvas fingerprint; the user data module to store at least one user data, the user data at least Contains a user identification code; the historical transaction module is used to store a plurality of historical transaction data corresponding to the user data; the commodity module is connected to store a plurality of commodity information; and the feature expansion module, Query the corresponding user identity code according to the canvas fingerprint, and query the user's historical transaction data in the analysis interval with the user identity code and an analysis interval, and the feature expansion module based on the browsing record and the historical transaction The data is expanded to generate at least one browsing record feature vector and at least one historical transaction feature vector. The feature expansion module performs purchase prediction analysis based on the browsing record feature vector, the historical transaction feature vector, and a commodity information, which is generated after the analysis A purchase prediction analysis result and a label, and link the label with the user identity code.

為使本創作之技術內容、目的及優點更容易理解,下面將結合附圖對本創作的實施方式作進一步地詳細描述,然而,本描述係為例示性實施例之描述,並不意欲限制本創作之範疇。In order to make the technical content, purpose, and advantages of this creation easier to understand, the following describes the implementation of this creation in further detail with reference to the drawings. However, this description is a description of an exemplary embodiment, and is not intended to limit this creation Category.

如圖1所示,為本創作之依據使用者網路瀏覽紀錄的商品購買評估系統之一實施例,其中依據使用者網路瀏覽紀錄的商品購買評估系統用以與一操作終端100經網路110訊號連接,依據使用者網路瀏覽紀錄的商品購買評估系統一服務提供裝置120。其中操作終端100與服務提供裝置120透過網路110相互連接,在本創作中連接係指模組間之訊息傳遞、交換之手段,例如有線連接或無線連接。在其他實施例中,操作終端100可直接連接至服務提供裝置120。As shown in FIG. 1, it is an embodiment of a product purchase evaluation system based on the user's Internet browsing record, in which the product purchase evaluation system based on the user's Internet browsing record is used to communicate with an operation terminal 100 via the network 110 signal connection, a service providing device 120 based on the commodity purchase evaluation system of the user's Internet browsing record. The operation terminal 100 and the service providing device 120 are connected to each other through the network 110. In the present creation, connection refers to a method of message transmission and exchange between modules, such as a wired connection or a wireless connection. In other embodiments, the operation terminal 100 may be directly connected to the service providing device 120.

在本實施例中,操作終端100為包含一輸入模組101、一顯示模組102及一帆布指紋產生模組103之電腦設備,例如個人電腦、手機、平板電腦等。輸入模組101用以提供一瀏覽請求,顯示模組102用以顯示一瀏覽畫面,帆布指紋產生模組103用以依據瀏覽畫面產生時之該操作終端100之使用者環境產生一帆布指紋,使用者環境係指操作終端100的瀏覽器設定、圖像處理設定與硬體組成,包括代理字串、螢幕色深、語言、外掛程式、壓縮設定、抗鋸齒、像素渲染法、繪圖引擎、驅動程式及記憶體等,但不限於此。In this embodiment, the operation terminal 100 is a computer device including an input module 101, a display module 102, and a canvas fingerprint generation module 103, such as a personal computer, a mobile phone, and a tablet computer. The input module 101 is used to provide a browsing request, the display module 102 is used to display a browsing screen, and the canvas fingerprint generation module 103 is used to generate a canvas fingerprint according to the user environment of the operation terminal 100 when the browsing screen is generated. The user environment refers to the browser settings, image processing settings, and hardware composition of the operating terminal 100, including proxy strings, screen color depth, language, plug-ins, compression settings, anti-aliasing, pixel rendering, drawing engine, driver And memory, but not limited to this.

本創作之服務提供裝置120係用以提供瀏覽內容、產生一購買預測分析結果與標籤,並連結至使用者身分代碼以產個人化的商品購買評估結果。服務提供裝置120包含一內容提供模組121、一瀏覽紀錄模組122、一使用者資料模組123、一歷史交易資料模組124、一特徵擴充模組125以及一商品模組125。The created service providing device 120 is used to provide browsing content, generate a purchase prediction analysis result and label, and link to the user's identity code to produce personalized product purchase evaluation results. The service providing device 120 includes a content providing module 121, a browsing record module 122, a user data module 123, a historical transaction data module 124, a feature expansion module 125, and a commodity module 125.

內容提供模組121係一伺服器,或具有相同或相似功能之電腦裝置,例如一網頁伺服器(Web Server),可用以儲存有複數個內容資訊,並依據使用者之瀏覽請求提供相應之瀏覽內容資訊至操作終端100,並產生一瀏覽紀錄。瀏覽紀錄包含一瀏覽內容資訊之瀏覽屬性,瀏覽屬性可以是網頁網址、網頁屬性、瀏覽時間、瀏覽天數、瀏覽商品、商品金額、點擊網址、點擊時間或點購次數等,但不限於此。The content providing module 121 is a server, or a computer device with the same or similar functions, such as a web server (Web Server), which can store a plurality of content information and provide corresponding browsing according to the user's browsing request The content information is sent to the operation terminal 100, and a browsing record is generated. The browsing record includes a browsing attribute of browsing content information. The browsing attribute may be a web page URL, a web page attribute, a browsing time, a browsing day, a browsing product, a commodity amount, a click URL, a click time, or an order number, etc., but is not limited thereto.

瀏覽紀錄模組122係一儲存裝置,用以儲存瀏覽紀錄與帆布指紋,以隨時保存使用者的瀏覽紀錄與帆布指紋,據此,使用者的操作終端100與網路110即使無保存瀏覽紀錄與帆布指紋,本系統仍能依據瀏覽紀錄模組122內之資料實施商品購買評估。The browsing record module 122 is a storage device for storing browsing records and canvas fingerprints to save the user's browsing records and canvas fingerprints at any time. Accordingly, even if the user's operation terminal 100 and the network 110 do not save the browsing records and For canvas fingerprints, the system can still perform commodity purchase evaluation based on the information in the browsing history module 122.

使用者資料模組123係一儲存裝置,用以儲存至少一使用者資料,使用者資料至少包含一使用者身分代碼,在其他實施例中,使用者資料還可以包含使用者帳號、密碼、使用者姓名、郵件地址、電話、生日、身分證號、性別、年齡、教育程度、收入、工作年資等個人資料,但不限於此。The user data module 123 is a storage device for storing at least one user data. The user data includes at least one user identity code. In other embodiments, the user data may also include a user account, password, and usage. Personal information such as the name, email address, telephone number, birthday, ID number, gender, age, education level, income, working experience, etc., but not limited to this.

歷史交易資料模組124,用以儲存複數個對應於使用者資料之歷史交易資料,歷史交易資料包括一交易屬性,交易屬性可以是交易次數、交易時間、交易天數或交易金額,但不限於此。The historical transaction data module 124 is used to store a plurality of historical transaction data corresponding to user data. The historical transaction data includes a transaction attribute. The transaction attribute may be the number of transactions, the transaction time, the number of transaction days, or the transaction amount, but is not limited to this .

商品模組125連接,用以儲存複數個商品資訊,商品資訊可以是商品類型、商品金額、商品購買限制、商品內容等。在本實施例中,當商品為金融保險商品時,商品資訊可以是「保險類別」、「保險商品名稱」、「保單條款」、「費率」、「投保年齡」等,以保險類別來說又區分為「壽險」、「醫療險」、「意外險」、「投資型保險」、「國際保險」、「旅平險」、「綜合保險」等,「保單條款」可區分為「門診」、「住院」、「手術」、「癌症」、「重大傷病」等。The commodity module 125 is connected to store a plurality of commodity information. The commodity information may be a commodity type, a commodity amount, a commodity purchase restriction, a commodity content, etc. In this embodiment, when the commodity is a financial insurance commodity, the commodity information may be "insurance category", "insurance commodity name", "policy terms", "rate", "insured age", etc. In terms of insurance category It is also divided into "life insurance", "medical insurance", "accident insurance", "investment insurance", "international insurance", "travel insurance", "comprehensive insurance", etc., "policy terms" can be divided into "outpatient" , "Hospitalization", "Surgery", "Cancer", "Major Injuries", etc.

特徵擴充模組125,依據帆布指紋查詢對應之使用者身分代碼,並使用者身分代碼與一分析區間查詢使用者於分析區間之歷史交易資料,且特徵擴充模組125依據瀏覽紀錄與歷史交易資料進行擴充運算,產生至少一瀏覽紀錄特徵向量與至少一歷史交易特徵向量。特徵擴充模組125能依據瀏覽紀錄特徵向量、歷史交易特徵向量與一商品資訊進行購買預測分析,於分析後產生一購買預測分析結果以及一標籤,並將標籤與使用者身分代碼連結。The feature expansion module 125 queries the corresponding user identity code based on the canvas fingerprint, and the user identity code and an analysis interval query the user's historical transaction data in the analysis interval, and the feature expansion module 125 queries the historical records and historical transaction data Perform an expansion operation to generate at least one browsing record feature vector and at least one historical transaction feature vector. The feature expansion module 125 can perform purchase forecast analysis based on the browsing record feature vector, historical transaction feature vector, and a commodity information, generate a purchase forecast analysis result and a label after the analysis, and link the label with the user identity code.

進一步地,為達成上述目的,本創作之特徵擴充模組125還包含多個功能單元,如圖2所示,特徵擴充模組125可以包含一身分串接單元201、一歷史資料擴充單元202、一網路資料擴充單元203、一交互擴充單元204以及一分析區間決定單元205。其中,身分串接單元201自服務提供裝置120獲得使用者身分代碼、瀏覽紀錄與歷史交易資料後,將使用者身分代碼、瀏覽紀錄與歷史交易資料串接,令瀏覽紀錄與歷史交易資料之間形成關聯,且使用者身分代碼與瀏覽紀錄或歷史交易資料形成關聯。Further, to achieve the above purpose, the feature expansion module 125 of the present invention further includes a plurality of functional units. As shown in FIG. 2, the feature expansion module 125 may include an identity serial unit 201, a historical data expansion unit 202, A network data expansion unit 203, an interactive expansion unit 204, and an analysis interval determination unit 205. Wherein, the identity concatenation unit 201 obtains the user identity code, browsing record and historical transaction data from the service providing device 120, and then concatenates the user identity code, browsing record and historical transaction data to make the browsing record and historical transaction data Form an association, and the user's identity code is associated with browsing records or historical transaction data.

歷史資料擴充單元202係用以對該歷史交易資料進行擴充運算,其中該擴充運算係依據至少一交易屬性進行運算,該交易屬性為交易次數、交易時間、交易天數或交易金額,例如總共購買次數、單日購買次數、總共購買的天數與平均購買金額等。例如,一使用者曾購買過旅平險、年金險、投資險與保單貸款,歷史資料擴充單元202依據使用者購買過的歷史交易資料以及歷史交易資料之交易屬性如交易次數、交易時間、交易天數或交易金額產生一歷史交易特徵向量為(0.3, 0.7, 0, 0)。The historical data expansion unit 202 is used to perform an expansion operation on the historical transaction data. The expansion operation is based on at least one transaction attribute. The transaction attribute is the number of transactions, transaction time, transaction days, or transaction amount, such as the total number of purchases. , The number of purchases per day, the total number of days purchased and the average purchase amount, etc. For example, if a user has purchased travel insurance, annuity insurance, investment insurance and policy loans, the historical data expansion unit 202 based on the historical transaction data purchased by the user and the transaction attributes of the historical transaction data such as the number of transactions, transaction time, and transactions The number of days or transaction amount generates a historical transaction feature vector of (0.3, 0.7, 0, 0).

網路資料擴充單元203係用以對該瀏覽紀錄進行擴充運算,其中該擴充運算係依據瀏覽紀錄對應的內容的至少一瀏覽屬性進行運算,該瀏覽屬性為網頁網址、網頁屬性、瀏覽時間、瀏覽天數、瀏覽商品、商品金額或點購次數,例如拆分與辨別網址資料、瀏覽行為特徵(如瀏覽時間與瀏覽天數)、網頁屬性(如行銷活動、行銷時間)、瀏覽的商品名稱、金額等,以產生一瀏覽紀錄特徵向量。The network data expansion unit 203 is used to perform an expansion operation on the browsing record, wherein the expansion operation is calculated based on at least one browsing attribute of the content corresponding to the browsing record, the browsing attribute is a web page URL, a web page attribute, a browsing time, a browsing Days, browsed products, product amount, or number of purchases, such as splitting and identifying URL data, browsing behavior characteristics (such as browsing time and days), web page attributes (such as marketing activities, marketing time), browsed product name, amount, etc. To generate a browsing record feature vector.

交互擴充單元204係用以對前述網路資料擴充單元203擴充運算後之瀏覽紀錄與前述歷史資料擴充單元202擴充運算後之歷史交易進行交互關係擴充,以產生一交互擴充特徵向量,交互關係可以是每次瀏覽前之動作(網路110瀏覽/商品購買)、每次購買前總共瀏覽的網頁數等,但不限於此。購買預測分析The interactive expansion unit 204 is used to expand the interactive relationship between the browsing record after the expansion operation of the network data expansion unit 203 and the historical operation after the expansion operation of the historical data expansion unit 202 to generate an interactive expansion feature vector. The interaction relationship can be It is the action before each browsing (Internet 110 browsing/commodity purchase), the total number of webpages browsed before each purchase, etc., but it is not limited to this. Purchase forecast analysis

特徵決定單元206係用以分析瀏覽紀錄特徵向量、歷史交易特徵向量、交互擴充特徵向量與實際購買之相關性,以排除不必要資訊之干擾,加強機器學習之準確度。例如,特徵決定單元206將瀏覽紀錄特徵向量或歷史交易特徵向量之欄位之相關性取絕對值以產生一預測標籤,排除相關性過低之欄位,相關性之決定方法為一積差相關分析方法,例如皮爾森積差相關(Pearson Correlation)。在本實施例中,特徵決定單元206以皮爾森積差相關分析瀏覽紀錄特徵向量或歷史交易特徵向量時,產生之相關性絕對值如大於等於一預測標籤之預設值時,表示前述之瀏覽紀錄特徵向量、歷史交易特徵向量、交互擴充特徵向量與實際購買相關,例如一商品之「有購買意願」之預測標籤之相關性閥值為0.3,當特徵決定單元206算出一使用者的瀏覽紀錄特徵向量、歷史交易特徵向量、交互擴充特徵向量之相關性絕對值為0.5時,由於0.5大於閥值0.3,故判定為有相關,而將使用者與該有購買意願之預測標籤進行關聯。但所屬技術領域中具有通常知識者應理解積差相關分析方法與絕對值不限於此。The feature determination unit 206 is used to analyze the correlation between the browsing record feature vector, the historical transaction feature vector, and the interactive expansion feature vector and the actual purchase, so as to eliminate the interference of unnecessary information and enhance the accuracy of machine learning. For example, the feature determination unit 206 takes the absolute value of the correlation of the fields of the browsing record feature vector or the historical transaction feature vector to generate a predicted label, and excludes the fields with low correlation. The method of determining correlation is a product correlation Analytical methods, such as Pearson Correlation. In this embodiment, when the feature determination unit 206 uses the Pearson product difference correlation analysis to browse the record feature vector or the historical transaction feature vector, if the absolute value of the correlation generated is greater than or equal to the preset value of a predicted label, it means the aforementioned browsing Record feature vectors, historical transaction feature vectors, and interactive expansion feature vectors are related to actual purchases. For example, the correlation threshold of a product's "willing to buy" prediction tag is 0.3. When the feature determination unit 206 calculates a user's browsing record When the absolute value of the correlation between the feature vector, the historical transaction feature vector, and the interactive extended feature vector is 0.5, because 0.5 is greater than the threshold value of 0.3, it is determined to be related, and the user is associated with the predicted tag with the purchase intention. However, those with ordinary knowledge in the technical field should understand that the product difference correlation analysis method and the absolute value are not limited to this.

分析區間決定單元205係用以決定分析區間,藉由不同長度的時間作為分析區間進行回測計算,以不斷往前推進方式瀏覽紀錄特徵向量、歷史交易特徵向量與商品資訊進行購買預測分析標籤,例如分析區間可以為5日、10日、20日、30日、90日、180日、365日或730日等,並個別計算出購買機率,以決定商品的最佳分析區間,在本實施例中,回測計算係一多類別分類演算法,並產生一F1分數(F1 Score)作為購買機率,並以F1分數最高者為最佳分析區間。但所屬技術領域中具有通常知識者應理解回測計算與最佳分析區間之決定方法不限於此。The analysis interval determination unit 205 is used to determine the analysis interval, use different lengths of time as the analysis interval for backtesting calculation, and browse the record feature vector, historical transaction feature vector and commodity information for purchase prediction analysis tags in a continuously advancing manner. For example, the analysis interval can be 5, 10, 20, 30, 90, 180, 365, or 730, etc., and the purchase probability is calculated individually to determine the optimal analysis interval of the product. In this embodiment In the backtesting calculation, it is a multi-category classification algorithm, and generates an F1 score as the purchase probability, and the highest analysis interval is the one with the highest F1 score. However, those with ordinary knowledge in the technical field should understand that the method of determining the backtest calculation and the optimal analysis interval is not limited to this.

如圖3所示,本創作之一種依據使用者網路110瀏覽紀錄的商品購買評估系統實施流程,用以前述操作終端100與服務提供裝置120運行,其步驟包括:步驟301,自一操作終端100提供一瀏覽請求;步驟302,服務提供裝置120依據瀏覽請求提供一相應之瀏覽內容資訊至操作終端100以及產生一瀏覽紀錄,操作終端100依據瀏覽內容資訊產生一瀏覽畫面;步驟303,操作終端100依據瀏覽畫面產生一帆布指紋;步驟304,服務提供裝置120儲存瀏覽紀錄與帆布指紋;步驟305,依據帆布指紋查詢對應的一使用者身分代碼;步驟306,依據使用者身分代碼與一分析區間查詢使用者於分析區間之歷史交易資料;步驟307,對瀏覽紀錄與歷史交易資料進行擴充運算,產生至少一瀏覽紀錄特徵向量與至少一歷史交易特徵向量;步驟308,獲得一商品資訊,依據瀏覽紀錄特徵向量、歷史交易特徵向量與商品資訊進行購買預測分析,於分析後產生一購買預測分析結果;以及步驟309,依據購買預測分析結果產生一標籤並與使用者身分代碼連結。As shown in FIG. 3, an implementation process of the commodity purchase evaluation system based on the browsing records of the user network 110 is used for the operation of the aforementioned operation terminal 100 and the service providing device 120. The steps include: Step 301, from an operation terminal 100 provides a browsing request; step 302, the service providing device 120 provides a corresponding browsing content information to the operating terminal 100 according to the browsing request and generates a browsing record, the operating terminal 100 generates a browsing screen according to the browsing content information; step 303, operating the terminal 100 generates a canvas fingerprint based on the browsing screen; step 304, the service providing device 120 stores the browsing record and canvas fingerprint; step 305, queries a corresponding user identity code based on the canvas fingerprint; step 306, based on the user identity code and an analysis interval Query the user's historical transaction data in the analysis interval; Step 307, perform an extended operation on the browsing record and historical transaction data to generate at least one browsing record feature vector and at least one historical transaction feature vector; Step 308, obtain a commodity information, based on browsing The recorded feature vector, the historical transaction feature vector, and the commodity information are used to make a purchase prediction analysis, and a purchase prediction analysis result is generated after the analysis; and step 309, a label is generated according to the purchase prediction analysis result and linked to the user identity code.

接著進一步描述本創作之一種依據使用者網路110瀏覽紀錄的商品購買評估系統實施流程之各實施步驟,請參考圖1至圖3,於步驟301,使用者可以透過操作終端100之輸入模組101如個人電腦之鍵盤輸入欲瀏覽的網頁或商品進行查詢,當網路110伺服器回覆相應的網頁後,使用者點選所欲開啟的網頁以發出一瀏覽請求至網路110110與服務提供裝置120。Next, the steps of the implementation process of a product purchase evaluation system based on the browsing records of the user's network 110 will be further described. Please refer to FIGS. 1 to 3. In step 301, the user can use the input module of the operation terminal 100 101 For example, the keyboard of a personal computer enters a webpage or product to be queried for inquiries. When the server of the network 110 replies to the corresponding webpage, the user clicks the webpage to be opened to issue a browsing request to the network 110110 and the service providing device 120.

步驟302,服務提供裝置120接收到前述瀏覽請求後,由內容提供模組121產生一相應之瀏覽內容資訊並提供至操作終端100,操作終端100依據瀏覽內容資訊產生一瀏覽畫面並透過顯示模組102提供給使用者瀏覽,且操作終端100會據此產生一瀏覽紀錄。Step 302, after receiving the aforementioned browsing request, the service providing device 120 generates a corresponding browsing content information from the content providing module 121 and provides it to the operation terminal 100. The operation terminal 100 generates a browsing screen according to the browsing content information and passes the display module 102 provides the user with browsing, and the operation terminal 100 generates a browsing record accordingly.

步驟303,操作終端100的帆布指紋產生模組103依據瀏覽畫面產生一帆布指紋,帆布指紋係依據操作終端100之瀏覽器資訊與設備資訊進行計算而得,前述資訊可以包括:瀏覽器廠牌、瀏覽器設定、瀏覽器版本、瀏覽器語言、瀏覽器字體、瀏覽器運行時的軟體環境、螢幕畫質、系統版本、硬體資訊等;由於不同使用者的操作終端100的軟硬體設定不盡相同,基於不同的圖形處理引擎、不同的圖片生成方式、不同的壓縮比例、反鋸齒、渲染運算等,相同的圖片產生的帆布指紋不盡相同,因此得以表彰特定使用者身分。Step 303: The canvas fingerprint generation module 103 of the operation terminal 100 generates a canvas fingerprint according to the browsing screen. The canvas fingerprint is calculated based on the browser information and device information of the operation terminal 100. The foregoing information may include: browser brand, Browser settings, browser version, browser language, browser font, software environment when the browser is running, screen quality, system version, hardware information, etc.; due to the different hardware and software settings of the operating terminal 100 for different users All the same, based on different graphics processing engines, different image generation methods, different compression ratios, anti-aliasing, rendering operations, etc., the canvas fingerprints generated by the same image are not the same, so they can be commended for specific users.

步驟304,操作終端100會將瀏覽紀錄與帆布指紋提供給服務提供裝置120,服務提供裝置120之瀏覽紀錄模組122用以儲存瀏覽紀錄與帆布指紋。In step 304, the operation terminal 100 provides the browsing record and the canvas fingerprint to the service providing device 120, and the browsing record module 122 of the service providing device 120 is used to store the browsing record and the canvas fingerprint.

步驟305,特徵擴充模組125之身分串接單元201可依據帆布指紋向使用者資料模組123查詢對應的一使用者身分代碼。In step 305, the identity serial unit 201 of the feature expansion module 125 can query the user data module 123 for a corresponding user identity code according to the canvas fingerprint.

步驟306,特徵擴充模組125之身分串接單元201依據使用者身分代碼與分析區間決定單元205提供之一分析區間向歷史交易資料模組124查詢使用者於分析區間之歷史交易資料。分析區間可以是一預設的期間,例如預設的5日、10日、20日、30日、90日、180日、365日或730日,也可以是分析區間決定單元205藉由不同長度的時間作為分析區間進行回測計算,以不斷往前推進方式瀏覽紀錄特徵向量、歷史交易特徵向量與商品資訊進行購買機率分析標籤,並個別計算出購買機率,以決定出的商品最佳分析區間,例如自5日、10日、20日、30日、90日、180日、365日或730日中決定出最佳分析區間為180日。在其他實施例中,於獲得歷史交易資料後,還可以進一步執行一串接步驟,用以將使用者身分代碼、瀏覽紀錄與歷史交易資料串接。In step 306, the identity concatenation unit 201 of the feature expansion module 125 queries the historical transaction data module 124 for historical transaction data of the user in the analysis interval according to an analysis interval provided by the user identity code and the analysis interval determination unit 205. The analysis interval may be a preset period, such as a preset 5, 10, 20, 30, 90, 180, 365 or 730 days, or the analysis interval determining unit 205 may use different lengths The time is used as the analysis interval for backtesting calculations, and the record feature vector, historical transaction feature vector and product information are browsed in a forward-going manner to carry out the purchase probability analysis label, and the purchase probability is calculated individually to determine the best analysis interval for the product. For example, the best analysis interval is determined to be 180 days from 5, 10, 20, 30, 90, 180, 365 or 730 days. In other embodiments, after the historical transaction data is obtained, a serial connection step may be further performed to connect the user identity code, browsing records and historical transaction data.

步驟307,特徵擴充模組125於接收瀏覽紀錄特徵向量與至少一歷史交易特徵向量後,會先執行預處理。接著,網路資料擴充單元203對瀏覽紀錄的進行擴充運算,前述瀏覽紀錄所對應的內容至少含有一瀏覽屬性,瀏覽屬性可以是網頁網址、網頁屬性、瀏覽時間、瀏覽天數、瀏覽商品、商品金額或點購次數,於此,對瀏覽屬性進行運算,例如拆分與辨別網址資料、瀏覽行為特徵(如瀏覽時間與瀏覽天數)、網頁屬性(如行銷活動、行銷時間)判斷、瀏覽的商品名稱、金額確認等,以產生至少一瀏覽紀錄特徵向量。歷史資料擴充單元202對歷史交易資料內的交易屬性進行擴充運算,交易屬性可以是交易次數、交易時間、交易天數或交易金額,例如總共購買次數、單日購買次數、總共購買的天數與平均購買金額等,產生至少一歷史交易特徵向量。In step 307, after receiving the browsing record feature vector and the at least one historical transaction feature vector, the feature expansion module 125 will first perform preprocessing. Next, the network data expansion unit 203 performs an expansion operation on the browsing record. The content corresponding to the browsing record contains at least one browsing attribute. The browsing attribute may be a web page URL, a web page attribute, a browsing time, a browsing day, a browsing commodity, and a commodity amount. Or the number of purchases, here, the calculation of browsing attributes, such as splitting and identifying URL data, browsing behavior characteristics (such as browsing time and browsing days), web page attributes (such as marketing activities, marketing time), and the name of the browsed product , Amount confirmation, etc. to generate at least one browsing record feature vector. The historical data expansion unit 202 performs an expansion operation on the transaction attributes in the historical transaction data. The transaction attributes may be the number of transactions, the transaction time, the number of transaction days, or the transaction amount, such as the total number of purchases, the number of purchases per day, the total number of days purchased, and the average purchase The amount, etc., generates at least one historical transaction feature vector.

步驟308,特徵擴充模組125自商品模組125獲得一商品資訊,交互擴充單元204依據瀏覽紀錄特徵向量、歷史交易特徵向量與商品資訊進行購買預測分析,於分析後產生一購買預測分析結果,以判斷每個使用者對單一類型商品購買之機率。在其他實施例中,購買預測分析係包含一購買意向向量產生步驟,Step 308, the feature expansion module 125 obtains a commodity information from the commodity module 125, and the interactive expansion unit 204 performs a purchase prediction analysis based on the browsing record feature vector, the historical transaction feature vector and the commodity information, and generates a purchase prediction analysis result after the analysis, To determine the probability of each user buying a single type of goods. In other embodiments, the purchase prediction analysis system includes a purchase intention vector generation step,

步驟309,依據購買預測分析結果產生一標籤並與使用者身分代碼連結,在本實施例中標籤可以是購買或不購買,在其他實施例中,標籤可以是購買機率之值(20%、40%、60%、80%、90%、99%等)或該值對應之結論(低、略低、一般、略高、高、極高等)。Step 309, generate a label according to the result of the purchase prediction analysis and link it with the user's identity code. In this embodiment, the label may be purchased or not purchased. In other embodiments, the label may be the value of the purchase probability (20%, 40 %, 60%, 80%, 90%, 99%, etc.) or the conclusion corresponding to this value (low, slightly lower, average, slightly higher, high, extremely high, etc.).

在其他實施例中,本創作之商品購買評估系統實施流程,其中更包括一相關性分析步驟,用以分析該瀏覽紀錄特徵向量、該歷史交易特徵向量與該商品資訊之相關性,當該瀏覽紀錄特徵向量、該歷史交易特徵向量之值大於該商品資訊之一閥值時,判斷為高相關;當該瀏覽紀錄特徵向量、該歷史交易特徵向量之值小於該商品資訊之該閥值時,判斷為無相關。In other embodiments, the implementation process of the created product purchase evaluation system further includes a correlation analysis step for analyzing the correlation between the browsing record feature vector, the historical transaction feature vector, and the commodity information, when the browsing When the value of the record feature vector and the historical transaction feature vector is greater than one of the thresholds of the commodity information, it is determined to be highly correlated; when the values of the browse record feature vector and the historical transaction feature vector are less than the threshold of the commodity information, Judgment is not relevant.

雖然本創作已以實施例揭露如上實施例,然其並非用以限定本創作,任何所屬技術領域中具有通常知識者,在不脫離本創作之精神和範圍內,當可作些許之更動與修飾,皆應為本專利所主張之權利範圍,故本專利之保護範圍當視後附之專利申請範圍所界定者為準。Although this creation has disclosed the above embodiments with examples, it is not intended to limit this creation. Anyone with ordinary knowledge in the technical field of the subject can make some changes and modifications without departing from the spirit and scope of this creation. , Should be the scope of rights claimed by the patent, so the scope of protection of this patent shall be deemed as defined by the scope of the attached patent application.

100‧‧‧操作終端 125‧‧‧特徵擴充模組 101‧‧‧輸入模組 126‧‧‧商品模組 102‧‧‧顯示模組 201‧‧‧身分串接單元 103‧‧‧帆布指紋產生模組 202‧‧‧歷史資料擴充單元 110‧‧‧網路 203‧‧‧網路資料擴充單元 120‧‧‧服務提供裝置 204‧‧‧交互擴充單元 121‧‧‧內容提供模組 205‧‧‧分析區間決定單元 122‧‧‧瀏覽紀錄模組 206‧‧‧特徵決定單元 123‧‧‧使用者資料模組 301-309‧‧‧步驟 124‧‧‧歷史交易資料模組100‧‧‧Operation terminal 125‧‧‧Feature expansion module 101‧‧‧ input module 126‧‧‧Commodity module 102‧‧‧Display module 201‧‧‧ Identity Series Unit 103‧‧‧Canvas fingerprint generation module 202‧‧‧Historical data expansion unit 110‧‧‧ Internet 203‧‧‧Network data expansion unit 120‧‧‧Service provision device 204‧‧‧Interactive Expansion Unit 121‧‧‧Content providing module 205‧‧‧Analysis interval determination unit 122‧‧‧Browsing record module 206‧‧‧Feature determination unit 123‧‧‧ User Data Module 301-309‧‧‧Step 124‧‧‧ Historical Transaction Data Module

圖1為本創作之一種依據使用者網路瀏覽紀錄的商品購買評估系統之例示性系統實施例示意圖。 圖2為本創作之特徵擴充模組之例示性模組實施例示意圖。 圖3為本創作之一種依據使用者網路瀏覽紀錄的商品購買評估系統之例示性系統實施流程示意圖。 FIG. 1 is a schematic diagram of an exemplary system embodiment of a merchandise purchase evaluation system based on a user’s Internet browsing history. FIG. 2 is a schematic diagram of an exemplary module embodiment of the created feature expansion module. FIG. 3 is a schematic diagram of an exemplary system implementation process of a product purchase evaluation system based on the user’s Internet browsing records.

100‧‧‧操作終端 100‧‧‧Operation terminal

101‧‧‧輸入模組 101‧‧‧ input module

102‧‧‧顯示模組 102‧‧‧Display module

103‧‧‧帆布指紋產生模組 103‧‧‧Canvas fingerprint generation module

110‧‧‧網路 110‧‧‧ Internet

120‧‧‧服務提供裝置 120‧‧‧Service provision device

121‧‧‧內容提供模組 121‧‧‧Content providing module

122‧‧‧瀏覽紀錄模組 122‧‧‧Browsing record module

123‧‧‧使用者資料模組 123‧‧‧ User Data Module

124‧‧‧歷史交易資料模組 124‧‧‧ Historical Transaction Data Module

125‧‧‧特徵擴充模組 125‧‧‧Feature expansion module

126‧‧‧商品模組 126‧‧‧Commodity module

Claims (11)

一種依據使用者網路瀏覽紀錄的商品購買評估系統,其係用以與一操作終端訊號連接,其中該操作終端包含一輸入模組、一顯示模組及一帆布指紋產生模組,其中該輸入模組用以提供一瀏覽請求,該顯示模組用以顯示一瀏覽畫面,該帆布指紋產生模組用以依據該瀏覽畫面產生一帆布指紋,該系統包括: 一服務提供裝置,該服務提供裝置包含一內容提供模組、一瀏覽紀錄模組、一使用者資料模組、一歷史交易模組、一特徵擴充模組以及一商品模組,其中: 該內容提供模組,儲存有複數個內容資訊,依據該瀏覽請求提供相應之瀏覽內容資訊至該操作終端,並產生一瀏覽紀錄; 該瀏覽紀錄模組,用以儲存該瀏覽紀錄與該帆布指紋; 該使用者資料模組,用以儲存至少一使用者資料,該使用者資料至少包含一使用者身分代碼; 該歷史交易模組,用以儲存複數個對應於該使用者資料之歷史交易資料; 該商品模組連接,用以儲存複數個商品資訊;以及 該特徵擴充模組,依據該帆布指紋查詢對應之該使用者身分代碼,並該使用者身分代碼與一分析區間查詢該使用者於該分析區間之歷史交易資料,且該特徵擴充模組依據該瀏覽紀錄與該歷史交易資料進行擴充運算,產生至少一瀏覽紀錄特徵向量與至少一歷史交易特徵向量,該特徵擴充模組依據該瀏覽紀錄特徵向量、該歷史交易特徵向量與一商品資訊進行購買預測分析,於分析後產生一購買預測分析結果以及一標籤,並將該標籤與該使用者身分代碼連結。 A merchandise purchase evaluation system based on the user's Internet browsing records is used to connect with an operation terminal signal, wherein the operation terminal includes an input module, a display module, and a canvas fingerprint generation module, wherein the input The module is used to provide a browse request, the display module is used to display a browse screen, and the canvas fingerprint generation module is used to generate a canvas fingerprint based on the browse screen. The system includes: A service providing device including a content providing module, a browsing record module, a user data module, a historical transaction module, a feature expansion module, and a commodity module, wherein: The content providing module stores a plurality of content information, provides corresponding browsing content information to the operation terminal according to the browsing request, and generates a browsing record; The browsing record module is used to store the browsing record and the canvas fingerprint; The user data module is used to store at least one user data, and the user data includes at least one user identity code; The historical transaction module is used to store a plurality of historical transaction data corresponding to the user data; The commodity module is connected to store a plurality of commodity information; and The feature expansion module queries the corresponding user identity code according to the canvas fingerprint, and the user identity code and an analysis interval query the user's historical transaction data in the analysis interval, and the feature expansion module is based on the The browsing record and the historical transaction data are expanded to generate at least one browsing record feature vector and at least one historical transaction feature vector. The feature expansion module makes a purchase prediction based on the browsing record feature vector, the historical transaction feature vector, and a commodity information After the analysis, a purchase prediction analysis result and a label are generated, and the label is linked to the user identity code. 如請求項1所述之商品購買評估系統,其中該特徵擴充模組包含一身分串接單元、一歷史資料擴充單元、一網路資料擴充單元、一交互擴充單元以及一分析區間決定單元。The commodity purchase evaluation system according to claim 1, wherein the feature expansion module includes an identity serial unit, a historical data expansion unit, a network data expansion unit, an interactive expansion unit, and an analysis interval determination unit. 如請求項1或2所述之商品購買評估系統,其中該特徵擴充模組更包括一特徵決定單元,該特徵決定單元係用以分析該瀏覽紀錄特徵向量、該歷史交易特徵向量與該商品資訊之相關性。The commodity purchase evaluation system according to claim 1 or 2, wherein the feature expansion module further includes a feature determination unit for analyzing the browsing record feature vector, the historical transaction feature vector and the product information Of relevance. 如請求項3所述之商品購買評估系統,其中當該瀏覽紀錄特徵向量、該歷史交易特徵向量之值大於該商品資訊之一閥值時,判斷為高相關;當該瀏覽紀錄特徵向量、該歷史交易特徵向量之值小於該商品資訊之該閥值時,判斷為無相關。The commodity purchase evaluation system according to claim 3, wherein when the value of the browsing record feature vector and the historical transaction feature vector is greater than one of the thresholds of the commodity information, it is determined to be highly correlated; when the browsing record feature vector, the When the value of the historical transaction feature vector is less than the threshold of the commodity information, it is judged as not relevant. 如請求項2所述之商品購買評估系統,其中該身分串接單元係依據用以將該使用者身分代碼、該瀏覽紀錄與該歷史交易資料串接。The commodity purchase evaluation system according to claim 2, wherein the identity concatenation unit is based on concatenating the user identity code, the browsing record and the historical transaction data. 如請求項2所述之商品購買評估系統,其中該歷史資料擴充單元係用以對該歷史交易資料進行擴充運算,其中該擴充運算係依據至少一交易屬性進行運算,該交易屬性為交易次數、交易時間、交易天數或交易金額。The commodity purchase evaluation system according to claim 2, wherein the historical data expansion unit is used to perform an expansion operation on the historical transaction data, wherein the expansion operation is calculated based on at least one transaction attribute, and the transaction attribute is the number of transactions, Transaction time, transaction days or transaction amount. 如請求項2所述之商品購買評估系統,其中該網路資料擴充單元係用以對該瀏覽紀錄進行擴充運算,其中該擴充運算係依據至少一瀏覽屬性進行運算,該瀏覽屬性為網頁網址、網頁屬性、瀏覽時間、瀏覽天數、瀏覽商品、商品金額或點購次數。The commodity purchase evaluation system according to claim 2, wherein the network data expansion unit is used to perform an expansion operation on the browsing record, wherein the expansion operation is calculated based on at least one browsing attribute, the browsing attribute is a web page URL, Web page attributes, browsing time, browsing days, browsing products, product amount or number of purchases. 如請求項2所述之商品購買評估系統,其中該交互擴充單元係用以進行購買預測分析。The commodity purchase evaluation system as described in claim 2, wherein the interactive expansion unit is used to perform purchase prediction analysis. 如請求項2所述之商品購買評估系統,其中該購買預測分析係包含一購買意向向量。The commodity purchase evaluation system according to claim 2, wherein the purchase prediction analysis includes a purchase intention vector. 如請求項2所述之商品購買評估系統,其中該分析區間決定單元係用以決定分析區間。The commodity purchase evaluation system according to claim 2, wherein the analysis interval determination unit is used to determine the analysis interval. 如請求項10所述之商品購買評估系統,其中該分析區間為5日、10日、20日、30日、90日、180日、365日或730日。The commodity purchase evaluation system according to claim 10, wherein the analysis interval is 5, 10, 20, 30, 90, 180, 365 or 730 days.
TW108213356U 2019-10-08 2019-10-08 Product purchase evaluation system based on user web browsing history TWM589312U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108213356U TWM589312U (en) 2019-10-08 2019-10-08 Product purchase evaluation system based on user web browsing history

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108213356U TWM589312U (en) 2019-10-08 2019-10-08 Product purchase evaluation system based on user web browsing history

Publications (1)

Publication Number Publication Date
TWM589312U true TWM589312U (en) 2020-01-11

Family

ID=69944526

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108213356U TWM589312U (en) 2019-10-08 2019-10-08 Product purchase evaluation system based on user web browsing history

Country Status (1)

Country Link
TW (1) TWM589312U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111681051A (en) * 2020-06-08 2020-09-18 上海汽车集团股份有限公司 Purchasing intention degree prediction method, device, storage medium and terminal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111681051A (en) * 2020-06-08 2020-09-18 上海汽车集团股份有限公司 Purchasing intention degree prediction method, device, storage medium and terminal
CN111681051B (en) * 2020-06-08 2023-09-26 上海汽车集团股份有限公司 Purchase intention prediction method and device, storage medium and terminal

Similar Documents

Publication Publication Date Title
US10129274B2 (en) Identifying significant anomalous segments of a metrics dataset
US7594189B1 (en) Systems and methods for statistically selecting content items to be used in a dynamically-generated display
US20220036391A1 (en) Auto-segmentation
US8700463B2 (en) Advertisement generation and optimization
US9413559B2 (en) Predictive analysis of network analytics
US20090271228A1 (en) Construction of predictive user profiles for advertising
US20060161553A1 (en) Systems and methods for providing user interaction based profiles
US20210217053A1 (en) Methods and apparatuses for selecting advertisements using semantic matching
US20190043113A1 (en) Computing systems and methods using relational memory
US11810148B1 (en) Content influencer scoring system and related methods
TWM589312U (en) Product purchase evaluation system based on user web browsing history
US10013699B1 (en) Reverse associate website discovery
WO2021181900A1 (en) Target user feature extraction method, target user feature extraction system, and target user feature extraction server
Xiao et al. Analysis of influencing factors and enterprise strategy of online consumer behavior decision based on association rules and mobile computing
JP5011185B2 (en) Information analysis apparatus, information analysis method, and information analysis program
TW202115586A (en) System and method for purchasing evaluation based on user’s web browsing record
TWI818213B (en) System and method of product recommendation and computer readable medium
US11887168B2 (en) Predicting the value of an asset using machine-learning techniques
Lindén Path Analysis of Online Users Using Clickstream Da-ta: Case Online Magazine Website
CN118628214B (en) Personalized clothing recommendation method and system for electronic commerce platform based on artificial intelligence
TWI796623B (en) System for keyword generation and verification
US20230095226A1 (en) System, method, and computer program for identifying order-related data on a webpage using machine learning
CN109214848B (en) Method and system for analyzing influence similarity of virtual commodities on recommendation system
Gunasundari et al. Improve Accuracy in Advertisement Viewability Prediction using PLC and Logistic Regression
Gao User Behavior Analysis and Prediction Algorithm Design of E-commerce Platform Based on Big Data Analysis

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees