TWM583989U - Serial number detection system - Google Patents
Serial number detection system Download PDFInfo
- Publication number
- TWM583989U TWM583989U TW108204717U TW108204717U TWM583989U TW M583989 U TWM583989 U TW M583989U TW 108204717 U TW108204717 U TW 108204717U TW 108204717 U TW108204717 U TW 108204717U TW M583989 U TWM583989 U TW M583989U
- Authority
- TW
- Taiwan
- Prior art keywords
- serial number
- neural network
- network model
- module
- model
- Prior art date
Links
Landscapes
- Image Analysis (AREA)
- Character Discrimination (AREA)
Abstract
一種序號檢測系統,此序號檢測系統包括一輸入模組、一序號分割區域偵測模組、與一序號辨識模組。其中,輸入模組接受一圖片,而序號分割區域偵測模組以一第一類神經網路模型判定該圖片中是否存有至少一序號型態之文字,若有則對該序號型態之文字進行框選,以形成一序號分割區域。序號辨識模組以一第二類神經網路模型對該序號分割區域中的該序號型態之文字進行辨識,以取得一序號。 A serial number detecting system includes an input module, a serial number divided area detecting module, and a serial number identifying module. Wherein, the input module accepts a picture, and the serial number segmentation area detecting module determines whether there is at least one serial type text in the picture by using a first type of neural network model, and if so, the serial number type The text is framed to form a serial number segmentation area. The serial number identification module identifies the text of the serial number in the serial number segment by a second type of neural network model to obtain a serial number.
Description
本新型是指一種序號檢測系統,特別是指一種使用類神經網路進行辨識的序號檢測系統。 The present invention refers to a serial number detection system, and more particularly to a serial number detection system that uses a neural network for identification.
為了對個別的產品或文件進行區分或歸類,人們會將個別的產品或文件進行編號,此編號一般稱為序號。為了方便紀錄和管理,人們會將這些序號輸入到電腦中。然而,用人工手動輸入相當耗時且容易出錯,市面上已有推出利用機器掃描並自動判別序號的裝置。然而,目前市面上關於產品序號檢測的相關機器,都須在嚴格的限制條件下進行。在對產品的序號標示拍照取樣時,往往需要將機器移動到一指定範圍和角度內才能成功辨識,但這樣也會增加作業的時間。此外,若序號是顯示在螢幕或印有浮水印的紙上,在辨別上會更顯困難。 In order to distinguish or classify individual products or documents, individual products or documents are numbered. This number is generally called a serial number. In order to facilitate the recording and management, people will input these serial numbers into the computer. However, manual manual input is quite time consuming and error prone, and devices have been introduced on the market that utilize machine scanning and automatically determine the serial number. However, the relevant machines on the market for product serial number testing must be carried out under strict restrictions. When sampling the product serial number, it is often necessary to move the machine to a specified range and angle to be successfully identified, but this will also increase the time of the operation. In addition, if the serial number is displayed on a screen or a paper with a watermark printed on it, it will be more difficult to distinguish.
因此,如何使機器在掃描序號時無需考慮指定範圍和角度,是值得本領域具有通常知識者去思量的課題。 Therefore, how to make the machine scan the serial number without considering the specified range and angle is a subject worthy of consideration by those who have common knowledge in the field.
本新型之目的在於提供一序號檢測系統,該序號檢測系統在掃描序號時無需限定指定範圍和角度。此序號檢測系統包括一輸入模組、一序號分割區域偵測模組、與一序號辨識模組。其中,輸入模組接受一圖片,而序號分割區域偵測模組以一第一類神經網路模型判定該圖片中是否存有至少一序號型態之文 字,若有則對該序號型態之文字進行框選,以形成一序號分割區域。序號辨識模組以一第二類神經網路模型對該序號分割區域中的該序號型態之文字進行辨識,以取得一序號。 The purpose of the present invention is to provide a serial number detection system that does not need to define a specified range and angle when scanning a serial number. The serial number detection system includes an input module, a serial number segmentation detection module, and a serial number identification module. Wherein, the input module accepts a picture, and the serial number segmentation area detecting module determines whether there is at least one serial type in the picture by using a first type of neural network model. The word, if any, is framed by the text of the serial number to form a serial number segmentation area. The serial number identification module identifies the text of the serial number in the serial number segment by a second type of neural network model to obtain a serial number.
如上述之序號檢測系統,第一類神經網路模型包括一第一卷積式神經網路模型與一目標檢測神經網路模型。第一卷積式神經網路模型對圖片進行特徵抽取以輸出一特徵向量,而目標檢測神經網路模型根據該特徵向量的輸入對該序號型態之文字進行框選以形成該序號分割區域。其中,第一卷積式神經網路模型為VGG模型、ResNet模型、或DenseNet模型,而目標檢測神經網路模型為YOLO模型、CTPN模型、或EAST模型。 As described above, the first type of neural network model includes a first convolutional neural network model and a target detection neural network model. The first convolutional neural network model extracts features from the image to output a feature vector, and the target detection neural network model frames the text of the serial number according to the input of the feature vector to form the sequence segmentation region. The first convolutional neural network model is a VGG model, a ResNet model, or a DenseNet model, and the target detection neural network model is a YOLO model, a CTPN model, or an EAST model.
如上述之序號檢測系統,第二類神經網路模型包括一第二卷積式神經網路模型與一遞歸式神經網路模型。第二卷積式神經網路模型對該序號分割區域中的圖像進行處理以輸出一字元序列,該遞歸式神經網路模型根據該字元序列的輸入以輸出序號。其中,遞歸式神經網路模型實施Connectionist Temporal Classification演算法。 As described above, the second type of neural network model includes a second convolutional neural network model and a recursive neural network model. The second convolutional neural network model processes the image in the sequence segmentation region to output a sequence of characters, the recursive neural network model outputting a sequence number based on the input of the sequence of characters. Among them, the recursive neural network model implements the Connectionist Temporal Classification algorithm.
如上述之序號檢測系統,第二類神經網路模型為Seq2Seq模型。 As with the serial number detection system described above, the second type of neural network model is the Seq2Seq model.
如上述之序號檢測系統,更包括一比對模組。比對模組電性連接於序號辨識模組與一序號資料庫間,該比對模組比對序號辨識模組所取得的序號是否儲存該序號資料庫。。 The serial number detection system as described above further includes a comparison module. The comparison module is electrically connected between the serial number identification module and a serial number database, and the comparison module compares the serial number obtained by the serial number identification module to store the serial number database. .
如上述之序號檢測系統,更包括一影像前處理模組,該影像前處理模組通信連接於該輸入模組與該序號分割區域偵測模組之間。 The image detection system includes an image pre-processing module, and the image pre-processing module is communicatively coupled between the input module and the serial number segment detection module.
為讓本之上述特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。 The above described features and advantages will be more apparent from the following description.
10‧‧‧影像 10‧‧‧ images
12‧‧‧序號分割區域 12‧‧‧Segmentation area
12a‧‧‧圖片序列 12a‧‧‧ Picture sequence
30‧‧‧序號資料庫 30‧‧‧ Serial Number Database
40‧‧‧影像輸入裝置 40‧‧‧Image input device
100‧‧‧序號檢測系統 100‧‧‧Sequence detection system
110‧‧‧輸入模組 110‧‧‧Input module
115‧‧‧影像前處理模組 115‧‧‧Image pre-processing module
120‧‧‧序號分割區域偵測模組 120‧‧‧Sequence segmentation area detection module
122‧‧‧第一類神經網路模型 122‧‧‧First type of neural network model
1221‧‧‧第一卷積式神經網路模型 1221‧‧‧First Convolutional Neural Network Model
1223‧‧‧目標檢測神經網路模型 1223‧‧‧ Target detection neural network model
130‧‧‧序號辨識模組 130‧‧‧Serial Identification Module
132‧‧‧第二類神經網路模型 132‧‧‧Second type neural network model
1321‧‧‧第二卷積式神經網路模型 1321‧‧‧Second convolutional neural network model
1323‧‧‧遞歸式神經網路模型 1323‧‧‧Recursive neural network model
140‧‧‧比對模組 140‧‧‧ alignment module
下文將根據附圖來描述各種實施例,所述附圖是用來說明而不是用以任何方式來限制範圍,其中相似的標號表示相似的元件,並且其中: 圖1所繪示為本新型之文件資訊提取歸檔系統的實施例。 The various embodiments are described below with reference to the accompanying drawings, in which FIG. FIG. 1 illustrates an embodiment of a file information extraction and archiving system of the present invention.
圖2A所繪示為影像輸入裝置拍攝後的影像。 FIG. 2A illustrates an image taken by the image input device.
圖2B所繪示為影像上的序號分割區域。 FIG. 2B illustrates a segmentation area on the image.
圖3所繪示為第一類神經網路模型的架構圖。 FIG. 3 is a block diagram of a first type of neural network model.
圖4所繪示為第二類神經網路模型的架構圖。 Figure 4 is a block diagram of a second type of neural network model.
圖5所繪示為將序號分割區域拆解成多個圖片序列的示意圖。 FIG. 5 is a schematic diagram of disassembling a sequence number division area into a plurality of picture sequences.
參照本文闡述的詳細內容和附圖說明是最好理解本創作。下面參照附圖會討論各種實施例。然而,本領域技術人員將容易理解,這裡關於附圖給出的詳細描述僅僅是為了解釋的目的,因為這些方法和系統可超出所描述的實施例。 例如,所給出的教導和特定應用的需求可能產生多種可選的和合適的方法來實現在此描述的任何細節的功能。因此,任何方法可延伸超出所描述和示出的以下實施例中的特定實施選擇範圍。 The present invention is best understood by reference to the detailed description and the accompanying drawings set forth herein. Various embodiments are discussed below with reference to the drawings. However, those skilled in the art will readily appreciate that the detailed description of the drawings herein is for the purpose of explanation and description For example, the teachings presented and the needs of a particular application may result in a variety of alternative and suitable methods for implementing the functionality of any of the details described herein. Thus, any method may extend beyond the specific implementation selections in the following embodiments described and illustrated.
在說明書及後續的申請專利範圍當中使用了某些詞彙來指稱特定的元 件。所屬領域中具有通常知識者應可理解,不同的廠商可能會用不同的名詞來稱呼同樣的元件。本說明書及後續的申請專利範圍並不以名稱的差異來作為區分元件的方式,而是以元件在功能上的差異來作為區分的準則。在通篇說明書及後續的請求項當中所提及的「包含」或「包括」係為一開放式的用語,故應解釋成「包含但不限定於」。另外,「耦接」或「連接」一詞在此係包含任何直接及間接的電性連接手段。因此,若文中描述一第一裝置耦接於一第二裝置,則代表該第一裝置可直接電性連接於該第二裝置,或透過其他裝置或連接手段間接地電性連接至該第二裝置。 Certain terms are used in the specification and subsequent patent applications to refer to specific elements. Pieces. Those of ordinary skill in the art should understand that different vendors may refer to the same component by different nouns. The scope of this specification and the subsequent patent application do not use the difference of the names as the means for distinguishing the elements, but the difference in function of the elements as the criterion for distinguishing. The term "including" or "including" as used throughout the specification and subsequent claims is an open term and should be interpreted as "including but not limited to". In addition, the term "coupled" or "connected" is used herein to include any direct and indirect electrical connection means. Therefore, if a first device is coupled to a second device, the first device can be directly electrically connected to the second device, or can be electrically connected to the second device through other devices or connection means. Device.
請參閱圖1,圖1所繪示為本新型之文件資訊提取歸檔系統的實施例。序號檢測系統100包括一輸入模組110、一影像前處理模組115、一序號分割區域偵 測模組120、一序號辨識模組130、與一比對模組140,其中該比對模組140是與一序號資料庫30連接。在本實施例中,序號資料庫30例如為記載手機序號的資料庫。此外,輸入模組110例如是電性連接到一影像輸入裝置40,此影像輸入裝置40在本實施例中為具有拍照功能的一智慧型手機,但也可為一數位相機。藉由此影像輸入裝置40與輸入模組110,可將拍攝後的一影像10(例如:圖2A所示的相片)匯入到影像前處理模組115中。此影像前處理模組115能對該影像進行影像前處理,例如:方向轉正、曲面校正、圖片去噪、二值化等,以讓影像具有高對比之特性,以方便後續的處理。在本實施例中,輸入模組110、影像前處理模組115、序號分割區域偵測模組120、序號辨識模組130、與比對模組140是設置於伺服端,伺服端例如是由一台或多台伺服器所組成。 Please refer to FIG. 1. FIG. 1 illustrates an embodiment of a file information extraction and archiving system of the present invention. The serial number detecting system 100 includes an input module 110, an image pre-processing module 115, and a serial segmentation area detection. The measurement module 120, a serial number identification module 130, and a comparison module 140, wherein the comparison module 140 is connected to a serial number database 30. In the present embodiment, the serial number database 30 is, for example, a database that describes the serial number of the mobile phone. In addition, the input module 110 is electrically connected to an image input device 40. In this embodiment, the image input device 40 is a smart phone having a camera function, but can also be a digital camera. By the image input device 40 and the input module 110, the captured image 10 (for example, the photo shown in FIG. 2A) can be imported into the image pre-processing module 115. The image pre-processing module 115 can perform image pre-processing on the image, for example, direction correction, surface correction, image denoising, binarization, etc., so that the image has high contrast characteristics to facilitate subsequent processing. In this embodiment, the input module 110, the image pre-processing module 115, the serial number segmentation detection module 120, the serial number identification module 130, and the comparison module 140 are disposed on the servo end, and the servo end is, for example, One or more servers.
經過前處理後的影像10會被傳輸到序號分割區域偵測模組120,序號分割區域偵測模組120包括第一類神經網路模型122,此第一類神經網路模型122能對影像10中呈現序號型態之文字進行框選,以形成至少一序號分割區域12(圖2B所示為多個)。須注意的是,序號分割區域12中的序號是以影像的方式存在的,也就是說序號分割區域12中的序號在這個階段是無法編輯的。為了將這些序號轉為可編輯的序號,可藉由序號辨識模組130來完成。以下,將介紹序號分割區域偵測模組120與序號辨識模組130較詳細的運作機制。 The pre-processed image 10 is transmitted to the serial number segmentation area detecting module 120. The serial number segmentation area detecting module 120 includes a first type of neural network model 122. The first type of neural network model 122 can image the image. The text of the serial number type is selected in the frame 10 to form at least one serial number division area 12 (a plurality of shown in FIG. 2B). It should be noted that the serial number in the serial number division area 12 exists as an image, that is, the serial number in the serial number division area 12 cannot be edited at this stage. In order to convert these serial numbers into editable serial numbers, the serial number recognition module 130 can be used. Hereinafter, a more detailed operation mechanism of the serial number divided area detecting module 120 and the serial number identifying module 130 will be described.
請同時參照圖3,第一類神經網路模型122包括一第一卷積式神經網路模型1221與一目標檢測神經網路模型1223,此第一卷積式神經網路模型1221屬於卷積式神經網路(convolutional neural network),包括卷積層(convolutional layer)與採樣層(pooling layer)(卷積層與採樣層皆未於圖中繪式),其中卷積層主要用於特徵抽取,而採樣層則是用於減少第一卷積式神經網路模型1221所需的參數,以免產生過擬合(overfitting)的情形。第一卷積式神經網路模型1221根據所輸入的影像10產生一特徵向量,之後特徵向量再輸入到此目標檢測神經網路模型1223。在本實施例中,第一卷積式神經網路模型1221可為VGG模型、ResNet模型、或DenseNet模型。此外,目標檢測神經網路模型1223可為YOLO模型, 較佳為CTPN模型或EAST模型。在經過目標檢測神經網路模型1223的演算後,影像10中的序號便會被框選,而形成上述的序號分割區域12(如圖2B所示)。 Referring to FIG. 3 simultaneously, the first type of neural network model 122 includes a first convolutional neural network model 1221 and a target detection neural network model 1223. The first convolutional neural network model 1221 belongs to convolution. Convolutional neural network, including convolutional layer and sampling layer (both convolutional layer and sampling layer are not drawn in the figure), wherein the convolutional layer is mainly used for feature extraction, and sampling The layer is used to reduce the parameters required by the first convolutional neural network model 1221 to avoid overfitting. The first convolutional neural network model 1221 generates a feature vector based on the input image 10, and then the feature vector is re-entered into the target detection neural network model 1223. In this embodiment, the first convolutional neural network model 1221 may be a VGG model, a ResNet model, or a DenseNet model. In addition, the target detection neural network model 1223 can be a YOLO model. Preferably, it is a CTPN model or an EAST model. After the calculation of the target detection neural network model 1223, the sequence numbers in the image 10 are framed to form the above-described sequence division area 12 (as shown in Fig. 2B).
待影像10中的序號被框選以形成序號分割區域12後,序號辨識模組130便會藉由一第二類神經網路模型132對序號分割區域12中的序號進行辨識。請同時參照圖4,第二類神經網路模型132包括一第二卷積式神經網路模型1321與一遞歸式神經網路模型1323,此第二卷積式神經網路模型1321與第一卷積式神經網路模型1221一樣同屬於卷積式神經網路(convolutional neural network),此第二卷積式神經網路模型1321可對序號分割區域12中的序號進行預判斷。雖然第二卷積式神經網路模型1321可對序號分割區域12中的序號進行初步判斷,但較佳還是須在第二卷積式神經網路模型1321加上遞歸式神經網路模型1323,以對序號分割區域12中的序號進行更佳地辨識,相關詳細機制將在後文敘述。 After the serial number in the image 10 is framed to form the serial number segmentation area 12, the serial number identification module 130 identifies the serial number in the serial number division area 12 by a second type of neural network model 132. Referring to FIG. 4 simultaneously, the second type of neural network model 132 includes a second convolutional neural network model 1321 and a recursive neural network model 1323. The second convolutional neural network model 1321 and the first The convolutional neural network model 1221 is the same as the convolutional neural network, and the second convolutional neural network model 1321 can pre-judge the sequence number in the sequence division area 12. Although the second convolutional neural network model 1321 can initially determine the sequence number in the sequence number segmentation area 12, it is preferable to add the recursive neural network model 1323 to the second convolutional neural network model 1321. The serial number in the serial number division area 12 is better recognized, and the detailed detailed mechanism will be described later.
第二卷積式神經網路模型1321在對序號分割區域12中的序號進行辨識時,會先將序號分割區域12拆解成多個圖片序列12a(如圖5)。舉例來說,若序號分割區域12包括「S」這個字元,則這些圖片序列12a可能是「S」的左邊部分、也可能是「S」的右邊部分,這樣一來第二卷積式神經網路模型1321有可能將「S」這個字元識別成這二個「S」字元。或者,反過來也可能將多個字元辨識成一個,比如「llc.」這個字串,第二卷積式神經網路模型1321可能將當中的二個l(“ll”)視為一個l(“l”)。遞歸式神經網路模型1323是屬於遞歸式神經網路(Recurrent Neural Network,RNN),由於遞歸式神經網路會參考到之前的輸入也就是說具有短期記憶的功能,因此可以對第二卷積式神經網路模型1321可能的輸出錯誤進行校正,而正確辨識出序號分割區域12中的序號。 When the second convolutional neural network model 1321 recognizes the sequence number in the sequence number division area 12, the sequence number division area 12 is first split into a plurality of picture sequences 12a (see FIG. 5). For example, if the number division area 12 includes the character "S", the picture sequence 12a may be the left part of the "S" or the right part of the "S", so that the second convolutional nerve It is possible for the network model 1321 to recognize the character "S" as the two "S" characters. Or, conversely, it is also possible to recognize multiple characters into one, such as the string "llc.", and the second convolutional neural network model 1321 may treat two of the l ("ll") as one. ("l"). The recursive neural network model 1323 is a Recurrent Neural Network (RNN). Since the recursive neural network refers to the previous input, that is, it has the function of short-term memory, it can be used for the second convolution. The possible output errors of the neural network model 1321 are corrected, and the sequence numbers in the sequence division area 12 are correctly recognized.
在本實施例中,遞歸式神經網路模型1323例如是採用Connectionist Temporal Classification演算法(以下簡稱CTC演算法)。目前,CTC演算法主要是用在語音識別上,其詳細的運作原理可參考以下網頁:“Sequence Modeling With CTC”(https://distill.pub/2017/ctc/) In the present embodiment, the recursive neural network model 1323 uses, for example, the Connectionist Temporal Classification algorithm (hereinafter referred to as the CTC algorithm). At present, the CTC algorithm is mainly used in speech recognition. For detailed operation, please refer to the following page: “Sequence Modeling With CTC” (https://distill.pub/2017/ctc/)
本案的創作人經研究後發現,CTC演算法也可以適用於本案的序號辨識且具有良好的效果,主要原因在於語音辨識的情境與本案序號辨識的情境有部分共同之處。在語音辨識中一些比較常見的情形是:有些人講話比較快,有些人講話比較慢,或者某些人在某些音素會拉得比較長;而CTC演算法正式針對這些狀況開發出來的。而在本案的序號辨識中,有些序號中字元與字元之間的間距會拉得比較開(對應到語音辨識中有些人講話比較慢),有些序號中字元與字元之間的間距會拉得比較緊湊(對應到語音辨識中有些人講話比較快),而且本案中的影像絕大部分是經由拍照取得的,這樣一來更可能因為拍照者拍攝的角度或遠近而產生文件中字元與字元之間的間距有所變化。因此,本案的創作人採用CTC演算法解決這樣的問題並獲得良好的效果。 The creator of the case found that the CTC algorithm can also be applied to the serial number identification of this case and has good effect. The main reason is that the situation of speech recognition has some in common with the situation of the serial number identification of this case. Some of the more common situations in speech recognition are: some people speak faster, some speak slower, or some people get longer in certain phonemes; and the CTC algorithm is officially developed for these situations. In the serial number identification of the case, the spacing between the characters and the characters in some serial numbers will be relatively open (corresponding to some people in the speech recognition, the speech is relatively slow), and the spacing between the characters and the characters in some serial numbers will be pulled. It is relatively compact (corresponding to some people in speech recognition speaking faster), and most of the images in this case are obtained by taking pictures, which is more likely to produce characters and words in the file because of the angle or distance of the photographer. The spacing between the elements has changed. Therefore, the creators of this case used the CTC algorithm to solve such problems and achieved good results.
此外,第二類神經網路模型132也可以為Seq2Seq模型。Seq2Seq模型一般包括一編碼器(Encoder)和一解碼器(Decoder),其中編碼器可為卷積式神經網路,其也會先將序號分割區域12拆解成多個圖片序列12a(如圖5),並將圖片序列12a轉換成一個上下文向量(context vector),之後再將該上下文向量輸入到解碼器,解碼器再將該上下文向量轉換成可編輯的字串。 Additionally, the second type of neural network model 132 can also be the Seq2Seq model. The Seq2Seq model generally includes an encoder (Encoder) and a decoder (Decoder), wherein the encoder can be a convolutional neural network, which also first splits the sequence number segmentation region 12 into a plurality of image sequences 12a (as shown in the figure). 5), and converting the picture sequence 12a into a context vector, and then inputting the context vector to the decoder, which then converts the context vector into an editable string.
值得注意的是,由於擷取影像(如圖2A所示)牽涉到拍照,便會產生不同人有不同拍攝角度的情況發生,因此第一類神經網路模型122與第二類神經網路模型132在訓練時可輸入不同角度、各種光線環境的下的影像,這些不同角度、各種光線環境的下的影像可直接拍照取得或利用電腦模擬的方式取得。由於第一類神經網路模型122與第二類神經網路模型132在訓練階段有輸入不同情況下的影像,故縱使影像上有出現摩爾紋(Moire pattern),第一類神經網路模型122與第二類神經網路模型132仍然能進行正確的辨識。值得注意的是,在圖2A中雖然是以手機螢幕上所顯示的序號為實施例,但本領域具有通常知識者應可得知,本案之序號檢測系統100還可適用於讀取其他媒體上所顯示的序號,例如:印刷於浮水印上的序號。 It is worth noting that since capturing images (as shown in Figure 2A) involves taking pictures, different situations occur for different people, so the first type of neural network model 122 and the second type of neural network model 132 During training, images of different angles and various light environments can be input. Images under different angles and various light environments can be directly taken or obtained by computer simulation. Since the first type of neural network model 122 and the second type of neural network model 132 have images input in different situations during the training phase, even if there is a Moire pattern on the image, the first type of neural network model 122 The second type of neural network model 132 can still be correctly identified. It should be noted that in FIG. 2A, although the serial number displayed on the mobile phone screen is taken as an example, those skilled in the art should be aware that the serial number detecting system 100 of the present invention can also be applied to reading other media. The serial number displayed, for example, the serial number printed on the watermark.
在經由序號辨識模組130取得可編輯序號後,便可利用比對模組140將此序號與序號資料庫30中所儲存的序號進行比較。在一較佳實施例中,若序號資料庫30不存在此序號,則序號資料庫30則可將此序號登記在序號資料庫30中。在一較佳實施例中,若資料庫30不存在此序號,序號檢測系統100可發出一通知訊息告知使用者,以讓使用者採取下一步動作。 After the editable serial number is obtained by the serial number identification module 130, the comparison module 140 can be used to compare the serial number with the serial number stored in the serial number database 30. In a preferred embodiment, if the serial number database 30 does not have the serial number, the serial number database 30 can register the serial number in the serial number database 30. In a preferred embodiment, if the serial number is not present in the database 30, the serial number detecting system 100 can issue a notification message to the user to allow the user to take the next action.
綜上所述,相較於習知技術,本新型之序號檢測系統在掃描序號時無需限定指定範圍和角度。 In summary, compared with the prior art, the serial number detection system of the present invention does not need to define a specified range and angle when scanning the serial number.
雖然本創作已以較佳實施例揭露如上,然其並非用以限定本創作,任何所屬技術領域中具有通常知識者,在不脫離本創作之精神和範圍內,當可作些許之更動與潤飾,因此本創作之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the present invention, and any person skilled in the art can make some changes and refinements without departing from the spirit and scope of the present invention. Therefore, the scope of protection of this creation is subject to the definition of the scope of the patent application attached.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108204717U TWM583989U (en) | 2019-04-17 | 2019-04-17 | Serial number detection system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108204717U TWM583989U (en) | 2019-04-17 | 2019-04-17 | Serial number detection system |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM583989U true TWM583989U (en) | 2019-09-21 |
Family
ID=68620070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108204717U TWM583989U (en) | 2019-04-17 | 2019-04-17 | Serial number detection system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM583989U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI732338B (en) * | 2019-09-27 | 2021-07-01 | 大陸商深圳市商湯科技有限公司 | Recognition method of text sequence, electronic equipment and computer readable storage medium |
-
2019
- 2019-04-17 TW TW108204717U patent/TWM583989U/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI732338B (en) * | 2019-09-27 | 2021-07-01 | 大陸商深圳市商湯科技有限公司 | Recognition method of text sequence, electronic equipment and computer readable storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11030477B2 (en) | Image quality assessment and improvement for performing optical character recognition | |
US11270099B2 (en) | Method and apparatus for generating facial feature | |
US10839238B2 (en) | Remote user identity validation with threshold-based matching | |
WO2019153739A1 (en) | Identity authentication method, device, and apparatus based on face recognition, and storage medium | |
RU2651144C2 (en) | Data input from images of the documents with fixed structure | |
US11830170B2 (en) | Systems and methods for image data processing to correct document deformations using machine learning system | |
US20170111532A1 (en) | Real-time processing of video streams captured using mobile devices | |
WO2020010547A1 (en) | Character identification method and apparatus, and storage medium and electronic device | |
US9996760B2 (en) | Optical character recognition of series of images | |
US20190019021A1 (en) | Simulating image capture | |
TWM583974U (en) | Document information retrieval and filing system | |
CN111311550B (en) | Identification method and device for forged certificate and electronic equipment | |
Rossi et al. | Neural network for denoising and reading degraded license plates | |
CN112101296B (en) | Face registration method, face verification method, device and system | |
TWM583989U (en) | Serial number detection system | |
TWI703504B (en) | Serial number detecting system | |
TWI701620B (en) | Document information extraction and archiving system | |
Patel et al. | An improvement of forgery video detection technique using Error Level Analysis | |
CN110781345B (en) | Video description generation model obtaining method, video description generation method and device | |
CN111405194A (en) | Image processing method and device | |
JP2009098867A (en) | Character string recognition method, computer program and storage medium | |
US12131450B2 (en) | Systems and methods for image data processing to correct document deformations using machine learning system | |
KR20190049169A (en) | Apparatus and method for classifying images stored in a digital device | |
US11195043B2 (en) | System and method for determining common patterns in multimedia content elements based on key points | |
TWM610865U (en) | Document image text recognition system using two-level neural network to perform content detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4K | Annulment or lapse of a utility model due to non-payment of fees |