TWM579728U - Mobile carrier auxiliary system and vehicle electronic rear-view mirror - Google Patents

Mobile carrier auxiliary system and vehicle electronic rear-view mirror Download PDF

Info

Publication number
TWM579728U
TWM579728U TW108200277U TW108200277U TWM579728U TW M579728 U TWM579728 U TW M579728U TW 108200277 U TW108200277 U TW 108200277U TW 108200277 U TW108200277 U TW 108200277U TW M579728 U TWM579728 U TW M579728U
Authority
TW
Taiwan
Prior art keywords
lens
light
optical axis
mobile vehicle
optical
Prior art date
Application number
TW108200277U
Other languages
Chinese (zh)
Inventor
張永明
賴建勳
劉燿維
Original Assignee
先進光電科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 先進光電科技股份有限公司 filed Critical 先進光電科技股份有限公司
Priority to TW108200277U priority Critical patent/TWM579728U/en
Publication of TWM579728U publication Critical patent/TWM579728U/en

Links

Abstract

一種行動載具輔助系統包含第一透光組件、第二透光組件、電光介質層、透光電極、反射層、透明導電層、電性連接件、控制元件以及光學成像系統。第二透光組件可與該第一透光組件形成一間隙。電光介質層係設置於該第一透光組件及第二透光組件所形成之間隙之間,透光電極可配置於該第一透光組件以及電光介質層之間,電光介質層配置於該第一透光組件以及該反射層之間;前述透明導電層配置於該電光介質層以及該反射層之間;該電性連接件係與該電光介質層相連接並傳輸一電能至該電光介質層,進而改變該電光介質層之一透明度。 A mobile vehicle auxiliary system includes a first light-transmitting component, a second light-transmitting component, an electro-optic medium layer, a light-transmitting electrode, a reflective layer, a transparent conductive layer, an electrical connection member, a control element, and an optical imaging system. The second transparent component may form a gap with the first transparent component. The electro-optic dielectric layer is disposed between the gap formed by the first light-transmitting component and the second light-transmitting component. A light-transmitting electrode may be disposed between the first light-transmitting component and the electro-optic dielectric layer. Between the first light-transmitting component and the reflective layer; the aforementioned transparent conductive layer is disposed between the electro-optic dielectric layer and the reflective layer; the electrical connector is connected to the electro-optic dielectric layer and transmits an electric energy to the electro-optic dielectric Layer, which in turn changes the transparency of one of the electro-optic layers.

Description

行動載具輔助系統及車用電子後視鏡Mobile vehicle assistance system and vehicle electronic rearview mirror

本創作係與行動載具輔助系統有關;特別是指一種能夠表現出顏色及透明度的改變之顯示系統。This creation is related to the mobile vehicle assist system; in particular, it refers to a display system that can show changes in color and transparency.

隨著高頻的商業活動以及運輸物流快速的擴張發展,人們對於例如汽機車之行動載具的依賴也越深,同時駕駛者亦越來越重視行車時之自身生命財產的保障,一般除了考慮行動載具的性能以及乘坐的舒適性外,亦會考慮欲購買的行動載具是否提供了足夠的安全防護裝置或輔助裝置。在此潮流下,汽車製造商或車用設備設計廠商為了增進行車的安全性,紛紛發展出各種行車安全防護裝置或輔助裝置,例如後視鏡、行車紀錄器、可即時顯示出行車死角區域物體之環景影像或是隨時紀錄行車路徑之全球定位系統等。With the high-frequency commercial activities and the rapid expansion of transportation and logistics, people are becoming more dependent on mobile vehicles such as automobiles and motorcycles. At the same time, drivers are paying more and more attention to the protection of their lives and property while driving. In addition to the performance of the mobile vehicle and the comfort of the ride, consideration will also be given to whether the mobile vehicle to be purchased provides sufficient safety protection or auxiliary devices. In this trend, in order to increase the safety of vehicles, car manufacturers or vehicle equipment design manufacturers have developed various driving safety protection devices or auxiliary devices, such as rear-view mirrors, driving recorders, and objects that can instantly display driving dead-end areas. Surrounding images or global positioning systems that record driving paths at any time.

此外,隨著數位攝影機近年來普及於日常生活以及電腦視覺領域迅速發展的發展,已被應用在駕駛輔助系統,希望藉由人工智慧的應用降低交通事故的肇事率。In addition, with the popularization of digital cameras in daily life and the rapid development of computer vision in recent years, it has been applied to driver assistance systems. It is hoped that the incidence of traffic accidents will be reduced by the application of artificial intelligence.

以傳統後視鏡舉例來說,駕駛人在變換車道或是轉彎時,大多利用來觀察判斷車外有無物體的存在,然而特定行駛情況下大多數的後視鏡存在使用上的限制與不足。例如在夜間駕車時,駕駛者在黑暗的環境中,其眼睛瞳孔正如同照相機的快門,處於張開的狀態,以便提供視神經較多的光訊號。在該種狀態下,駕駛者的眼睛對於突然發生的亮光,會產生極端敏感的反應。通常,汽車後視鏡所反射來自超車或隨後車輛之車前燈光,會使駕駛者產生視覺暈眩的情形,而導致駕駛者的視覺能力在瞬間急速減低,因而增加了駕駛者對於前方障礙變成可見時的反應時間。Taking traditional rear-view mirrors as an example, when changing lanes or turning, drivers mostly use it to observe and determine the presence of objects outside the car. However, most rear-view mirrors have limitations and deficiencies in the use of certain driving situations. For example, when driving at night, in a dark environment, the eyes of the driver are like the shutter of a camera, and the pupils are open to provide optical signals with more optic nerves. In this state, the driver's eyes will have an extremely sensitive response to sudden bright light. Generally, the car's front lights reflected from passing cars or subsequent cars will cause the driver to experience dizziness, which will cause the driver's visual ability to decrease rapidly in an instant, thus increasing the driver's obstacles to the front. Becomes visible when the response time.

因此,如何有效地依行車環境控制或調變後視鏡之反射率及穿透率而達到降低反射或直射入駕駛者的光線以改善駕駛者視覺暈眩情形,同時進一步提高行車安全,便成為一個相當重要的議題。Therefore, how to effectively control or adjust the reflectance and transmittance of the rear-view mirror to reduce the reflection or direct light into the driver to improve the driver's visual dizziness according to the driving environment, and further improve the driving safety. A rather important issue.

有鑑於此,本創作之目的在於提供一種行動載具輔助系統,例如車用電子後視鏡,其包括第一透光組件、第二透光組件、電光介質層、至少一透光電極、至少一反射層以及至少一透明導電層。電光介質層配置於第一透光組件以及第二透光組件之間。透光電極可配置於第一透光組件以及電光介質層之間。電光介質層可配置於第一透光組件以及反射層之間。透明導電層可配置於電光介質層以及反射層之間。藉此,當施予外加電壓或電流的作用下(致能),電光介質層在可見光波長範圍內的光學性能(例如:透光率、反光率或吸光率)能夠產生穩定的可逆變化,從而能夠表現出顏色及透明度的改變。In view of this, the purpose of this creation is to provide a mobile vehicle assistance system, such as an electronic rear-view mirror for a vehicle, which includes a first light-transmitting component, a second light-transmitting component, an electro-optic dielectric layer, at least one light-transmitting electrode, and at least A reflective layer and at least one transparent conductive layer. The electro-optic dielectric layer is disposed between the first transparent component and the second transparent component. The transparent electrode may be disposed between the first transparent component and the electro-optic dielectric layer. The electro-optic dielectric layer may be disposed between the first light-transmitting component and the reflective layer. The transparent conductive layer may be disposed between the electro-optic dielectric layer and the reflective layer. With this, when an applied voltage or current is applied (enabling), the optical properties of the electro-optic dielectric layer in the visible light wavelength range (such as light transmittance, reflectance, or absorbance) can produce stable reversible changes, thereby Can show changes in color and transparency.

當外來光強度太強而影響駕駛人眼視線時,光束到達車用電子後視鏡電光介質層,外來光會被電光介質層吸收呈消光狀態,而使車用電子後視鏡切換至防眩光模式。另一方面,當電光介質層不致能時,電光介質層會呈透光狀態。此時,外來光會通過電光介質層而被車用電子後視鏡反射膜反射,進而使車用電子後視鏡切換至鏡面模式。When the external light intensity is too strong and affects the driver's eye sight, the light beam reaches the electro-optical dielectric layer of the electronic rear-view mirror of the vehicle, and the external light will be absorbed by the electro-optic dielectric layer to become matte, so that the electronic rear-view mirror of the vehicle is switched to antiglare mode. On the other hand, when the electro-optic dielectric layer is disabled, the electro-optic dielectric layer is in a light-transmitting state. At this time, the external light is reflected by the reflective film of the electronic rear-view mirror of the vehicle through the electro-optic dielectric layer, and the electronic rear-view mirror of the vehicle is switched to the mirror mode.

此外,本創作實施例之行動載具輔助系統,其可更包括至少一顯示裝置以及一光學成像系統,該環境影像訊號係藉由該光學成像系統所擷取,該光學成像系統電性連接於該顯示裝置,並投射該環境影像訊號至該顯示裝置。該光學成像系統具有至少一透鏡組,該透鏡組包含有至少二片具有屈光力之透鏡。該透鏡組利用結構尺寸之設計並配合二個以上的透鏡的屈光力、凸面與凹面的組合 (本創作所述凸面或凹面原則上係指各透鏡之物側面或像側面距離光軸不同高度的幾何形狀變化之描述),同時有效地提高光學成像系統之進光量與增加光學成像鏡頭的視角,如此一來,便可使光學成像系統具備有一定相對照度及提高成像的總畫素與品質。In addition, the mobile vehicle assistance system of this creative embodiment may further include at least a display device and an optical imaging system. The environmental image signal is captured by the optical imaging system, and the optical imaging system is electrically connected to The display device projects the environmental image signal to the display device. The optical imaging system has at least one lens group, and the lens group includes at least two lenses having refractive power. This lens group uses the design of the structural size and cooperates with the combination of the refractive power, convex surface and concave surface of more than two lenses (the convex surface or concave surface in this creation refers to the geometry of the side or image side of each lens at different heights from the optical axis in principle. Description of shape change), while effectively increasing the amount of light entering the optical imaging system and increasing the viewing angle of the optical imaging lens, so that the optical imaging system can have a certain degree of contrast and improve the total pixels and quality of imaging.

在本創作的一實施例中,上述的第一透光組件具有遠離第二透光組件的表面。外來光自表面進入車用電子後視鏡,且車用電子後視鏡反射外來光而使外來光由表面離開車用電子後視鏡。車用電子後視鏡對外來光的反射率大於35%。In an embodiment of the present invention, the first light-transmitting component has a surface far from the second light-transmitting component. The external light enters the electronic rear-view mirror for the vehicle from the surface, and the electronic rear-view mirror for the vehicle reflects the external light so that the external light leaves the electronic rear-view mirror for the vehicle from the surface. Automotive electronic rearview mirrors have a reflectance of external light greater than 35%.

在本創作的一實施例中,其中該第一透光組件係以一光學膠黏合於該第二收光面上,且該光學膠係形成之一光學膠層。In an embodiment of the present invention, the first transparent component is adhered to the second light-receiving surface with an optical adhesive, and the optical adhesive system forms an optical adhesive layer.

在本創作的一實施例中,上述的車用電子後視鏡更包括輔助反射層,配置於反射層與第二透光組件之間。In an embodiment of the present invention, the above-mentioned electronic rear-view mirror for a vehicle further includes an auxiliary reflective layer disposed between the reflective layer and the second light-transmitting component.

在本創作的一實施例中,上述的反射層包含選自於銀、銅、鋁、鈦、鉻、鉬所構成材料群組之至少一種材料或其合金,或包含二氧化矽或透明導電材料。In an embodiment of the present invention, the above-mentioned reflective layer includes at least one material or an alloy selected from the group consisting of silver, copper, aluminum, titanium, chromium, and molybdenum, or includes silicon dioxide or a transparent conductive material. .

在本創作的一實施例中,輔助反射層之材料,包含選自於鉻、鈦、鉬所構成材料群組之至少一種材料或其合金,或包含二氧化矽或透明導電材料。In an embodiment of the present invention, the material of the auxiliary reflection layer includes at least one material or an alloy selected from the group consisting of chromium, titanium, and molybdenum, or silicon dioxide or a transparent conductive material.

在本創作的一實施例中,上述的第二透光組件於透明導電層以及反射層之間。In an embodiment of the present invention, the second light-transmitting component is between the transparent conductive layer and the reflective layer.

在本創作的一實施例中,透明導電層包含選自於氧化銦錫、氟摻雜氧化錫所構成材料群組之至少一種材料。In an embodiment of the present invention, the transparent conductive layer includes at least one material selected from the group consisting of indium tin oxide and fluorine-doped tin oxide.

在本創作的一實施例中,該顯示裝置用以發出影像光,且影像光通過車用電子後視鏡而由表面離開車用電子後視鏡。車用電子後視鏡對外來光的反射率大於40%,且車用電子後視鏡對影像光的穿透率大於15%。In an embodiment of the present invention, the display device is configured to emit image light, and the image light passes through the electronic rear-view mirror for the vehicle and leaves the electronic rear-view mirror for the vehicle from the surface. The vehicle electronic rear-view mirror has a reflectivity of more than 40% to external light, and the vehicle electronic rear-view mirror has a transmittance of image light greater than 15%.

在本創作的一實施例中,該第一與第二透光組件之間所配置之電光介質層係選自電致變色(electrochromic)層、聚合物分散液晶(polymer dispersed liquid crystal,PDLC)層或懸浮顆粒裝置(suspended particle device,SPD)層之任一者。In an embodiment of the present invention, the electro-optic dielectric layer disposed between the first and second light-transmitting components is selected from an electrochromic layer and a polymer dispersed liquid crystal (PDLC) layer. Or suspended particle device (SPD) layer.

在本創作的一實施例中,該光學成像系統具有至少一透鏡組,該透鏡組包含有至少二片具有屈光力之透鏡;此外,該透鏡組更滿足下列條件:1.0≦f/HEP≦10.0;0 deg<HAF≦150 deg;及0.9≦2(ARE/HEP)≦2.0;其中,f為該透鏡組的焦距;HEP為該透鏡組之入射瞳直徑;HAF為該透鏡組之最大可視角度的一半;ARE係以該透鏡組中任一透鏡之任一透鏡表面與光軸的交點為起點,並以距離光軸1/2入射瞳直徑之垂直高度處的位置為終點,延著該透鏡表面的輪廓所得之輪廓曲線長度。In an embodiment of the present invention, the optical imaging system has at least one lens group, and the lens group includes at least two lenses having refractive power. In addition, the lens group further satisfies the following conditions: 1.0 ≦ f / HEP ≦ 10.0; 0 deg <HAF ≦ 150 deg; and 0.9 ≦ 2 (ARE / HEP) ≦ 2.0; where f is the focal length of the lens group; HEP is the entrance pupil diameter of the lens group; HAF is the maximum viewing angle of the lens group Half; ARE starts from the intersection of any lens surface of any lens in the lens group with the optical axis, and ends at a position at a vertical height of 1/2 of the entrance pupil diameter from the optical axis, extending along the lens surface The length of the contour curve.

在本創作的一實施例中,該透鏡組更滿足下列條件:0.9≦ARS/EHD≦2.0;其中,ARS係以該透鏡組中任一透鏡之任一透鏡表面與光軸的交點為起點,並以該透鏡表面之最大有效半徑處為終點,延著該透鏡表面的輪廓所得之輪廓曲線長度;EHD為該透鏡組中任一透鏡之任一表面的最大有效半徑。In an embodiment of the present invention, the lens group further satisfies the following conditions: 0.9 ≦ ARS / EHD ≦ 2.0; wherein the ARS is based on the intersection of any lens surface of any lens in the lens group with the optical axis, The length of the contour curve obtained by extending the contour of the lens surface at the end of the maximum effective radius of the lens surface; EHD is the maximum effective radius of any surface of any lens in the lens group.

在本創作的一實施例中,該透鏡組更滿足下列條件:PLTA≦100 µm;PSTA≦100 µm;NLTA≦100 µm;NSTA≦100 µm;SLTA≦100 µm;SSTA≦100 µm;以及│TDT│< 250 %;其中,先定義HOI為該成像面上垂直於光軸之最大成像高度;PLTA為該光學成像系統的正向子午面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差;PSTA為該光學成像系統的正向子午面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差;NLTA為該光學成像系統的負向子午面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差;NSTA為該光學成像系統的負向子午面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差;SLTA為該光學成像系統的弧矢面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差;SSTA為該光學成像系統的弧矢面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差;TDT為該光學成像系統於結像時之TV畸變。In an embodiment of the present invention, the lens group further satisfies the following conditions: PLTA ≦ 100 μm; PSTA ≦ 100 μm; NLTA ≦ 100 μm; NSTA ≦ 100 μm; SLTA ≦ 100 μm; SSTA ≦ 100 μm; and │TDT │ <250%; Among them, first define HOI as the maximum imaging height perpendicular to the optical axis on the imaging surface; PLTA is the longest working wavelength of the visible light of the positive meridional fan of the optical imaging system passes through the edge of the entrance pupil and is incident on The lateral aberration at 0.7HOI on the imaging plane; PSTA is the shortest working wavelength of the visible light of the positive meridional fan of the optical imaging system that passes through the edge of the entrance pupil and is incident on the imaging plane at 0.7HOI; NLTA is the lateral aberration of the longest visible wavelength of the visible light of the negative meridional fan of the optical imaging system passing through the edge of the entrance pupil and incident on the imaging plane at 0.7HOI; NSTA is the negative meridional light of the optical imaging system The shortest working wavelength of the visible light of the fan passes through the edge of the entrance pupil and is incident on the imaging plane with a lateral aberration of 0.7HOI; SLTA is the longest working wavelength of the visible light of the sagittal light fan of the optical imaging system. The transverse aberration of the entrance pupil edge and incident at 0.7HOI on the imaging plane; SSTA is the shortest working wavelength of the visible light of the sagittal plane fan of the optical imaging system passes through the entrance pupil edge and is incident at 0.7HOI on the imaging plane. Lateral aberrations; TDT is the TV distortion of the optical imaging system during image formation.

在本創作的一實施例中,該透鏡組更滿足下列條件:包含四片具有屈折力之透鏡,由物側至像側依序為一第一透鏡、一第二透鏡、一第三透鏡以及一第四透鏡,且該透鏡組滿足下列條件:0.1≦InTL/HOS≦0.95;其中,HOS為該第一透鏡之物側面至該成像面於光軸上之距離;InTL為該第一透鏡之物側面至該第四透鏡之像側面於光軸上之距離。In an embodiment of the present invention, the lens group further satisfies the following conditions: it includes four lenses with refractive power, from the object side to the image side, a first lens, a second lens, a third lens, and A fourth lens, and the lens group satisfies the following conditions: 0.1 ≦ InTL / HOS ≦ 0.95; wherein HOS is the distance from the object side of the first lens to the imaging surface on the optical axis; InTL is the distance of the first lens The distance from the object side to the image side of the fourth lens on the optical axis.

在本創作的一實施例中,該透鏡組更滿足下列條件:包含五片具有屈折力之透鏡,由物側至像側依序為一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡以及一第五透鏡,且該透鏡組滿足下列條件:0.1≦InTL/HOS≦0.95;其中,HOS為該該第一透鏡之物側面至該成像面於光軸上之距離;InTL為該第一透鏡之物側面至該第五透鏡之像側面於光軸上之距離。In an embodiment of the present invention, the lens group further satisfies the following conditions: it includes five lenses with refractive power, from the object side to the image side, a first lens, a second lens, a third lens, A fourth lens and a fifth lens, and the lens group satisfies the following conditions: 0.1 ≦ InTL / HOS ≦ 0.95; wherein HOS is the distance from the object side of the first lens to the imaging surface on the optical axis; InTL The distance from the object side of the first lens to the image side of the fifth lens on the optical axis.

在本創作的一實施例中,該透鏡組更滿足下列條件:包含六片具有屈折力之透鏡,由物側至像側依序為一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡以及一第六透鏡,且該透鏡組滿足下列條件:0.1≦InTL/HOS≦0.95;其中,HOS為該該第一透鏡之物側面至該成像面於光軸上之距離;InTL為該第一透鏡之物側面至該第六透鏡之像側面於光軸上之距離。In an embodiment of the present invention, the lens group further satisfies the following conditions: it includes six lenses with refractive power, from the object side to the image side, a first lens, a second lens, a third lens, A fourth lens, a fifth lens, and a sixth lens, and the lens group satisfies the following conditions: 0.1 ≦ InTL / HOS ≦ 0.95; wherein HOS is the object side of the first lens to the imaging surface on the optical axis Distance; InTL is the distance from the object side of the first lens to the image side of the sixth lens on the optical axis.

在本創作的一實施例中,該透鏡組更滿足下列條件:包含七片具有屈折力之透鏡,由物側至像側依序為一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡、一第六透鏡以及一第七透鏡,且該透鏡組滿足下列條件:0.1≦InTL/HOS≦0.95;其中,HOS為該該第一透鏡之物側面至該成像面於光軸上之距離;InTL為該第一透鏡之物側面至該第七透鏡之像側面於光軸上之距離。In an embodiment of the present invention, the lens group further satisfies the following conditions: it includes seven lenses having refractive power, and sequentially from the object side to the image side are a first lens, a second lens, a third lens, A fourth lens, a fifth lens, a sixth lens, and a seventh lens, and the lens group satisfies the following conditions: 0.1 ≦ InTL / HOS ≦ 0.95; wherein HOS is the object side of the first lens to the The distance of the imaging surface on the optical axis; InTL is the distance of the object side of the first lens to the image side of the seventh lens on the optical axis.

在本創作的一實施例中,該透鏡組更滿足下列條件:包含七片以上具有屈折力之透鏡。In an embodiment of the present invention, the lens group further satisfies the following conditions: it includes more than seven lenses with refractive power.

在本創作的一實施例中,該光學成像系統具有至少二透鏡組,該透鏡組包含有至少二片具有屈光力之透鏡。In an embodiment of the present invention, the optical imaging system has at least two lens groups, and the lens group includes at least two lenses having refractive power.

在本創作的一實施例中,該顯示裝置係包含LCD、LED、OLED、電漿或數位投影元件及液晶顯示模組中的一項或數項。In an embodiment of the present invention, the display device includes one or more of LCD, LED, OLED, plasma or digital projection elements and a liquid crystal display module.

在本創作的一實施例中,該電性連接件係包含軟性電路板、銅箔、電線中的一項或數項。In an embodiment of the present invention, the electrical connector includes one or more items of a flexible circuit board, copper foil, and electrical wires.

在本創作的一實施例中,更包含一感光元件,係與該控制元件電性連接,係感測該行動載具內部之一環境亮度,該控制元件係依據該環境亮度控制該顯示裝置之亮度。In an embodiment of the present invention, it further includes a photosensitive element, which is electrically connected to the control element, and senses an ambient brightness inside the mobile vehicle. The control element controls the display device based on the ambient brightness. brightness.

在本創作的一實施例中,上述當該環境亮度下降時,該影像之亮度下降,當該環境亮度上升時,該影像之亮度上升。In an embodiment of the present invention, when the brightness of the environment decreases, the brightness of the image decreases, and when the brightness of the environment increases, the brightness of the image increases.

本創作實施例之光學成像系統與透鏡組相關的元件參數的用語與其代號詳列如下,作為後續描述的參考:The terms of the component parameters related to the lens group of the optical imaging system of this creative embodiment and their codes are listed in detail below as a reference for subsequent descriptions:

與長度或高度有關之透鏡參數Lens parameters related to length or height

光學成像系統之最大成像高度以HOI表示;光學成像系統之高度(即第一片透鏡之物側面至成像面之於光軸上的距離)以HOS表示;光學成像系統之第一透鏡物側面至最後一片透鏡像側面間的距離以InTL表示;光學成像系統之固定光欄 (光圈)至成像面間的距離以InS表示;光學成像系統之第一透鏡與第二透鏡間的距離以IN12表示(例示);光學成像系統之第一透鏡於光軸上的厚度以TP1表示(例示)。The maximum imaging height of the optical imaging system is represented by HOI; the height of the optical imaging system (that is, the distance from the object side of the first lens to the imaging plane on the optical axis) is represented by HOS; the object side of the first lens of the optical imaging system is The distance between the image side of the last lens is represented by InTL; the distance between the fixed light barrier (aperture) of the optical imaging system and the imaging surface is represented by InS; the distance between the first lens and the second lens of the optical imaging system is represented by IN12 ( Exemplification); The thickness of the first lens of the optical imaging system on the optical axis is represented by TP1 (exemplification).

與材料有關之透鏡參數Lens parameters related to materials

光學成像系統之第一透鏡的色散係數以NA1表示(例示);第一透鏡的折射律以Nd1表示(例示)。The dispersion coefficient of the first lens of the optical imaging system is represented by NA1 (illustration); the refraction law of the first lens is represented by Nd1 (illustration).

與視角有關之透鏡參數
視角以AF表示;視角的一半以HAF表示;主光線角度以MRA表示。
Lens parameters related to the viewing angle are represented by AF; half of the viewing angle is represented by HAF; the main ray angle is represented by MRA.

與出入瞳有關之透鏡參數Lens parameters related to exit pupil

光學成像系統之入射瞳直徑以HEP表示;單一透鏡之任一表面的最大有效半徑係指系統最大視角入射光通過入射瞳最邊緣的光線於該透鏡表面交會點(Effective Half Diameter;EHD),該交會點與光軸之間的垂直高度。例如第一透鏡物側面的最大有效半徑以EHD11表示,第一透鏡像側面的最大有效半徑以EHD12表示。第二透鏡物側面的最大有效半徑以EHD21表示,第二透鏡像側面的最大有效半徑以EHD22表示。光學成像系統中其餘透鏡之任一表面的最大有效半徑表示方式以此類推。光學成像系統中最接近成像面之透鏡的像側面之最大有效直徑以PhiA表示,其滿足條件式PhiA=2倍EHD,若該表面為非球面,則最大有效直徑之截止點即為含有非球面之截止點。單一透鏡之任一表面的無效半徑(Ineffective Half Diameter;IHD) 係指朝遠離光軸方向延伸自同一表面之最大有效半徑的截止點(若該表面為非球面,即該表面上具非球面係數之終點)的表面區段。光學成像系統中最接近成像面之透鏡的像側面之最大直徑以PhiB表示,其滿足條件式PhiB=2倍 (最大有效半徑EHD + 最大無效半徑IHD)= PhiA + 2倍 (最大無效半徑IHD)。The diameter of the entrance pupil of an optical imaging system is represented by HEP; the maximum effective radius of any surface of a single lens refers to the point where the system ’s maximum viewing angle of incident light passes through the edge of the entrance pupil at the lens surface (Effective Half Diameter; EHD), The vertical height between the intersection and the optical axis. For example, the maximum effective radius of the object side of the first lens is represented by EHD11, and the maximum effective radius of the image side of the first lens is represented by EHD12. The maximum effective radius of the object side of the second lens is represented by EHD21, and the maximum effective radius of the image side of the second lens is represented by EHD22. The maximum effective radius of any surface of the remaining lenses in the optical imaging system is expressed in the same manner. The maximum effective diameter of the image side of the lens closest to the imaging surface in the optical imaging system is represented by PhiA, which satisfies the conditional expression PhiA = 2 times EHD. If the surface is aspherical, the cutoff point of the maximum effective diameter is aspheric. The cut-off point. Ineffective Half Diameter (IHD) of any surface of a single lens refers to the cut-off point of the maximum effective radius extending from the same surface away from the optical axis (if the surface is aspherical, that is, the surface has an aspheric coefficient End point). The maximum diameter of the image side of the lens closest to the imaging surface in the optical imaging system is represented by PhiB, which satisfies the condition PhiB = 2 times (maximum effective radius EHD + maximum invalid radius IHD) = PhiA + 2 times (maximum invalid radius IHD) .

光學成像系統中最接近成像面 (即像空間)之透鏡像側面的最大有效直徑,又可稱之為光學出瞳,其以PhiA表示,若光學出瞳位於第三透鏡像側面則以PhiA3表示,若光學出瞳位於第四透鏡像側面則以PhiA4表示,若光學出瞳位於第五透鏡像側面則以PhiA5表示,若光學出瞳位於第六透鏡像側面則以PhiA6表示,若光學成像系統具有不同具屈折力片數之透鏡,其光學出瞳表示方式以此類推。光學成像系統之瞳放比以PMR表示,其滿足條件式為PMR = PhiA / HEP。The maximum effective diameter of the image side of the lens closest to the imaging surface (that is, the image space) in the optical imaging system can also be referred to as the optical exit pupil, which is represented by PhiA, and if the optical exit pupil is located on the image side of the third lens, it is represented by PhiA3 If the optical exit pupil is located on the image side of the fourth lens, it is represented by PhiA4; if the optical exit pupil is located on the image side of the fifth lens, it is represented by PhiA5; if the optical exit pupil is located on the image side of the sixth lens, it is represented by PhiA6; if the optical imaging system is For lenses with different numbers of refractive lenses, the optical exit pupil is expressed in the same manner. The pupil ratio of the optical imaging system is represented by PMR, which satisfies the conditional expression PMR = PhiA / HEP.

與透鏡面形弧長及表面輪廓有關之參數Parameters related to lens surface arc length and surface contour

單一透鏡之任一表面的最大有效半徑之輪廓曲線長度,係指該透鏡之表面與所屬光學成像系統之光軸的交點為起始點,自該起始點沿著該透鏡之表面輪廓直至其最大有效半徑之終點為止,前述兩點間的曲線弧長為最大有效半徑之輪廓曲線長度,並以ARS表示。例如第一透鏡物側面的最大有效半徑之輪廓曲線長度以ARS11表示,第一透鏡像側面的最大有效半徑之輪廓曲線長度以ARS12表示。第二透鏡物側面的最大有效半徑之輪廓曲線長度以ARS21表示,第二透鏡像側面的最大有效半徑之輪廓曲線長度以ARS22表示。光學成像系統中其餘透鏡之任一表面的最大有效半徑之輪廓曲線長度表示方式以此類推。The length of the contour curve of the maximum effective radius of any surface of a single lens refers to the starting point of the intersection of the surface of the lens and the optical axis of the optical imaging system to which it belongs, from the starting point along the surface contour of the lens to its Up to the end of the maximum effective radius, the arc length of the curve between the two points is the length of the contour curve of the maximum effective radius, and it is expressed by ARS. For example, the length of the contour curve of the maximum effective radius on the object side of the first lens is represented by ARS11, and the length of the contour curve of the maximum effective radius of the image side of the first lens is represented by ARS12. The length of the contour curve of the maximum effective radius on the object side of the second lens is represented by ARS21, and the length of the contour curve of the maximum effective radius of the image side of the second lens is represented by ARS22. The length of the contour curve of the maximum effective radius of any surface of the remaining lenses in the optical imaging system is expressed in the same manner.

單一透鏡之任一表面的1/2入射瞳直徑(HEP)之輪廓曲線長度,係指該透鏡之表面與所屬光學成像系統之光軸的交點為起始點,自該起始點沿著該透鏡之表面輪廓直至該表面上距離光軸1/2入射瞳直徑的垂直高度之座標點為止,前述兩點間的曲線弧長為1/2入射瞳直徑(HEP)之輪廓曲線長度,並以ARE表示。例如第一透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE11表示,第一透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE12表示。第二透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE21表示,第二透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE22表示。光學成像系統中其餘透鏡之任一表面的1/2入射瞳直徑(HEP)之輪廓曲線長度表示方式以此類推。The length of the contour curve of 1/2 of the entrance pupil diameter (HEP) of any surface of a single lens refers to the intersection of the surface of the lens and the optical axis of the optical imaging system to which it belongs as the starting point. The surface contour of the lens is up to the coordinate point of the vertical height of 1/2 of the entrance pupil diameter from the optical axis on the surface. The curve arc length between the two points is 1/2 the length of the contour curve of the entrance pupil diameter (HEP). ARE said. For example, the contour curve length of 1/2 incident pupil diameter (HEP) on the object side of the first lens is represented by ARE11, and the contour curve length of 1/2 incident pupil diameter (HEP) on the image side of the first lens is represented by ARE12. The length of the profile curve of 1/2 incident pupil diameter (HEP) on the object side of the second lens is represented by ARE21, and the length of the profile curve of 1/2 incident pupil diameter (HEP) on the image side of the second lens is represented by ARE22. The contour curve length of 1/2 of the entrance pupil diameter (HEP) of any surface of the remaining lenses in the optical imaging system is expressed in the same manner.

與透鏡面形深度有關之參數Parameters related to lens surface depth

第六透鏡物側面於光軸上的交點至第六透鏡物側面的最大有效半徑之終點為止,前述兩點間水平於光軸的距離以InRS61表示 (最大有效半徑深度);第六透鏡像側面於光軸上的交點至第六透鏡像側面的最大有效半徑之終點為止,前述兩點間水平於光軸的距離以InRS62表示 (最大有效半徑深度)。其他透鏡物側面或像側面之最大有效半徑的深度 (沉陷量) 表示方式比照前述。The intersection point of the sixth lens object side on the optical axis to the end of the maximum effective radius of the sixth lens object side. The distance between the two points horizontal to the optical axis is represented by InRS61 (the maximum effective radius depth); the sixth lens image side From the intersection point on the optical axis to the end of the maximum effective radius of the image side of the sixth lens, the distance between the two points horizontal to the optical axis is represented by InRS62 (the maximum effective radius depth). The depth (sinking amount) of the maximum effective radius of the object side or image side of other lenses is expressed in the same manner as described above.

與透鏡面型有關之參數Parameters related to lens shape

臨界點C係指特定透鏡表面上,除與光軸的交點外,一與光軸相垂直之切面相切的點。承上,例如第五透鏡物側面的臨界點C51與光軸的垂直距離為HVT51(例示),第五透鏡像側面的臨界點C52與光軸的垂直距離為HVT52(例示),第六透鏡物側面的臨界點C61與光軸的垂直距離為HVT61(例示),第六透鏡像側面的臨界點C62與光軸的垂直距離為HVT62(例示)。其他透鏡之物側面或像側面上的臨界點及其與光軸的垂直距離的表示方式比照前述。The critical point C refers to a point on a specific lens surface that is tangent to a tangent plane that is perpendicular to the optical axis except for the intersection with the optical axis. For example, the vertical distance between the critical point C51 on the object side of the fifth lens and the optical axis is HVT51 (example), the vertical distance between the critical point C52 on the image side of the fifth lens and the optical axis is HVT52 (example), and the sixth lens object The vertical distance between the critical point C61 on the side and the optical axis is HVT61 (illustrated), and the vertical distance between the critical point C62 on the side of the sixth lens image and the optical axis is HVT62 (illustrated). The critical points on the object side or image side of other lenses and their vertical distance from the optical axis are expressed in the same manner as described above.

第七透鏡物側面上最接近光軸的反曲點為IF711,該點沉陷量SGI711(例示),SGI711亦即第七透鏡物側面於光軸上的交點至第七透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離,IF711該點與光軸間的垂直距離為HIF711(例示)。第七透鏡像側面上最接近光軸的反曲點為IF721,該點沉陷量SGI721(例示),SGI711亦即第七透鏡像側面於光軸上的交點至第七透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離,IF721該點與光軸間的垂直距離為HIF721(例示)。The inflection point closest to the optical axis on the object side of the seventh lens is IF711. This point has a subsidence of SGI711 (example). SGI711 is the intersection of the object side of the seventh lens on the optical axis and the closest optical axis of the object side of the seventh lens. The horizontal displacement distance between the inflection points is parallel to the optical axis. The vertical distance between this point and the optical axis is IF711 (illustration). The inflection point on the image side of the seventh lens that is closest to the optical axis is IF721. This point sinks SGI721 (for example). SGI711 is the intersection of the seventh lens image side on the optical axis and the closest optical axis of the seventh lens image side. The horizontal displacement distance between the inflection points parallel to the optical axis, and the vertical distance between this point of IF721 and the optical axis is HIF721 (illustration).

第七透鏡物側面上第二接近光軸的反曲點為IF712,該點沉陷量SGI712(例示),SGI712亦即第七透鏡物側面於光軸上的交點至第七透鏡物側面第二接近光軸的反曲點之間與光軸平行的水平位移距離,IF712該點與光軸間的垂直距離為 HIF712(例示)。第七透鏡像側面上第二接近光軸的反曲點為IF722,該點沉陷量SGI722(例示),SGI722亦即第七透鏡像側面於光軸上的交點至第七透鏡像側面第二接近光軸的反曲點之間與光軸平行的水平位移距離,IF722該點與光軸間的垂直距離為HIF722(例示)。The second inflection point on the object side of the seventh lens approaching the optical axis is IF712. This point has a subsidence of SGI712 (for example). SGI712, that is, the intersection of the object side of the seventh lens on the optical axis, is the second closest to the object side of the seventh lens. The horizontal displacement distance between the inflection points of the optical axis and the optical axis is parallel. The vertical distance between this point of the IF712 and the optical axis is HIF712 (example). The second inflection point on the seventh lens image side that is close to the optical axis is IF722. This point has a subsidence of SGI722 (for example). SGI722 is the intersection of the seventh lens image side on the optical axis and the seventh lens image side is the second closest. The horizontal displacement distance between the inflection points of the optical axis and the optical axis is parallel, and the vertical distance between this point and the optical axis of IF722 is HIF722 (illustration).

第七透鏡物側面上第三接近光軸的反曲點為IF713,該點沉陷量SGI713(例示),SGI713亦即第七透鏡物側面於光軸上的交點至第七透鏡物側面第三接近光軸的反曲點之間與光軸平行的水平位移距離,IF713該點與光軸間的垂直距離為 HIF713(例示)。第七透鏡像側面上第三接近光軸的反曲點為IF723,該點沉陷量SGI723(例示),SGI723亦即第七透鏡像側面於光軸上的交點至第七透鏡像側面第三接近光軸的反曲點之間與光軸平行的水平位移距離,IF723該點與光軸間的垂直距離為HIF723(例示)。The third inflection point on the object side of the seventh lens approaching the optical axis is IF713. This point has a subsidence of SGI713 (for example). SGI713, that is, the intersection of the object side of the seventh lens on the optical axis is the third closest to the object side of the seventh lens. The horizontal displacement distance between the inflection points of the optical axis and the optical axis is parallel, and the vertical distance between this point and the optical axis of IF713 is HIF713 (illustration). The third inflection point on the seventh lens image side close to the optical axis is IF723, which is the amount of subsidence SGI723 (for example), SGI723, that is, the intersection of the seventh lens image side on the optical axis to the seventh lens image side third approach The horizontal displacement distance between the inflection points of the optical axis is parallel to the optical axis, and the vertical distance between this point of the IF723 and the optical axis is HIF723 (example).

第七透鏡物側面上第四接近光軸的反曲點為IF714,該點沉陷量SGI714(例示),SGI714亦即第七透鏡物側面於光軸上的交點至第七透鏡物側面第四接近光軸的反曲點之間與光軸平行的水平位移距離,IF714該點與光軸間的垂直距離為 HIF714(例示)。第七透鏡像側面上第四接近光軸的反曲點為IF724,該點沉陷量SGI724(例示),SGI724亦即第七透鏡像側面於光軸上的交點至第七透鏡像側面第四接近光軸的反曲點之間與光軸平行的水平位移距離,IF724該點與光軸間的垂直距離為HIF724(例示)。The inflection point of the fourth lens close to the optical axis on the seventh lens object side is IF714. This point has a subsidence of SGI714 (for example). SGI714, that is, the intersection of the seventh lens object side on the optical axis and the seventh lens object side is fourth closer. The horizontal displacement distance between the inflection points of the optical axis is parallel to the optical axis. The vertical distance between this point and the optical axis of IF714 is HIF714 (illustration). The inflection point on the seventh lens image side close to the optical axis is IF724, which is the amount of subsidence SGI724 (for example). SGI724, that is, the intersection of the seventh lens image side on the optical axis to the seventh lens image side fourth approach The horizontal displacement distance between the inflection points of the optical axis and the optical axis is parallel. The vertical distance between this point and the optical axis of IF724 is HIF724 (illustration).

其他透鏡物側面或像側面上的反曲點及其與光軸的垂直距離或其沉陷量的表示方式比照前述。The inflection points on the object side or image side of other lenses and their vertical distance from the optical axis or the amount of their subsidence are expressed in the same manner as described above.

與像差有關之變數Aberration-related variables

光學成像系統之光學畸變 (Optical Distortion) 以ODT表示;其TV畸變 (TV Distortion)以TDT表示,並且可以進一步限定描述在成像50%至100%視野間像差偏移的程度;球面像差偏移量以DFS表示;慧星像差偏移量以DFC表示。Optical Distortion of an optical imaging system is represented by ODT; its TV Distortion is represented by TDT, and the degree of aberration shift between 50% and 100% of the field of view can be further defined; spherical aberration bias The amount of shift is expressed in DFS; the amount of comet aberration shift is expressed in DFC.

依據本創作提供一種行動載具輔助系統,包括第一透光組件、第二透光組件、電光介質層、至少一透光電極、至少一反射層以及至少一透明導電層。該第一透光組件係包含一第一收光面及一第一出光面,一影像係由該第一收光面入射至該第一透光組件,並由該第一出光面出射。該第二透光組件係設置於該第一出光面上,並與該第一透光組件形成一間隙且包含一第二收光面及一第二出光面,該影像係由該第一出光面出射至該第二透光組件,並由該第二出光面出射。該電光介質層係設置於該第一透光組件之該第一出光面及該第二透光組件之該第二收光面所形成之該間隙之間。至少一透光電極係配置於該第一透光組件以及該電光介質層之間。其中該電光介質層配置於該第一透光組件以及至少一反射層之間。至少一透明導電層配置於該電光介質層以及至少一反射層之間。至少一電性連接件係與該電光介質層相連接,並傳輸一電能至該電光介質層,改變該電光介質層之一透明度。至少一控制元件係與該電性連接件相連接,當超過一亮度之光線產生於該影像時,該控制元件係控制該電性連接件對該電光介質層提供該電能。According to the present invention, a mobile vehicle auxiliary system is provided, which includes a first light-transmitting component, a second light-transmitting component, an electro-optic dielectric layer, at least one light-transmissive electrode, at least one reflective layer, and at least one transparent conductive layer. The first light-transmitting component includes a first light-receiving surface and a first light-emitting surface. An image is incident from the first light-receiving surface to the first light-transmitting component and is emitted from the first light-emitting surface. The second light-transmitting component is disposed on the first light-emitting surface and forms a gap with the first light-transmitting component and includes a second light-receiving surface and a second light-emitting surface. The image is generated by the first light-emitting surface. Light is emitted to the second light-transmitting component, and is emitted from the second light-emitting surface. The electro-optic dielectric layer is disposed between the gap formed by the first light emitting surface of the first light transmitting component and the second light receiving surface of the second light transmitting component. At least one transparent electrode is disposed between the first transparent component and the electro-optic dielectric layer. The electro-optic dielectric layer is disposed between the first light-transmitting component and at least one reflective layer. At least one transparent conductive layer is disposed between the electro-optic dielectric layer and at least one reflective layer. At least one electrical connector is connected to the electro-optic dielectric layer, and transmits an electric energy to the electro-optic dielectric layer to change the transparency of one of the electro-optic dielectric layers. At least one control element is connected to the electrical connection element. When light exceeding a brightness is generated in the image, the control element controls the electrical connection element to provide the electrical energy to the electro-optic medium layer.

依據本創作提供一種行動載具輔助系統,包括第一透光組件、第二透光組件、電光介質層、至少一透光電極、至少一反射層、至少一透明導電層、至少一顯示裝置以及至少一光學成像系統。該第一透光組件係包含一第一收光面及一第一出光面,一影像係由該第一收光面入射至該第一透光組件,並由該第一出光面出射。該第二透光組件係設置於該第一出光面上,並與該第一透光組件形成一間隙且包含一第二收光面及一第二出光面,該影像係由該第一出光面出射至該第二透光組件,並由該第二出光面出射。該電光介質層係設置於該第一透光組件之該第一出光面及該第二透光組件之該第二收光面所形成之該間隙之間。至少一透光電極係配置於該第一透光組件以及該電光介質層之間。其中該電光介質層配置於該第一透光組件以及至少一反射層之間。至少一透明導電層配置於該電光介質層以及至少一反射層之間。至少一電性連接件係與該電光介質層相連接,並傳輸一電能至該電光介質層,改變該電光介質層之一透明度。至少一控制元件係與該電性連接件相連接,當超過一亮度之光線產生於該影像時,該控制元件係控制該電性連接件對該電光介質層提供該電能。至少一環境影像訊號係藉由該光學成像系統所擷取,該光學成像系統電性連接於該顯示裝置,並投射該環境影像訊號至該顯示裝置。此外,該光學成像系統具有至少一透鏡組,該透鏡組包含有至少二片具有屈光力之透鏡;該光學成像系統更滿足下列條件:1.0≦f/HEP≦10.0;0 deg<HAF≦150 deg;及0.9≦2(ARE/HEP)≦2.0。其中,f為該透鏡組的焦距;HEP為該透鏡組之入射瞳直徑;HAF為該透鏡組之最大可視角度的一半;ARE係以該透鏡組中任一透鏡之任一透鏡表面與光軸的交點為起點,並以距離光軸1/2入射瞳直徑之垂直高度處的位置為終點,延著該透鏡表面的輪廓所得之輪廓曲線長度。According to the present invention, a mobile vehicle auxiliary system is provided, which includes a first light-transmitting component, a second light-transmitting component, an electro-optic medium layer, at least one light-transmitting electrode, at least one reflective layer, at least one transparent conductive layer, at least one display device, and a display device. At least one optical imaging system. The first light-transmitting component includes a first light-receiving surface and a first light-emitting surface. An image is incident from the first light-receiving surface to the first light-transmitting component and is emitted from the first light-emitting surface. The second light-transmitting component is disposed on the first light-emitting surface and forms a gap with the first light-transmitting component and includes a second light-receiving surface and a second light-emitting surface. The image is generated by the first light-emitting surface. Light is emitted to the second light-transmitting component, and is emitted from the second light-emitting surface. The electro-optic dielectric layer is disposed between the gap formed by the first light emitting surface of the first light transmitting component and the second light receiving surface of the second light transmitting component. At least one transparent electrode is disposed between the first transparent component and the electro-optic dielectric layer. The electro-optic dielectric layer is disposed between the first light-transmitting component and at least one reflective layer. At least one transparent conductive layer is disposed between the electro-optic dielectric layer and at least one reflective layer. At least one electrical connector is connected to the electro-optic dielectric layer, and transmits an electric energy to the electro-optic dielectric layer to change the transparency of one of the electro-optic dielectric layers. At least one control element is connected to the electrical connection element. When light exceeding a brightness is generated in the image, the control element controls the electrical connection element to provide the electrical energy to the electro-optic medium layer. At least one environmental image signal is captured by the optical imaging system. The optical imaging system is electrically connected to the display device and projects the environmental image signal to the display device. In addition, the optical imaging system has at least one lens group, and the lens group includes at least two lenses with refractive power; the optical imaging system further satisfies the following conditions: 1.0 ≦ f / HEP ≦ 10.0; 0 deg <HAF ≦ 150 deg; And 0.9 ≦ 2 (ARE / HEP) ≦ 2.0. Among them, f is the focal length of the lens group; HEP is the entrance pupil diameter of the lens group; HAF is half of the maximum viewing angle of the lens group; ARE is based on any lens surface and optical axis of any lens in the lens group The length of the contour curve obtained by extending the contour of the lens surface from the intersection point of the starting point and the position at the vertical height of 1/2 of the entrance pupil diameter from the optical axis as the end point.

在本創作的一實施例中,該行動載具輔助系統是一車用電子後視鏡。In one embodiment of the present invention, the mobile vehicle assist system is an electronic rearview mirror for a vehicle.

在本創作的一實施例中,該顯示裝置之最低亮度大於1000尼特(nts)並且可呈現高動態範圍(HDR)之影像。In an embodiment of the present invention, the minimum brightness of the display device is greater than 1000 nits (nts) and can display high dynamic range (HDR) images.

在本創作的一實施例中,更包括一訊號輸入裝置,該訊號輸入裝置與該顯示裝置電性耦合,並且可將非來自該光學成像系統的一異質訊號傳送至顯示裝置以數值或是圖形化方式呈現。In an embodiment of the present invention, a signal input device is further included, the signal input device is electrically coupled to the display device, and a heterogeneous signal not from the optical imaging system can be transmitted to the display device as a value or a graphic. Presentation.

在本創作的一實施例中,該訊號輸入裝置係一胎壓感測器。In one embodiment of the present invention, the signal input device is a tire pressure sensor.

在本創作的一實施例中,該行動載具輔助系統設置於一行動載具,該行動載具為一車輛,該行動載具輔助系統更包括複數個光學成像系統,各該複數個光學成像系統可分別設置於車輛左右後視鏡、車內前擋風玻璃後方、車內後擋風玻璃前方或是車輛前後保險桿處,前述各該複數個光學成像系統所擷取的個別外部影像訊號均可傳送至顯示裝置並且可選擇以非疊合方式或影像拼接方式同時呈現給駕駛者不同視角行駛資訊。In an embodiment of the present invention, the mobile vehicle assistance system is disposed on a mobile vehicle, the mobile vehicle is a vehicle, and the mobile vehicle assistance system further includes a plurality of optical imaging systems, each of the plurality of optical imaging systems. The system can be installed in the left and right rearview mirrors of the vehicle, behind the front windshield in the car, in front of the rear windshield in the car, or at the front and rear bumpers of the vehicle. The aforementioned individual external image signals captured by the multiple optical imaging systems Both can be transmitted to the display device and can choose to present the driver's driving information from different perspectives at the same time in non-overlapping mode or image stitching mode.

在本創作的一實施例中,該行動載具輔助系統包含至少一移動偵測器以及複數個光學成像系統,各該複數個光學成像系統可分別設置於車輛左右後視鏡、車內前擋風玻璃後方、車內後擋風玻璃前方或是車輛前後保險桿處,當行動載具處於關閉動力系統且停止行駛之狀態,該移動偵測器即啟動持續偵測行動載具本身是否遭到碰撞或震動,若遭到碰撞或震動,則該移動偵測器將啟動複數個光學成像系統即時進行錄影。In an embodiment of the present invention, the mobile vehicle assistance system includes at least a motion detector and a plurality of optical imaging systems, and each of the plurality of optical imaging systems may be respectively disposed on a left and right rearview mirror of a vehicle, and a front door of a vehicle. Behind the windshield, in front of the rear windshield of the car, or at the front and rear bumpers of the vehicle, when the mobile vehicle is in the state of shutting down the power system and stopping, the motion detector starts to continuously detect whether the mobile vehicle itself has been damaged. Collisions or vibrations. If a collision or vibration occurs, the motion detector will activate multiple optical imaging systems to record in real time.

在本創作的一實施例中,該行動載具輔助系統更包含一切換控制器以及二個光學成像系統,該行動載具輔助系統設置於一行動載具,其中一光學成像系統設置於該行動載具之前方,另一個光學成像系統設置於後方,當該行動載具處於倒退方向行駛時,可經由該切換控制器令顯示裝置呈現後方影像並即時進行錄影。In an embodiment of the present invention, the mobile vehicle assistance system further includes a switching controller and two optical imaging systems. The mobile vehicle assistance system is disposed on a mobile vehicle, and an optical imaging system is disposed on the mobile vehicle. In front of the vehicle, another optical imaging system is set at the rear. When the mobile vehicle is driving in the reverse direction, the display device can be displayed by the switching controller and the video can be recorded immediately.

在本創作的一實施例中,該行動載具輔助系統更包含一資通訊裝置,該資通訊裝置可以對外聯繫預設之聯絡人或機構。In an embodiment of the present invention, the mobile vehicle assistance system further includes a telematics device, and the telematics device can externally contact a preset contact person or organization.

在本創作的一實施例中,該行動載具輔助系統更包含一行駛設定器以及一個生物性辨識裝置,該行駛啟動器以及該生物性辨識裝置間電性連接,該行動載具輔助系統設置於一行動載具,當特定駕駛者進入該行動載具並面對該生物性辨識裝置,即可進行身份識別並啟動該行駛設定器,該行駛設定器可依個別駕駛者預先所設定之參數而控制該行動載具。In an embodiment of the present invention, the mobile vehicle assistance system further includes a driving setter and a biometric identification device, the driving initiator and the biometric identification device are electrically connected, and the mobile vehicle assistance system is set. In a mobile vehicle, when a specific driver enters the mobile vehicle and faces the biometric identification device, the identity can be identified and the driving setting device can be activated. The driving setting device can be set according to the parameters set by individual drivers in advance. And control the vehicle.

依據本創作提供一種車用電子後視鏡,包括第一透光組件、第二透光組件、電光介質層、至少一透光電極、至少一反射層、至少一透明導電層、至少一顯示裝置以及至少一光學成像系統。該第一透光組件係包含一第一收光面及一第一出光面,一影像係由該第一收光面入射至該第一透光組件,並由該第一出光面出射。該第二透光組件係設置於該第一出光面上,並與該第一透光組件形成一間隙且包含一第二收光面及一第二出光面,該影像係由該第一出光面出射至該第二透光組件,並由該第二出光面出射。該電光介質層係設置於該第一透光組件之該第一出光面及該第二透光組件之該第二收光面所形成之該間隙之間。至少一透光電極係配置於該第一透光組件以及該電光介質層之間。其中該電光介質層配置於該第一透光組件以及至少一反射層之間。至少一透明導電層配置於該電光介質層以及至少一反射層之間。至少一電性連接件係與該電光介質層相連接,並傳輸一電能至該電光介質層,改變該電光介質層之一透明度。至少一控制元件係與該電性連接件相連接,當超過一亮度之光線產生於該影像時,該控制元件係控制該電性連接件對該電光介質層提供該電能。至少一環境影像訊號係藉由該光學成像系統所擷取,該光學成像系統電性連接於該顯示裝置,並投射該環境影像訊號至該顯示裝置。此外,該光學成像系統具有至少一透鏡組,該透鏡組包含有至少二片具有屈光力之透鏡;該光學成像系統更滿足下列條件:1.0≦f/HEP≦10.0;0 deg<HAF≦150 deg;及0.9≦2(ARE/HEP)≦2.0。其中,f為該透鏡組的焦距;HEP為該透鏡組之入射瞳直徑;HAF為該透鏡組之最大可視角度的一半;ARE係以該透鏡組中任一透鏡之任一透鏡表面與光軸的交點為起點,並以距離光軸1/2入射瞳直徑之垂直高度處的位置為終點,延著該透鏡表面的輪廓所得之輪廓曲線長度。According to the present invention, an electronic rear-view mirror for a vehicle is provided, including a first light-transmitting component, a second light-transmitting component, an electro-optic dielectric layer, at least one light-transmitting electrode, at least one reflective layer, at least one transparent conductive layer, and at least one display device And at least one optical imaging system. The first light-transmitting component includes a first light-receiving surface and a first light-emitting surface. An image is incident from the first light-receiving surface to the first light-transmitting component and is emitted from the first light-emitting surface. The second light-transmitting component is disposed on the first light-emitting surface and forms a gap with the first light-transmitting component and includes a second light-receiving surface and a second light-emitting surface. The image is generated by the first light-emitting surface. Light is emitted to the second light-transmitting component, and is emitted from the second light-emitting surface. The electro-optic dielectric layer is disposed between the gap formed by the first light emitting surface of the first light transmitting component and the second light receiving surface of the second light transmitting component. At least one transparent electrode is disposed between the first transparent component and the electro-optic dielectric layer. The electro-optic dielectric layer is disposed between the first light-transmitting component and at least one reflective layer. At least one transparent conductive layer is disposed between the electro-optic dielectric layer and at least one reflective layer. At least one electrical connector is connected to the electro-optic dielectric layer, and transmits an electric energy to the electro-optic dielectric layer to change the transparency of one of the electro-optic dielectric layers. At least one control element is connected to the electrical connection element. When light exceeding a brightness is generated in the image, the control element controls the electrical connection element to provide the electrical energy to the electro-optic medium layer. At least one environmental image signal is captured by the optical imaging system. The optical imaging system is electrically connected to the display device and projects the environmental image signal to the display device. In addition, the optical imaging system has at least one lens group, and the lens group includes at least two lenses with refractive power; the optical imaging system further satisfies the following conditions: 1.0 ≦ f / HEP ≦ 10.0; 0 deg <HAF ≦ 150 deg; And 0.9 ≦ 2 (ARE / HEP) ≦ 2.0. Among them, f is the focal length of the lens group; HEP is the entrance pupil diameter of the lens group; HAF is half of the maximum viewing angle of the lens group; ARE is based on any lens surface and optical axis of any lens in the lens group The length of the contour curve obtained by extending the contour of the lens surface from the intersection point of the starting point and the position at the vertical height of 1/2 of the entrance pupil diameter from the optical axis as the end point.

單一透鏡之任一表面在最大有效半徑範圍內之輪廓曲線長度影響該表面修正像差以及各視場光線間光程差的能力,輪廓曲線長度越長則修正像差的能力提升,然而同時亦會增加生產製造上的困難度,因此必須控制單一透鏡之任一表面在最大有效半徑範圍內之輪廓曲線長度,特別是控制該表面之最大有效半徑範圍內之輪廓曲線長度(ARS)與該表面所屬之該透鏡於光軸上之厚度(TP)間的比例關係(ARS / TP)。例如第一透鏡物側面的最大有效半徑之輪廓曲線長度以ARS11表示,第一透鏡於光軸上之厚度為TP1,兩者間的比值為ARS11 / TP1,第一透鏡像側面的最大有效半徑之輪廓曲線長度以ARS12表示,其與TP1間的比值為ARS12 / TP1。第二透鏡物側面的最大有效半徑之輪廓曲線長度以ARS21表示,第二透鏡於光軸上之厚度為TP2,兩者間的比值為ARS21 / TP2,第二透鏡像側面的最大有效半徑之輪廓曲線長度以ARS22表示,其與TP2間的比值為ARS22 / TP2。光學成像系統中其餘透鏡之任一表面的最大有效半徑之輪廓曲線長度與該表面所屬之該透鏡於光軸上之厚度(TP)間的比例關係,其表示方式以此類推。此外,該光學成像系統更滿足下列條件:0.9≦ARS/EHD≦2.0。The length of the contour curve of any surface of a single lens within the maximum effective radius affects the surface's ability to correct aberrations and the optical path difference between rays of each field of view. The longer the length of the contour curve, the greater the ability to correct aberrations. It will increase the difficulty in production. Therefore, it is necessary to control the length of the contour curve within the maximum effective radius of any surface of a single lens, especially the length of the contour curve (ARS) and the surface within the maximum effective radius of the surface. The proportional relationship (ARS / TP) between the thickness (TP) of the lens on the optical axis. For example, the length of the contour curve of the maximum effective radius of the object side of the first lens is represented by ARS11, the thickness of the first lens on the optical axis is TP1, and the ratio between the two is ARS11 / TP1. The length of the contour curve is represented by ARS12, and the ratio between it and TP1 is ARS12 / TP1. The length of the contour curve of the maximum effective radius of the object side of the second lens is represented by ARS21, the thickness of the second lens on the optical axis is TP2, and the ratio between the two is ARS21 / TP2. The contour of the maximum effective radius of the image side of the second lens The length of the curve is represented by ARS22, and the ratio between it and TP2 is ARS22 / TP2. The proportional relationship between the length of the contour curve of the maximum effective radius of any of the surfaces of the remaining lenses in the optical imaging system and the thickness (TP) of the lens on the optical axis to which the surface belongs, and the expressions are deduced by analogy. In addition, the optical imaging system satisfies the following conditions: 0.9 ≦ ARS / EHD ≦ 2.0.

該光學成像系統的正向子午面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以PLTA表示;該光學成像系統的正向子午面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以PSTA表示。該光學成像系統的負向子午面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以NLTA表示;該光學成像系統的負向子午面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以NSTA表示;該光學成像系統的弧矢面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以SLTA表示;該光學成像系統的弧矢面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以SSTA表示。此外,該光學成像系統更滿足下列條件:PLTA≦100 µm;PSTA≦100 µm;NLTA≦100 µm;NSTA≦100 µm;SLTA≦100 µm;SSTA≦100 µm;│TDT│< 250 %;0.1≦InTL/HOS≦0.95;以及0.2≦InS/HOS≦1.1。The longest working wavelength of the visible light of the positive meridional fan of the optical imaging system passes through the edge of the entrance pupil and is incident on the imaging plane at 0.7HOI. The lateral aberration is represented by PLTA; the positive meridional fan of the optical imaging system The shortest working wavelength of visible light that passes through the edge of the entrance pupil and is incident on the imaging plane at 0.7HOI is represented by PSTA. The longest working wavelength of visible light of the negative meridional fan of the optical imaging system passes through the edge of the entrance pupil and is incident on the imaging plane at 0.7HOI. The lateral aberration is represented by NLTA; the negative meridional fan of the optical imaging system The shortest working wavelength of visible light passing through the edge of the entrance pupil and incident at 0.7HOI on the imaging plane is represented by NSTA; the longest working wavelength of visible light of the sagittal plane fan of the optical imaging system passes through the edge of the entrance pupil and is incident on The lateral aberration at 0.7HOI on the imaging plane is represented by SLTA; the shortest working wavelength of the visible light of the sagittal plane fan of the optical imaging system passes through the edge of the entrance pupil and is incident on the imaging plane at 0.7HOI. Means. In addition, the optical imaging system more satisfies the following conditions: PLTA ≦ 100 μm; PSTA ≦ 100 μm; NLTA ≦ 100 μm; NSTA ≦ 100 μm; SLTA ≦ 100 μm; SSTA ≦ 100 μm; │TDT│ <250%; 0.1 ≦ InTL / HOS ≦ 0.95; and 0.2 ≦ InS / HOS ≦ 1.1.

可見光在該成像面上之光軸處於空間頻率110 cycles/mm時之調制轉換對比轉移率以MTFQ0表示;可見光在該成像面上之0.3HOI處於空間頻率110 cycles/mm時之調制轉換對比轉移率以MTFQ3表示;可見光在該成像面上之0.7HOI處於空間頻率110 cycles/mm時之調制轉換對比轉移率以MTFQ7表示。此外,該光學成像系統更滿足下列條件:MTFQ0≧0.2;MTFQ3≧0.01;以及MTFQ7≧0.01。The modulation conversion contrast transfer rate when the optical axis of visible light on the imaging plane is at a spatial frequency of 110 cycles / mm is expressed as MTFQ0; the modulation conversion contrast transfer rate of 0.3HOI of visible light on the imaging plane is at a spatial frequency of 110 cycles / mm. It is represented by MTFQ3; the modulation conversion contrast transfer rate of 0.7HOI of visible light on the imaging surface at the spatial frequency of 110 cycles / mm is represented by MTFQ7. In addition, the optical imaging system more satisfies the following conditions: MTFQ0 ≧ 0.2; MTFQ3 ≧ 0.01; and MTFQ7 ≧ 0.01.

單一透鏡之任一表面在1/2入射瞳直徑(HEP)高度範圍內之輪廓曲線長度特別影響該表面上在各光線視場共用區域之修正像差以及各視場光線間光程差的能力,輪廓曲線長度越長則修正像差的能力提升,然而同時亦會增加生產製造上的困難度,因此必須控制單一透鏡之任一表面在1/2入射瞳直徑(HEP)高度範圍內之輪廓曲線長度,特別是控制該表面之1/2入射瞳直徑(HEP)高度範圍內之輪廓曲線長度(ARE)與該表面所屬之該透鏡於光軸上之厚度(TP)間的比例關係(ARE / TP)。例如第一透鏡物側面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度以ARE11表示,第一透鏡於光軸上之厚度為TP1,兩者間的比值為ARE11 / TP1,第一透鏡像側面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度以ARE12表示,其與TP1間的比值為ARE12 / TP1。第二透鏡物側面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度以ARE21表示,第二透鏡於光軸上之厚度為TP2,兩者間的比值為ARE21 / TP2,第二透鏡像側面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度以ARE22表示,其與TP2間的比值為ARE22 / TP2。光學成像系統中其餘透鏡之任一表面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度與該表面所屬之該透鏡於光軸上之厚度(TP)間的比例關係,其表示方式以此類推。The length of the contour curve of any surface of a single lens within the height range of 1/2 entrance pupil diameter (HEP) particularly affects the ability of the surface to correct aberrations in the common area of each ray field of view and the optical path difference between the fields of light. The longer the length of the contour curve, the better the ability to correct aberrations. However, it will also increase the difficulty of manufacturing. Therefore, it is necessary to control the contour of any surface of a single lens within the height of 1/2 incident pupil diameter (HEP). The length of the curve, especially the proportional relationship between the length of the contour curve (ARE) within the height of 1/2 of the entrance pupil diameter (HEP) of the surface and the thickness (TP) of the lens on the optical axis to which the surface belongs (ARE / TP). For example, the length of the contour curve of the 1/2 entrance pupil diameter (HEP) height of the first lens object side is represented by ARE11, the thickness of the first lens on the optical axis is TP1, and the ratio between the two is ARE11 / TP1. The length of the profile curve of the 1/2 entrance pupil diameter (HEP) height on the side of the mirror is represented by ARE12, and the ratio between it and TP1 is ARE12 / TP1. The length of the contour curve of the 1/2 entrance pupil diameter (HEP) height of the second lens object side is represented by ARE21, the thickness of the second lens on the optical axis is TP2, and the ratio between the two is ARE21 / TP2. The second lens image The profile curve length of the 1/2 entrance pupil diameter (HEP) height on the side is represented by ARE22, and the ratio between it and TP2 is ARE22 / TP2. The proportional relationship between the length of the contour curve of 1/2 of the entrance pupil diameter (HEP) height of any of the surfaces of the remaining lenses in the optical imaging system and the thickness (TP) of the lens on the optical axis to which the surface belongs. And so on.

行動載具輔助系統主要設計內容包含有結構實施設計與光學實施設計,以下先就結構實施例進行相關內容之說明:The main design content of the mobile vehicle auxiliary system includes the structural implementation design and the optical implementation design. The following first describes the related content of the structural embodiment:

第1A圖繪示本創作第一較佳結構實施例的立體示意圖,其為一以車用電子後視鏡0100為例的行動載具輔助系統,第1B圖繪示第1A圖的短邊側剖面示意圖。在本創作之車用電子後視鏡0100可裝設於交通工具上,用以輔助交通工具的行駛,或是提供交通工具行駛的相關資訊,上述交通工具例如為車輛,車用電子後視鏡0100可為裝設於車輛內部的車用內後視鏡,或裝設於車輛外部的車用外後視鏡,兩者用以協助車輛駕駛者瞭解其他車輛的位置。本創作並不以此為限。除此之外,上述的交通工具並不限於車輛,上述交通工具也可指其他種類的交通工具,例如:陸地列車、飛行器、水上船艦等。Fig. 1A shows a perspective view of the first preferred structural embodiment of the creation, which is a mobile vehicle assist system using an electronic rearview mirror 0100 as an example. Fig. 1B shows the short side of Fig. 1A. Schematic cross-section. The electronic rear-view mirror 0100 used in this creation can be installed on a vehicle to assist the driving of the vehicle or provide information about the driving of the vehicle. The above vehicles are, for example, vehicles. 0100 can be a vehicle interior rearview mirror installed inside the vehicle, or a vehicle exterior rearview mirror installed outside the vehicle, both of which are used to assist the driver of the vehicle to understand the location of other vehicles. This creation is not limited to this. In addition, the above-mentioned means of transportation are not limited to vehicles, and the above-mentioned means of transportation may also refer to other types of means of transportation, such as land trains, aircrafts, and water ships.

車用電子後視鏡0100組裝於一殻體0110中,且殻體0110具有開口(未繪示)。具體而言,殻體0110的開口與車用電子後視鏡0100的反射層0190重疊(第1B圖),藉此,外來光在通過開口後可傳遞至位於殻體0110內部的反射層0190,進而使車用電子後視鏡0100發揮反射鏡的功能。當車輛駕駛者在進行駕駛時,駕駛者例如是面對開口,且駕駛者可以觀看到由車用電子後視鏡0100反射而出的外來光,進而得知後方車輛的位置。The electronic rearview mirror 0100 for vehicles is assembled in a casing 0110, and the casing 0110 has an opening (not shown). Specifically, the opening of the housing 0110 overlaps with the reflective layer 0190 of the electronic rear view mirror 0100 (FIG. 1B), whereby external light can be transmitted to the reflective layer 0190 located inside the housing 0110 after passing through the opening. Furthermore, the electronic rear-view mirror 0100 is used as a reflecting mirror. When the driver of the vehicle is driving, the driver is, for example, facing the opening, and the driver can see the external light reflected by the electronic rear-view mirror 0100 of the vehicle, and then know the position of the vehicle behind.

請繼續參考第1B圖,車用電子後視鏡0100包括第一透光組件0120以及第二透光組件0130,該第一透光組件0120係朝向駕駛者,且第二透光組件0130設置於遠離駕駛者之一側。具體而言第一透光組件0120以及第二透光組件0130為透光基板,其材質例如可以是玻璃。然而第一透光組件0120以及第二透光組件0130的材質亦可以例如是塑膠、石英、PET基板或其他可適用的材料,其中該PET基板除具有封裝及保護效果外,另具有成本低、製造容易、極輕薄之特性。Please continue to refer to FIG. 1B. The electronic rearview mirror 0100 for a vehicle includes a first light-transmitting component 0120 and a second light-transmitting component 0130. The first light-transmitting component 0120 faces the driver, and the second light-transmitting component 0130 is disposed at Stay away from one of the drivers. Specifically, the first light-transmitting component 0120 and the second light-transmitting component 0130 are light-transmitting substrates, and the material may be glass, for example. However, the material of the first light-transmitting component 0120 and the second light-transmitting component 0130 can also be, for example, plastic, quartz, PET substrate, or other applicable materials. The PET substrate has a low cost, in addition to its packaging and protection effects. Easy to manufacture and extremely thin.

在本實施例中,該第一透光組件0120係包含一第一收光面0122及一第一出光面0124,一來自於駕駛者後方之外來光影像,係由該第一收光面0122入射至該第一透光組件0120,並由該第一出光面0124出射。該第二透光組件0130包含一第二收光面0132及一第二出光面0134,該第二收光面0132係相向於該第一出光面0124,並藉由一框膠0114與該第一出光面0124之間形成一間隙。前述外來光影像接續由該第一出光面0124出射至該第二透光組件0130,並由該第二出光面0134出射。In this embodiment, the first light-transmitting component 0120 includes a first light-receiving surface 0122 and a first light-emitting surface 0124. A light image from outside the driver's rear is formed by the first light-receiving surface 0122. It enters the first light-transmitting component 0120 and exits from the first light-emitting surface 0124. The second light-transmitting component 0130 includes a second light-receiving surface 0132 and a second light-emitting surface 0134. The second light-receiving surface 0132 is opposite to the first light-emitting surface 0124. A gap is formed between a light emitting surface 0124. The aforementioned external light image is successively emitted from the first light emitting surface 0124 to the second light transmitting component 0130, and is emitted from the second light emitting surface 0134.

該電光介質層0140係設置於該第一透光組件0120之第一出光面0124及該第二透光組件0130之第二收光面0132所形成之間隙中。至少一透光電極0150係配置於該第一透光組件0120以及該電光介質層0140之間。前述電光介質層0140配置於該第一透光組件0120以及至少一反射層0190之間。一透明導電層0160配置於該第一透光組件0120以及該電光介質層0140之間,另一透明導電層0160則配置於該第二透光組件0130以及該電光介質層0140之間。一電性連接件0170係與該透明導電層0160相連接,另一電性連接件0170則與透光電極0150相連接,藉此可傳輸電能至該電光介質層0140,改變該電光介質層0140之透明度。當超過一亮度之外來光影像產生時,例如來自後方來車之強烈的車頭光線,與控制元件0180電性連接之眩光感測器0112可接收此光線能量並轉換成訊號,該控制元件0180可研判外來光影像之亮度是否超過一預設亮度,若產生眩光即藉由電性連接件0170對該電光介質層0140提供該電能以產生抗眩光效果。前述外來光影像若強度太強,將導致眩光效果而影響駕駛人眼睛的視線,進而危害行駛安全。The electro-optic dielectric layer 0140 is disposed in a gap formed by the first light-emitting surface 0124 of the first light-transmitting component 0120 and the second light-receiving surface 0132 of the second light-transmitting component 0130. At least one transparent electrode 0150 is disposed between the first transparent component 0120 and the electro-optic dielectric layer 0140. The aforementioned electro-optic dielectric layer 0140 is disposed between the first transparent component 0120 and at least one reflective layer 0190. A transparent conductive layer 0160 is disposed between the first transparent component 0120 and the electro-optic dielectric layer 0140, and another transparent conductive layer 0160 is disposed between the second transparent component 0130 and the electro-optic dielectric layer 0140. An electrical connector 0170 is connected to the transparent conductive layer 0160, and another electrical connector 0170 is connected to the transparent electrode 0150, thereby transmitting electrical energy to the electro-optic dielectric layer 0140 and changing the electro-optic dielectric layer 0140. Its transparency. When an external light image exceeding a brightness is generated, for example, a strong headlight from a car coming from behind, the glare sensor 0112 electrically connected to the control element 0180 can receive this light energy and convert it into a signal. The control element 0180 can Investigate whether the brightness of the external light image exceeds a preset brightness. If glare is generated, the electrical connector 0170 provides the electric energy to the electro-optic medium layer 0140 to generate an anti-glare effect. If the intensity of the aforementioned external light image is too strong, it will cause a glare effect and affect the sight of the driver's eyes, thereby endangering driving safety.

另外,前述透光電極0150以及反射層0190可例如是分別全面性覆蓋第一透光組件0120的表面以及第二透光組件0130的表面,本創作並不以此為限。在本實施例中,透光電極0150的材料可選用金屬氧化物,例如:銦錫氧化物、銦鋅氧化物、鋁錫氧化物、鋁鋅氧化物、銦鍺鋅氧化物、其它合適的氧化物、或者是上述至少二者的堆疊層。另外,反射層0190可具有導電性,反射層0190包含選自於銀(Ag)、銅(Cu)、鋁(Al)、鉻(Cr)、鈦(Ti)、鉬(Mo)所構成材料群組之至少一種材料或其合金,或包含二氧化矽或透明導電材料。或者,透光電極0150以及反射層0190亦可以包含其他種類的材料,本創作並不以此為限。In addition, the aforementioned transparent electrode 0150 and the reflective layer 0190 may, for example, comprehensively cover the surface of the first transparent component 0120 and the surface of the second transparent component 0130, respectively, and the creation is not limited thereto. In this embodiment, the material of the transparent electrode 0150 may be selected from metal oxides, such as indium tin oxide, indium zinc oxide, aluminum tin oxide, aluminum zinc oxide, indium germanium zinc oxide, and other suitable oxides. Or a stacked layer of at least two of the above. In addition, the reflective layer 0190 may have conductivity. The reflective layer 0190 includes a material group selected from the group consisting of silver (Ag), copper (Cu), aluminum (Al), chromium (Cr), titanium (Ti), and molybdenum (Mo). At least one of the materials or alloys thereof, or contains silicon dioxide or a transparent conductive material. Alternatively, the light-transmissive electrode 0150 and the reflective layer 0190 may also include other types of materials, and the creation is not limited thereto.

前述電光介質層0140可採用有機材料製作,亦可以採用無機材料製作,本創作並不以此為限。在本實施例中,電光介質層0140可選用電致變色材料(Electrochromic material),配置於第一透光組件0120以及第二透光組件0130之間,且配置於第一透光組件0120以及反射層0190之間。具體而言,透光電極0150配置於第一透光組件0120以及電光介質層0140 (電致變色材料層EC)之間,且本實施例的反射層0190可配置於第二透光組件0130以及電光介質層0140間。另外,在本實施例中,車用電子後視鏡0100更包括框膠0114。框膠0114位於第一透光組件0120與第二透光組件0130之間且環繞電光介質層0140。前述框膠0114、第一透光組件0120與第二透光組件0130共同封裝電光介質層0140。The foregoing electro-optic dielectric layer 0140 may be made of an organic material or an inorganic material, and this creation is not limited thereto. In this embodiment, the electro-optic dielectric layer 0140 may be made of an electrochromic material, which is disposed between the first light-transmitting component 0120 and the second light-transmitting component 0130, and is disposed between the first light-transmitting component 0120 and the reflection. Between layers 0190. Specifically, the light-transmitting electrode 0150 is disposed between the first light-transmitting element 0120 and the electro-optic dielectric layer 0140 (electrochromic material layer EC), and the reflective layer 0190 in this embodiment may be disposed between the second light-transmitting element 0130 and 0140 dielectric layers. In addition, in this embodiment, the electronic rearview mirror 0100 for a vehicle further includes a frame rubber 0114. The frame adhesive 0114 is located between the first transparent component 0120 and the second transparent component 0130 and surrounds the electro-optic dielectric layer 0140. The aforementioned frame adhesive 0114, the first light-transmitting component 0120 and the second light-transmitting component 0130 collectively encapsulate the electro-optic dielectric layer 0140.

在本實施例中,透明導電層0160,配置於電光介質層0140以及反射層0190之間。具體而言,可以作為反射層0190的抗氧化層並且可以避免電光介質層0140與反射層0190直接接觸,進而避免反射層0190受到有機材料的腐蝕,使得本實施例之車用電子後視鏡0100具有較長的使用壽命。此外前述框膠0114、透光電極0150以及透明導電層0160共同封裝電光介質層0140。在本實施例中,前述透明導電層0160包含選自於銦錫氧化物(indium tin oxide,ITO)、銦鋅氧化物(indium zinc oxide,IZO)或摻雜鋁的氧化鋅薄膜(Al-doped ZnO,AZO)、氟摻雜氧化錫所構成材料群組之至少一種材料。In this embodiment, the transparent conductive layer 0160 is disposed between the electro-optic dielectric layer 0140 and the reflective layer 0190. Specifically, it can be used as the anti-oxidation layer of the reflective layer 0190 and can avoid direct contact between the electro-optic dielectric layer 0140 and the reflective layer 0190, thereby preventing the reflective layer 0190 from being corroded by organic materials, so that the electronic rear-view mirror 0100 of this embodiment Has a longer service life. In addition, the aforementioned frame adhesive 0114, the transparent electrode 0150, and the transparent conductive layer 0160 collectively encapsulate the electro-optic dielectric layer 0140. In this embodiment, the aforementioned transparent conductive layer 0160 includes an Al-doped film selected from indium tin oxide (ITO), indium zinc oxide (IZO), or aluminum-doped zinc oxide film. ZnO, AZO), fluorine-doped tin oxide at least one material group.

在本實施例中,車用電子後視鏡0100可以選擇性地設置電性連接件0170例如導線或導電結構而分別連接至透光電極0150以及反射層0190。透光電極0150以及反射層0190可分別利用上述導線或導電結構與提供驅動訊號的至少一控制元件0180電性連接,進而驅動電光介質層0140。In this embodiment, the electronic rear-view mirror 0100 for a vehicle may be selectively provided with an electrical connector 0170 such as a wire or a conductive structure to be connected to the light-transmissive electrode 0150 and the reflective layer 0190, respectively. The transparent electrode 0150 and the reflective layer 0190 may be electrically connected to at least one control element 0180 that provides a driving signal by using the above-mentioned wires or conductive structures, respectively, and then drive the electro-optic dielectric layer 0140.

當電光介質層0140致能(enabled)時,電光介質層0140會發生電化學氧化還原反應而改變其能階,進而呈消光(diming)狀態。當外來光穿過殻體0110的開口進而到達電光介質層0140時,外來光會被呈消光狀態的電光介質層0140吸收,而使車用電子後視鏡0100切換至防眩光模式。另一方面,當電光介質層0140不致能時,電光介質層0140會呈透光狀態。此時,通過殻體0110開口的外來光會穿過電光介質層0140而被反射層0190反射,進而使車用電子後視鏡0100切換至鏡面模式。When the electro-optic dielectric layer 0140 is enabled, the electrochemical redox reaction of the electro-optic dielectric layer 0140 will change its energy level, and it will be in a dimming state. When the external light passes through the opening of the housing 0110 and reaches the electro-optic dielectric layer 0140, the external light will be absorbed by the electro-optic dielectric layer 0140 in a matted state, and the electronic rear-view mirror 0100 of the vehicle is switched to the anti-glare mode. On the other hand, when the electro-optic dielectric layer 0140 is disabled, the electro-optic dielectric layer 0140 is in a light-transmitting state. At this time, the external light passing through the opening of the housing 0110 will pass through the electro-optic dielectric layer 0140 and be reflected by the reflective layer 0190, so that the electronic rear-view mirror 0100 for the vehicle is switched to the mirror mode.

具體而言,第一透光組件0120具有遠離第二透光組件0130的第一收光面0122。來自後方其他車輛的外來光例如是由第一收光面0122進入車用電子後視鏡0100,且車用電子後視鏡0100反射外來光而使外來光由第一收光面0122離開車用電子後視鏡0100。另外,車輛駕駛者的人眼可以接收到經由車用電子後視鏡0100反射的外來光,進而瞭解後方其他車輛的位置。除此之外,反射層0190可選擇適當的材料以及設計適當的膜厚,而具有部分穿透部分反射的光學性質。Specifically, the first light-transmitting component 0120 has a first light-receiving surface 0122 far from the second light-transmitting component 0130. External light from other vehicles in the rear enters the electronic rear view mirror 0100 from the first light receiving surface 0122, and the electronic rear view mirror 0100 reflects the external light, so that the external light leaves the vehicle from the first light receiving surface 0122. Electronic rearview mirror 0100. In addition, the human eyes of the driver of the vehicle can receive the external light reflected by the vehicle's electronic rear-view mirror 0100, so as to know the position of other vehicles in the rear. In addition, the reflective layer 0190 can select an appropriate material and design an appropriate film thickness, and has the optical property of partially penetrating and partially reflecting.

請參照第1C圖,係繪示本創作第二較佳結構實施例的立體示意圖,第1D圖繪示第1C圖的短邊側剖面示意圖。與第一較佳結構實施例相同之處不再贅述,而不同之處在於本實施例之車用電子後視鏡0100可以選擇性地包括輔助反射層0192,配置於透明導電層0160與第二透光組件0130之間。具體而言,輔助反射層0192可配置於反射層0190與第二透光組件0130之間,輔助反射層0192用以協助調整車用電子後視鏡0100整體的光學穿透反射性質,例如外來光自第一收光面0122進入車用電子後視鏡0100,且車用電子後視鏡0100反射外來光而使外來光由第一收光面0122離開車用電子後視鏡0100。在本實施例中,為了提供車輛駕駛者適足亮度的影像光,車用電子後視鏡0100對外來光的反射率可設計大於35%,且車用電子後視鏡0100對影像光的穿透率例如是大於15%。此外,輔助反射層0192亦可以作為反射層0190與第二透光組件0130之間的附著層,而有利於反射層0190附著於第二透光組件0130上。在本實施例中,輔助反射層0192包含選自於鉻(Cr)、鈦(Ti)、鉬(Mo)所構成材料群組之至少一種材料或其合金,或者亦可以包含其他類型的材料,以調整車用電子後視鏡0100整體的光學穿透反射性質例如選自於鉻、鈦、鋁、鉬、銀所構成材料群組之至少一種材料或其合金,或包含二氧化矽或透明導電材料。此外,輔助反射層0192亦可選用氧化銦錫或是其他金屬氧化物,本創作並不以此為限。Please refer to FIG. 1C, which is a schematic perspective view of the second preferred structural embodiment of the creation, and FIG. 1D is a schematic side cross-sectional view of FIG. 1C. The same points as the first preferred structural embodiment will not be repeated, but the difference is that the electronic rearview mirror 0100 of this embodiment may optionally include an auxiliary reflective layer 0192, which is disposed on the transparent conductive layer 0160 and the second Between light transmitting components 0130. Specifically, the auxiliary reflection layer 0192 may be disposed between the reflection layer 0190 and the second light-transmitting component 0130. The auxiliary reflection layer 0192 is used to help adjust the overall optical transmission and reflection properties of the electronic rearview mirror 0100, such as external light. It enters the vehicle electronic rear view mirror 0100 from the first light receiving surface 0122, and the vehicle electronic rear view mirror 0100 reflects external light, so that the external light leaves the vehicle electronic rear view mirror 0100 from the first light receiving surface 0122. In this embodiment, in order to provide the driver with sufficient brightness of the image light, the electronic rearview mirror 0100 can be designed to have a reflectance of more than 35%, and the electronic rearview mirror 0100 can penetrate the image light. The transmittance is, for example, more than 15%. In addition, the auxiliary reflective layer 0192 can also be used as an adhesion layer between the reflective layer 0190 and the second light-transmitting component 0130, which facilitates the attachment of the reflective layer 0190 to the second light-transmitting component 0130. In this embodiment, the auxiliary reflective layer 0192 includes at least one material or an alloy selected from the group consisting of chromium (Cr), titanium (Ti), and molybdenum (Mo), or may also include other types of materials. To adjust the overall optical transmission and reflection properties of the vehicle electronic rearview mirror 0100, for example, at least one material selected from the group consisting of chromium, titanium, aluminum, molybdenum, and silver, or an alloy thereof, or containing silicon dioxide or transparent conductive material. In addition, the auxiliary reflective layer 0192 can also be selected from indium tin oxide or other metal oxides, which is not limited in this creation.

請參照第1E圖,係繪示本創作第三較佳結構實施例的立體示意圖,其為一以車用電子後視鏡0100為例的行動載具輔助系統,第1F圖繪示第1E圖的短邊側剖面示意圖。與第一較佳結構實施例相同之處不再贅述,而不同之處在於本實施例之行動載具輔助系統包含至少一顯示器0200,其設置於第二透光組件0130遠離第一透光組件0120的一側,例如是第二透光組件0130遠離第一透光組件0120之第二出光面0134。由於反射層0190具有部分穿透部分反射的光學性質,因此顯示器0200發出的影像光可以穿過反射層0190,進而讓使用者可觀看到顯示器0200顯示的內部影像。本實施例之顯示器0200的尺寸與外部輪廓大致相近於第一透光組件0120,亦即所謂全面屏或流美體。顯示器0200可用以提供車輛駕駛者行駛資訊或是路況資訊,亦即本實施例之車用電子後視鏡0100之全部可視區域可同時用以提供車輛駕駛者來自後方其他車輛的外來光以及來自顯示器0200的影像光,而達到良好的行駛輔助效果。當然亦可視需求而將顯示器0200的尺寸與外部輪廓設計成小於第一透光組件0120,而令僅第一透光組件0120上之特定可視區域觀測到來自顯示器0200的影像光。本實施例中,顯示器0200例如是液晶顯示器(liquid crystal display, LCD),或者顯示器0200亦可以是其他類型的顯示器例如是有機發光二極體(Organic Light-Emitting Diode, OLED)顯示器,本創作並不以此為限。Please refer to FIG. 1E, which is a three-dimensional schematic diagram showing a third preferred structural embodiment of the creation, which is a mobile vehicle auxiliary system using a car electronic rearview mirror 0100 as an example. FIG. 1F illustrates FIG. 1E Schematic diagram of the short side profile. The same points as the first preferred structural embodiment will not be repeated, but the difference is that the mobile vehicle assist system of this embodiment includes at least one display 0200, which is disposed on the second light-transmitting component 0130 away from the first light-transmitting component. One side of 0120 is, for example, the second light transmitting component 0130 away from the second light emitting surface 0134 of the first light transmitting component 0120. Because the reflective layer 0190 has the optical property of partially penetrating and partially reflecting, the image light emitted by the display 0200 can pass through the reflective layer 0190, so that the user can view the internal image displayed by the display 0200. The size of the display 0200 in this embodiment is roughly similar to the outer outline of the display 0200, which is the so-called full-screen or beautiful body. The display 0200 can be used to provide driving information or road condition information of the driver of the vehicle, that is, the entire visible area of the electronic rear-view mirror 0100 of the embodiment can be used to provide external light from the other drivers behind the vehicle as well as from the display. 0200 image light to achieve a good driving assistance effect. Of course, the size and external contour of the display 0200 can also be designed smaller than the first light-transmitting component 0120 according to requirements, so that only a specific visible area on the first light-transmitting component 0120 can observe the image light from the display 0200. In this embodiment, the display 0200 is, for example, a liquid crystal display (LCD), or the display 0200 may also be another type of display, such as an organic light-emitting diode (OLED) display. Not limited to this.

請參照第1G圖,係繪示本創作第四較佳結構實施例的立體示意圖,其為一以車用電子後視鏡0100為例的行動載具輔助系統,第1H圖繪示第1G圖的短邊側剖面示意圖。與第三較佳結構實施例相同之處不再贅述,而不同之處在於本實施例之行動載具輔助系統包含至少一攝像模組0300,其設置於第二透光組件0130遠離第一透光組件0120的一側,例如是朝向行動載具之前進方向,並且電性耦合至顯示器0200。當需要擷取行動載具之外部影像,至少一控制元件0180可透過第一訊號傳輸線0310電性連接至攝像模組0300並進行啟動,隨後攝像模組0300所擷取的行動載具之外部影像訊號將透過第二訊號傳輸線0320傳送至顯示器0200供給駕駛者即時行駛資訊或是即時路況資訊。Please refer to FIG. 1G, which is a schematic perspective view showing a fourth preferred structural embodiment of the creation, which is a mobile vehicle auxiliary system using car electronic rearview mirror 0100 as an example. FIG. 1H illustrates FIG. 1G Schematic diagram of the short side profile. The same points as the third preferred structural embodiment will not be repeated, and the difference is that the mobile vehicle assist system of this embodiment includes at least one camera module 0300, which is disposed on the second light transmitting component 0130 away from the first light transmitting unit. One side of the light component 0120 is, for example, a forward direction of the mobile vehicle, and is electrically coupled to the display 0200. When the external image of the mobile vehicle needs to be captured, at least one control element 0180 can be electrically connected to the camera module 0300 through the first signal transmission line 0310 and activated, and then the external image of the mobile vehicle captured by the camera module 0300 The signal will be transmitted to the display 0200 through the second signal transmission line 0320 to provide the driver with real-time driving information or real-time road condition information.

本實施例之顯示器0200可選用呈現高動態範圍(HDR)之螢幕,其顏色還原的亮度範圍擁有更加細膩的明暗顏色過渡,更加貼近人眼看到的真實情況。前述顯示器0200為達到在行動載具之外部環境光線充足之條件下,其亮度可藉由選用亮度超過1000尼特(nts),次佳為超過4000尼特(nts)的螢幕,藉此駕駛者在行動載具之內部能仍清晰觀察到顯示器0200所呈現的行駛資訊或是路況資訊,The display 0200 of this embodiment may select a screen exhibiting a high dynamic range (HDR), and its color reproduction brightness range has a more delicate light and dark color transition, which is closer to the real situation seen by human eyes. In order to achieve the condition that the external environment of the mobile vehicle has sufficient light, its brightness can be selected by a screen with a brightness exceeding 1000 nits, and the next best is more than 4000 nts. You can still clearly observe the driving information or road condition information displayed on the display 0200 inside the mobile vehicle.

本實施例更包括一訊號輸入裝置(未繪示),該訊號輸入裝置與該顯示裝置電性耦合,並且可將非來自該光學成像系統的一異質訊號傳送至顯示裝置以數值或是圖形化方式呈現。前述訊號輸入裝置例如胎壓偵測器(TPMS),行動載具之輪胎內壓可經檢測並即時轉成數位訊號,訊號可傳送至顯示裝置以數值或是圖形化的方式呈現,進而協助駕駛者即時掌握行動載具以及達到警示效果。This embodiment further includes a signal input device (not shown). The signal input device is electrically coupled to the display device, and a heterogeneous signal that is not from the optical imaging system can be transmitted to the display device for numerical or graphical display. Way to present. The aforementioned signal input device such as a tire pressure detector (TPMS), the internal pressure of the tire of the mobile vehicle can be detected and converted into a digital signal in real time, and the signal can be transmitted to the display device to be presented in a numerical or graphical manner to assist driving Real-time grasp of mobile vehicles and achieve warning effects.

本實施例之行動載具輔助系統亦可包含複數個攝像模組0300,每一攝像模組0300可設置於行動載具輔助系統之不同位置(未繪示),例如若行動載具為一車輛,則複數個攝像模組0300可分別設置於例如車輛左右後視鏡、車內前擋風玻璃後方、車內後擋風玻璃前方或是車輛前後保險桿處,前述各個攝像模組0300所擷取的個別外部影像訊號均可傳送至顯示器0200並且可選擇以非疊合方式或影像拼接方式同時呈現給駕駛者不同視角行駛資訊,或是即時呈現給駕駛者環景行駛資訊。The mobile vehicle assistance system of this embodiment may also include a plurality of camera modules 0300, and each camera module 0300 may be set at a different position (not shown) of the mobile vehicle assistance system. For example, if the mobile vehicle is a vehicle , A plurality of camera modules 0300 can be respectively arranged at, for example, the left and right rearview mirrors of the vehicle, the rear of the front windshield of the vehicle, the front of the rear windshield of the vehicle, or the front and rear bumpers of the vehicle. The individual external image signals can be transmitted to the display 0200 and can be presented to the driver at different angles at the same time in a non-overlapping manner or image stitching mode, or they can be presented to the driver in real time.

本實施例之行動載具輔助系統亦可包含至少一移動偵測器(未繪示)以及複數個攝像模組(未繪示),每一攝像模組可設置於行動載具輔助系統之不同位置(未繪示),例如若行動載具為一車輛,則複數個攝像模組可分別設置於例如車輛左右後視鏡、車內前擋風玻璃後方、車內後擋風玻璃前方或是車輛前後保險桿處,當行動載具處於關閉動力系統且停止行駛之狀態,前述移動偵測器即啟動持續偵測行動載具本身是否遭到碰撞或震動,若遭到碰撞或震動,則移動偵測器將啟動複數個攝像模組並即時進行錄影,藉此可協助駕駛者紀錄碰撞事件以利事後現場還原與蒐證。The mobile vehicle assistance system of this embodiment may also include at least one motion detector (not shown) and a plurality of camera modules (not shown). Each camera module may be set on a different mobile vehicle assistance system. Position (not shown), for example, if the mobile vehicle is a vehicle, a plurality of camera modules may be respectively disposed on, for example, the left and right rearview mirrors of the vehicle, behind the front windshield of the vehicle, in front of the rear windshield of the vehicle, or At the front and rear bumpers of the vehicle, when the mobile vehicle is in a state where the power system is turned off and the vehicle is stopped, the aforementioned motion detector starts to continuously detect whether the mobile vehicle itself has been impacted or shaken. If it is impacted or shaken, it moves The detector will activate several camera modules and record in real time, which can help the driver to record the collision event for on-site restoration and verification.

本實施例之行動載具輔助系統亦可包含一切換控制器以及二個攝像模組0300(未繪示),其中一攝像模組0300設置於行動載具之前方,另一個攝像模組0300設置於後方,當行動載具處於倒退方向行駛時,可經由前述切換控制器令顯示器0200呈現後方影像並即時進行錄影,藉此可協助駕駛者避免行動載具遭遇到後方碰撞事件。The mobile vehicle assistance system of this embodiment may also include a switching controller and two camera modules 0300 (not shown), where one camera module 0300 is set in front of the mobile vehicle and the other camera module 0300 is set At the rear, when the mobile vehicle is traveling in the reverse direction, the display 0200 can display the rear image and record in real time through the aforementioned switching controller, thereby helping the driver to avoid the rear collision event of the mobile vehicle.

本實施例之行動載具輔助系統亦可包含一資通訊裝置 (未繪示),前述資通訊裝置可以對外聯繫預設之聯絡人或機構,藉此當駕駛者遭遇特定事件例如交通事故時,駕駛者可藉由資通訊裝置完成行車通報以及尋求協助,以避免人身財產損害的擴大。The mobile vehicle assistance system of this embodiment may also include a telematics device (not shown). The aforementioned telematics device may externally contact a preset contact person or organization, so that when the driver encounters a specific event such as a traffic accident, Drivers can complete driving notifications and seek assistance through telematics devices to avoid the expansion of personal and property damage.

本實施例之行動載具輔助系統亦可包含一行駛設定器以及一個生物性辨識裝置(未繪示),其中行駛啟動器以及生物性辨識裝置間電性連接,當特定駕駛者進入行動載具並面對該生物性辨識裝置,即可進行身份識別並啟動行駛設定器,行駛設定器可依個別駕駛者預先所設定之參數而控制行動載具,藉此可協助駕駛者迅速完成行動載具使用習慣之設定而有效操控該行動載具。The mobile vehicle assistance system of this embodiment may also include a driving setter and a biometric identification device (not shown), wherein the driving starter and the biometric identification device are electrically connected. When a specific driver enters the mobile vehicle In the face of the biometric identification device, it is possible to identify and start the driving setter. The driving setter can control the mobile vehicle according to the parameters set by individual drivers in advance, thereby assisting the driver to quickly complete the mobile vehicle. Use custom settings to effectively control the mobile vehicle.

此外,該透鏡組最接近成像面之透鏡的像側面之最大直徑以PhiB表示,而該透鏡組中最接近成像面 (即像空間)之透鏡像側面的最大有效直徑(又可稱之為光學出瞳)以PhiA表示。In addition, the maximum diameter of the image side of the lens group closest to the imaging surface is represented by PhiB, and the maximum effective diameter of the image side of the lens group closest to the imaging surface (that is, image space) (also called optical Exit pupil) is represented by PhiA.

為達到小型化與高光學品質之效果,本實施例之PhiA滿足下列條件:0 mm<PhiA≦17.4 mm,較佳地可滿足下列條件:0 mm<PhiA≦13.5 mm;PhiC滿足下列條件:0 mm<PhiC≦17.7 mm,較佳地可滿足下列條件:0 mm<PhiC≦14 mm;PhiD滿足下列條件:0 mm<PhiD≦18 mm,較佳地可滿足下列條件:0 mm<PhiD≦15 mm;TH1滿足下列條件:0 mm<TH1≦5 mm,較佳地可滿足下列條件:0 mm<≦TH1≦0.5 mm;TH2滿足下列條件:0 mm<TH2≦5 mm,較佳地可滿足下列條件:0 mm<TH2≦0.5 mm;PhiA / PhiD滿足下列條件:0 <PhiA / PhiD≦0.99,較佳地可滿足下列條件:0 <PhiA / PhiD≦0.97;TH1+TH2滿足下列條件:0 mm < TH1+TH2≦15mm,較佳地可滿足下列條件:0 mm<TH1+TH2≦1 mm;2倍(TH1+TH2) /PhiA滿足下列條件:0 <2倍(TH1+TH2) /PhiA≦0.95,較佳地可滿足下列條件:0<2倍(TH1+TH2) /PhiA≦0.5。In order to achieve the effect of miniaturization and high optical quality, the PhiA of this embodiment satisfies the following conditions: 0 mm <PhiA ≦ 17.4 mm, preferably can satisfy the following conditions: 0 mm <PhiA ≦ 13.5 mm; PhiC satisfies the following conditions: 0 mm <PhiC ≦ 17.7 mm, preferably can satisfy the following conditions: 0 mm <PhiC ≦ 14 mm; PhiD meets the following conditions: 0 mm <PhiD ≦ 18 mm, preferably can satisfy the following conditions: 0 mm <PhiD ≦ 15 mm; TH1 satisfies the following conditions: 0 mm <TH1 ≦ 5 mm, preferably satisfies the following conditions: 0 mm <≦ TH1 ≦ 0.5 mm; TH2 satisfies the following conditions: 0 mm <TH2 ≦ 5 mm, preferably satisfies The following conditions: 0 mm <TH2 ≦ 0.5 mm; PhiA / PhiD satisfies the following conditions: 0 <PhiA / PhiD ≦ 0.99, preferably can satisfy the following conditions: 0 <PhiA / PhiD ≦ 0.97; TH1 + TH2 satisfies the following conditions: 0 mm < TH1 + TH2 ≦ 15mm, preferably meet the following conditions: 0 mm < TH1 + TH2 ≦ 1 mm; 2 times (TH1 + TH2) / PhiA meets the following conditions: 0 <2 times (TH1 + TH2) / PhiA ≦ 0.95, preferably satisfy the following conditions: 0 <2 times (TH1 + TH2) /PhiA≦0.5.

另外,本實施例之光學成像系統同樣滿足下列條件:PhiA滿足下列條件:0 mm<PhiA≦17.4 mm,較佳地可滿足下列條件:0 mm<PhiA≦13.5 mm; PhiD滿足下列條件:0 mm<PhiD≦18 mm,較佳地可滿足下列條件:0 mm<PhiD≦15 mm;PhiA / PhiD滿足下列條件:0 <PhiA / PhiD≦0.99,較佳地可滿足下列條件:0 <PhiA / PhiD≦0.97;TH1+TH2滿足下列條件:0 mm<TH1+TH2≦15mm,較佳地可滿足下列條件:0 mm<TH1+TH2≦1 mm;2倍(TH1+TH2) /PhiA滿足下列條件:0 <2倍(TH1+TH2) /PhiA≦0.95,較佳地可滿足下列條件:0<2倍(TH1+TH2) /PhiA≦0.5。由上述內容可知,本創作第三較佳結構實施例之光學成像系統滿足第一結構實施例中所述之部分條件式,而可同樣達到小型化與高成像品質之效果。In addition, the optical imaging system of this embodiment also satisfies the following conditions: PhiA satisfies the following conditions: 0 mm <PhiA ≦ 17.4 mm, preferably satisfies the following conditions: 0 mm <PhiA ≦ 13.5 mm; PhiD satisfies the following conditions: 0 mm <PhiD ≦ 18 mm, preferably satisfies the following conditions: 0 mm <PhiD ≦ 15 mm; PhiA / PhiD satisfies the following conditions: 0 <PhiA / PhiD ≦ 0.99, preferably satisfies the following conditions: 0 <PhiA / PhiD ≦ 0.97; TH1 + TH2 satisfies the following conditions: 0 mm <TH1 + TH2 ≦ 15mm, preferably satisfies the following conditions: 0 mm <TH1 + TH2 ≦ 1 mm; 2 times (TH1 + TH2) / PhiA meets the following conditions: 0 <2 times (TH1 + TH2) /PhiA≦0.95, preferably satisfy the following conditions: 0 <2 times (TH1 + TH2) /PhiA≦0.5. It can be known from the foregoing that the optical imaging system of the third preferred structural embodiment of the present invention satisfies some conditional expressions described in the first structural embodiment, and can also achieve the effects of miniaturization and high imaging quality.

另外,除上述之各結構實施例外,以下茲就該透鏡組可行之光學實施例進行說明。於本創作之光學成像系統可使用三個工作波長進行設計,分別為486.1 nm、587.5 nm、656.2 nm,其中587.5 nm為主要參考波長為主要提取技術特徵之參考波長。光學成像系統亦可使用五個工作波長進行設計,分別為470 nm、510 nm、555 nm、610 nm、650 nm,其中555 nm為主要參考波長為主要提取技術特徵之參考波長。In addition, in addition to the implementation of each of the above structures, the following is a description of possible optical embodiments of the lens group. The optical imaging system in this creation can be designed using three working wavelengths, which are 486.1 nm, 587.5 nm, and 656.2 nm, of which 587.5 nm is the main reference wavelength and the reference wavelength for the main extraction technology features. The optical imaging system can also be designed with five working wavelengths: 470 nm, 510 nm, 555 nm, 610 nm, and 650 nm, of which 555 nm is the main reference wavelength and the reference wavelength for the main extraction technology features.

光學成像系統的焦距f與每一片具有正屈折力之透鏡的焦距fp之比值PPR,光學成像系統的焦距f與每一片具有負屈折力之透鏡的焦距fn之比值NPR,所有正屈折力之透鏡的PPR總和為ΣPPR,所有負屈折力之透鏡的NPR總和為ΣNPR,當滿足下列條件時有助於控制光學成像系統的總屈折力以及總長度:0.5≦ΣPPR/│ΣNPR│≦15,較佳地,可滿足下列條件:1≦ΣPPR/│ΣNPR│≦3.0。The ratio of the focal length f of the optical imaging system to the focal length fp of each lens with positive refractive power PPR, the ratio of the focal length f of the optical imaging system to the focal length fn of each lens with negative refractive power NPR, all lenses with positive refractive power The sum of PPR is ΣPPR, and the sum of NPR of all lenses with negative refractive power is ΣNPR. It helps to control the total refractive power and total length of the optical imaging system when the following conditions are met: 0.5 ≦ ΣPPR / │ΣNPR│ ≦ 15, preferably The ground can meet the following conditions: 1 ≦ ΣPPR / │ΣNPR│ ≦ 3.0.

光學成像系統可更包含一影像感測元件,其設置於成像面。影像感測元件有效感測區域對角線長的一半(即為光學成像系統之成像高度或稱最大像高) 為HOI,第一透鏡物側面至成像面於光軸上的距離為HOS,其滿足下列條件:HOS/HOI≦50;以及0.5≦HOS/f≦150。較佳地,可滿足下列條件:1≦HOS/HOI≦40;以及1≦HOS/f≦140。藉此,可維持光學成像系統的小型化,以搭載於輕薄可攜式的電子產品上。The optical imaging system may further include an image sensing element disposed on the imaging surface. The half of the diagonal length of the effective sensing area of the image sensing element (that is, the imaging height or maximum image height of the optical imaging system) is HOI, and the distance from the object side of the first lens to the imaging surface on the optical axis is HOS. The following conditions are satisfied: HOS / HOI ≦ 50; and 0.5 ≦ HOS / f ≦ 150. Preferably, the following conditions can be satisfied: 1 ≦ HOS / HOI ≦ 40; and 1 ≦ HOS / f ≦ 140. Thereby, the miniaturization of the optical imaging system can be maintained to be mounted on a thin and light portable electronic product.

另外,本創作的光學成像系統中,依需求可設置至少一光圈,以減少雜散光,有助於提昇影像品質。In addition, in the creative optical imaging system, at least one aperture can be set as required to reduce stray light and help improve image quality.

本創作的光學成像系統中,光圈配置可為前置光圈或中置光圈,其中前置光圈意即光圈設置於被攝物與第一透鏡間,中置光圈則表示光圈設置於第一透鏡與成像面間。若光圈為前置光圈,可使光學成像系統的出瞳與成像面產生較長的距離而容置更多光學元件,並可增加影像感測元件接收影像的效率;若為中置光圈,係有助於擴大系統的視場角,使光學成像系統具有廣角鏡頭的優勢。前述光圈至成像面間的距離為InS,其滿足下列條件:0.1≦InS/HOS≦1.1。藉此,可同時兼顧維持光學成像系統的小型化以及具備廣角的特性。In the optical imaging system of this creation, the aperture configuration can be a front aperture or a middle aperture. The front aperture means that the aperture is set between the subject and the first lens, and the middle aperture means that the aperture is set between the first lens and the first lens. Between imaging surfaces. If the aperture is a front aperture, it can make the exit pupil of the optical imaging system and the imaging surface have a longer distance to accommodate more optical elements, and increase the efficiency of the image sensing element to receive images; if it is a middle aperture, the system It helps to expand the field of view of the system, so that the optical imaging system has the advantages of a wide-angle lens. The distance from the aforementioned aperture to the imaging surface is InS, which satisfies the following conditions: 0.1 ≦ InS / HOS ≦ 1.1. This makes it possible to achieve both the miniaturization of the optical imaging system and the characteristics of having a wide angle.

本創作的光學成像系統中,第一透鏡物側面至第六透鏡像側面間的距離為InTL,於光軸上所有具屈折力之透鏡的厚度總和為ΣTP,其滿足下列條件:0.1≦ΣTP/InTL≦0.9。藉此,當可同時兼顧系統成像的對比度以及透鏡製造的良率並提供適當的後焦距以容置其他元件。In the created optical imaging system, the distance between the object side of the first lens and the image side of the sixth lens is InTL, and the total thickness of all refractive lenses on the optical axis is ΣTP, which meets the following conditions: 0.1 ≦ ΣTP / InTL ≦ 0.9. Thereby, the contrast of the system imaging and the yield of lens manufacturing can be taken into account at the same time, and an appropriate back focus can be provided to accommodate other components.

第一透鏡物側面的曲率半徑為R1,第一透鏡像側面的曲率半徑為R2,其滿足下列條件:0.001≦│R1/R2│≦25。藉此,第一透鏡的具備適當正屈折力強度,避免球差增加過速。較佳地,可滿足下列條件:0.01≦│R1/R2│<12。The curvature radius of the object side of the first lens is R1, and the curvature radius of the image side of the first lens is R2, which satisfies the following conditions: 0.001 ≦ │R1 / R2│ ≦ 25. Thereby, the first lens has an appropriate positive refractive power strength, and avoids an increase in spherical aberration from overspeed. Preferably, the following conditions can be satisfied: 0.01 ≦ │R1 / R2│ <12.

第六透鏡物側面的曲率半徑為R11,第六透鏡像側面的曲率半徑為R12,其滿足下列條件:-7 <(R11-R12)/(R11+R12)<50。藉此,有利於修正光學成像系統所產生的像散。The curvature radius of the object side of the sixth lens is R11, and the curvature radius of the image side of the sixth lens is R12, which satisfies the following conditions: -7 <(R11-R12) / (R11 + R12) <50. This is beneficial to correct the astigmatism generated by the optical imaging system.

第一透鏡與第二透鏡於光軸上的間隔距離為IN12,其滿足下列條件:IN12 / f ≦60藉此,有助於改善透鏡的色差以提升其性能。The distance between the first lens and the second lens on the optical axis is IN12, which satisfies the following conditions: IN12 / f ≦ 60. This helps to improve the chromatic aberration of the lens and improve its performance.

第五透鏡與第六透鏡於光軸上的間隔距離為IN56,其滿足下列條件:IN56 / f ≦3.0,有助於改善透鏡的色差以提升其性能。The distance between the fifth lens and the sixth lens on the optical axis is IN56, which satisfies the following conditions: IN56 / f ≦ 3.0, which helps to improve the chromatic aberration of the lens to improve its performance.

第一透鏡與第二透鏡於光軸上的厚度分別為TP1以及TP2,其滿足下列條件:0.1≦(TP1+IN12) / TP2≦10。藉此,有助於控制光學成像系統製造的敏感度並提升其性能。The thicknesses of the first lens and the second lens on the optical axis are respectively TP1 and TP2, which satisfy the following conditions: 0.1 ≦ (TP1 + IN12) / TP2 ≦ 10. This helps to control the sensitivity of the optical imaging system manufacturing and improve its performance.

第五透鏡與第六透鏡於光軸上的厚度分別為TP5以及TP6,前述兩透鏡於光軸上的間隔距離為IN56,其滿足下列條件:0.1≦(TP6+IN56) / TP5≦15藉此,有助於控制光學成像系統製造的敏感度並降低系統總高度。The thicknesses of the fifth lens and the sixth lens on the optical axis are TP5 and TP6, respectively. The distance between the two lenses on the optical axis is IN56, which satisfies the following conditions: 0.1 ≦ (TP6 + IN56) / TP5 ≦ 15. , To help control the sensitivity of the optical imaging system manufacturing and reduce the overall system height.

第二透鏡、第三透鏡與第四透鏡於光軸上的厚度分別為TP2、TP3以及TP4,第二透鏡與第三透鏡於光軸上的間隔距離為IN23,第四透鏡與第五透鏡於光軸上的間隔距離為IN45,其滿足下列條件:0.1≦TP4/ (IN34+TP4+IN45)<1。藉此,有助層層微幅修正入射光行進過程所產生的像差並降低系統總高度。The thicknesses of the second lens, the third lens, and the fourth lens on the optical axis are TP2, TP3, and TP4. The distance between the second lens and the third lens on the optical axis is IN23. The fourth lens and the fifth lens are on the optical axis. The separation distance on the optical axis is IN45, which satisfies the following conditions: 0.1 ≦ TP4 / (IN34 + TP4 + IN45) <1. This helps the layers to slightly correct the aberrations generated by the incident light and reduces the overall system height.

本創作的光學成像系統中,第六透鏡物側面的臨界點C61與光軸的垂直距離為 HVT61,第六透鏡像側面的臨界點C62與光軸的垂直距離為HVT62,第六透鏡物側面於光軸上的交點至臨界點C61位置於光軸的水平位移距離為SGC61,第六透鏡像側面於光軸上的交點至臨界點C62位置於光軸的水平位移距離為SGC62,可滿足下列條件:0 mm≦HVT61≦3 mm;0 mm < HVT62≦6 mm;0≦HVT61/HVT62;0 mm≦∣SGC61∣≦0.5 mm;0 mm<∣SGC62∣≦2 mm;以及0 <∣SGC62∣/(∣SGC62∣+TP6)≦0.9。藉此,可有效修正離軸視場的像差。In the created optical imaging system, the vertical distance between the critical point C61 of the sixth lens object side and the optical axis is HVT61, the vertical distance between the critical point C62 of the sixth lens image side and the optical axis is HVT62, and the sixth lens object side is at The horizontal displacement distance from the intersection point on the optical axis to the critical point C61 on the optical axis is SGC61. The horizontal displacement distance from the intersection point on the optical axis of the sixth lens image side to the critical point C62 on the optical axis is SGC62, which can meet the following conditions. : 0 mm ≦ HVT61 ≦ 3 mm; 0 mm <HVT62 ≦ 6 mm; 0 ≦ HVT61 / HVT62; 0 mm ≦ ∣SGC61∣ ≦ 0.5 mm; 0 mm <∣SGC62∣ ≦ 2 mm; and 0 <∣SGC62C / (∣SGC62∣ + TP6) ≦ 0.9. This can effectively correct aberrations in the off-axis field of view.

本創作的光學成像系統其滿足下列條件:0.2≦HVT62/ HOI≦0.9。較佳地,可滿足下列條件:0.3≦HVT62/ HOI≦0.8。藉此,有助於光學成像系統之週邊視場的像差修正。The optical imaging system of this creation meets the following conditions: 0.2 ≦ HVT62 / HOI ≦ 0.9. Preferably, the following conditions can be satisfied: 0.3 ≦ HVT62 / HOI ≦ 0.8. This is helpful for aberration correction of the peripheral field of view of the optical imaging system.

本創作的光學成像系統其滿足下列條件:0≦HVT62/ HOS≦0.5。較佳地,可滿足下列條件:0.2≦HVT62/ HOS≦0.45。藉此,有助於光學成像系統之週邊視場的像差修正。The optical imaging system of this creation meets the following conditions: 0 ≦ HVT62 / HOS ≦ 0.5. Preferably, the following conditions can be satisfied: 0.2 ≦ HVT62 / HOS ≦ 0.45. This is helpful for aberration correction of the peripheral field of view of the optical imaging system.

本創作的光學成像系統中,第六透鏡物側面於光軸上的交點至第六透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI611表示,第六透鏡像側面於光軸上的交點至第六透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI621表示,其滿足下列條件:0 < SGI611 /( SGI611+TP6)≦0.9;0 < SGI621 /( SGI621+TP6)≦0.9。較佳地,可滿足下列條件:0.1≦SGI611 /( SGI611+TP6)≦0.6;0.1≦SGI621 /( SGI621+TP6)≦0.6。In the optical imaging system of this creation, the horizontal displacement distance parallel to the optical axis between the intersection point of the sixth lens object side on the optical axis and the closest optical axis inflection point of the sixth lens object side is represented by SGI611. The sixth lens image The horizontal displacement distance parallel to the optical axis between the intersection point of the side on the optical axis and the inflection point of the closest optical axis of the sixth lens image side is represented by SGI621, which satisfies the following conditions: 0 <SGI611 / (SGI611 + TP6) ≦ 0.9 ; 0 <SGI621 / (SGI621 + TP6) ≦ 0.9. Preferably, the following conditions can be satisfied: 0.1 ≦ SGI611 / (SGI611 + TP6) ≦ 0.6; 0.1 ≦ SGI621 / (SGI621 + TP6) ≦ 0.6.

第六透鏡物側面於光軸上的交點至第六透鏡物側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI612表示,第六透鏡像側面於光軸上的交點至第六透鏡像側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI622表示,其滿足下列條件:0 < SGI612/( SGI612+TP6)≦0.9;0 < SGI622 /( SGI622+TP6)≦0.9。較佳地,可滿足下列條件:0.1≦SGI612 /( SGI612+TP6)≦0.6;0.1≦SGI622 /( SGI622+TP6)≦0.6。The horizontal displacement distance parallel to the optical axis between the intersection of the object side of the sixth lens on the optical axis and the second curved point near the optical axis of the object side of the sixth lens is represented by SGI612. The image side of the sixth lens on the optical axis The horizontal displacement distance parallel to the optical axis between the intersection point and the second curved optical axis of the sixth lens image side parallel to the optical axis is represented by SGI622, which satisfies the following conditions: 0 <SGI612 / (SGI612 + TP6) ≦ 0.9; 0 <SGI622 / (SGI622 + TP6) ≦ 0.9. Preferably, the following conditions can be satisfied: 0.1 ≦ SGI612 / (SGI612 + TP6) ≦ 0.6; 0.1 ≦ SGI622 / (SGI622 + TP6) ≦ 0.6.

第六透鏡物側面最近光軸的反曲點與光軸間的垂直距離以HIF611表示,第六透鏡像側面於光軸上的交點至第六透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF621表示,其滿足下列條件:0.001 mm≦│HIF611∣≦5 mm;0.001 mm≦│HIF621∣≦5 mm。較佳地,可滿足下列條件: 0.1 mm≦│HIF611∣≦3.5 mm;1.5 mm≦│HIF621∣≦3.5 mm。The vertical distance between the inflection point of the closest optical axis of the sixth lens object side and the optical axis is represented by HIF611. The intersection of the sixth lens image side on the optical axis to the closest optical axis of the sixth lens image side and the inflection point of the optical axis The vertical distance between them is represented by HIF621, which meets the following conditions: 0.001 mm ≦ │HIF611∣ ≦ 5 mm; 0.001 mm ≦ │HIF621∣ ≦ 5 mm. Preferably, the following conditions can be satisfied: 0.1 mm ≦ │HIF611∣ ≦ 3.5 mm; 1.5 mm ≦ │HIF621∣ ≦ 3.5 mm.

第六透鏡物側面第二接近光軸的反曲點與光軸間的垂直距離以HIF612表示,第六透鏡像側面於光軸上的交點至第六透鏡像側面第二接近光軸的反曲點與光軸間的垂直距離以HIF622表示,其滿足下列條件:0.001 mm≦│HIF612∣≦5 mm;0.001 mm≦│HIF622∣≦5 mm。較佳地,可滿足下列條件:0.1 mm≦│HIF622∣≦3.5 mm;0.1 mm≦│HIF612∣≦3.5 mm。The vertical distance between the second curved point closest to the optical axis and the optical axis of the sixth lens object side is represented by HIF612. The intersection of the sixth lens image side on the optical axis to the sixth lens image side second curve near the optical axis The vertical distance between the point and the optical axis is represented by HIF622, which meets the following conditions: 0.001 mm ≦ │HIF612IF ≦ 5 mm; 0.001 mm ≦ │HIF622∣ ≦ 5 mm. Preferably, the following conditions can be satisfied: 0.1 mm ≦ │HIF622∣ ≦ 3.5 mm; 0.1 mm ≦ │HIF612∣ ≦ 3.5 mm.

第六透鏡物側面第三接近光軸的反曲點與光軸間的垂直距離以HIF613表示,第六透鏡像側面於光軸上的交點至第六透鏡像側面第三接近光軸的反曲點與光軸間的垂直距離以HIF623表示,其滿足下列條件:0.001 mm≦│HIF613∣≦5 mm;0.001 mm≦│HIF623∣≦5 mm。較佳地,可滿足下列條件:0.1 mm≦│HIF623∣≦3.5 mm;0.1 mm≦│HIF613∣≦3.5 mm。The vertical distance between the inflection point of the sixth lens object side close to the optical axis and the optical axis is represented by HIF613. The intersection of the sixth lens image side on the optical axis to the third lens image side third inflection near the optical axis The vertical distance between the point and the optical axis is represented by HIF623, which satisfies the following conditions: 0.001 mm ≦ │HIF613∣ ≦ 5 mm; 0.001 mm ≦ │HIF623∣ ≦ 5 mm. Preferably, the following conditions can be satisfied: 0.1 mm ≦ │HIF623∣ ≦ 3.5 mm; 0.1 mm ≦ │HIF613∣ ≦ 3.5 mm.

第六透鏡物側面第四接近光軸的反曲點與光軸間的垂直距離以HIF614表示,第六透鏡像側面於光軸上的交點至第六透鏡像側面第四接近光軸的反曲點與光軸間的垂直距離以HIF624表示,其滿足下列條件:0.001 mm≦│HIF614∣≦5 mm;0.001 mm≦│HIF624∣≦5 mm。較佳地,可滿足下列條件:0.1 mm≦│HIF624∣≦3.5 mm;0.1 mm≦│HIF614∣≦3.5 mm。The vertical distance between the inflection point of the sixth lens object side close to the optical axis and the optical axis is represented by HIF614. The intersection of the sixth lens image side on the optical axis to the fourth lens image side is the fourth curve close to the optical axis. The vertical distance between the point and the optical axis is represented by HIF624, which meets the following conditions: 0.001 mm ≦ │HIF614∣ ≦ 5 mm; 0.001 mm ≦ │HIF624∣ ≦ 5 mm. Preferably, the following conditions can be satisfied: 0.1 mm ≦ │HIF624∣ ≦ 3.5 mm; 0.1 mm ≦ │HIF614∣ ≦ 3.5 mm.

本創作的光學成像系統之一種實施方式,可藉由具有高色散係數與低色散係數之透鏡交錯排列,而助於光學成像系統色差的修正。An embodiment of the optical imaging system of the present invention can help to correct the chromatic aberration of the optical imaging system by staggering the lenses with high dispersion coefficient and low dispersion coefficient.

上述非球面之方程式係為:The equation of the above aspheric surface is:

z=ch 2/[1+[1-(k+1)c 2h 2] 0.5]+A4h 4+A6h 6+A8h 8+A10h 10+ A12h 12+A14h 14+A16h 16+A18h 18+A20h 20+… (1) z = ch 2 / [1+ [1- (k + 1) c 2 h 2 ] 0.5 ] + A4h 4 + A6h 6 + A8h 8 + A10h 10 + A12h 12 + A14h 14 + A16h 16 + A18h 18 + A20h 20 +… (1)

其中,z為沿光軸方向在高度為h的位置以表面頂點作參考的位置值,k為錐面係數,c為曲率半徑的倒數,且A4、A6、A8、A10、A12、A14、A16、A18以及A20為高階非球面係數。Among them, z is the position value with the surface vertex as the reference at the position of height h along the optical axis direction, k is the cone surface coefficient, c is the inverse of the radius of curvature, and A4, A6, A8, A10, A12, A14, A16 , A18 and A20 are high-order aspheric coefficients.

本創作提供的光學成像系統中,透鏡的材質可為塑膠或玻璃。當透鏡材質為塑膠,可以有效降低生產成本與重量。另當透鏡的材質為玻璃,則可以控制熱效應並且增加光學成像系統屈折力配置的設計空間。此外,光學成像系統中第一透鏡至第七透鏡的物側面及像側面可為非球面,其可獲得較多的控制變數,除用以消減像差外,相較於傳統玻璃透鏡的使用甚至可縮減透鏡使用的數目,因此能有效降低本創作光學成像系統的總高度。In the optical imaging system provided by this creation, the material of the lens can be plastic or glass. When the lens is made of plastic, it can effectively reduce production costs and weight. In addition, when the material of the lens is glass, the thermal effect can be controlled and the design space of the refractive power configuration of the optical imaging system can be increased. In addition, the object side and the image side of the first to seventh lenses in the optical imaging system can be aspheric, which can obtain more control variables. In addition to reducing aberrations, compared with the use of traditional glass lenses, The number of lenses can be reduced, so the overall height of the creative optical imaging system can be effectively reduced.

再者,本創作提供的光學成像系統中,若透鏡表面係為凸面,原則上表示透鏡表面於近光軸處為凸面;若透鏡表面係為凹面,原則上表示透鏡表面於近光軸處為凹面。Furthermore, in the optical imaging system provided by this creation, if the lens surface is convex, in principle, the lens surface is convex at the near optical axis; if the lens surface is concave, in principle, the lens surface is at the near optical axis. Concave.

本創作的光學成像系統更可視需求應用於移動對焦的光學系統中,並兼具優良像差修正與良好成像品質的特色,從而擴大應用層面。The optical imaging system of this creation can be applied to the optical system of mobile focusing according to the needs, and has the characteristics of excellent aberration correction and good imaging quality, thereby expanding the application level.

本創作的光學成像系統更可視需求包括一驅動模組,該驅動模組可與該些透鏡相耦合並使該些透鏡產生位移。前述驅動模組可以是音圈馬達(VCM)用於帶動鏡頭進行對焦,或者為光學防手振元件(OIS)用於降低拍攝過程因鏡頭振動所導致失焦的發生頻率。The optical imaging system of this creation may further include a driving module, which may be coupled with the lenses and cause the lenses to be displaced. The aforementioned driving module may be a voice coil motor (VCM) for driving the lens to focus, or an optical anti-shake element (OIS) for reducing the frequency of out-of-focus caused by lens vibration during shooting.

本創作的光學成像系統更可視需求令第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡、第六透鏡及第七透鏡中至少一透鏡為波長小於500nm之光線濾除元件,其可藉由該特定具濾除功能之透鏡的至少一表面上鍍膜或該透鏡本身即由具可濾除短波長之材質所製作而達成。According to the optical imaging system of this creation, at least one of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, and the seventh lens is a light filtering element with a wavelength less than 500 nm according to the needs. It can be achieved by coating on at least one surface of the specific lens with a filtering function or the lens itself is made of a material with a filterable short wavelength.

本創作的光學成像系統之成像面更可視需求選擇為一平面或一曲面。當成像面為一曲面 (例如具有一曲率半徑的球面),有助於降低聚焦光線於成像面所需之入射角,除有助於達成微縮光學成像系統之長度(TTL)外,對於提升相對照度同時有所助益。The imaging surface of the optical imaging system of this creation can be selected as a flat surface or a curved surface as required. When the imaging surface is a curved surface (such as a spherical surface with a radius of curvature), it helps to reduce the incident angle required to focus the light on the imaging surface. In addition to helping to achieve the length (TTL) of a miniature optical imaging system, Illumination also helps.

根據上述實施方式,以下茲以第四較佳結構實施例配合下述光學實施例提出具體實施例並配合圖式予以詳細說明。According to the foregoing implementation manners, the following describes the fourth preferred structural embodiment in combination with the following optical embodiments to present specific embodiments and the detailed description in conjunction with the drawings.

第一光學實施例First optical embodiment

請參照第2A圖及第2B圖,其中第2A圖繪示依照本創作第一光學實施例的一種光學成像系統10的透鏡組示意圖,第2B圖由左至右依序為第一光學實施例的光學成像系統10的球差、像散及光學畸變曲線圖。由第2A圖可知,光學成像系統10由物側至像側依序包含第一透鏡110、光圈100、第二透鏡120、第三透鏡130、第四透鏡140、第五透鏡150、第六透鏡160、紅外線濾光片180、成像面190以及影像感測元件192。Please refer to FIG. 2A and FIG. 2B. FIG. 2A shows a schematic diagram of a lens group of an optical imaging system 10 according to the first optical embodiment of the present invention. FIG. 2B shows the first optical embodiment in order from left to right. Spherical aberration, astigmatism and optical distortion curves of the optical imaging system 10 of FIG. As can be seen from FIG. 2A, the optical imaging system 10 includes the first lens 110, the aperture 100, the second lens 120, the third lens 130, the fourth lens 140, the fifth lens 150, and the sixth lens in order from the object side to the image side. 160, an infrared filter 180, an imaging surface 190, and an image sensing element 192.

第一透鏡110具有負屈折力,且為塑膠材質,其物側面112為凹面,其像側面114為凹面,並皆為非球面,且其物側面112具有二反曲點。第一透鏡物側面的最大有效半徑之輪廓曲線長度以ARS11表示,第一透鏡像側面的最大有效半徑之輪廓曲線長度以ARS12表示。第一透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE11表示,第一透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE12表示。第一透鏡於光軸上之厚度為TP1。The first lens 110 has a negative refractive power and is made of plastic. The object side 112 is concave, the image side 114 is concave, and both are aspheric. The object side 112 has two inflection points. The length of the contour curve of the maximum effective radius on the object side of the first lens is represented by ARS11, and the length of the contour curve of the maximum effective radius of the image side of the first lens is represented by ARS12. The length of the contour curve of the 1/2 incident pupil diameter (HEP) on the object side of the first lens is represented by ARE11, and the length of the contour curve of the 1/2 incidence pupil diameter (HEP) of the first lens image side is represented by ARE12. The thickness of the first lens on the optical axis is TP1.

第一透鏡110物側面112於光軸上的交點至第一透鏡110物側面112最近光軸的反曲點之間與光軸平行的水平位移距離以SGI111表示,第一透鏡110像側面114於光軸上的交點至第一透鏡110像側面114最近光軸的反曲點之間與光軸平行的水平位移距離以SGI121表示,其滿足下列條件:SGI111= -0.0031 mm;∣SGI111∣/(∣SGI111∣+TP1)= 0.0016。The horizontal displacement distance parallel to the optical axis between the intersection point of the object side surface 112 of the first lens 110 on the optical axis and the closest optical axis inflection point of the object side surface 112 of the first lens 110 is represented by SGI111. The horizontal displacement distance parallel to the optical axis between the intersection point on the optical axis and the inflection point of the closest optical axis of the image side 114 of the first lens 110 is represented by SGI121, which satisfies the following conditions: SGI111 = -0.0031 mm; ∣SGI111∣ / ( (SGI111∣ + TP1) = 0.0016.

第一透鏡110物側面112於光軸上的交點至第一透鏡110物側面112第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI112表示,第一透鏡110像側面114於光軸上的交點至第一透鏡110像側面114第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI122表示,其滿足下列條件:SGI112=1.3178 mm;∣SGI112∣/(∣SGI112∣+TP1)= 0.4052。The horizontal displacement distance parallel to the optical axis between the intersection of the object side 112 of the first lens 110 on the optical axis and the second curved point near the object side 112 of the first lens 110 is parallel to the optical axis. The horizontal displacement distance parallel to the optical axis between the intersection point of 114 on the optical axis to the first lens 110 image side 114 and the second curved point close to the optical axis is represented by SGI122, which meets the following conditions: SGI112 = 1.3178 mm; ∣SGI112 ∣ / (∣SGI112∣ + TP1) = 0.4052.

第一透鏡110物側面112最近光軸的反曲點與光軸間的垂直距離以HIF111表示,第一透鏡110像側面114於光軸上的交點至第一透鏡110像側面114最近光軸的反曲點與光軸間的垂直距離以HIF121表示,其滿足下列條件:HIF111=0.5557 mm;HIF111/ HOI=0.1111。The vertical distance between the inflection point of the closest optical axis of the object side surface 112 of the first lens 110 and the optical axis is represented by HIF111. The intersection of the image side 114 of the first lens 110 on the optical axis to the closest optical axis of the image side 114 of the first lens 110 The vertical distance between the inflection point and the optical axis is represented by HIF121, which satisfies the following conditions: HIF111 = 0.5557 mm; HIF111 / HOI = 0.1111.

第一透鏡110物側面112第二接近光軸的反曲點與光軸間的垂直距離以HIF112表示,第一透鏡110像側面114於光軸上的交點至第一透鏡110像側面114第二接近光軸的反曲點與光軸間的垂直距離以HIF122表示,其滿足下列條件:HIF112=5.3732 mm;HIF112/ HOI=1.0746。The vertical distance between the inflection point of the second lens object 110 near the optical axis and the optical axis is represented by HIF112. The intersection of the first lens 110 image side 114 on the optical axis to the first lens 110 image side 114 second The vertical distance between the inflection point near the optical axis and the optical axis is represented by HIF122, which meets the following conditions: HIF112 = 5.3732 mm; HIF112 / HOI = 1.0746.

第二透鏡120具有正屈折力,且為塑膠材質,其物側面122為凸面,其像側面124為凸面,並皆為非球面,且其物側面122具有一反曲點。第二透鏡物側面的最大有效半徑之輪廓曲線長度以ARS21表示,第二透鏡像側面的最大有效半徑之輪廓曲線長度以ARS22表示。第二透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE21表示,第二透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE22表示。第二透鏡於光軸上之厚度為TP2。The second lens 120 has a positive refractive power and is made of plastic. The object side surface 122 is convex, the image side surface 124 is convex, and both are aspheric. The object side surface 122 has an inflection point. The length of the contour curve of the maximum effective radius on the object side of the second lens is represented by ARS21, and the length of the contour curve of the maximum effective radius of the image side of the second lens is represented by ARS22. The length of the profile curve of 1/2 incident pupil diameter (HEP) on the object side of the second lens is represented by ARE21, and the length of the profile curve of 1/2 incident pupil diameter (HEP) on the image side of the second lens is represented by ARE22. The thickness of the second lens on the optical axis is TP2.

第二透鏡120物側面122於光軸上的交點至第二透鏡120物側面122最近光軸的反曲點之間與光軸平行的水平位移距離以SGI211表示,第二透鏡120像側面124於光軸上的交點至第二透鏡120像側面124最近光軸的反曲點之間與光軸平行的水平位移距離以SGI221表示,其滿足下列條件:SGI211=0.1069 mm;∣SGI211∣/(∣SGI211∣+TP2)= 0.0412;SGI221=0 mm;∣SGI221∣/(∣SGI221∣+TP2)= 0。The horizontal displacement distance parallel to the optical axis between the intersection of the object side 122 of the second lens 120 on the optical axis and the closest optical axis of the object side 122 of the second lens 120 is represented by SGI211. The horizontal displacement distance parallel to the optical axis between the intersection point on the optical axis and the inflection point of the closest optical axis of the second lens 120 image side 124 is represented by SGI221, which meets the following conditions: SGI211 = 0.1069 mm; ∣SGI211∣ / (∣ SGI211∣ + TP2) = 0.0412; SGI221 = 0 mm; ∣SGI221∣ / (∣SGI221∣ + TP2) = 0.

第二透鏡120物側面122最近光軸的反曲點與光軸間的垂直距離以HIF211表示,第二透鏡120像側面124於光軸上的交點至第二透鏡120像側面124最近光軸的反曲點與光軸間的垂直距離以HIF221表示,其滿足下列條件:HIF211=1.1264 mm;HIF211/ HOI=0.2253;HIF221=0 mm;HIF221/ HOI=0。The vertical distance between the inflection point of the closest optical axis of the object side 122 of the second lens 120 and the optical axis is represented by HIF211. The intersection of the image side 124 of the second lens 120 on the optical axis to the closest optical axis of the image side 124 of the second lens 120 The vertical distance between the inflection point and the optical axis is represented by HIF221, which satisfies the following conditions: HIF211 = 1.1264 mm; HIF211 / HOI = 0.2253; HIF221 = 0 mm; HIF221 / HOI = 0.

第三透鏡130具有負屈折力,且為塑膠材質,其物側面132為凹面,其像側面134為凸面,並皆為非球面,且其物側面132以及像側面134均具有一反曲點。第三透鏡物側面的最大有效半徑之輪廓曲線長度以ARS31表示,第三透鏡像側面的最大有效半徑之輪廓曲線長度以ARS32表示。第三透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE31表示,第三透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE32表示。第三透鏡於光軸上之厚度為TP3。The third lens 130 has a negative refractive power and is made of plastic. Its object side surface 132 is concave, its image side surface 134 is convex, and both are aspheric. The object side surface 132 and the image side surface 134 have an inflection point. The length of the contour curve of the maximum effective radius on the object side of the third lens is represented by ARS31, and the length of the contour curve of the maximum effective radius of the image side of the third lens is represented by ARS32. The length of the contour curve of 1/2 incident pupil diameter (HEP) on the object side of the third lens is represented by ARE31, and the length of the contour curve of 1/2 incident pupil diameter (HEP) on the image side of the third lens is represented by ARE32. The thickness of the third lens on the optical axis is TP3.

第三透鏡130物側面132於光軸上的交點至第三透鏡130物側面132最近光軸的反曲點之間與光軸平行的水平位移距離以SGI311表示,第三透鏡130像側面134於光軸上的交點至第三透鏡130像側面134最近光軸的反曲點之間與光軸平行的水平位移距離以SGI321表示,其滿足下列條件:SGI311= -0.3041 mm;∣SGI311∣/(∣SGI311∣+TP3)= 0.4445;SGI321= -0.1172 mm;∣SGI321∣/(∣SGI321∣+TP3)= 0.2357。The horizontal displacement distance parallel to the optical axis between the intersection of the object side 132 of the third lens 130 on the optical axis and the closest optical axis of the object side 132 of the third lens 130 is represented by SGI311. The horizontal displacement distance from the intersection point on the optical axis to the inflection point of the closest optical axis of the third lens 130 image side 134 parallel to the optical axis is represented by SGI321, which satisfies the following conditions: SGI311 = -0.3041 mm; ∣SGI311∣ / ( (∣SGI311∣ + TP3) = 0.4445; SGI321 = -0.1172 mm; ∣SGI321∣ / (∣SGI321∣ + TP3) = 0.2357.

第三透鏡130物側面132最近光軸的反曲點與光軸間的垂直距離以HIF311表示,第三透鏡130像側面134於光軸上的交點至第三透鏡130像側面134最近光軸的反曲點與光軸間的垂直距離以HIF321表示,其滿足下列條件:HIF311=1.5907 mm;HIF311/ HOI=0.3181;HIF321=1.3380 mm;HIF321/ HOI=0.2676。The vertical distance between the inflection point of the closest optical axis of the object side surface 132 of the third lens 130 and the optical axis is represented by HIF311. The intersection of the image side 134 of the third lens 130 on the optical axis to the closest optical axis of the image side 134 of the third lens 130 The vertical distance between the inflection point and the optical axis is represented by HIF321, which satisfies the following conditions: HIF311 = 1.5907 mm; HIF311 / HOI = 0.3181; HIF321 = 1.3380 mm; HIF321 / HOI = 0.2676.

第四透鏡140具有正屈折力,且為塑膠材質,其物側面142為凸面,其像側面144為凹面,並皆為非球面,且其物側面142具有二反曲點以及像側面144具有一反曲點。第四透鏡物側面的最大有效半徑之輪廓曲線長度以ARS41表示,第四透鏡像側面的最大有效半徑之輪廓曲線長度以ARS42表示。第四透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE41表示,第四透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE42表示。第四透鏡於光軸上之厚度為TP4。The fourth lens 140 has a positive refractive power and is made of plastic. Its object side 142 is convex, its image side 144 is concave and both are aspheric, and its object side 142 has two inflection points and the image side 144 has a Inflection point. The length of the contour curve of the maximum effective radius on the object side of the fourth lens is represented by ARS41, and the length of the contour curve of the maximum effective radius of the image side of the fourth lens is represented by ARS42. The length of the contour curve of the 1/2 incident pupil diameter (HEP) on the object side of the fourth lens is represented by ARE41, and the length of the contour curve of the 1/2 incidence pupil diameter (HEP) of the fourth lens image side is represented by ARE42. The thickness of the fourth lens on the optical axis is TP4.

第四透鏡140物側面142於光軸上的交點至第四透鏡140物側面142最近光軸的反曲點之間與光軸平行的水平位移距離以SGI411表示,第四透鏡140像側面144於光軸上的交點至第四透鏡140像側面144最近光軸的反曲點之間與光軸平行的水平位移距離以SGI421表示,其滿足下列條件:SGI411=0.0070 mm;∣SGI411∣/(∣SGI411∣+TP4)= 0.0056;SGI421=0.0006 mm;∣SGI421∣/(∣SGI421∣+TP4)= 0.0005。The horizontal displacement distance parallel to the optical axis between the intersection of the object side 142 of the fourth lens 140 on the optical axis and the closest optical axis inflection point of the object side 142 of the fourth lens 140 is represented by SGI411. The horizontal displacement distance parallel to the optical axis between the intersection point on the optical axis and the inflection point of the closest optical axis of the fourth lens 140 image side 144 is represented by SGI421, which satisfies the following conditions: SGI411 = 0.0070 mm; ∣SGI411∣ / (∣ SGI411∣ + TP4) = 0.0056; SGI421 = 0.0006 mm; ∣SGI421∣ / (∣SGI421∣ + TP4) = 0.0005.

第四透鏡140物側面142於光軸上的交點至第四透鏡140物側面142第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI412表示,第四透鏡140像側面144於光軸上的交點至第四透鏡140像側面144第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI422表示,其滿足下列條件:SGI412=-0.2078 mm;∣SGI412∣/(∣SGI412∣+ TP4)= 0.1439。The horizontal displacement distance parallel to the optical axis between the intersection of the object side 142 of the fourth lens 140 on the optical axis and the second inflection point of the object side 142 of the fourth lens 140 near the optical axis is represented by SGI412. The fourth lens 140 is like a side The horizontal displacement distance between the intersection of 144 on the optical axis to the fourth lens 140 image side 144 and the second curved point close to the optical axis is parallel to the optical axis as SGI422, which meets the following conditions: SGI412 = -0.2078 mm; ∣ SGI412∣ / (∣SGI412∣ + TP4) = 0.1439.

第四透鏡140物側面142最近光軸的反曲點與光軸間的垂直距離以HIF411表示,第四透鏡140像側面144於光軸上的交點至第四透鏡140像側面144最近光軸的反曲點與光軸間的垂直距離以HIF421表示,其滿足下列條件:HIF411=0.4706 mm;HIF411/ HOI=0.0941;HIF421=0.1721 mm;HIF421/ HOI=0.0344。The vertical distance between the inflection point of the closest optical axis of the fourth lens 140 object side 142 and the optical axis is represented by HIF411. The intersection of the fourth lens 140 image side 144 on the optical axis to the fourth lens 140 image side 144 nearest the optical axis. The vertical distance between the inflection point and the optical axis is represented by HIF421, which satisfies the following conditions: HIF411 = 0.4706 mm; HIF411 / HOI = 0.0941; HIF421 = 0.1721 mm; HIF421 / HOI = 0.0344.

第四透鏡140物側面142第二接近光軸的反曲點與光軸間的垂直距離以HIF412表示,第四透鏡140像側面144於光軸上的交點至第四透鏡140像側面144第二接近光軸的反曲點與光軸間的垂直距離以HIF422表示,其滿足下列條件:HIF412=2.0421 mm;HIF412/ HOI=0.4084。The vertical distance between the second curved surface of the object side 142 of the fourth lens 140 near the optical axis and the optical axis is represented by HIF412. The intersection of the fourth lens 140 image side 144 on the optical axis to the fourth lens 140 image side 144 second The vertical distance between the inflection point near the optical axis and the optical axis is represented by HIF422, which meets the following conditions: HIF412 = 2.0421 mm; HIF412 / HOI = 0.4084.

第五透鏡150具有正屈折力,且為塑膠材質,其物側面152為凸面,其像側面154為凸面,並皆為非球面,且其物側面152具有二反曲點以及像側面154具有一反曲點。第五透鏡物側面的最大有效半徑之輪廓曲線長度以ARS51表示,第五透鏡像側面的最大有效半徑之輪廓曲線長度以ARS52表示。第五透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE51表示,第五透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE52表示。第五透鏡於光軸上之厚度為TP5。The fifth lens 150 has a positive refractive power and is made of plastic. Its object side 152 is convex, its image side 154 is convex, and both are aspheric. The object side 152 has two inflection points and the image side 154 has a Inflection point. The length of the contour curve of the maximum effective radius on the object side of the fifth lens is represented by ARS51, and the length of the contour curve of the maximum effective radius of the image side of the fifth lens is represented by ARS52. The contour curve length of 1/2 incident pupil diameter (HEP) on the object side of the fifth lens is represented by ARE51, and the contour curve length of 1/2 incident pupil diameter (HEP) on the image side of the fifth lens is represented by ARE52. The thickness of the fifth lens on the optical axis is TP5.

第五透鏡150物側面152於光軸上的交點至第五透鏡150物側面152最近光軸的反曲點之間與光軸平行的水平位移距離以SGI511表示,第五透鏡150像側面154於光軸上的交點至第五透鏡150像側面154最近光軸的反曲點之間與光軸平行的水平位移距離以SGI521表示,其滿足下列條件:SGI511=0.00364 mm;∣SGI511∣/(∣SGI511∣+TP5)= 0.00338;SGI521=-0.63365 mm;∣SGI521∣/(∣SGI521∣+TP5)= 0.37154。The horizontal displacement distance between the intersection of the object side surface 152 of the fifth lens 150 on the optical axis and the closest optical axis inflection point of the object side 152 of the fifth lens 150 is parallel to the optical axis as SGI511. The fifth lens 150 is like the side surface 154 at The horizontal displacement distance parallel to the optical axis between the intersection point on the optical axis and the inflection point of the closest optical axis of the image side 154 of the fifth lens 150 is represented by SGI521, which satisfies the following conditions: SGI511 = 0.00364 mm; ∣SGI511∣ / (∣ SGI511∣ + TP5) = 0.00338; SGI521 = -0.63365 mm; ∣SGI521∣ / (∣SGI521∣ + TP5) = 0.37154.

第五透鏡150物側面152於光軸上的交點至第五透鏡150物側面152第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI512表示,第五透鏡150像側面154於光軸上的交點至第五透鏡150像側面154第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI522表示,其滿足下列條件:SGI512= -0.32032 mm;∣SGI512∣/(∣SGI512∣+ TP5)= 0.23009。The horizontal displacement distance between the intersection of the object side surface 152 of the fifth lens 150 on the optical axis and the second inflection point of the object side 152 of the fifth lens 150 close to the optical axis is parallel to the optical axis as SGI512. The fifth lens 150 is like a side The horizontal displacement distance parallel to the optical axis between the intersection of 154 on the optical axis to the fifth lens 150 image side 154 and the second curved point close to the optical axis is represented by SGI522, which satisfies the following conditions: SGI512 = -0.32032 mm; ∣ SGI512∣ / (∣SGI512∣ + TP5) = 0.23009.

第五透鏡150物側面152於光軸上的交點至第五透鏡150物側面152第三接近光軸的反曲點之間與光軸平行的水平位移距離以SGI513表示,第五透鏡150像側面154於光軸上的交點至第五透鏡150像側面154第三接近光軸的反曲點之間與光軸平行的水平位移距離以SGI523表示,其滿足下列條件:SGI513=0 mm;∣SGI513∣/(∣SGI513∣+ TP5)= 0;SGI523=0 mm;∣SGI523∣/(∣SGI523∣+TP5)= 0。The horizontal displacement distance parallel to the optical axis between the intersection of the object side 152 of the fifth lens 150 on the optical axis and the third inflection point of the object side 152 of the fifth lens 150 near the optical axis is represented by SGI513. The fifth lens 150 is like a side The horizontal displacement distance parallel to the optical axis between the intersection of 154 on the optical axis to the fifth lens 150 image side 154 and the third curved point near the optical axis is represented by SGI523, which satisfies the following conditions: SGI513 = 0 mm; ∣SGI513 ∣ / (∣SGI513∣ + TP5) = 0; SGI523 = 0 mm; ∣SGI523∣ / (∣SGI523∣ + TP5) = 0.

第五透鏡150物側面152於光軸上的交點至第五透鏡150物側面152第四接近光軸的反曲點之間與光軸平行的水平位移距離以SGI514表示,第五透鏡150像側面154於光軸上的交點至第五透鏡150像側面154第四接近光軸的反曲點之間與光軸平行的水平位移距離以SGI524表示,其滿足下列條件:SGI514=0 mm;∣SGI514∣/(∣SGI514∣+ TP5)= 0;SGI524=0 mm;∣SGI524∣/(∣SGI524∣+TP5)= 0。The horizontal displacement distance between the intersection of the object side surface 152 of the fifth lens 150 on the optical axis and the fourth inflection point of the object side 152 of the fifth lens 150 close to the optical axis is parallel to the optical axis as SGI514. The fifth lens 150 is like a side The horizontal displacement distance parallel to the optical axis between the intersection point of 154 on the optical axis and the fifth lens 150 image side 154, the fourth inflection point close to the optical axis, is represented by SGI524, which satisfies the following conditions: SGI514 = 0 mm; ∣SGI514 ∣ / (∣SGI514∣ + TP5) = 0; SGI524 = 0 mm; ∣SGI524∣ / (∣SGI524∣ + TP5) = 0.

第五透鏡150物側面152最近光軸的反曲點與光軸間的垂直距離以HIF511表示,第五透鏡150像側面154最近光軸的反曲點與光軸間的垂直距離以HIF521表示,其滿足下列條件:HIF511=0.28212 mm;HIF511/ HOI=0.05642;HIF521=2.13850 mm;HIF521/ HOI=0.42770。The vertical distance between the inflection point of the closest optical axis of the object side 152 of the fifth lens 150 and the optical axis is represented by HIF511, and the vertical distance between the inflection point of the closest optical axis of the fifth lens 150 and the side of the image 154 and the optical axis is represented by HIF521. It meets the following conditions: HIF511 = 0.28212 mm; HIF511 / HOI = 0.05642; HIF521 = 2.13850 mm; HIF521 / HOI = 0.42770.

第五透鏡150物側面152第二接近光軸的反曲點與光軸間的垂直距離以HIF512表示,第五透鏡150像側面154第二接近光軸的反曲點與光軸間的垂直距離以HIF522表示,其滿足下列條件:HIF512=2.51384 mm;HIF512/ HOI=0.50277。The vertical distance between the second inflection point of the fifth lens 150 near the optical axis and the optical axis is represented by HIF512, and the fifth lens 150 is the vertical distance between the second inflection point of the fifth lens 150 near the optical axis and the optical axis. By HIF522, it meets the following conditions: HIF512 = 2.51384 mm; HIF512 / HOI = 0.50277.

第五透鏡150物側面152第三接近光軸的反曲點與光軸間的垂直距離以HIF513表示,第五透鏡150像側面154第三接近光軸的反曲點與光軸間的垂直距離以HIF523表示,其滿足下列條件:HIF513=0 mm;HIF513/ HOI=0;HIF523=0 mm;HIF523/ HOI=0。The vertical distance between the inflection point of the fifth side of the object 150 on the fifth lens 150 and the optical axis is represented by HIF513, and the vertical distance between the inflection point of the third side 150 on the side of the optical axis 154 and the optical axis It is represented by HIF523, which satisfies the following conditions: HIF513 = 0 mm; HIF513 / HOI = 0; HIF523 = 0 mm; HIF523 / HOI = 0.

第五透鏡150物側面152第四接近光軸的反曲點與光軸間的垂直距離以HIF514表示,第五透鏡150像側面154第四接近光軸的反曲點與光軸間的垂直距離以HIF524表示,其滿足下列條件:HIF514=0 mm;HIF514/ HOI=0;HIF524=0 mm;HIF524/ HOI=0。The vertical distance between the fifth inflection point 152 of the fifth lens 150 and the optical axis is indicated by HIF514, and the fifth lens 150 is the vertical distance between the inflection point of the fifth lens 150 and the fourth optical axis in close proximity to the optical axis It is represented by HIF524, which satisfies the following conditions: HIF514 = 0 mm; HIF514 / HOI = 0; HIF524 = 0 mm; HIF524 / HOI = 0.

第六透鏡160具有負屈折力,且為塑膠材質,其物側面162為凹面,其像側面164為凹面,且其物側面162具有二反曲點以及像側面164具有一反曲點。藉此,可有效調整各視場入射於第六透鏡的角度而改善像差。第六透鏡物側面的最大有效半徑之輪廓曲線長度以ARS61表示,第六透鏡像側面的最大有效半徑之輪廓曲線長度以ARS62表示。第六透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE61表示,第六透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE62表示。第六透鏡於光軸上之厚度為TP6。The sixth lens 160 has a negative refractive power and is made of plastic. Its object side surface 162 is concave, its image side 164 is concave, and its object side 162 has two inflection points and the image side 164 has one inflection point. This can effectively adjust the angle of incidence of each field of view on the sixth lens to improve aberrations. The length of the contour curve of the maximum effective radius on the object side of the sixth lens is represented by ARS61, and the length of the contour curve of the maximum effective radius of the image side of the sixth lens is represented by ARS62. The length of the contour curve of the 1/2 incident pupil diameter (HEP) on the object side of the sixth lens is represented by ARE61, and the length of the contour curve of the 1/2 incidence pupil diameter (HEP) of the sixth lens image side is represented by ARE62. The thickness of the sixth lens on the optical axis is TP6.

第六透鏡160物側面162於光軸上的交點至第六透鏡160物側面162最近光軸的反曲點之間與光軸平行的水平位移距離以SGI611表示,第六透鏡160像側面164於光軸上的交點至第六透鏡160像側面164最近光軸的反曲點之間與光軸平行的水平位移距離以SGI621表示,其滿足下列條件:SGI611= -0.38558 mm;∣SGI611∣/(∣SGI611∣+TP6)= 0.27212;SGI621= 0.12386 mm;∣SGI621∣/(∣SGI621∣+TP6)= 0.10722。The horizontal displacement distance parallel to the optical axis between the intersection of the object side surface 162 of the sixth lens 160 on the optical axis and the closest optical axis inflection point of the object side 162 of the sixth lens 160 is represented by SGI611. The sixth lens 160 is like the side surface 164 at The horizontal displacement distance parallel to the optical axis between the intersection point on the optical axis and the inflection point of the closest optical axis on the image side 164 of the sixth lens 160 is represented by SGI621, which satisfies the following conditions: SGI611 = -0.38558 mm; ∣SGI611∣ / ( (∣SGI611∣ + TP6) = 0.27212; SGI621 = 0.12386 mm; ∣SGI621∣ / (∣SGI621∣ + TP6) = 0.10722.

第六透鏡160物側面162於光軸上的交點至第六透鏡160物側面162第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI612表示,第六透鏡160像側面164於光軸上的交點至第六透鏡160像側面164第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI621表示,其滿足下列條件:SGI612=-0.47400 mm;∣SGI612∣/(∣SGI612∣+TP6)= 0.31488;SGI622=0 mm;∣SGI622∣/(∣SGI622∣+TP6)= 0。The horizontal displacement distance between the intersection of the object side surface 162 of the sixth lens 160 on the optical axis and the second inflection point of the object side surface 162 of the sixth lens 160 close to the optical axis is parallel to the optical axis as SGI612. The sixth lens 160 is like a side The horizontal displacement distance between the intersection of 164 on the optical axis to the sixth lens 160 image side 164 and the second inflection point close to the optical axis parallel to the optical axis is represented by SGI621, which satisfies the following conditions: SGI612 = -0.47400 mm; ∣ SGI612∣ / (∣SGI612∣ + TP6) = 0.31488; SGI622 = 0 mm; ∣SGI622∣ / (∣SGI622∣ + TP6) = 0.

第六透鏡160物側面162最近光軸的反曲點與光軸間的垂直距離以HIF611表示,第六透鏡160像側面164最近光軸的反曲點與光軸間的垂直距離以HIF621表示,其滿足下列條件:HIF611=2.24283 mm;HIF611/ HOI=0.44857;HIF621=1.07376 mm;HIF621/ HOI=0.21475。The vertical distance between the inflection point of the closest optical axis of the object side surface 162 of the sixth lens 160 and the optical axis is represented by HIF611, and the vertical distance between the inflection point of the closest optical axis of the sixth lens 160 as the side surface 164 and the optical axis is represented by HIF621. It meets the following conditions: HIF611 = 2.24283 mm; HIF611 / HOI = 0.44857; HIF621 = 1.07376 mm; HIF621 / HOI = 0.21475.

第六透鏡160物側面162第二接近光軸的反曲點與光軸間的垂直距離以HIF612表示,第六透鏡160像側面164第二接近光軸的反曲點與光軸間的垂直距離以HIF622表示,其滿足下列條件:HIF612=2.48895 mm;HIF612/ HOI=0.49779。The vertical distance between the second inflection point of the sixth lens 160 near the optical axis and the optical axis is represented by HIF612, and the vertical distance between the second inflection point of the sixth lens 160 near the optical axis and the optical axis as the side 164 It is represented by HIF622, which satisfies the following conditions: HIF612 = 2.48895 mm; HIF612 / HOI = 0.49779.

第六透鏡160物側面162第三接近光軸的反曲點與光軸間的垂直距離以HIF613表示,第六透鏡160像側面164第三接近光軸的反曲點與光軸間的垂直距離以HIF623表示,其滿足下列條件:HIF613=0 mm;HIF613/ HOI=0;HIF623=0 mm;HIF623/ HOI=0。The vertical distance between the third inflection point of the sixth lens 160 near the optical axis and the optical axis is represented by HIF613, and the vertical distance between the third inflection point of the sixth lens 160 and the optical axis near the third optical axis 164 It is represented by HIF623, which satisfies the following conditions: HIF613 = 0 mm; HIF613 / HOI = 0; HIF623 = 0 mm; HIF623 / HOI = 0.

第六透鏡160物側面162第四接近光軸的反曲點與光軸間的垂直距離以HIF614表示,第六透鏡160像側面164第四接近光軸的反曲點與光軸間的垂直距離以HIF624表示,其滿足下列條件:HIF614=0 mm;HIF614/ HOI=0;HIF624=0 mm;HIF624/ HOI=0。The vertical distance between the fourth inverse curved point of the sixth lens 160 near the optical axis and the optical axis is represented by HIF614, and the vertical distance between the fourth inverse curved point of the sixth lens 160 and the optical axis near the fourth optical axis 164 HIF624 indicates that it meets the following conditions: HIF614 = 0 mm; HIF614 / HOI = 0; HIF624 = 0 mm; HIF624 / HOI = 0.

紅外線濾光片180為玻璃材質,其設置於第六透鏡160及成像面190間且不影響光學成像系統10的焦距。The infrared filter 180 is made of glass and is disposed between the sixth lens 160 and the imaging surface 190 without affecting the focal length of the optical imaging system 10.

本實施例的光學成像系統10中,該透鏡組的焦距為f,入射瞳直徑為HEP,最大視角的一半為HAF,其數值如下:f=4.075 mm;f/HEP=1.4;以及HAF=50.001度與tan(HAF)=1.1918。In the optical imaging system 10 of this embodiment, the focal length of the lens group is f, the entrance pupil diameter is HEP, and half of the maximum viewing angle is HAF. The values are as follows: f = 4.075 mm; f / HEP = 1.4; and HAF = 50.001 Degree and tan (HAF) = 1.1918.

本實施例的該透鏡組中,第一透鏡110的焦距為f1,第六透鏡160的焦距為f6,其滿足下列條件:f1= -7.828 mm;∣f/f1│=0.52060;f6= -4.886;以及│f1│>│f6│。In the lens group of this embodiment, the focal length of the first lens 110 is f1 and the focal length of the sixth lens 160 is f6, which satisfies the following conditions: f1 = -7.828 mm; ∣f / f1│ = 0.52060; f6 = -4.886 ; And │f1│ > │f6│.

本實施例的光學成像系統10中,第二透鏡120至第五透鏡150的焦距分別為f2、f3、f4、f5,其滿足下列條件:│f2│+│f3│+│f4│+│f5│= 95.50815 mm;∣f1│+∣f6│= 12.71352 mm以及│f2│+│f3│+│f4│+│f5│>∣f1│+∣f6│。In the optical imaging system 10 of this embodiment, the focal lengths of the second lens 120 to the fifth lens 150 are f2, f3, f4, and f5, respectively, which satisfy the following conditions: │f2│ + │f3│ + │f4│ + │f5 │ = 95.50815 mm; ∣f1│ + ∣f6│ = 12.71352 mm and │f2│ + │f3│ + │f4│ + │f5│> ∣f1│ + ∣f6│.

光學成像系統10的焦距f與每一片具有正屈折力之透鏡的焦距fp之比值PPR,光學成像系統10的焦距f與每一片具有負屈折力之透鏡的焦距fn之比值NPR,本實施例的光學成像系統10中,所有正屈折力之透鏡的PPR總和為ΣPPR=f/f2+f/f4+f/f5 =1.63290,所有負屈折力之透鏡的NPR總和為ΣNPR=│f/f1│+│f/f3│+│f/f6│= 1.51305,ΣPPR/│ΣNPR│= 1.07921。同時亦滿足下列條件:∣f/f2│= 0.69101;∣f/f3│=0.15834;∣f/f4│=0.06883;∣f/f5│=0.87305;∣f/f6│=0.83412。The ratio PPR of the focal length f of the optical imaging system 10 to the focal length fp of each lens with a positive refractive power, and the ratio NPR of the focal length f of the optical imaging system 10 to the focal length fn of each lens with a negative refractive power. In the optical imaging system 10, the sum of PPR of all lenses with positive refractive power is ΣPPR = f / f2 + f / f4 + f / f5 = 1.63290, and the sum of NPR of all lenses with negative refractive power is ΣNPR = │f / f1│ + │f / f3│ + │f / f6│ = 1.51305, ΣPPR / │ΣNPR│ = 1.07921. The following conditions are also met: ∣f / f2│ = 0.69101; ∣f / f3│ = 0.15834; ∣f / f4│ = 0.06883; ∣f / f5│ = 0.87305; ∣f / f6│ = 0.83412.

本實施例的光學成像系統10中,第一透鏡110物側面112至第六透鏡160像側面164間的距離為InTL,第一透鏡110物側面112至成像面190間的距離為HOS,光圈100至成像面190間的距離為InS,影像感測元件192有效感測區域對角線長的一半為HOI,第六透鏡像側面164至成像面190間的距離為BFL,其滿足下列條件:InTL+BFL=HOS;HOS= 19.54120 mm;HOI= 5.0 mm; HOS/HOI= 3.90824;HOS/f= 4.7952;InS=11.685 mm;以及InS/HOS= 0.59794。In the optical imaging system 10 of this embodiment, the distance between the object side 112 of the first lens 110 to the image side 164 of the sixth lens 160 is InTL, the distance between the object side 112 of the first lens 110 to the imaging plane 190 is HOS, and the aperture 100 The distance to the imaging surface 190 is InS, half of the diagonal length of the effective sensing area of the image sensing element 192 is HOI, and the distance from the image side 164 of the sixth lens to the imaging surface 190 is BFL, which meets the following conditions: InTL + BFL = HOS; HOS = 19.54120 mm; HOI = 5.0 mm; HOS / HOI = 3.90824; HOS / f = 4.7952; InS = 11.685 mm; and InS / HOS = 0.59794.

本實施例的光學成像系統10中,於光軸上所有具屈折力之透鏡的厚度總和為ΣTP,其滿足下列條件:ΣTP= 8.13899 mm;以及ΣTP/InTL= 0.52477。藉此,當可同時兼顧系統成像的對比度以及透鏡製造的良率並提供適當的後焦距以容置其他元件。In the optical imaging system 10 of this embodiment, the sum of the thicknesses of all the lenses with refractive power on the optical axis is ΣTP, which satisfies the following conditions: ΣTP = 8.13899 mm; and ΣTP / InTL = 0.52477. Thereby, the contrast of the system imaging and the yield of lens manufacturing can be taken into account at the same time, and an appropriate back focus can be provided to accommodate other components.

本實施例的光學成像系統10中,第一透鏡110物側面112的曲率半徑為R1,第一透鏡110像側面114的曲率半徑為R2,其滿足下列條件:│R1/R2│= 8.99987。藉此,第一透鏡110的具備適當正屈折力強度,避免球差增加過速。In the optical imaging system 10 of this embodiment, the curvature radius of the object side 112 of the first lens 110 is R1, and the curvature radius of the image side 114 of the first lens 110 is R2, which satisfies the following conditions: │R1 / R2│ = 8.99987. Thereby, the first lens 110 is provided with an appropriate positive refractive power strength to prevent the spherical aberration from increasing at an excessive speed.

本實施例的光學成像系統10中,第六透鏡160物側面162的曲率半徑為R11,第六透鏡160像側面164的曲率半徑為R12,其滿足下列條件:(R11-R12)/(R11+R12)= 1.27780。藉此,有利於修正光學成像系統10所產生的像散。In the optical imaging system 10 of this embodiment, the curvature radius of the object side 162 of the sixth lens 160 is R11, and the curvature radius of the image side 164 of the sixth lens 160 is R12, which satisfies the following conditions: (R11-R12) / (R11 + R12) = 1.27780. This is advantageous for correcting astigmatism generated by the optical imaging system 10.

本實施例的光學成像系統10中,所有具正屈折力的透鏡之焦距總和為ΣPP,其滿足下列條件:ΣPP= f2+f4+f5 = 69.770 mm;以及f5/ (f2+f4+f5)= 0.067。藉此,有助於適當分配單一透鏡之正屈折力至其他正透鏡,以抑制入射光線行進過程顯著像差的產生。In the optical imaging system 10 of this embodiment, the total focal length of all lenses with positive refractive power is ΣPP, which satisfies the following conditions: ΣPP = f2 + f4 + f5 = 69.770 mm; and f5 / (f2 + f4 + f5) = 0.067. This helps to properly allocate the positive refractive power of a single lens to other positive lenses, so as to suppress the occurrence of significant aberrations during the traveling of incident light.

本實施例的光學成像系統10中,所有具負屈折力的透鏡之焦距總和為ΣNP,其滿足下列條件:ΣNP=f1+f3+f6= -38.451 mm;以及f6/ (f1+f3+f6)= 0.127。藉此,有助於適當分配第六透鏡160之負屈折力至其他負透鏡,以抑制入射光線行進過程顯著像差的產生。In the optical imaging system 10 of this embodiment, the sum of the focal lengths of all lenses with negative refractive power is ΣNP, which satisfies the following conditions: ΣNP = f1 + f3 + f6 = -38.451 mm; and f6 / (f1 + f3 + f6) = 0.127. Therefore, it is helpful to appropriately allocate the negative refractive power of the sixth lens 160 to other negative lenses, so as to suppress the occurrence of significant aberrations during the traveling process of incident light.

本實施例的光學成像系統10中,第一透鏡110與第二透鏡120於光軸上的間隔距離為IN12,其滿足下列條件:IN12= 6.418 mm;IN12 / f = 1.57491。藉此,有助於改善透鏡的色差以提升其性能。In the optical imaging system 10 of this embodiment, the distance between the first lens 110 and the second lens 120 on the optical axis is IN12, which satisfies the following conditions: IN12 = 6.418 mm; IN12 / f = 1.57491. This helps to improve the chromatic aberration of the lens to improve its performance.

本實施例的光學成像系統10中,第五透鏡150與第六透鏡160於光軸上的間隔距離為IN56,其滿足下列條件:IN56= 0.025 mm;IN56 / f = 0.00613。藉此,有助於改善透鏡的色差以提升其性能。In the optical imaging system 10 of this embodiment, the distance between the fifth lens 150 and the sixth lens 160 on the optical axis is IN56, which satisfies the following conditions: IN56 = 0.025 mm; IN56 / f = 0.00613. This helps to improve the chromatic aberration of the lens to improve its performance.

本實施例的光學成像系統10中,第一透鏡110與第二透鏡120於光軸上的厚度分別為TP1以及TP2,其滿足下列條件:TP1= 1.934In the optical imaging system 10 of this embodiment, the thicknesses of the first lens 110 and the second lens 120 on the optical axis are TP1 and TP2, respectively, which satisfy the following conditions: TP1 = 1.934

mm;TP2= 2.486 mm;以及(TP1+IN12) / TP2= 3.36005。藉此,有助於控制光學成像系統製造的敏感度並提升其性能。mm; TP2 = 2.486 mm; and (TP1 + IN12) / TP2 = 3.36005. This helps to control the sensitivity of the optical imaging system manufacturing and improve its performance.

本實施例的光學成像系統10中,第五透鏡150與第六透鏡160於光軸上的厚度分別為TP5以及TP6,前述兩透鏡於光軸上的間隔距離為IN56,其滿足下列條件:TP5= 1.072 mm;TP6= 1.031 mm;以及(TP6+IN56) / TP5= 0.98555。藉此,有助於控制光學成像系統製造的敏感度並降低系統總高度。In the optical imaging system 10 of this embodiment, the thicknesses of the fifth lens 150 and the sixth lens 160 on the optical axis are TP5 and TP6, respectively. The distance between the two lenses on the optical axis is IN56, which meets the following conditions: TP5 = 1.072 mm; TP6 = 1.031 mm; and (TP6 + IN56) / TP5 = 0.98555. This helps to control the sensitivity of the optical imaging system manufacturing and reduce the overall system height.

本實施例的光學成像系統10中,第三透鏡130與第四透鏡140於光軸上的間隔距離為IN34,第四透鏡140與第五透鏡150於光軸上的間隔距離為IN45,其滿足下列條件:IN34= 0.401 mm;IN45= 0.025 mm;以及TP4 / (IN34+TP4+IN45)= 0.74376。藉此,有助於層層微幅修正入射光線行進過程所產生的像差並降低系統總高度。In the optical imaging system 10 of this embodiment, the distance between the third lens 130 and the fourth lens 140 on the optical axis is IN34, and the distance between the fourth lens 140 and the fifth lens 150 on the optical axis is IN45, which satisfies The following conditions: IN34 = 0.401 mm; IN45 = 0.025 mm; and TP4 / (IN34 + TP4 + IN45) = 0.74376. This helps to correct the aberrations produced by the incident light and to reduce the total height of the system.

本實施例的光學成像系統10中,第五透鏡150物側面152於光軸上的交點至第五透鏡150物側面152的最大有效半徑位置於光軸的水平位移距離為InRS51,第五透鏡150像側面154於光軸上的交點至第五透鏡150像側面154的最大有效半徑位置於光軸的水平位移距離為InRS52,第五透鏡150於光軸上的厚度為TP5,其滿足下列條件:InRS51= -0.34789 mm;InRS52= -0.88185 mm;│InRS51∣/ TP5 =0.32458 以及│InRS52∣/ TP5 = 0.82276。藉此,有利於鏡片的製作與成型,並有效維持其小型化。In the optical imaging system 10 of this embodiment, the horizontal displacement distance of the fifth lens 150 from the intersection of the object side 152 of the fifth lens 150 on the optical axis to the maximum effective radius position of the object side 152 of the fifth lens 150 on the optical axis is InRS51, and the fifth lens 150 The horizontal displacement distance from the intersection of the image side 154 on the optical axis to the maximum effective radius position of the image side 154 of the fifth lens 150 on the optical axis is InRS52. The thickness of the fifth lens 150 on the optical axis is TP5, which meets the following conditions: InRS51 = -0.34789 mm; InRS52 = -0.88185 mm; │InRS51∣ / TP5 = 0.32458 and │InRS52∣ / TP5 = 0.82276. This helps to make and shape the lens, and effectively maintains its miniaturization.

本實施例的光學成像系統10中,第五透鏡150物側面152的臨界點與光軸的垂直距離為 HVT51,第五透鏡150像側面154的臨界點與光軸的垂直距離為HVT52,其滿足下列條件:HVT51=0.515349 mm;HVT52=0 mm。In the optical imaging system 10 of this embodiment, the vertical distance between the critical point of the object side 152 of the fifth lens 150 and the optical axis is HVT51, and the vertical distance between the critical point of the fifth side 150 of the image side 154 and the optical axis is HVT52, which satisfies The following conditions: HVT51 = 0.515349 mm; HVT52 = 0 mm.

本實施例的光學成像系統10中,第六透鏡160物側面162於光軸上的交點至第六透鏡160物側面162的最大有效半徑位置於光軸的水平位移距離為InRS61,第六透鏡160像側面164於光軸上的交點至第六透鏡160像側面164的最大有效半徑位置於光軸的水平位移距離為InRS62,第六透鏡160於光軸上的厚度為TP6,其滿足下列條件:InRS61= -0.58390 mm;InRS62= 0.41976 mm;│InRS61∣/ TP6=0.56616 以及│InRS62∣/ TP6= 0.40700。藉此,有利於鏡片的製作與成型,並有效維持其小型化。In the optical imaging system 10 of this embodiment, the horizontal displacement distance of the sixth lens 160 from the intersection of the object side 162 of the sixth lens 160 on the optical axis to the maximum effective radius position of the object side 162 of the sixth lens 160 on the optical axis is InRS61, and the sixth lens 160 The horizontal displacement distance from the intersection of the image side 164 on the optical axis to the maximum effective radius position of the image side 164 of the sixth lens 160 on the optical axis is InRS62. The thickness of the sixth lens 160 on the optical axis is TP6, which meets the following conditions: InRS61 = -0.58390 mm; InRS62 = 0.41976 mm; │InRS61∣ / TP6 = 0.56616 and │InRS62∣ / TP6 = 0.40700. This helps to make and shape the lens, and effectively maintains its miniaturization.

本實施例的光學成像系統10中,第六透鏡160物側面162的臨界點與光軸的垂直距離為 HVT61,第六透鏡160像側面164的臨界點與光軸的垂直距離為HVT62,其滿足下列條件:HVT61=0 mm;HVT62= 0 mm。In the optical imaging system 10 of this embodiment, the vertical distance between the critical point of the object side 162 of the sixth lens 160 and the optical axis is HVT61, and the vertical distance between the critical point of the sixth side 160 of the image side 164 and the optical axis is HVT62, which satisfies The following conditions: HVT61 = 0 mm; HVT62 = 0 mm.

本實施例的光學成像系統10中,其滿足下列條件:HVT51/ HOI=0.1031。藉此,有助於光學成像系統之週邊視場的像差修正。In the optical imaging system 10 of this embodiment, it satisfies the following conditions: HVT51 / HOI = 0.1031. This is helpful for aberration correction of the peripheral field of view of the optical imaging system.

本實施例的光學成像系統10中,其滿足下列條件:HVT51/ HOS= 0.02634。藉此,有助於光學成像系統之週邊視場的像差修正。In the optical imaging system 10 of this embodiment, it satisfies the following conditions: HVT51 / HOS = 0.02634. This is helpful for aberration correction of the peripheral field of view of the optical imaging system.

本實施例的光學成像系統10中,第二透鏡120、第三透鏡130以及第六透鏡160具有負屈折力,第二透鏡120的色散係數為NA2,第三透鏡130的色散係數為NA3,第六透鏡160的色散係數為NA6,其滿足下列條件: NA6/NA2≦1。藉此,有助於光學成像系統色差的修正。In the optical imaging system 10 of this embodiment, the second lens 120, the third lens 130, and the sixth lens 160 have negative refractive power. The dispersion coefficient of the second lens 120 is NA2, and the dispersion coefficient of the third lens 130 is NA3. The dispersion coefficient of the six lenses 160 is NA6, which satisfies the following conditions: NA6 / NA2 ≦ 1. This helps to correct the chromatic aberration of the optical imaging system.

本實施例的光學成像系統10中,光學成像系統於結像時之TV畸變為TDT,結像時之光學畸變為ODT,其滿足下列條件:TDT= 2.124 %;ODT=5.076 %。In the optical imaging system 10 of this embodiment, the TV distortion of the optical imaging system during the image formation is TDT, and the optical distortion during the image formation is ODT, which satisfies the following conditions: TDT = 2.124%; ODT = 5.076%.

本實施例的光學成像系統10中,LS為12 mm,PhiA為2倍EHD62=6.726 mm (EHD62 :第六透鏡160像側面164的最大有效半徑),PhiC=PhiA+2倍TH2=7.026 mm,PhiD=PhiC+2倍(TH1+TH2)=7.426 mm,TH1為0.2mm,TH2為0.15 mm,PhiA / PhiD為,TH1+TH2為0.35 mm,(TH1+TH2) / HOI為0.035,(TH1+TH2) /HOS為0.0179,2倍(TH1+TH2) /PhiA為0.1041,(TH1+TH2) / LS為0.0292。In the optical imaging system 10 of this embodiment, LS is 12 mm, PhiA is 2 times EHD62 = 6.726 mm (EHD62: the maximum effective radius of the sixth lens 160 image side 164), PhiC = PhiA + 2 times TH2 = 7.026 mm, PhiD = PhiC + 2 times (TH1 + TH2) = 7.426 mm, TH1 is 0.2mm, TH2 is 0.15 mm, PhiA / PhiD is, TH1 + TH2 is 0.35 mm, (TH1 + TH2) / HOI is 0.035, (TH1 + TH2) / HOS is 0.0179, 2 times (TH1 + TH2) / PhiA is 0.1041, and (TH1 + TH2) / LS is 0.0292.

再配合參照下列表一以及表二。
表一 第 一 光 學 實 施 例 透 鏡 數 據 f(焦距)= 4.075 mm ; f/HEP =1.4 ; HAF(半視角)= 50.000 deg 表面 曲率半徑 厚度 (mm) 材質 折射率 色散係數 焦距 0 被攝物 平面 平面 1 第一透鏡 -40.99625704 1.934 塑膠 1.515 56.55 -7.828 2 4.555209289 5.923 3 光圈 平面 0.495 4 第二透鏡 5.333427366 2.486 塑膠 1.544 55.96 5.897 5 -6.781659971 0.502 6 第三透鏡 -5.697794287 0.380 塑膠 1.642 22.46 -25.738 7 -8.883957518 0.401 8 第四透鏡 13.19225664 1.236 塑膠 1.544 55.96 59.205 9 21.55681832 0.025 10 第五透鏡 8.987806345 1.072 塑膠 1.515 56.55 4.668 11 -3.158875374 0.025 12 第六透鏡 -29.46491425 1.031 塑膠 1.642 22.46 -4.886 13 3.593484273 2.412 14 紅外線 濾光片 平面 0.200 1.517 64.13 15 平面 1.420 16 成像面 平面 參考波長為555 nm;進行擋光位置: 擋第1面其通光有效半徑5.800 mm;擋第3面其通光有效半徑1.570 mm;擋第5面其通光有效半徑1.950 mm
Refer to Tables 1 and 2 below for further cooperation.
Table 1 Lens data of the first optical embodiment f (focal length) = 4.075 mm; f / HEP = 1.4; HAF (half angle of view) = 50.000 deg surface Curvature radius Thickness (mm) Material Refractive index Dispersion coefficient focal length 0 Subject flat flat 1 First lens -40.99625704 1.934 plastic 1.515 56.55 -7.828 2 4.555209289 5.923 3 aperture flat 0.495 4 Second lens 5.333427366 2.486 plastic 1.544 55.96 5.897 5 -6.781659971 0.502 6 Third lens -5.697794287 0.380 plastic 1.642 22.46 -25.738 7 -8.883957518 0.401 8 Fourth lens 13.19225664 1.236 plastic 1.544 55.96 59.205 9 21.55681832 0.025 10 Fifth lens 8.987806345 1.072 plastic 1.515 56.55 4.668 11 -3.158875374 0.025 12 Sixth lens -29.46491425 1.031 plastic 1.642 22.46 -4.886 13 3.593484273 2.412 14 Infrared filter flat 0.200 1.517 64.13 15 flat 1.420 16 Imaging surface flat The reference wavelength is 555 nm; the light blocking position is: the effective radius of light transmission on the first side is 5.800 mm; the effective radius of light transmission on the third side is 1.570 mm; the effective radius of light transmission is 1.950 mm

表二、第一光學實施例之非球面係數
表二 非球面係數 表面 1 2 4 5 6 7 8 k 4.310876E+01 -4.707622E+00 2.616025E+00 2.445397E+00 5.645686E+00 -2.117147E+01 -5.287220E+00 A4 7.054243E-03 1.714312E-02 -8.377541E-03 -1.789549E-02 -3.379055E-03 -1.370959E-02 -2.937377E-02 A6 -5.233264E-04 -1.502232E-04 -1.838068E-03 -3.657520E-03 -1.225453E-03 6.250200E-03 2.743532E-03 A8 3.077890E-05 -1.359611E-04 1.233332E-03 -1.131622E-03 -5.979572E-03 -5.854426E-03 -2.457574E-03 A10 -1.260650E-06 2.680747E-05 -2.390895E-03 1.390351E-03 4.556449E-03 4.049451E-03 1.874319E-03 A12 3.319093E-08 -2.017491E-06 1.998555E-03 -4.152857E-04 -1.177175E-03 -1.314592E-03 -6.013661E-04 A14 -5.051600E-10 6.604615E-08 -9.734019E-04 5.487286E-05 1.370522E-04 2.143097E-04 8.792480E-05 A16 3.380000E-12 -1.301630E-09 2.478373E-04 -2.919339E-06 -5.974015E-06 -1.399894E-05 -4.770527E-06
表二 非球面係數 表面 9 10 11 12 13 k 6.200000E+01 -2.114008E+01 -7.699904E+00 -6.155476E+01 -3.120467E-01 A4 -1.359965E-01 -1.263831E-01 -1.927804E-02 -2.492467E-02 -3.521844E-02 A6 6.628518E-02 6.965399E-02 2.478376E-03 -1.835360E-03 5.629654E-03 A8 -2.129167E-02 -2.116027E-02 1.438785E-03 3.201343E-03 -5.466925E-04 A10 4.396344E-03 3.819371E-03 -7.013749E-04 -8.990757E-04 2.231154E-05 A12 -5.542899E-04 -4.040283E-04 1.253214E-04 1.245343E-04 5.548990E-07 A14 3.768879E-05 2.280473E-05 -9.943196E-06 -8.788363E-06 -9.396920E-08 A16 -1.052467E-06 -5.165452E-07 2.898397E-07 2.494302E-07 2.728360E-09
Table 2. Aspheric coefficients of the first optical embodiment
Table 2 Aspheric coefficients surface 1 2 4 5 6 7 8 k 4.310876E + 01 -4.707622E + 00 2.616025E + 00 2.445397E + 00 5.645686E + 00 -2.117147E + 01 -5.287220E + 00 A4 7.054243E-03 1.714312E-02 -8.377541E-03 -1.789549E-02 -3.379055E-03 -1.370959E-02 -2.937377E-02 A6 -5.233264E-04 -1.502232E-04 -1.838068E-03 -3.657520E-03 -1.225453E-03 6.250200E-03 2.743532E-03 A8 3.077890E-05 -1.359611E-04 1.233332E-03 -1.131622E-03 -5.979572E-03 -5.854426E-03 -2.457574E-03 A10 -1.260650E-06 2.680747E-05 -2.390895E-03 1.390351E-03 4.556449E-03 4.049451E-03 1.874319E-03 A12 3.319093E-08 -2.017491E-06 1.998555E-03 -4.152857E-04 -1.177175E-03 -1.314592E-03 -6.013661E-04 A14 -5.051600E-10 6.604615E-08 -9.734019E-04 5.487286E-05 1.370522E-04 2.143097E-04 8.792480E-05 A16 3.380000E-12 -1.301630E-09 2.478373E-04 -2.919339E-06 -5.974015E-06 -1.399894E-05 -4.770527E-06
Table 2 Aspheric coefficients surface 9 10 11 12 13 k 6.200000E + 01 -2.114008E + 01 -7.699904E + 00 -6.155476E + 01 -3.120467E-01 A4 -1.359965E-01 -1.263831E-01 -1.927804E-02 -2.492467E-02 -3.521844E-02 A6 6.628518E-02 6.965399E-02 2.478376E-03 -1.835360E-03 5.629654E-03 A8 -2.129167E-02 -2.116027E-02 1.438785E-03 3.201343E-03 -5.466925E-04 A10 4.396344E-03 3.819371E-03 -7.013749E-04 -8.990757E-04 2.231154E-05 A12 -5.542899E-04 -4.040283E-04 1.253214E-04 1.245343E-04 5.548990E-07 A14 3.768879E-05 2.280473E-05 -9.943196E-06 -8.788363E-06 -9.396920E-08 A16 -1.052467E-06 -5.165452E-07 2.898397E-07 2.494302E-07 2.728360E-09

依據表一及表二可得到下列輪廓曲線長度相關之數値:
第一光學實施例 (使用主要參考波長 555 nm) ARE 1/2(HEP) ARE value ARE-1/2(HEP) 2(ARE/HEP) % TP ARE /TP (%) 11 1.455 1.455 -0.00033 99.98% 1.934 75.23% 12 1.455 1.495 0.03957 102.72% 1.934 77.29% 21 1.455 1.465 0.00940 100.65% 2.486 58.93% 22 1.455 1.495 0.03950 102.71% 2.486 60.14% 31 1.455 1.486 0.03045 102.09% 0.380 391.02% 32 1.455 1.464 0.00830 100.57% 0.380 385.19% 41 1.455 1.458 0.00237 100.16% 1.236 117.95% 42 1.455 1.484 0.02825 101.94% 1.236 120.04% 51 1.455 1.462 0.00672 100.46% 1.072 136.42% 52 1.455 1.499 0.04335 102.98% 1.072 139.83% 61 1.455 1.465 0.00964 100.66% 1.031 142.06% 62 1.455 1.469 0.01374 100.94% 1.031 142.45% ARS EHD ARS value ARS-EHD (ARS/EHD)% TP ARS / TP (%) 11 5.800 6.141 0.341 105.88% 1.934 317.51% 12 3.299 4.423 1.125 134.10% 1.934 228.70% 21 1.664 1.674 0.010 100.61% 2.486 67.35% 22 1.950 2.119 0.169 108.65% 2.486 85.23% 31 1.980 2.048 0.069 103.47% 0.380 539.05% 32 2.084 2.101 0.017 100.83% 0.380 552.87% 41 2.247 2.287 0.040 101.80% 1.236 185.05% 42 2.530 2.813 0.284 111.22% 1.236 227.63% 51 2.655 2.690 0.035 101.32% 1.072 250.99% 52 2.764 2.930 0.166 106.00% 1.072 273.40% 61 2.816 2.905 0.089 103.16% 1.031 281.64% 62 3.363 3.391 0.029 100.86% 1.031 328.83%
According to Tables 1 and 2, the following correlations can be obtained for the length of the contour curve:
First optical embodiment (using a main reference wavelength of 555 nm) ARE 1/2 (HEP) ARE value ARE-1 / 2 (HEP) 2 (ARE / HEP)% TP ARE / TP (%) 11 1.455 1.455 -0.00033 99.98% 1.934 75.23% 12 1.455 1.495 0.03957 102.72% 1.934 77.29% twenty one 1.455 1.465 0.00940 100.65% 2.486 58.93% twenty two 1.455 1.495 0.03950 102.71% 2.486 60.14% 31 1.455 1.486 0.03045 102.09% 0.380 391.02% 32 1.455 1.464 0.00830 100.57% 0.380 385.19% 41 1.455 1.458 0.00237 100.16% 1.236 117.95% 42 1.455 1.484 0.02825 101.94% 1.236 120.04% 51 1.455 1.462 0.00672 100.46% 1.072 136.42% 52 1.455 1.499 0.04335 102.98% 1.072 139.83% 61 1.455 1.465 0.00964 100.66% 1.031 142.06% 62 1.455 1.469 0.01374 100.94% 1.031 142.45% ARS EHD ARS value ARS-EHD (ARS / EHD)% TP ARS / TP (%) 11 5.800 6.141 0.341 105.88% 1.934 317.51% 12 3.299 4.423 1.125 134.10% 1.934 228.70% twenty one 1.664 1.674 0.010 100.61% 2.486 67.35% twenty two 1.950 2.119 0.169 108.65% 2.486 85.23% 31 1.980 2.048 0.069 103.47% 0.380 539.05% 32 2.084 2.101 0.017 100.83% 0.380 552.87% 41 2.247 2.287 0.040 101.80% 1.236 185.05% 42 2.530 2.813 0.284 111.22% 1.236 227.63% 51 2.655 2.690 0.035 101.32% 1.072 250.99% 52 2.764 2.930 0.166 106.00% 1.072 273.40% 61 2.816 2.905 0.089 103.16% 1.031 281.64% 62 3.363 3.391 0.029 100.86% 1.031 328.83%

表一為第2A圖第一光學實施例詳細的結構數據,其中曲率半徑、厚度、距離及焦距的單位為mm,且表面0-16依序表示由物側至像側的表面。表二為第一光學實施例中的非球面數據,其中,k表非球面曲線方程式中的錐面係數,A1-A20則表示各表面第1-20階非球面係數。此外,以下各光學實施例表格乃對應各光學實施例的示意圖與像差曲線圖,表格中數據的定義皆與第一光學實施例的表一及表二的定義相同,在此不加贅述。再者,以下各光學實施例之機構元件參數的定義皆與第一光學實施例相同。Table 1 shows the detailed structural data of the first optical embodiment in FIG. 2A. The units of the radius of curvature, thickness, distance, and focal length are mm, and the surfaces 0-16 sequentially indicate the surface from the object side to the image side. Table 2 shows the aspherical data in the first optical embodiment, where k represents the cone coefficient in the aspheric curve equation, and A1-A20 represents the aspherical coefficients of order 1-20 on each surface. In addition, the following tables of optical embodiments are schematic diagrams and aberration curves corresponding to the optical embodiments. The definitions of the data in the tables are the same as those of Tables 1 and 2 of the first optical embodiment, and will not be repeated here. Furthermore, the definitions of the mechanical element parameters of the following optical embodiments are the same as those of the first optical embodiment.

第二光學實施例Second optical embodiment

請參照第3A圖及第3B圖,其中第3A圖繪示依照本創作第二光學實施例的一種光學成像系統20的透鏡組示意圖,第3B圖由左至右依序為第二光學實施例的光學成像系統20的球差、像散及光學畸變曲線圖。由第3A圖可知,光學成像系統20由物側至像側依序包含第一透鏡210、第二透鏡220、第三透鏡230、光圈200、第四透鏡240、第五透鏡250、第六透鏡260以及第七透鏡270、紅外線濾光片280、成像面290以及影像感測元件292。Please refer to FIG. 3A and FIG. 3B. FIG. 3A shows a schematic diagram of a lens group of an optical imaging system 20 according to the second optical embodiment of the present invention. FIG. 3B is a second optical embodiment in order from left to right. Spherical aberration, astigmatism, and optical distortion curves of the optical imaging system 20 of FIG. As can be seen from FIG. 3A, the optical imaging system 20 includes the first lens 210, the second lens 220, the third lens 230, the aperture 200, the fourth lens 240, the fifth lens 250, and the sixth lens in this order from the object side to the image side. 260 and a seventh lens 270, an infrared filter 280, an imaging surface 290, and an image sensing element 292.

第一透鏡210具有負屈折力,且為玻璃材質,其物側面212為凸面,其像側面214為凹面,並皆為球面。The first lens 210 has a negative refractive power and is made of glass. Its object side surface 212 is convex, its image side 214 is concave, and both are spherical.

第二透鏡220具有負屈折力,且為玻璃材質,其物側面222為凹面,其像側面224為凸面,並皆為球面。The second lens 220 has a negative refractive power and is made of glass. Its object side surface 222 is a concave surface, and its image side surface 224 is a convex surface, and they are all spherical surfaces.

第三透鏡230具有正屈折力,且為玻璃材質,其物側面232為凸面,其像側面234為凸面,並皆為球面。The third lens 230 has a positive refractive power and is made of glass. The object side surface 232 is a convex surface, and the image side surface 234 is a convex surface, and they are all spherical surfaces.

第四透鏡240具有正屈折力,且為玻璃材質,其物側面242為凸面,其像側面244為凸面,並皆為球面。The fourth lens 240 has a positive refractive power and is made of glass. The object side surface 242 is a convex surface, and the image side surface 244 is a convex surface, and they are all spherical surfaces.

第五透鏡250具有正屈折力,且為玻璃材質,其物側面252為凸面,其像側面254為凸面,並皆為非球面。The fifth lens 250 has a positive refractive power and is made of glass. The object side surface 252 is a convex surface, and the image side surface 254 is a convex surface, and they are all aspheric surfaces.

第六透鏡260具有負屈折力,且為玻璃材質,其物側面262為凹面,其像側面264為凹面,並皆為非球面。藉此,可有效調整各視場入射於第六透鏡260的角度而改善像差。The sixth lens 260 has a negative refractive power and is made of glass. The object side surface 262 is a concave surface, and the image side surface 264 is a concave surface. Accordingly, the angle of incidence of each field of view on the sixth lens 260 can be effectively adjusted to improve aberrations.

第七透鏡270具有負屈折力,且為玻璃材質,其物側面272為凸面,其像側面274為凸面。藉此,有利於縮短其後焦距以維持小型化。另外可有效地壓制離軸視場光線入射的角度,進一步可修正離軸視場的像差。The seventh lens 270 has a negative refractive power and is made of glass. Its object side surface 272 is convex and its image side 274 is convex. Thereby, it is advantageous to shorten the back focal length to maintain miniaturization. In addition, it can effectively suppress the incident angle of the off-axis field of view, and further correct the aberration of the off-axis field of view.

紅外線濾光片280為玻璃材質,其設置於第七透鏡270及成像面290間且不影響光學成像系統20的焦距。The infrared filter 280 is made of glass and is disposed between the seventh lens 270 and the imaging surface 290 without affecting the focal length of the optical imaging system 20.

請配合參照下列表三以及表四。
表三 第 二 光 學 實 施 例 透 鏡 數 據 f(焦距)= 4.7601 mm ; f/HEP =2.2 ; HAF(半視角)= 95.98 deg 表面 曲率半徑 厚度(mm) 材質 折射率 色散係數 焦距 0 被攝物 1E+18 1E+18 1 第一透鏡 47.71478323 4.977 玻璃 2.001 29.13 -12.647 2 9.527614761 13.737 3 第二透鏡 -14.88061107 5.000 玻璃 2.001 29.13 -99.541 4 -20.42046946 10.837 5 第三透鏡 182.4762997 5.000 玻璃 1.847 23.78 44.046 6 -46.71963608 13.902 7 光圈 1E+18 0.850 8 第四透鏡 28.60018103 4.095 玻璃 1.834 37.35 19.369 9 -35.08507586 0.323 10 第五透鏡 18.25991342 1.539 玻璃 1.609 46.44 20.223 11 -36.99028878 0.546 12 第六透鏡 -18.24574524 5.000 玻璃 2.002 19.32 -7.668 13 15.33897192 0.215 14 第七透鏡 16.13218937 4.933 玻璃 1.517 64.20 13.620 15 -11.24007 8.664 16 紅外線 濾光片 1E+18 1.000 BK_7 1.517 64.2 17 1E+18 1.007 18 成像面 1E+18 -0.007 參考波長 (d-line) 為555 nm
Please refer to Tables 3 and 4 below.
Table 3. Lens data of the second optical embodiment f (focal length) = 4.7601 mm; f / HEP = 2.2; HAF (half angle of view) = 95.98 deg surface Curvature radius Thickness (mm) Material Refractive index Dispersion coefficient focal length 0 Subject 1E + 18 1E + 18 1 First lens 47.71478323 4.977 glass 2.001 29.13 -12.647 2 9.527614761 13.737 3 Second lens -14.88061107 5.000 glass 2.001 29.13 -99.541 4 -20.42046946 10.837 5 Third lens 182.4762997 5.000 glass 1.847 23.78 44.046 6 -46.71963608 13.902 7 aperture 1E + 18 0.850 8 Fourth lens 28.60018103 4.095 glass 1.834 37.35 19.369 9 -35.08507586 0.323 10 Fifth lens 18.25991342 1.539 glass 1.609 46.44 20.223 11 -36.99028878 0.546 12 Sixth lens -18.24574524 5.000 glass 2.002 19.32 -7.668 13 15.33897192 0.215 14 Seventh lens 16.13218937 4.933 glass 1.517 64.20 13.620 15 -11.24007 8.664 16 Infrared filter 1E + 18 1.000 BK_7 1.517 64.2 17 1E + 18 1.007 18 Imaging surface 1E + 18 -0.007 Reference wavelength (d-line) is 555 nm

表四、第二光學實施例之非球面係數
表四 非球面係數 表面 1 2 3 4 5 6 8 k 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 A4 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 A6 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 A8 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 A10 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 A12 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
表四 非球面係數 表面 9 10 11 12 13 14 15 k 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 A4 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 A6 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 A8 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 A10 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 A12 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
Table 4. Aspheric coefficients of the second optical embodiment
Table 4 Aspheric coefficients surface 1 2 3 4 5 6 8 k 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 A4 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 A6 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 A8 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 A10 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 A12 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00
Table 4 Aspheric coefficients surface 9 10 11 12 13 14 15 k 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 A4 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 A6 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 A8 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 A10 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 A12 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00

第二光學實施例中,非球面的曲線方程式表示如第一光學實施例的形式。此外,下表參數的定義皆與第一光學實施例相同,在此不加以贅述。In the second optical embodiment, the curve equation of the aspherical surface is expressed as the first optical embodiment. In addition, the definitions of the parameters in the following table are the same as those of the first optical embodiment, and will not be repeated here.

依據表三及表四可得到下列條件式數値:
第二光學實施例 (使用主要參考波長 555 nm) ∣f/f1│ ∣f/f2│ ∣f/f3│ ∣f/f4│ ∣f/f5│ ∣f/f6│ 0.3764 0.0478 0.1081 0.2458 0.2354 0.6208 ∣f/f7│ ΣPPR ΣNPR ΣPPR /│ΣNPR∣ IN12 / f IN67 / f 0.3495 1.3510 0.6327 2.1352 2.8858 0.0451 ∣f1/f2│ ∣f2/f3│ (TP1+IN12)/ TP2 (TP7+IN67)/ TP6 0.1271 2.2599 3.7428 1.0296 HOS InTL HOS / HOI InS/ HOS ODT % TDT % 81.6178 70.9539 13.6030 0.3451 -113.2790 84.4806 HVT11 HVT12 HVT21 HVT22 HVT31 HVT32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 HVT61 HVT62 HVT71 HVT72 HVT72/ HOI HVT72/ HOS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PhiA PhiC PhiD TH1 TH2 HOI 11.962 mm 12.362 mm 12.862 mm 0.25 mm 0.2 mm 6 mm PhiA / PhiD TH1+TH2 (TH1+TH2) / HOI (TH1+TH2) /HOS 2(TH1+TH2) / PhiA 0.9676 0.45 mm 0.075 0.0055 0.0752 PSTA PLTA NSTA NLTA SSTA SLTA 0.060 mm -0.005 mm 0.016 mm 0.006 mm 0.020 mm -0.008 mm
According to Tables 3 and 4, the following conditional expressions can be obtained:
Second optical embodiment (using a primary reference wavelength of 555 nm) ∣f / f1│ ∣f / f2│ ∣f / f3│ ∣f / f4│ ∣f / f5│ ∣f / f6│ 0.3764 0.0478 0.1081 0.2458 0.2354 0.6208 ∣f / f7│ ΣPPR ΣNPR ΣPPR / │ΣNPR∣ IN12 / f IN67 / f 0.3495 1.3510 0.6327 2.1352 2.8858 0.0451 ∣f1 / f2│ ∣f2 / f3│ (TP1 + IN12) / TP2 (TP7 + IN67) / TP6 0.1271 2.2599 3.7428 1.0296 HOS InTL HOS / HOI InS / HOS ODT% TDT% 81.6178 70.9539 13.6030 0.3451 -113.2790 84.4806 HVT11 HVT12 HVT21 HVT22 HVT31 HVT32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 HVT61 HVT62 HVT71 HVT72 HVT72 / HOI HVT72 / HOS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PhiA PhiC PhiD TH1 TH2 HOI 11.962 mm 12.362 mm 12.862 mm 0.25 mm 0.2 mm 6 mm PhiA / PhiD TH1 + TH2 (TH1 + TH2) / HOI (TH1 + TH2) / HOS 2 (TH1 + TH2) / PhiA 0.9676 0.45 mm 0.075 0.0055 0.0752 PSTA PLTA NSTA NLTA SSTA SLTA 0.060 mm -0.005 mm 0.016 mm 0.006 mm 0.020 mm -0.008 mm

依據表三及表四可得到下列輪廓曲線長度相關之數値:
第二光學實施例 (使用主要參考波長 555 nm) ARE 1/2(HEP) ARE value ARE-1/2(HEP) 2(ARE/HEP) % TP ARE /TP (%) 11 1.082 1.081 -0.00075 99.93% 4.977 21.72% 12 1.082 1.083 0.00149 100.14% 4.977 21.77% 21 1.082 1.082 0.00011 100.01% 5.000 21.64% 22 1.082 1.082 -0.00034 99.97% 5.000 21.63% 31 1.082 1.081 -0.00084 99.92% 5.000 21.62% 32 1.082 1.081 -0.00075 99.93% 5.000 21.62% 41 1.082 1.081 -0.00059 99.95% 4.095 26.41% 42 1.082 1.081 -0.00067 99.94% 4.095 26.40% 51 1.082 1.082 -0.00021 99.98% 1.539 70.28% 52 1.082 1.081 -0.00069 99.94% 1.539 70.25% 61 1.082 1.082 -0.00021 99.98% 5.000 21.63% 62 1.082 1.082 0.00005 100.00% 5.000 21.64% 71 1.082 1.082 -0.00003 100.00% 4.933 21.93% 72 1.082 1.083 0.00083 100.08% 4.933 21.95% ARS EHD ARS value ARS-EHD (ARS/EHD)% TP ARS / TP (%) 11 20.767 21.486 0.719 103.46% 4.977 431.68% 12 9.412 13.474 4.062 143.16% 4.977 270.71% 21 8.636 9.212 0.577 106.68% 5.000 184.25% 22 9.838 10.264 0.426 104.33% 5.000 205.27% 31 8.770 8.772 0.003 100.03% 5.000 175.45% 32 8.511 8.558 0.047 100.55% 5.000 171.16% 41 4.600 4.619 0.019 100.42% 4.095 112.80% 42 4.965 4.981 0.016 100.32% 4.095 121.64% 51 5.075 5.143 0.067 101.33% 1.539 334.15% 52 5.047 5.062 0.015 100.30% 1.539 328.89% 61 5.011 5.075 0.064 101.28% 5.000 101.50% 62 5.373 5.489 0.116 102.16% 5.000 109.79% 71 5.513 5.625 0.112 102.04% 4.933 114.03% 72 5.981 6.307 0.326 105.44% 4.933 127.84%
According to Tables 3 and 4, the following correlations between the lengths of the contour curves can be obtained:
Second optical embodiment (using a primary reference wavelength of 555 nm) ARE 1/2 (HEP) ARE value ARE-1 / 2 (HEP) 2 (ARE / HEP)% TP ARE / TP (%) 11 1.082 1.081 -0.00075 99.93% 4.977 21.72% 12 1.082 1.083 0.00149 100.14% 4.977 21.77% twenty one 1.082 1.082 0.00011 100.01% 5.000 21.64% twenty two 1.082 1.082 -0.00034 99.97% 5.000 21.63% 31 1.082 1.081 -0.00084 99.92% 5.000 21.62% 32 1.082 1.081 -0.00075 99.93% 5.000 21.62% 41 1.082 1.081 -0.00059 99.95% 4.095 26.41% 42 1.082 1.081 -0.00067 99.94% 4.095 26.40% 51 1.082 1.082 -0.00021 99.98% 1.539 70.28% 52 1.082 1.081 -0.00069 99.94% 1.539 70.25% 61 1.082 1.082 -0.00021 99.98% 5.000 21.63% 62 1.082 1.082 0.00005 100.00% 5.000 21.64% 71 1.082 1.082 -0.00003 100.00% 4.933 21.93% 72 1.082 1.083 0.00083 100.08% 4.933 21.95% ARS EHD ARS value ARS-EHD (ARS / EHD)% TP ARS / TP (%) 11 20.767 21.486 0.719 103.46% 4.977 431.68% 12 9.412 13.474 4.062 143.16% 4.977 270.71% twenty one 8.636 9.212 0.577 106.68% 5.000 184.25% twenty two 9.838 10.264 0.426 104.33% 5.000 205.27% 31 8.770 8.772 0.003 100.03% 5.000 175.45% 32 8.511 8.558 0.047 100.55% 5.000 171.16% 41 4.600 4.619 0.019 100.42% 4.095 112.80% 42 4.965 4.981 0.016 100.32% 4.095 121.64% 51 5.075 5.143 0.067 101.33% 1.539 334.15% 52 5.047 5.062 0.015 100.30% 1.539 328.89% 61 5.011 5.075 0.064 101.28% 5.000 101.50% 62 5.373 5.489 0.116 102.16% 5.000 109.79% 71 5.513 5.625 0.112 102.04% 4.933 114.03% 72 5.981 6.307 0.326 105.44% 4.933 127.84%

依據表三及表四可得到下列條件式數値:
第二光學實施例反曲點相關數值 (使用主要參考波長 555 nm) HIF111 0 HIF111/HOI 0 SGI111 0 │SGI111∣/(│SGI111∣+TP1) 0
According to Tables 3 and 4, the following conditional expressions can be obtained:
Correlative value of inflection point of the second optical embodiment (using the main reference wavelength of 555 nm) HIF111 0 HIF111 / HOI 0 SGI111 0 │SGI111∣ / (│SGI111∣ + TP1) 0

第三光學實施例Third optical embodiment

請參照第4A圖及第4B圖,其中第4A圖繪示依照本創作第三光學實施例的一種光學成像系統30的透鏡組示意圖,第4B圖由左至右依序為第三光學實施例的光學成像系統30的球差、像散及光學畸變曲線圖。由第4A圖可知,光學成像系統30由物側至像側依序包含第一透鏡310、第二透鏡320、第三透鏡330、光圈300、第四透鏡340、第五透鏡350、第六透鏡360、紅外線濾光片380、成像面390以及影像感測元件392。Please refer to FIG. 4A and FIG. 4B. FIG. 4A shows a schematic diagram of a lens group of an optical imaging system 30 according to the third optical embodiment of the present invention. FIG. 4B is a third optical embodiment in order from left to right. Spherical aberration, astigmatism, and optical distortion curves of the optical imaging system 30 of FIG. As can be seen from FIG. 4A, the optical imaging system 30 includes the first lens 310, the second lens 320, the third lens 330, the aperture 300, the fourth lens 340, the fifth lens 350, and the sixth lens in order from the object side to the image side. 360, an infrared filter 380, an imaging surface 390, and an image sensing element 392.

第一透鏡310具有負屈折力,且為玻璃材質,其物側面312為凸面,其像側面314為凹面,並皆為球面。The first lens 310 has a negative refractive power and is made of glass. The object side 312 is convex, the image side 314 is concave, and both are spherical.

第二透鏡320具有負屈折力,且為玻璃材質,其物側面322為凹面,其像側面324為凸面,並皆為球面。The second lens 320 has a negative refractive power and is made of glass. The object side surface 322 is a concave surface, and the image side surface 324 is a convex surface, and they are all spherical surfaces.

第三透鏡330具有正屈折力,且為塑膠材質,其物側面332為凸面,其像側面334為凸面,並皆為非球面,且其像側面334具有一反曲點。The third lens 330 has a positive refractive power and is made of plastic material. Its object side surface 332 is convex, its image side 334 is convex, and all of them are aspheric, and its image side 334 has an inflection point.

第四透鏡340具有負屈折力,且為塑膠材質,其物側面342為凹面,其像側面344為凹面,並皆為非球面,且其像側面344具有一反曲點。The fourth lens 340 has a negative refractive power and is made of plastic material. Its object side surface 342 is concave, its image side 344 is concave, and both are aspheric, and its image side 344 has an inflection point.

第五透鏡350具有正屈折力,且為塑膠材質,其物側面352為凸面,其像側面354為凸面,並皆為非球面。The fifth lens 350 has a positive refractive power and is made of plastic. The object side surface 352 is a convex surface, and the image side surface 354 is a convex surface.

第六透鏡360具有負屈折力,且為塑膠材質,其物側面362為凸面,其像側面364為凹面,並皆為非球面,且其物側面362以及像側面364均具有一反曲點。藉此,有利於縮短其後焦距以維持小型化。另外,可有效地壓制離軸視場光線入射的角度,進一步可修正離軸視場的像差。The sixth lens 360 has a negative refractive power and is made of plastic. Its object side surface 362 is convex, its image side 364 is concave, and both are aspheric. The object side 362 and the image side 364 both have an inflection point. Thereby, it is advantageous to shorten the back focal length to maintain miniaturization. In addition, it can effectively suppress the incident angle of the off-axis field of view, and further correct the aberration of the off-axis field of view.

紅外線濾光片380為玻璃材質,其設置於第六透鏡360及成像面390間且不影響光學成像系統30的焦距。The infrared filter 380 is made of glass and is disposed between the sixth lens 360 and the imaging surface 390 without affecting the focal length of the optical imaging system 30.

請配合參照下列表五以及表六。
表五 第 三 光 學 實 施 例 透 鏡 數 據 f(焦距)= 2.808 mm ; f/HEP =1.6 ; HAF(半視角)= 100 deg 表面 曲率半徑 厚度 (mm) 材質 折射率 色散係數 焦距 0 被攝物 1E+18 1E+18 1 第一透鏡 71.398124 7.214 玻璃 1.702 41.15 -11.765 2 7.117272355 5.788 3 第二透鏡 -13.29213699 10.000 玻璃 2.003 19.32 -4537.460 4 -18.37509887 7.005 5 第三透鏡 5.039114804 1.398 塑膠 1.514 56.80 7.553 6 -15.53136631 -0.140 7 光圈 1E+18 2.378 8 第四透鏡 -18.68613609 0.577 塑膠 1.661 20.40 -4.978 9 4.086545927 0.141 10 第五透鏡 4.927609282 2.974 塑膠 1.565 58.00 4.709 11 -4.551946605 1.389 12 第六透鏡 9.184876531 1.916 塑膠 1.514 56.80 -23.405 13 4.845500046 0.800 14 紅外線 濾光片 1E+18 0.500 BK_7 1.517 64.13 15 1E+18 0.371 16 成像面 1E+18 0.005 參考波長為555 nm;無
Please refer to Table 5 and Table 6 below.
Table 5 Lens data of the third optical embodiment f (focal length) = 2.808 mm; f / HEP = 1.6; HAF (half angle of view) = 100 deg surface Curvature radius Thickness (mm) Material Refractive index Dispersion coefficient focal length 0 Subject 1E + 18 1E + 18 1 First lens 71.398124 7.214 glass 1.702 41.15 -11.765 2 7.117272355 5.788 3 Second lens -13.29213699 10.000 glass 2.003 19.32 -4537.460 4 -18.37509887 7.005 5 Third lens 5.039114804 1.398 plastic 1.514 56.80 7.553 6 -15.53136631 -0.140 7 aperture 1E + 18 2.378 8 Fourth lens -18.68613609 0.577 plastic 1.661 20.40 -4.978 9 4.086545927 0.141 10 Fifth lens 4.927609282 2.974 plastic 1.565 58.00 4.709 11 -4.551946605 1.389 12 Sixth lens 9.184876531 1.916 plastic 1.514 56.80 -23.405 13 4.845500046 0.800 14 Infrared filter 1E + 18 0.500 BK_7 1.517 64.13 15 1E + 18 0.371 16 Imaging surface 1E + 18 0.005 Reference wavelength is 555 nm; none

表六、第三光學實施例之非球面係數
表六 非球面係數 表面 1 2 3 4 5 6 8 k 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 1.318519E-01 3.120384E+00 -1.494442E+01 A4 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 6.405246E-05 2.103942E-03 -1.598286E-03 A6 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 2.278341E-05 -1.050629E-04 -9.177115E-04 A8 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 -3.672908E-06 6.168906E-06 1.011405E-04 A10 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 3.748457E-07 -1.224682E-07 -4.919835E-06
表六 非球面係數 表面 9 10 11 12 13 k 2.744228E-02 -7.864013E+00 -2.263702E+00 -4.206923E+01 -7.030803E+00 A4 -7.291825E-03 1.405243E-04 -3.919567E-03 -1.679499E-03 -2.640099E-03 A6 9.730714E-05 1.837602E-04 2.683449E-04 -3.518520E-04 -4.507651E-05 A8 1.101816E-06 -2.173368E-05 -1.229452E-05 5.047353E-05 -2.600391E-05 A10 -6.849076E-07 7.328496E-07 4.222621E-07 -3.851055E-06 1.161811E-06
Table 6. Aspheric coefficients of the third optical embodiment
Table 6 Aspheric coefficients surface 1 2 3 4 5 6 8 k 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 1.318519E-01 3.120384E + 00 -1.494442E + 01 A4 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 6.405246E-05 2.103942E-03 -1.598286E-03 A6 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 2.278341E-05 -1.050629E-04 -9.177115E-04 A8 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 -3.672908E-06 6.168906E-06 1.011405E-04 A10 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 3.748457E-07 -1.224682E-07 -4.919835E-06
Table 6 Aspheric coefficients surface 9 10 11 12 13 k 2.744228E-02 -7.864013E + 00 -2.263702E + 00 -4.206923E + 01 -7.030803E + 00 A4 -7.291825E-03 1.405243E-04 -3.919567E-03 -1.679499E-03 -2.640099E-03 A6 9.730714E-05 1.837602E-04 2.683449E-04 -3.518520E-04 -4.507651E-05 A8 1.101816E-06 -2.173368E-05 -1.229452E-05 5.047353E-05 -2.600391E-05 A10 -6.849076E-07 7.328496E-07 4.222621E-07 -3.851055E-06 1.161811E-06

第三光學實施例中,非球面的曲線方程式表示如第一光學實施例的形式。此外,下表參數的定義皆與第一光學實施例相同,在此不加以贅述。In the third optical embodiment, the aspherical curve equation is expressed as the first optical embodiment. In addition, the definitions of the parameters in the following table are the same as those of the first optical embodiment, and will not be repeated here.

依據表五及表六可得到下列條件式數値:
第三光學實施例 (使用主要參考波長 555 nm) ∣f/f1│ ∣f/f2│ ∣f/f3│ ∣f/f4│ ∣f/f5│ ∣f/f6│ 0.23865 0.00062 0.37172 0.56396 0.59621 0.11996 ΣPPR ΣNPR ΣPPR /│ΣNPR∣ IN12 / f IN56 / f TP4/ (IN34+TP4+IN45) 1.77054 0.12058 14.68400 2.06169 0.49464 0.19512 ∣f1/f2│ ∣f2/f3│ (TP1+IN12)/ TP2 (TP6+IN56)/ TP5 0.00259 600.74778 1.30023 1.11131 HOS InTL HOS / HOI InS/ HOS ODT% TDT% 42.31580 40.63970 10.57895 0.26115 -122.32700 93.33510 HVT51 HVT52 HVT61 HVT62 HVT62/ HOI HVT62/ HOS 0 0 2.22299 2.60561 0.65140 0.06158 TP2 / TP3 TP3 / TP4 InRS61 InRS62 │InRS61│/TP6 │InRS62│/TP6 7.15374 2.42321 -0.20807 -0.24978 0.10861 0.13038 PhiA PhiC PhiD TH1 TH2 HOI 6.150 mm 6.41 mm 6.71 mm 0.15 mm 0.13 mm 4 mm PhiA / PhiD TH1+TH2 (TH1+TH2) / HOI (TH1+TH2) /HOS 2(TH1+TH2) / PhiA 0.9165 0.28 mm 0.07 0.0066 0.0911 PSTA PLTA NSTA NLTA SSTA SLTA 0.014 mm 0.002 mm -0.003 mm -0.002 mm 0.011 mm -0.001 mm
According to Table 5 and Table 6, the following conditional expressions can be obtained:
Third optical embodiment (using a main reference wavelength of 555 nm) ∣f / f1│ ∣f / f2│ ∣f / f3│ ∣f / f4│ ∣f / f5│ ∣f / f6│ 0.23865 0.00062 0.37172 0.56396 0.59621 0.11996 ΣPPR ΣNPR ΣPPR / │ΣNPR∣ IN12 / f IN56 / f TP4 / (IN34 + TP4 + IN45) 1.77054 0.12058 14.68400 2.06169 0.49464 0.19512 ∣f1 / f2│ ∣f2 / f3│ (TP1 + IN12) / TP2 (TP6 + IN56) / TP5 0.00259 600.74778 1.30023 1.11131 HOS InTL HOS / HOI InS / HOS ODT% TDT% 42.31580 40.63970 10.57895 0.26115 -122.32700 93.33510 HVT51 HVT52 HVT61 HVT62 HVT62 / HOI HVT62 / HOS 0 0 2.22299 2.60561 0.65140 0.06158 TP2 / TP3 TP3 / TP4 InRS61 InRS62 │InRS61│ / TP6 │InRS62│ / TP6 7.15374 2.42321 -0.20807 -0.24978 0.10861 0.13038 PhiA PhiC PhiD TH1 TH2 HOI 6.150 mm 6.41 mm 6.71 mm 0.15 mm 0.13 mm 4 mm PhiA / PhiD TH1 + TH2 (TH1 + TH2) / HOI (TH1 + TH2) / HOS 2 (TH1 + TH2) / PhiA 0.9165 0.28 mm 0.07 0.0066 0.0911 PSTA PLTA NSTA NLTA SSTA SLTA 0.014 mm 0.002 mm -0.003 mm -0.002 mm 0.011 mm -0.001 mm

依據表五及表六可得到下列輪廓曲線長度相關之數値:
第三光學實施例 (使用主要參考波長 555 nm) ARE 1/2(HEP) ARE value ARE-1/2(HEP) 2(ARE/HEP) % TP ARE /TP (%) 11 0.877 0.877 -0.00036 99.96% 7.214 12.16% 12 0.877 0.879 0.00186 100.21% 7.214 12.19% 21 0.877 0.878 0.00026 100.03% 10.000 8.78% 22 0.877 0.877 -0.00004 100.00% 10.000 8.77% 31 0.877 0.882 0.00413 100.47% 1.398 63.06% 32 0.877 0.877 0.00004 100.00% 1.398 62.77% 41 0.877 0.877 -0.00001 100.00% 0.577 152.09% 42 0.877 0.883 0.00579 100.66% 0.577 153.10% 51 0.877 0.881 0.00373 100.43% 2.974 29.63% 52 0.877 0.883 0.00521 100.59% 2.974 29.68% 61 0.877 0.878 0.00064 100.07% 1.916 45.83% 62 0.877 0.881 0.00368 100.42% 1.916 45.99% ARS EHD ARS value ARS-EHD (ARS/EHD)% TP ARS / TP (%) 11 17.443 17.620 0.178 101.02% 7.214 244.25% 12 6.428 8.019 1.592 124.76% 7.214 111.16% 21 6.318 6.584 0.266 104.20% 10.000 65.84% 22 6.340 6.472 0.132 102.08% 10.000 64.72% 31 2.699 2.857 0.158 105.84% 1.398 204.38% 32 2.476 2.481 0.005 100.18% 1.398 177.46% 41 2.601 2.652 0.051 101.96% 0.577 459.78% 42 3.006 3.119 0.113 103.75% 0.577 540.61% 51 3.075 3.171 0.096 103.13% 2.974 106.65% 52 3.317 3.624 0.307 109.24% 2.974 121.88% 61 3.331 3.427 0.095 102.86% 1.916 178.88% 62 3.944 4.160 0.215 105.46% 1.916 217.14%
According to Tables 5 and 6, the following correlations of the lengths of the contour curves can be obtained:
Third optical embodiment (using a main reference wavelength of 555 nm) ARE 1/2 (HEP) ARE value ARE-1 / 2 (HEP) 2 (ARE / HEP)% TP ARE / TP (%) 11 0.877 0.877 -0.00036 99.96% 7.214 12.16% 12 0.877 0.879 0.00186 100.21% 7.214 12.19% twenty one 0.877 0.878 0.00026 100.03% 10.000 8.78% twenty two 0.877 0.877 -0.00004 100.00% 10.000 8.77% 31 0.877 0.882 0.00413 100.47% 1.398 63.06% 32 0.877 0.877 0.00004 100.00% 1.398 62.77% 41 0.877 0.877 -0.00001 100.00% 0.577 152.09% 42 0.877 0.883 0.00579 100.66% 0.577 153.10% 51 0.877 0.881 0.00373 100.43% 2.974 29.63% 52 0.877 0.883 0.00521 100.59% 2.974 29.68% 61 0.877 0.878 0.00064 100.07% 1.916 45.83% 62 0.877 0.881 0.00368 100.42% 1.916 45.99% ARS EHD ARS value ARS-EHD (ARS / EHD)% TP ARS / TP (%) 11 17.443 17.620 0.178 101.02% 7.214 244.25% 12 6.428 8.019 1.592 124.76% 7.214 111.16% twenty one 6.318 6.584 0.266 104.20% 10.000 65.84% twenty two 6.340 6.472 0.132 102.08% 10.000 64.72% 31 2.699 2.857 0.158 105.84% 1.398 204.38% 32 2.476 2.481 0.005 100.18% 1.398 177.46% 41 2.601 2.652 0.051 101.96% 0.577 459.78% 42 3.006 3.119 0.113 103.75% 0.577 540.61% 51 3.075 3.171 0.096 103.13% 2.974 106.65% 52 3.317 3.624 0.307 109.24% 2.974 121.88% 61 3.331 3.427 0.095 102.86% 1.916 178.88% 62 3.944 4.160 0.215 105.46% 1.916 217.14%

依據表五及表六可得到下列條件式數値:
第三光學實施例反曲點相關數值 (使用主要參考波長 555 nm) HIF321 2.0367 HIF321/HOI 0.5092 SGI321 -0.1056 ∣SGI321│/(∣SGI321│+TP3) 0.0702 HIF421 2.4635 HIF421/HOI 0.6159 SGI421 0.5780 ∣SGI421│/(∣SGI421│+TP4) 0.5005 HIF611 1.2364 HIF611/HOI 0.3091 SGI611 0.0668 │SGI611∣/(│SGI611∣+TP6) 0.0337 HIF621 1.5488 HIF621/HOI 0.3872 SGI621 0.2014 ∣SGI621│/(∣SGI621│+TP6) 0.0951
According to Table 5 and Table 6, the following conditional expressions can be obtained:
Values of the inflection point of the third optical embodiment (using the main reference wavelength of 555 nm) HIF321 2.0367 HIF321 / HOI 0.5092 SGI321 -0.1056 ∣SGI321│ / (∣SGI321│ + TP3) 0.0702 HIF421 2.4635 HIF421 / HOI 0.6159 SGI421 0.5780 ∣SGI421│ / (∣SGI421│ + TP4) 0.5005 HIF611 1.2364 HIF611 / HOI 0.3091 SGI611 0.0668 │SGI611∣ / (│SGI611∣ + TP6) 0.0337 HIF621 1.5488 HIF621 / HOI 0.3872 SGI621 0.2014 ∣SGI621│ / (∣SGI621│ + TP6) 0.0951

第四光學實施例Fourth optical embodiment

請參照第5A圖及第5B圖,其中第5A圖繪示依照本創作第四光學實施例的一種光學成像系統40的透鏡組示意圖,第5B圖由左至右依序為第四光學實施例的光學成像系統40的球差、像散及光學畸變曲線圖。由第5A圖可知,光學成像系統40由物側至像側依序包含第一透鏡410、第二透鏡420、光圈400、第三透鏡430、第四透鏡440、第五透鏡450、紅外線濾光片470、成像面480以及影像感測元件490。Please refer to FIG. 5A and FIG. 5B. FIG. 5A shows a schematic diagram of a lens group of an optical imaging system 40 according to the fourth optical embodiment of the present invention. FIG. 5B is a fourth optical embodiment in order from left to right. Spherical aberration, astigmatism, and optical distortion curves of the optical imaging system 40 of FIG. It can be seen from FIG. 5A that the optical imaging system 40 includes the first lens 410, the second lens 420, the aperture 400, the third lens 430, the fourth lens 440, the fifth lens 450, and the infrared filter in order from the object side to the image side. A sheet 470, an imaging surface 480, and an image sensing element 490.

第一透鏡410具有負屈折力,且為玻璃材質,其物側面412為凸面,其像側面414為凹面,並皆為球面。The first lens 410 has a negative refractive power and is made of glass. The object side surface 412 is a convex surface, and the image side surface 414 is a concave surface, and all of them are spherical.

第二透鏡420具有負屈折力,且為塑膠材質,其物側面422為凹面,其像側面424為凹面,並皆為非球面,且其物側面422具有一反曲點。The second lens 420 has a negative refractive power and is made of plastic. Its object side surface 422 is concave, its image side surface 424 is concave, and both of them are aspheric, and its object side surface 422 has an inflection point.

第三透鏡430具有正屈折力,且為塑膠材質,其物側面432為凸面,其像側面434為凸面,並皆為非球面,且其物側面432具有一反曲點。The third lens 430 has a positive refractive power and is made of plastic. The object side surface 432 is convex, the image side surface 434 is convex, and both are aspheric. The object side surface 432 has an inflection point.

第四透鏡440具有正屈折力,且為塑膠材質,其物側面442為凸面,其像側面444為凸面,並皆為非球面,且其物側面442具有一反曲點。The fourth lens 440 has a positive refractive power and is made of plastic. Its object side 442 is convex, its image side 444 is convex, and both are aspheric. The object side 442 has an inflection point.

第五透鏡450具有負屈折力,且為塑膠材質,其物側面452為凹面,其像側面454為凹面,並皆為非球面,且其物側面452具有二反曲點。藉此,有利於縮短其後焦距以維持小型化。The fifth lens 450 has a negative refractive power and is made of plastic. Its object side surface 452 is concave, its image side surface 454 is concave, and both are aspheric. The object side surface 452 has two inflection points. Thereby, it is advantageous to shorten the back focal length to maintain miniaturization.

紅外線濾光片470為玻璃材質,其設置於第五透鏡450及成像面480間且不影響光學成像系統40的焦距。The infrared filter 470 is made of glass and is disposed between the fifth lens 450 and the imaging surface 480 without affecting the focal length of the optical imaging system 40.

請配合參照下列表七以及表八。
表七 第 四 光 學 實 施 例 透 鏡 數 據 f(焦距)= 2.7883 mm ; f/HEP =1.8 ; HAF(半視角)= 101 deg 表面 曲率半徑 厚度(mm) 材質 折射率 色散係數 焦距 0 被攝物 1E+18 1E+18 1 第一透鏡 76.84219 6.117399 玻璃 1.497 81.61 -31.322 2 12.62555 5.924382 3 第二透鏡 -37.0327 3.429817 塑膠 1.565 54.5 -8.70843 4 5.88556 5.305191 5 第三透鏡 17.99395 14.79391 6 -5.76903 -0.4855 塑膠 1.565 58 9.94787 7 光圈 1E+18 0.535498 8 第四透鏡 8.19404 4.011739 塑膠 1.565 58 5.24898 9 -3.84363 0.050366 10 第五透鏡 -4.34991 2.088275 塑膠 1.661 20.4 -4.97515 11 16.6609 0.6 12 紅外線 濾光片 1E+18 0.5 BK_7 1.517 64.13 13 1E+18 3.254927 14 成像面 1E+18 -0.00013 參考波長為555 nm
Please refer to Table 7 and Table 8 below.
Table 7 Lens data of the fourth optical embodiment f (focus) = 2.7883 mm; f / HEP = 1.8; HAF (half angle of view) = 101 deg surface Curvature radius Thickness (mm) Material Refractive index Dispersion coefficient focal length 0 Subject 1E + 18 1E + 18 1 First lens 76.84219 6.117399 glass 1.497 81.61 -31.322 2 12.62555 5.924382 3 Second lens -37.0327 3.429817 plastic 1.565 54.5 -8.70843 4 5.88556 5.305191 5 Third lens 17.99395 14.79391 6 -5.76903 -0.4855 plastic 1.565 58 9.94787 7 aperture 1E + 18 0.535498 8 Fourth lens 8.19404 4.011739 plastic 1.565 58 5.24898 9 -3.84363 0.050366 10 Fifth lens -4.34991 2.088275 plastic 1.661 20.4 -4.97515 11 16.6609 0.6 12 Infrared filter 1E + 18 0.5 BK_7 1.517 64.13 13 1E + 18 3.254927 14 Imaging surface 1E + 18 -0.00013 Reference wavelength is 555 nm

表八、第四光學實施例之非球面係數
表八 非球面係數 表面 1 2 3 4 5 6 8 k 0.000000E+00 0.000000E+00 0.131249 -0.069541 -0.324555 0.009216 -0.292346 A4 0.000000E+00 0.000000E+00 3.99823E-05 -8.55712E-04 -9.07093E-04 8.80963E-04 -1.02138E-03 A6 0.000000E+00 0.000000E+00 9.03636E-08 -1.96175E-06 -1.02465E-05 3.14497E-05 -1.18559E-04 A8 0.000000E+00 0.000000E+00 1.91025E-09 -1.39344E-08 -8.18157E-08 -3.15863E-06 1.34404E-05 A10 0.000000E+00 0.000000E+00 -1.18567E-11 -4.17090E-09 -2.42621E-09 1.44613E-07 -2.80681E-06 A12 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
表八 非球面係數 表面 9 10 11 k -0.18604 -6.17195 27.541383 A4 4.33629E-03 1.58379E-03 7.56932E-03 A6 -2.91588E-04 -1.81549E-04 -7.83858E-04 A8 9.11419E-06 -1.18213E-05 4.79120E-05 A10 1.28365E-07 1.92716E-06 -1.73591E-06 A12 0.000000E+00 0.000000E+00 0.000000E+00
Table 8. Aspheric coefficients of the fourth optical embodiment
Table 8 Aspheric coefficients surface 1 2 3 4 5 6 8 k 0.000000E + 00 0.000000E + 00 0.131249 -0.069541 -0.324555 0.009216 -0.292346 A4 0.000000E + 00 0.000000E + 00 3.99823E-05 -8.55712E-04 -9.07093E-04 8.80963E-04 -1.02138E-03 A6 0.000000E + 00 0.000000E + 00 9.03636E-08 -1.96175E-06 -1.02465E-05 3.14497E-05 -1.18559E-04 A8 0.000000E + 00 0.000000E + 00 1.91025E-09 -1.39344E-08 -8.18157E-08 -3.15863E-06 1.34404E-05 A10 0.000000E + 00 0.000000E + 00 -1.18567E-11 -4.17090E-09 -2.42621E-09 1.44613E-07 -2.80681E-06 A12 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00
Table 8 Aspheric coefficients surface 9 10 11 k -0.18604 -6.17195 27.541383 A4 4.33629E-03 1.58379E-03 7.56932E-03 A6 -2.91588E-04 -1.81549E-04 -7.83858E-04 A8 9.11419E-06 -1.18213E-05 4.79120E-05 A10 1.28365E-07 1.92716E-06 -1.73591E-06 A12 0.000000E + 00 0.000000E + 00 0.000000E + 00

第四光學實施例中,非球面的曲線方程式表示如第一光學實施例的形式。此外,下表參數的定義皆與第一光學實施例相同,在此不加以贅述。In the fourth optical embodiment, the curve equation of the aspherical surface is expressed as the first optical embodiment. In addition, the definitions of the parameters in the following table are the same as those of the first optical embodiment, and will not be repeated here.

依據表七及表八可得到下列條件式數値:
第四光學實施例 (使用主要參考波長 555 nm) ∣f/f1│ ∣f/f2│ ∣f/f3│ ∣f/f4│ ∣f/f5│ ∣f1/f2│ 0.08902 0.32019 0.28029 0.53121 0.56045 3.59674 ΣPPR ΣNPR ΣPPR /│ΣNPR∣ IN12 / f IN45 / f ∣f2/f3│ 1.4118 0.3693 3.8229 2.1247 0.0181 0.8754 TP3 / (IN23+TP3+IN34) (TP1+IN12)/ TP2 (TP5+IN45)/ TP4 0.73422 3.51091 0.53309 HOS InTL HOS / HOI InS/ HOS ODT% TDT% 46.12590 41.77110 11.53148 0.23936 -125.266 99.1671 HVT41 HVT42 HVT51 HVT52 HVT52/ HOI HVT52/ HOS 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 TP2 / TP3 TP3 / TP4 InRS51 InRS52 │InRS51│/TP5 │InRS52│/TP5 0.23184 3.68765 -0.679265 0.5369 0.32528 0.25710 PhiA PhiC PhiD TH1 TH2 HOI 5.598 mm 5.858 mm 6.118 mm 0.13 mm 0.13 mm 4 mm PhiA / PhiD TH1+TH2 (TH1+TH2) / HOI (TH1+TH2) /HOS 2(TH1+TH2) / PhiA 0.9150 0.26 mm 0.065 0.0056 0.0929 PSTA PLTA NSTA NLTA SSTA SLTA -0.011 mm 0.005 mm -0.010 mm -0.003 mm 0.005 mm -0.00026 mm
According to Tables 7 and 8, the following conditional expressions can be obtained:
Fourth optical embodiment (using a main reference wavelength of 555 nm) ∣f / f1│ ∣f / f2│ ∣f / f3│ ∣f / f4│ ∣f / f5│ ∣f1 / f2│ 0.08902 0.32019 0.28029 0.53121 0.56045 3.59674 ΣPPR ΣNPR ΣPPR / │ΣNPR∣ IN12 / f IN45 / f ∣f2 / f3│ 1.4118 0.3693 3.8229 2.1247 0.0181 0.8754 TP3 / (IN23 + TP3 + IN34) (TP1 + IN12) / TP2 (TP5 + IN45) / TP4 0.73422 3.51091 0.53309 HOS InTL HOS / HOI InS / HOS ODT% TDT% 46.12590 41.77110 11.53148 0.23936 -125.266 99.1671 HVT41 HVT42 HVT51 HVT52 HVT52 / HOI HVT52 / HOS 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 TP2 / TP3 TP3 / TP4 InRS51 InRS52 │InRS51│ / TP5 │InRS52│ / TP5 0.23184 3.68765 -0.679265 0.5369 0.32528 0.25710 PhiA PhiC PhiD TH1 TH2 HOI 5.598 mm 5.858 mm 6.118 mm 0.13 mm 0.13 mm 4 mm PhiA / PhiD TH1 + TH2 (TH1 + TH2) / HOI (TH1 + TH2) / HOS 2 (TH1 + TH2) / PhiA 0.9150 0.26 mm 0.065 0.0056 0.0929 PSTA PLTA NSTA NLTA SSTA SLTA -0.011 mm 0.005 mm -0.010 mm -0.003 mm 0.005 mm -0.00026 mm

依據表七及表八可得到下列輪廓曲線長度相關之數値:
第四光學實施例 (使用主要參考波長 555 nm) ARE 1/2(HEP) ARE value ARE-1/2(HEP) 2(ARE/HEP) % TP ARE /TP (%) 11 0.775 0.774 -0.00052 99.93% 6.117 12.65% 12 0.775 0.774 -0.00005 99.99% 6.117 12.66% 21 0.775 0.774 -0.00048 99.94% 3.430 22.57% 22 0.775 0.776 0.00168 100.22% 3.430 22.63% 31 0.775 0.774 -0.00031 99.96% 14.794 5.23% 32 0.775 0.776 0.00177 100.23% 14.794 5.25% 41 0.775 0.775 0.00059 100.08% 4.012 19.32% 42 0.775 0.779 0.00453 100.59% 4.012 19.42% 51 0.775 0.778 0.00311 100.40% 2.088 37.24% 52 0.775 0.774 -0.00014 99.98% 2.088 37.08% ARS EHD ARS value ARS-EHD (ARS/EHD)% TP ARS / TP (%) 11 23.038 23.397 0.359 101.56% 6.117 382.46% 12 10.140 11.772 1.632 116.10% 6.117 192.44% 21 10.138 10.178 0.039 100.39% 3.430 296.74% 22 5.537 6.337 0.800 114.44% 3.430 184.76% 31 4.490 4.502 0.012 100.27% 14.794 30.43% 32 2.544 2.620 0.076 102.97% 14.794 17.71% 41 2.735 2.759 0.024 100.89% 4.012 68.77% 42 3.123 3.449 0.326 110.43% 4.012 85.97% 51 2.934 3.023 0.089 103.04% 2.088 144.74% 52 2.799 2.883 0.084 103.00% 2.088 138.08%
According to Tables 7 and 8, the following correlations between the lengths of the contour curves can be obtained:
Fourth optical embodiment (using a main reference wavelength of 555 nm) ARE 1/2 (HEP) ARE value ARE-1 / 2 (HEP) 2 (ARE / HEP)% TP ARE / TP (%) 11 0.775 0.774 -0.00052 99.93% 6.117 12.65% 12 0.775 0.774 -0.00005 99.99% 6.117 12.66% twenty one 0.775 0.774 -0.00048 99.94% 3.430 22.57% twenty two 0.775 0.776 0.00168 100.22% 3.430 22.63% 31 0.775 0.774 -0.00031 99.96% 14.794 5.23% 32 0.775 0.776 0.00177 100.23% 14.794 5.25% 41 0.775 0.775 0.00059 100.08% 4.012 19.32% 42 0.775 0.779 0.00453 100.59% 4.012 19.42% 51 0.775 0.778 0.00311 100.40% 2.088 37.24% 52 0.775 0.774 -0.00014 99.98% 2.088 37.08% ARS EHD ARS value ARS-EHD (ARS / EHD)% TP ARS / TP (%) 11 23.038 23.397 0.359 101.56% 6.117 382.46% 12 10.140 11.772 1.632 116.10% 6.117 192.44% twenty one 10.138 10.178 0.039 100.39% 3.430 296.74% twenty two 5.537 6.337 0.800 114.44% 3.430 184.76% 31 4.490 4.502 0.012 100.27% 14.794 30.43% 32 2.544 2.620 0.076 102.97% 14.794 17.71% 41 2.735 2.759 0.024 100.89% 4.012 68.77% 42 3.123 3.449 0.326 110.43% 4.012 85.97% 51 2.934 3.023 0.089 103.04% 2.088 144.74% 52 2.799 2.883 0.084 103.00% 2.088 138.08%

依據表七及表八可得到下列條件式數値:
第四光學實施例反曲點相關數值 (使用主要參考波長 555 nm) HIF211 6.3902 HIF211/HOI 1.5976 SGI211 -0.4793 │SGI211∣/(│SGI211∣+TP2) 0.1226 HIF311 2.1324 HIF311/HOI 0.5331 SGI311 0.1069 │SGI311∣/(│SGI311∣+TP3) 0.0072 HIF411 2.0278 HIF411/HOI 0.5070 SGI411 0.2287 │SGI411∣/(│SGI411∣+TP4) 0.0539 HIF511 2.6253 HIF511/HOI 0.6563 SGI511 -0.5681 │SGI511∣/(│SGI511∣+TP5) 0.2139 HIF512 2.1521 HIF512/HOI 0.5380 SGI512 -0.8314 │SGI512∣/(│SGI512∣+TP5) 0.2848
According to Tables 7 and 8, the following conditional expressions can be obtained:
Correlation value of the inflection point of the fourth optical embodiment (using a main reference wavelength of 555 nm) HIF211 6.3902 HIF211 / HOI 1.5976 SGI211 -0.4793 │SGI211∣ / (│SGI211∣ + TP2) 0.1226 HIF311 2.1324 HIF311 / HOI 0.5331 SGI311 0.1069 │SGI311∣ / (│SGI311∣ + TP3) 0.0072 HIF411 2.0278 HIF411 / HOI 0.5070 SGI411 0.2287 │SGI411∣ / (│SGI411∣ + TP4) 0.0539 HIF511 2.6253 HIF511 / HOI 0.6563 SGI511 -0.5681 │SGI511∣ / (│SGI511∣ + TP5) 0.2139 HIF512 2.1521 HIF512 / HOI 0.5380 SGI512 -0.8314 │SGI512∣ / (│SGI512∣ + TP5) 0.2848

第五光學實施例Fifth optical embodiment

請參照第6A圖及第6B圖,其中第6A圖繪示依照本創作第五光學實施例的一種光學成像系統50的透鏡組示意圖,第6B圖由左至右依序為第五光學實施例的光學成像系統50的球差、像散及光學畸變曲線圖。由第6A圖可知,光學成像系統50由物側至像側依序包含光圈500、第一透鏡510、第二透鏡520、第三透鏡530、第四透鏡540、紅外線濾光片570、成像面580以及影像感測元件590。Please refer to FIGS. 6A and 6B. FIG. 6A shows a schematic diagram of a lens group of an optical imaging system 50 according to the fifth optical embodiment of the present invention. FIG. 6B is a fifth optical embodiment in order from left to right. Spherical aberration, astigmatism, and optical distortion curves of the optical imaging system 50 of FIG. It can be seen from FIG. 6A that the optical imaging system 50 includes an aperture 500, a first lens 510, a second lens 520, a third lens 530, a fourth lens 540, an infrared filter 570, and an imaging surface in order from the object side to the image side. 580 and the image sensing element 590.

第一透鏡510具有正屈折力,且為塑膠材質,其物側面512為凸面,其像側面514為凸面,並皆為非球面,且其物側面512具有一反曲點。The first lens 510 has a positive refractive power and is made of plastic. Its object side 512 is convex, its image side 514 is convex, and both are aspheric, and its object side 512 has an inflection point.

第二透鏡520具有負屈折力,且為塑膠材質,其物側面522為凸面,其像側面524為凹面,並皆為非球面,且其物側面522具有二反曲點以及像側面524具有一反曲點。The second lens 520 has a negative refractive power and is made of plastic. Its object side 522 is convex, its image side 524 is concave and both are aspheric, and its object side 522 has two inflection points and the image side 524 has a Inflection point.

第三透鏡530具有正屈折力,且為塑膠材質,其物側面532為凹面,其像側面534為凸面,並皆為非球面,且其物側面532具有三反曲點以及像側面534具有一反曲點。The third lens 530 has a positive refractive power and is made of plastic. The object side 532 is concave, the image side 534 is convex, and both are aspheric. The object side 532 has three inflection points and the image side 534 has a Inflection point.

第四透鏡540具有負屈折力,且為塑膠材質,其物側面542為凹面,其像側面544為凹面,並皆為非球面,且其物側面542具有二反曲點以及像側面544具有一反曲點。The fourth lens 540 has a negative refractive power and is made of plastic. Its object side surface 542 is concave, its image side 544 is concave, and both are aspheric. The object side 542 has two inflection points and the image side 544 has a Inflection point.

紅外線濾光片570為玻璃材質,其設置於第四透鏡540及成像面580間且不影響光學成像系統50的焦距。The infrared filter 570 is made of glass and is disposed between the fourth lens 540 and the imaging surface 580 without affecting the focal length of the optical imaging system 50.

請配合參照下列表九以及表十。
表九 第 五 光 學 實 施 例 透 鏡 數 據 f(焦距)= 1.04102 mm ; f/HEP =1.4 ; HAF(半視角)= 44.0346 deg 表面 曲率半徑 厚度 (mm) 材質 折射率 色散係數 焦距 0 被攝物 1E+18 600 1 光圈 1E+18 -0.020 2 第一透鏡 0.890166851 0.210 塑膠 1.545 55.96 1.587 3 -29.11040115 -0.010 4 1E+18 0.116 5 第二透鏡 10.67765398 0.170 塑膠 1.642 22.46 -14.569 6 4.977771922 0.049 7 第三透鏡 -1.191436932 0.349 塑膠 1.545 55.96 0.510 8 -0.248990674 0.030 9 第四透鏡 -38.08537212 0.176 塑膠 1.642 22.46 -0.569 10 0.372574476 0.152 11 紅外線 濾光片 1E+18 0.210 BK_7 1.517 64.13 12 1E+18 0.185 13 成像面 1E+18 0.005 參考波長為555 nm; 擋光位置:第4面其通光孔半徑0.360 mm
Please refer to Tables 9 and 10 below.
Table 9 Lens data of the fifth optical embodiment f (focal length) = 1.04102 mm; f / HEP = 1.4; HAF (half angle of view) = 44.0346 deg surface Curvature radius Thickness (mm) Material Refractive index Dispersion coefficient focal length 0 Subject 1E + 18 600 1 aperture 1E + 18 -0.020 2 First lens 0.890166851 0.210 plastic 1.545 55.96 1.587 3 -29.11040115 -0.010 4 1E + 18 0.116 5 Second lens 10.67765398 0.170 plastic 1.642 22.46 -14.569 6 4.977771922 0.049 7 Third lens -1.191436932 0.349 plastic 1.545 55.96 0.510 8 -0.248990674 0.030 9 Fourth lens -38.08537212 0.176 plastic 1.642 22.46 -0.569 10 0.372574476 0.152 11 Infrared filter 1E + 18 0.210 BK_7 1.517 64.13 12 1E + 18 0.185 13 Imaging surface 1E + 18 0.005 Reference wavelength is 555 nm; light blocking position: 0.360 mm radius of light hole on 4th

表十、第五光學實施例之非球面係數
表十 非球面係數 表面 2 3 5 6 7 8 k = -1.106629E+00 2.994179E-07 -7.788754E+01 -3.440335E+01 -8.522097E-01 -4.735945E+00 A4 = 8.291155E-01 -6.401113E-01 -4.958114E+00 -1.875957E+00 -4.878227E-01 -2.490377E+00 A6= -2.398799E+01 -1.265726E+01 1.299769E+02 8.568480E+01 1.291242E+02 1.524149E+02 A8 = 1.825378E+02 8.457286E+01 -2.736977E+03 -1.279044E+03 -1.979689E+03 -4.841033E+03 A10= -6.211133E+02 -2.157875E+02 2.908537E+04 8.661312E+03 1.456076E+04 8.053747E+04 A12 = -4.719066E+02 -6.203600E+02 -1.499597E+05 -2.875274E+04 -5.975920E+04 -7.936887E+05 A14 = 0.000000E+00 0.000000E+00 2.992026E+05 3.764871E+04 1.351676E+05 4.811528E+06 A16 = 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 -1.329001E+05 -1.762293E+07 A18 = 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 3.579891E+07 A20 = 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 -3.094006E+07
表十 非球面係數 表面 9 10 k = -2.277155E+01 -8.039778E-01 A4 = 1.672704E+01 -7.613206E+00 A6= -3.260722E+02 3.374046E+01 A8 = 3.373231E+03 -1.368453E+02 A10= -2.177676E+04 4.049486E+02 A12 = 8.951687E+04 -9.711797E+02 A14 = -2.363737E+05 1.942574E+03 A16 = 3.983151E+05 -2.876356E+03 A18 = -4.090689E+05 2.562386E+03 A20 = 2.056724E+05 -9.943657E+02
Table X. Aspheric coefficients of the fifth optical embodiment
Table 10 Aspheric coefficients surface 2 3 5 6 7 8 k = -1.106629E + 00 2.994179E-07 -7.788754E + 01 -3.440335E + 01 -8.522097E-01 -4.735945E + 00 A4 = 8.291155E-01 -6.401113E-01 -4.958114E + 00 -1.875957E + 00 -4.878227E-01 -2.490377E + 00 A6 = -2.398799E + 01 -1.265726E + 01 1.299769E + 02 8.568480E + 01 1.291242E + 02 1.524149E + 02 A8 = 1.825378E + 02 8.457286E + 01 -2.736977E + 03 -1.279044E + 03 -1.979689E + 03 -4.841033E + 03 A10 = -6.211133E + 02 -2.157875E + 02 2.908537E + 04 8.661312E + 03 1.456076E + 04 8.053747E + 04 A12 = -4.719066E + 02 -6.203600E + 02 -1.499597E + 05 -2.875274E + 04 -5.975920E + 04 -7.936887E + 05 A14 = 0.000000E + 00 0.000000E + 00 2.992026E + 05 3.764871E + 04 1.351676E + 05 4.811528E + 06 A16 = 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 -1.329001E + 05 -1.762293E + 07 A18 = 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 3.579891E + 07 A20 = 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 -3.094006E + 07
Table 10 Aspheric coefficients surface 9 10 k = -2.277155E + 01 -8.039778E-01 A4 = 1.672704E + 01 -7.613206E + 00 A6 = -3.260722E + 02 3.374046E + 01 A8 = 3.373231E + 03 -1.368453E + 02 A10 = -2.177676E + 04 4.049486E + 02 A12 = 8.951687E + 04 -9.711797E + 02 A14 = -2.363737E + 05 1.942574E + 03 A16 = 3.983151E + 05 -2.876356E + 03 A18 = -4.090689E + 05 2.562386E + 03 A20 = 2.056724E + 05 -9.943657E + 02

第五光學實施例中,非球面的曲線方程式表示如第一光學實施例的形式。此外,下表參數的定義皆與第一光學實施例相同,在此不加以贅述。In the fifth optical embodiment, the curve equation of the aspherical surface is expressed as the first optical embodiment. In addition, the definitions of the parameters in the following table are the same as those of the first optical embodiment, and will not be repeated here.

依據表九及表十可得到下列條件式數値:
第五光學實施例 (使用主要參考波長 555 nm) InRS41 InRS42 HVT41 HVT42 ODT% TDT% -0.07431 0.00475 0.00000 0.53450 2.09403 0.84704 ∣f/f1│ ∣f/f2│ ∣f/f3│ ∣f/f4│ ∣f1/f2│ ∣f2/f3│ 0.65616 0.07145 2.04129 1.83056 0.10890 28.56826 ΣPPR ΣNPR ΣPPR /│ΣNPR∣ ΣPP ΣNP f1/ΣPP 2.11274 2.48672 0.84961 -14.05932 1.01785 1.03627 f4/ΣNP IN12 / f IN23 / f IN34 / f TP3 / f TP4 / f 1.55872 0.10215 0.04697 0.02882 0.33567 0.16952 InTL HOS HOS / HOI InS/ HOS InTL / HOS ΣTP / InTL 1.09131 1.64329 1.59853 0.98783 0.66410 0.83025 (TP1+IN12) / TP2 (TP4+IN34) / TP3 TP1 / TP2 TP3 / TP4 IN23/(TP2+IN23+TP3) 1.86168 0.59088 1.23615 1.98009 0.08604 │InRS41│/TP4 │InRS42│/TP4 HVT42/ HOI HVT42/ HOS 0.4211 0.0269 0.5199 0.3253 PhiA PhiC PhiD TH1 TH2 HOI 1.596 mm 1.996 mm 2.396 mm 0.2 mm 0.2 mm 1.028 mm PhiA / PhiD TH1+TH2 (TH1+TH2) / HOI (TH1+TH2) /HOS 2(TH1+TH2) / PhiA 0.7996 0.4 mm 0.3891 0.2434 0.5013 PSTA PLTA NSTA NLTA SSTA SLTA -0.029 mm -0.023 mm -0.011 mm -0.024 mm 0.010 mm 0.011 mm
According to Table 9 and Table 10, the following conditional expressions can be obtained:
Fifth optical embodiment (using the main reference wavelength 555 nm) InRS41 InRS42 HVT41 HVT42 ODT% TDT% -0.07431 0.00475 0.00000 0.53450 2.09403 0.84704 ∣f / f1│ ∣f / f2│ ∣f / f3│ ∣f / f4│ ∣f1 / f2│ ∣f2 / f3│ 0.65616 0.07145 2.04129 1.83056 0.10890 28.56826 ΣPPR ΣNPR ΣPPR / │ΣNPR∣ ΣPP ΣNP f1 / ΣPP 2.11274 2.48672 0.84961 -14.05932 1.01785 1.03627 f4 / ΣNP IN12 / f IN23 / f IN34 / f TP3 / f TP4 / f 1.55872 0.10215 0.04697 0.02882 0.33567 0.16952 InTL HOS HOS / HOI InS / HOS InTL / HOS ΣTP / InTL 1.09131 1.64329 1.59853 0.98783 0.66410 0.83025 (TP1 + IN12) / TP2 (TP4 + IN34) / TP3 TP1 / TP2 TP3 / TP4 IN23 / (TP2 + IN23 + TP3) 1.86168 0.59088 1.23615 1.98009 0.08604 │InRS41│ / TP4 │InRS42│ / TP4 HVT42 / HOI HVT42 / HOS 0.4211 0.0269 0.5199 0.3253 PhiA PhiC PhiD TH1 TH2 HOI 1.596 mm 1.996 mm 2.396 mm 0.2 mm 0.2 mm 1.028 mm PhiA / PhiD TH1 + TH2 (TH1 + TH2) / HOI (TH1 + TH2) / HOS 2 (TH1 + TH2) / PhiA 0.7996 0.4 mm 0.3891 0.2434 0.5013 PSTA PLTA NSTA NLTA SSTA SLTA -0.029 mm -0.023 mm -0.011 mm -0.024 mm 0.010 mm 0.011 mm

依據表九及表十可得到下列條件式數値:
第五光學實施例反曲點相關數值 (使用主要參考波長 555 nm) HIF111 0.28454 HIF111/HOI 0.27679 SGI111 0.04361 │SGI111∣/(│SGI111∣+TP1) 0.17184 HIF211 0.04198 HIF211/HOI 0.04083 SGI211 0.00007 │SGI211∣/(│SGI211∣+TP2) 0.00040 HIF212 0.37903 HIF212/HOI 0.36871 SGI212 -0.03682 │SGI212∣/(│SGI212∣+TP2) 0.17801 HIF221 0.25058 HIF221/HOI 0.24376 SGI221 0.00695 ∣SGI221│/(∣SGI221│+TP2) 0.03927 HIF311 0.14881 HIF311/HOI 0.14476 SGI311 -0.00854 │SGI311∣/(│SGI311∣+TP3) 0.02386 HIF312 0.31992 HIF312/HOI 0.31120 SGI312 -0.01783 │SGI312∣/(│SGI312∣+TP3) 0.04855 HIF313 0.32956 HIF313/HOI 0.32058 SGI313 -0.01801 │SGI313∣/(│SGI313∣+TP3) 0.04902 HIF321 0.36943 HIF321/HOI 0.35937 SGI321 -0.14878 ∣SGI321│/(∣SGI321│+TP3) 0.29862 HIF411 0.01147 HIF411/HOI 0.01116 SGI411 -0.00000 │SGI411∣/(│SGI411∣+TP4) 0.00001 HIF412 0.22405 HIF412/HOI 0.21795 SGI412 0.01598 │SGI412∣/(│SGI412∣+TP4) 0.08304 HIF421 0.24105 HIF421/HOI 0.23448 SGI421 0.05924 ∣SGI421│/(∣SGI421│+TP4) 0.25131
According to Table 9 and Table 10, the following conditional expressions can be obtained:
Correlative value of the inflection point of the fifth optical embodiment (using the main reference wavelength of 555 nm) HIF111 0.28454 HIF111 / HOI 0.27679 SGI111 0.04361 │SGI111∣ / (│SGI111∣ + TP1) 0.17184 HIF211 0.04198 HIF211 / HOI 0.04083 SGI211 0.00007 │SGI211∣ / (│SGI211∣ + TP2) 0.00040 HIF212 0.37903 HIF212 / HOI 0.36871 SGI212 -0.03682 │SGI212∣ / (│SGI212∣ + TP2) 0.17801 HIF221 0.25058 HIF221 / HOI 0.24376 SGI221 0.00695 ∣SGI221│ / (∣SGI221│ + TP2) 0.03927 HIF311 0.14881 HIF311 / HOI 0.14476 SGI311 -0.00854 │SGI311∣ / (│SGI311∣ + TP3) 0.02386 HIF312 0.31992 HIF312 / HOI 0.31120 SGI312 -0.01783 │SGI312∣ / (│SGI312∣ + TP3) 0.04855 HIF313 0.32956 HIF313 / HOI 0.32058 SGI313 -0.01801 │SGI313∣ / (│SGI313∣ + TP3) 0.04902 HIF321 0.36943 HIF321 / HOI 0.35937 SGI321 -0.14878 ∣SGI321│ / (∣SGI321│ + TP3) 0.29862 HIF411 0.01147 HIF411 / HOI 0.01116 SGI411 -0.00000 │SGI411∣ / (│SGI411∣ + TP4) 0.00001 HIF412 0.22405 HIF412 / HOI 0.21795 SGI412 0.01598 │SGI412∣ / (│SGI412∣ + TP4) 0.08304 HIF421 0.24105 HIF421 / HOI 0.23448 SGI421 0.05924 ∣SGI421│ / (∣SGI421│ + TP4) 0.25131

依據表九及表十可得到輪廓曲線長度相關之數値:
第五光學實施例 (使用主要參考波長 555 nm) ARE 1/2(HEP) ARE value ARE-1/2(HEP) 2(ARE/HEP) % TP ARE /TP (%) 11 0.368 0.374 0.00578 101.57% 0.210 178.10% 12 0.366 0.368 0.00240 100.66% 0.210 175.11% 21 0.372 0.375 0.00267 100.72% 0.170 220.31% 22 0.372 0.371 -0.00060 99.84% 0.170 218.39% 31 0.372 0.372 -0.00023 99.94% 0.349 106.35% 32 0.372 0.404 0.03219 108.66% 0.349 115.63% 41 0.372 0.373 0.00112 100.30% 0.176 211.35% 42 0.372 0.387 0.01533 104.12% 0.176 219.40% ARS EHD ARS value ARS-EHD (ARS/EHD)% TP ARS / TP (%) 11 0.368 0.374 0.00578 101.57% 0.210 178.10% 12 0.366 0.368 0.00240 100.66% 0.210 175.11% 21 0.387 0.391 0.00383 100.99% 0.170 229.73% 22 0.458 0.460 0.00202 100.44% 0.170 270.73% 31 0.476 0.478 0.00161 100.34% 0.349 136.76% 32 0.494 0.538 0.04435 108.98% 0.349 154.02% 41 0.585 0.624 0.03890 106.65% 0.176 353.34% 42 0.798 0.866 0.06775 108.49% 0.176 490.68%
According to Table 9 and Table 10, we can get the correlation between the length of the contour curve 値:
Fifth optical embodiment (using the main reference wavelength 555 nm) ARE 1/2 (HEP) ARE value ARE-1 / 2 (HEP) 2 (ARE / HEP)% TP ARE / TP (%) 11 0.368 0.374 0.00578 101.57% 0.210 178.10% 12 0.366 0.368 0.00240 100.66% 0.210 175.11% twenty one 0.372 0.375 0.00267 100.72% 0.170 220.31% twenty two 0.372 0.371 -0.00060 99.84% 0.170 218.39% 31 0.372 0.372 -0.00023 99.94% 0.349 106.35% 32 0.372 0.404 0.03219 108.66% 0.349 115.63% 41 0.372 0.373 0.00112 100.30% 0.176 211.35% 42 0.372 0.387 0.01533 104.12% 0.176 219.40% ARS EHD ARS value ARS-EHD (ARS / EHD)% TP ARS / TP (%) 11 0.368 0.374 0.00578 101.57% 0.210 178.10% 12 0.366 0.368 0.00240 100.66% 0.210 175.11% twenty one 0.387 0.391 0.00383 100.99% 0.170 229.73% twenty two 0.458 0.460 0.00202 100.44% 0.170 270.73% 31 0.476 0.478 0.00161 100.34% 0.349 136.76% 32 0.494 0.538 0.04435 108.98% 0.349 154.02% 41 0.585 0.624 0.03890 106.65% 0.176 353.34% 42 0.798 0.866 0.06775 108.49% 0.176 490.68%

第六光學實施例Sixth optical embodiment

請參照第7A圖及第7B圖,其中第7A圖繪示依照本創作第六光學實施例的一種光學成像系統60的透鏡組示意圖,第7B圖由左至右依序為第六光學實施例的光學成像系統60的球差、像散及光學畸變曲線圖。由第7A圖可知,光學成像系統60由物側至像側依序包含第一透鏡610、光圈600、第二透鏡620、第三透鏡630、紅外線濾光片670、成像面680以及影像感測元件690。Please refer to FIG. 7A and FIG. 7B. FIG. 7A shows a schematic diagram of a lens group of an optical imaging system 60 according to the sixth optical embodiment of the present invention. FIG. 7B is a sixth optical embodiment in order from left to right. Spherical aberration, astigmatism, and optical distortion curves of the optical imaging system 60 of FIG. It can be seen from FIG. 7A that the optical imaging system 60 includes a first lens 610, an aperture 600, a second lens 620, a third lens 630, an infrared filter 670, an imaging surface 680, and image sensing in order from the object side to the image side. Element 690.

第一透鏡610具有正屈折力,且為塑膠材質,其物側面612為凸面,其像側面614為凹面,並皆為非球面。The first lens 610 has a positive refractive power and is made of plastic. The object side 612 is convex, the image side 614 is concave, and both are aspheric.

第二透鏡620具有負屈折力,且為塑膠材質,其物側面622為凹面,其像側面624為凸面,並皆為非球面,其像側面624具有一反曲點。The second lens 620 has a negative refractive power and is made of plastic. Its object side 622 is concave, its image side 624 is convex, and both are aspheric. Its image side 624 has a point of inflection.

第三透鏡630具有正屈折力,且為塑膠材質,其物側面632為凸面,其像側面634為凸面,並皆為非球面,且其物側面632具有二反曲點以及像側面634具有一反曲點。The third lens 630 has a positive refractive power and is made of plastic. Its object side 632 is convex, its image side 634 is convex and both are aspheric, and its object side 632 has two inflection points and the image side 634 has a Inflection point.

紅外線濾光片670為玻璃材質,其設置於第三透鏡630及成像面680間且不影響光學成像系統60的焦距。The infrared filter 670 is made of glass and is disposed between the third lens 630 and the imaging surface 680 without affecting the focal length of the optical imaging system 60.

請配合參照下列表十一以及表十二。
表十一 第 六 光 學 實 施 例 透 鏡 數 據 f(焦距)= 2.41135 mm ; f/HEP =2.22 ; HAF(半視角)= 36 deg 表面 曲率半徑 厚度 (mm) 材質 折射率 色散係數 焦距 0 被攝物 1E+18 600 1 第一透鏡 0.840352226 0.468 塑膠 1.535 56.27 2.232 2 2.271975602 0.148 3 光圈 1E+18 0.277 4 第二透鏡 -1.157324239 0.349 塑膠 1.642 22.46 -5.221 5 -1.968404008 0.221 6 第三透鏡 1.151874235 0.559 塑膠 1.544 56.09 7.360 7 1.338105159 0.123 8 紅外線 濾光片 1E+18 0.210 BK7 1.517 64.13 9 1E+18 0.547 10 成像面 1E+18 0.000 參考波長為555 nm; 擋光位置: 第1面其通光半徑0.640 mm
Please refer to Table 11 and Table 12 below.
Table 11 Lens data of the sixth optical embodiment f (focal length) = 2.41135 mm; f / HEP = 2.22; HAF (half angle of view) = 36 deg surface Curvature radius Thickness (mm) Material Refractive index Dispersion coefficient focal length 0 Subject 1E + 18 600 1 First lens 0.840352226 0.468 plastic 1.535 56.27 2.232 2 2.271975602 0.148 3 aperture 1E + 18 0.277 4 Second lens -1.157324239 0.349 plastic 1.642 22.46 -5.221 5 -1.968404008 0.221 6 Third lens 1.151874235 0.559 plastic 1.544 56.09 7.360 7 1.338105159 0.123 8 Infrared filter 1E + 18 0.210 BK7 1.517 64.13 9 1E + 18 0.547 10 Imaging surface 1E + 18 0.000 Reference wavelength is 555 nm; light blocking position: the first side has a clear radius of 0.640 mm

表十二、第六光學實施例之非球面係數
表十二 非球面係數 表面 1 2 4 5 6 7 k = -2.019203E-01 1.528275E+01 3.743939E+00 -1.207814E+01 -1.276860E+01 -3.034004E+00 A4 = 3.944883E-02 -1.670490E-01 -4.266331E-01 -1.696843E+00 -7.396546E-01 -5.308488E-01 A6= 4.774062E-01 3.857435E+00 -1.423859E+00 5.164775E+00 4.449101E-01 4.374142E-01 A8 = -1.528780E+00 -7.091408E+01 4.119587E+01 -1.445541E+01 2.622372E-01 -3.111192E-01 A10= 5.133947E+00 6.365801E+02 -3.456462E+02 2.876958E+01 -2.510946E-01 1.354257E-01 A12 = -6.250496E+00 -3.141002E+03 1.495452E+03 -2.662400E+01 -1.048030E-01 -2.652902E-02 A14= 1.068803E+00 7.962834E+03 -2.747802E+03 1.661634E+01 1.462137E-01 -1.203306E-03 A16 = 7.995491E+00 -8.268637E+03 1.443133E+03 -1.327827E+01 -3.676651E-02 7.805611E-04
Table 12: Aspheric coefficients of the sixth optical embodiment
Table 12 Aspheric coefficients surface 1 2 4 5 6 7 k = -2.019203E-01 1.528275E + 01 3.743939E + 00 -1.207814E + 01 -1.276860E + 01 -3.034004E + 00 A4 = 3.944883E-02 -1.670490E-01 -4.266331E-01 -1.696843E + 00 -7.396546E-01 -5.308488E-01 A6 = 4.774062E-01 3.857435E + 00 -1.423859E + 00 5.164775E + 00 4.449101E-01 4.374142E-01 A8 = -1.528780E + 00 -7.091408E + 01 4.119587E + 01 -1.445541E + 01 2.622372E-01 -3.111192E-01 A10 = 5.133947E + 00 6.365801E + 02 -3.456462E + 02 2.876958E + 01 -2.510946E-01 1.354257E-01 A12 = -6.250496E + 00 -3.141002E + 03 1.495452E + 03 -2.662400E + 01 -1.048030E-01 -2.652902E-02 A14 = 1.068803E + 00 7.962834E + 03 -2.747802E + 03 1.661634E + 01 1.462137E-01 -1.203306E-03 A16 = 7.995491E + 00 -8.268637E + 03 1.443133E + 03 -1.327827E + 01 -3.676651E-02 7.805611E-04

第六光學實施例中,非球面的曲線方程式表示如第一光學實施例的形式。此外,下表參數的定義皆與第一光學實施例相同,在此不加以贅述。In the sixth optical embodiment, the curve equation of the aspherical surface is expressed as the first optical embodiment. In addition, the definitions of the parameters in the following table are the same as those of the first optical embodiment, and will not be repeated here.

依據表十一及表十二可得到下列條件式數値:
第六光學實施例 (使用主要參考波長 555 nm) ∣f/f1│ ∣f/f2│ ∣f/f3│ ∣f1/f2│ ∣f2/f3│ TP1 / TP2 1.08042 0.46186 0.32763 2.33928 1.40968 1.33921 ΣPPR ΣNPR ΣPPR /│ΣNPR∣ IN12 / f IN23 / f TP2 / TP3 1.40805 0.46186 3.04866 0.17636 0.09155 0.62498 TP2 / (IN12+TP2+IN23) (TP1+IN12)/ TP2 (TP3+IN23)/ TP2 0.35102 2.23183 2.23183 HOS InTL HOS / HOI InS/ HOS │ODT│% │TDT│% 2.90175 2.02243 1.61928 0.78770 1.50000 0.71008 HVT21 HVT22 HVT31 HVT32 HVT32/ HOI HVT32/ HOS 0.00000 0.00000 0.46887 0.67544 0.37692 0.23277 PhiA PhiC PhiD TH1 TH2 HOI 2.716 mm 3.116 mm 3.616 mm 0.25 mm 0.2 mm 1.792 mm PhiA / PhiD TH1+TH2 (TH1+TH2) / HOI (TH1+TH2) /HOS 2(TH1+TH2) / PhiA 0.7511 0.45 mm 0.2511 0.1551 0.3314 PLTA PSTA NLTA NSTA SLTA SSTA -0.002 mm 0.008 mm 0.006 mm -0.008 mm -0.007 mm 0.006 mm
According to Table 11 and Table 12, the following conditional expressions can be obtained:
Sixth optical embodiment (using the main reference wavelength of 555 nm) ∣f / f1│ ∣f / f2│ ∣f / f3│ ∣f1 / f2│ ∣f2 / f3│ TP1 / TP2 1.08042 0.46186 0.32763 2.33928 1.40968 1.33921 ΣPPR ΣNPR ΣPPR / │ΣNPR∣ IN12 / f IN23 / f TP2 / TP3 1.40805 0.46186 3.04866 0.17636 0.09155 0.62498 TP2 / (IN12 + TP2 + IN23) (TP1 + IN12) / TP2 (TP3 + IN23) / TP2 0.35102 2.23183 2.23183 HOS InTL HOS / HOI InS / HOS │ODT│% │TDT│% 2.90175 2.02243 1.61928 0.78770 1.50000 0.71008 HVT21 HVT22 HVT31 HVT32 HVT32 / HOI HVT32 / HOS 0.00000 0.00000 0.46887 0.67544 0.37692 0.23277 PhiA PhiC PhiD TH1 TH2 HOI 2.716 mm 3.116 mm 3.616 mm 0.25 mm 0.2 mm 1.792 mm PhiA / PhiD TH1 + TH2 (TH1 + TH2) / HOI (TH1 + TH2) / HOS 2 (TH1 + TH2) / PhiA 0.7511 0.45 mm 0.2511 0.1551 0.3314 PLTA PSTA NLTA NSTA SLTA SSTA -0.002 mm 0.008 mm 0.006 mm -0.008 mm -0.007 mm 0.006 mm

依據表十一及表十二可得到下列條件式數値:
第六光學實施例反曲點相關數值 (使用主要參考波長 555 nm) HIF221 0.5599 HIF221/HOI 0.3125 SGI221 -0.1487 ∣SGI221│/(∣SGI221│+TP2) 0.2412 HIF311 0.2405 HIF311/HOI 0.1342 SGI311 0.0201 │SGI311∣/(│SGI311∣+TP3) 0.0413 HIF312 0.8255 HIF312/HOI 0.4607 SGI312 -0.0234 │SGI312∣/(│SGI312∣+TP3) 0.0476 HIF321 0.3505 HIF321/HOI 0.1956 SGI321 0.0371 ∣SGI321│/(∣SGI321│+TP3) 0.0735
According to Table 11 and Table 12, the following conditional expressions can be obtained:
Values of the inflection point of the sixth optical embodiment (using the main reference wavelength of 555 nm) HIF221 0.5599 HIF221 / HOI 0.3125 SGI221 -0.1487 ∣SGI221│ / (∣SGI221│ + TP2) 0.2412 HIF311 0.2405 HIF311 / HOI 0.1342 SGI311 0.0201 │SGI311∣ / (│SGI311∣ + TP3) 0.0413 HIF312 0.8255 HIF312 / HOI 0.4607 SGI312 -0.0234 │SGI312∣ / (│SGI312∣ + TP3) 0.0476 HIF321 0.3505 HIF321 / HOI 0.1956 SGI321 0.0371 ∣SGI321│ / (∣SGI321│ + TP3) 0.0735

依據表十一及表十二可得到輪廓曲線長度相關之數値:
第六光學實施例 (使用主要參考波長 555 nm) ARE 1/2(HEP) ARE value ARE-1/2(HEP) 2(ARE/HEP) % TP ARE /TP (%) 11 0.546 0.598 0.052 109.49% 0.468 127.80% 12 0.500 0.506 0.005 101.06% 0.468 108.03% 21 0.492 0.528 0.036 107.37% 0.349 151.10% 22 0.546 0.572 0.026 104.78% 0.349 163.78% 31 0.546 0.548 0.002 100.36% 0.559 98.04% 32 0.546 0.550 0.004 100.80% 0.559 98.47% ARS EHD ARS value ARS-EHD (ARS/EHD)% TP ARS / TP (%) 11 0.640 0.739 0.099 115.54% 0.468 158.03% 12 0.500 0.506 0.005 101.06% 0.468 108.03% 21 0.492 0.528 0.036 107.37% 0.349 151.10% 22 0.706 0.750 0.044 106.28% 0.349 214.72% 31 1.118 1.135 0.017 101.49% 0.559 203.04% 32 1.358 1.489 0.131 109.69% 0.559 266.34%
According to Table 11 and Table 12, the number of contour curve lengths can be obtained:
Sixth optical embodiment (using the main reference wavelength of 555 nm) ARE 1/2 (HEP) ARE value ARE-1 / 2 (HEP) 2 (ARE / HEP)% TP ARE / TP (%) 11 0.546 0.598 0.052 109.49% 0.468 127.80% 12 0.500 0.506 0.005 101.06% 0.468 108.03% twenty one 0.492 0.528 0.036 107.37% 0.349 151.10% twenty two 0.546 0.572 0.026 104.78% 0.349 163.78% 31 0.546 0.548 0.002 100.36% 0.559 98.04% 32 0.546 0.550 0.004 100.80% 0.559 98.47% ARS EHD ARS value ARS-EHD (ARS / EHD)% TP ARS / TP (%) 11 0.640 0.739 0.099 115.54% 0.468 158.03% 12 0.500 0.506 0.005 101.06% 0.468 108.03% twenty one 0.492 0.528 0.036 107.37% 0.349 151.10% twenty two 0.706 0.750 0.044 106.28% 0.349 214.72% 31 1.118 1.135 0.017 101.49% 0.559 203.04% 32 1.358 1.489 0.131 109.69% 0.559 266.34%

本創作之光學成像系統可為電子可攜式裝置、電子穿戴式裝置、電子監視裝置、電子資訊裝置、電子通訊裝置、機器視覺裝置以及車用電子裝置所構成群組之一,並且視需求可藉由不同片數之透鏡組達到降低所需機構空間以及提高螢幕可視區域。The optical imaging system of this creation can be one of the groups consisting of electronic portable devices, electronic wearable devices, electronic surveillance devices, electronic information devices, electronic communication devices, machine vision devices, and automotive electronic devices. Through the use of different lens groups, the required mechanism space is reduced and the screen visible area is improved.

雖然本創作已以實施方式揭露如上,然其並非用以限定本創作,任何熟習此技藝者,在不脫離本創作的精神和範圍內,當可作各種的更動與潤飾,因此本創作的保護範圍當視後附的申請專利範圍所界定者為準。Although this creation has been disclosed as above in implementation, it is not intended to limit this creation. Any person skilled in this art can make various modifications and retouches without departing from the spirit and scope of this creation, so the protection of this creation The scope shall be determined by the scope of the attached patent application.

雖然本創作已參照其例示性實施例而特別地顯示及描述,將為所屬技術領域具通常知識者所理解的是,於不脫離以下申請專利範圍及其等效物所定義之本創作之精神與範疇下可對其進行形式與細節上之各種變更。Although this creation has been particularly shown and described with reference to its illustrative embodiments, it will be understood by those having ordinary knowledge in the technical field that the spirit of this creation as defined by the scope of the following patent applications and their equivalents will be understood Various changes in form and detail can be made under the categories.

[本創作][This creation]

10、20、30、40、50、60‧‧‧光學成像系統10, 20, 30, 40, 50, 60‧‧‧ optical imaging system

100、200、300、400、500、600‧‧‧光圈100, 200, 300, 400, 500, 600‧‧‧ aperture

110、210、310、410、510、610‧‧‧第一透鏡110, 210, 310, 410, 510, 610‧‧‧ first lens

112、212、312、412、512、612‧‧‧物側面112, 212, 312, 412, 512, 612

114、214、314、414、514、614‧‧‧像側面114, 214, 314, 414, 514, 614‧‧‧ like side

120、220、320、420、520、620‧‧‧第二透鏡120, 220, 320, 420, 520, 620‧‧‧ second lens

122、222、322、422、522、622‧‧‧物側面122, 222, 322, 422, 522, 622

124、224、324、424、524、624‧‧‧像側面124, 224, 324, 424, 524, 624‧‧‧ like side

130、230、330、430、530、630‧‧‧第三透鏡130, 230, 330, 430, 530, 630‧‧‧ third lens

132、232、332、432、532、632‧‧‧物側面132, 232, 332, 432, 532, 632

134、234、334、434、534、634‧‧‧像側面134, 234, 334, 434, 534, 634 ‧ ‧ like side

140、240、340、440、540‧‧‧第四透鏡140, 240, 340, 440, 540‧‧‧ Fourth lens

142、242、342、442、542‧‧‧物側面142, 242, 342, 442, 542

144、244、344、444、544‧‧‧像側面144, 244, 344, 444, 544‧‧‧ like side

150、250、350、450‧‧‧第五透鏡150, 250, 350, 450‧‧‧ fifth lens

152、252、352、452‧‧‧物側面152, 252, 352, 452‧‧‧

154、254、354、454‧‧‧像側面154, 254, 354, 454‧‧‧ like side

160、260、360‧‧‧第六透鏡160, 260, 360‧‧‧ Sixth lens

162、262、362‧‧‧物側面162, 262, 362‧‧‧ side

164、264、364‧‧‧像側面164, 264, 364‧‧‧ like side

270‧‧‧第七透鏡270‧‧‧Seventh lens

272‧‧‧物側面272‧‧‧side

274‧‧‧像側面274‧‧‧Side profile

180、280、380、470、570、670‧‧‧紅外線濾光片180, 280, 380, 470, 570, 670‧‧‧ infrared filters

190、290、390、480、580、680‧‧‧成像面190, 290, 390, 480, 580, 680‧‧‧ imaging surface

192、292、392、490、590、690‧‧‧影像感測元件192, 292, 392, 490, 590, 690‧‧‧ image sensor

0100‧‧‧車用電子後視鏡0100‧‧‧Electronic rearview mirror

0110‧‧‧殼體0110‧‧‧shell

0112‧‧‧眩光感測器0112‧‧‧ Glare sensor

0114‧‧‧框膠0114‧‧‧Frame glue

0120‧‧‧第一透光組件0120‧‧‧The first light transmitting component

0122‧‧‧第一收光面0122‧‧‧First Glossy Side

0124‧‧‧第一出光面0124‧‧‧First light surface

0130‧‧‧第二透光組件0130‧‧‧Second light transmitting component

0132‧‧‧第二收光面0132‧‧‧Second glossy surface

0134‧‧‧第二出光面0134‧‧‧Second light emitting surface

0140‧‧‧電光介質層0140‧‧‧Electro-optic dielectric layer

0150‧‧‧透光電極0150‧‧‧Transparent electrode

0160‧‧‧透明導電層0160‧‧‧Transparent conductive layer

0170‧‧‧電性連接件0170‧‧‧electrical connector

0180‧‧‧控制元件0180‧‧‧Control element

0190‧‧‧反射層0190‧‧‧Reflective layer

本創作上述及其他特徵將藉由參照附圖詳細說明。
第1A圖係繪示本創作第一結構實施例的立體示意圖;
第1B圖係繪示本創作第一結構實施例的短邊側剖面示意圖;
第1C圖係繪示本創作第二結構實施例的立體示意圖;
第1D圖係繪示本創作第二結構實施例的短邊側剖面示意圖;
第1E圖係繪示本創作第三結構實施例的立體示意圖;
第1F圖係繪示本創作第三結構實施例的短邊側剖面示意圖;
第1G圖係繪示本創作第四結構實施例的立體示意圖;
第1H圖係繪示本創作第四結構實施例的短邊側剖面示意圖;
第2A圖係繪示本創作第一光學實施例的示意圖;
第2B圖由左至右依序繪示本創作第一光學實施例的球差、像散以及光學畸變之曲線圖;
第3A圖係繪示本創作第二光學實施例的示意圖;
第3B圖由左至右依序繪示本創作第二光學實施例的球差、像散以及光學畸變之曲線圖;
第4A圖係繪示本創作第三光學實施例的示意圖;
第4B圖由左至右依序繪示本創作第三光學實施例的球差、像散以及光學畸變之曲線圖;
第5A圖係繪示本創作第四光學實施例的示意圖;
第5B圖由左至右依序繪示本創作第四光學實施例的球差、像散以及光學畸變之曲線圖;
第6A圖係繪示本創作第五光學實施例的示意圖;
第6B圖由左至右依序繪示本創作第五光學實施例的球差、像散以及光學畸變之曲線圖。
第7A圖係繪示本創作第六光學實施例的示意圖;
第7B圖由左至右依序繪示本創作第六光學實施例的球差、像散以及光學畸變之曲線圖。
The above and other features of this creation will be explained in detail by referring to the drawings.
Figure 1A is a schematic perspective view showing a first structural embodiment of the present invention;
FIG. 1B is a schematic diagram of a short side profile of the first structural embodiment of the present invention; FIG.
Figure 1C is a schematic perspective view showing a second structural embodiment of the present invention;
FIG. 1D is a schematic diagram of a short side profile of a second structural embodiment of the present invention;
Figure 1E is a schematic perspective view showing a third structural embodiment of the present invention;
FIG. 1F is a schematic diagram of a short side profile of a third structural embodiment of the present invention;
Figure 1G is a schematic perspective view showing a fourth structural embodiment of the present invention;
FIG. 1H is a schematic diagram of a short side profile of a fourth structural embodiment of the present invention;
FIG. 2A is a schematic diagram showing a first optical embodiment of the present invention;
FIG. 2B shows the spherical aberration, astigmatism, and optical distortion curves of the first optical embodiment of this creation in order from left to right;
FIG. 3A is a schematic diagram showing a second optical embodiment of the present invention;
FIG. 3B shows the spherical aberration, astigmatism, and optical distortion curves of the second optical embodiment of this creation in order from left to right;
FIG. 4A is a schematic diagram showing a third optical embodiment of the present invention;
FIG. 4B sequentially shows the spherical aberration, astigmatism, and optical distortion curves of the third optical embodiment of this creation from left to right;
FIG. 5A is a schematic diagram showing a fourth optical embodiment of the present invention; FIG.
FIG. 5B shows the spherical aberration, astigmatism, and optical distortion curves of the fourth optical embodiment of this creation in order from left to right;
FIG. 6A is a schematic diagram showing a fifth optical embodiment of the present invention;
FIG. 6B illustrates the spherical aberration, astigmatism, and optical distortion curves of the fifth optical embodiment of the present invention in order from left to right.
FIG. 7A is a schematic diagram showing a sixth optical embodiment of the present invention;
FIG. 7B sequentially shows the spherical aberration, astigmatism, and optical distortion curves of the sixth optical embodiment of the present invention from left to right.

Claims (35)

一種行動載具輔助系統,係包含:
一第一透光組件,係包含:
一第一收光面;及
一第一出光面,一影像係由該第一收光面入射至該第一透光組件,並由該第一出光面出射;
一第二透光組件,係設置於該第一出光面上,並與該第一透光組件形成一間隙,並包含:
一第二收光面;及
一第二出光面,該影像係由該第一出光面出射至該第二透光組件,並由該第二出光面出射;
一電光介質層,係設置於該第一透光組件之該第一出光面及該第二透光組件之該第二收光面所形成之該間隙之間;
至少一透光電極,配置於該第一透光組件以及該電光介質層之間;
至少一反射層,其中該電光介質層配置於該第一透光組件以及該反射層之間;
至少一透明導電層,配置於該電光介質層以及該反射層之間;
至少一電性連接件,係與該電光介質層相連接,並傳輸一電能至該電光介質層,改變該電光介質層之一透明度;以及
至少一控制元件,係與該電性連接件相連接,當超過一亮度之光線產生於該影像時,該控制元件係控制該電性連接件對該電光介質層提供該電能。
A mobile vehicle assistance system includes:
A first light-transmitting component includes:
A first light-receiving surface; and a first light-emitting surface, an image is incident from the first light-receiving surface to the first light-transmitting component, and is emitted from the first light-emitting surface;
A second light-transmitting component is disposed on the first light-emitting surface, forms a gap with the first light-transmitting component, and includes:
A second light-receiving surface; and a second light-emitting surface, the image is emitted from the first light-emitting surface to the second light-transmitting component, and is emitted from the second light-emitting surface;
An electro-optic dielectric layer is disposed between the first light emitting surface of the first light transmitting component and the gap formed by the second light receiving surface of the second light transmitting component;
At least one light-transmitting electrode disposed between the first light-transmitting component and the electro-optic dielectric layer;
At least one reflective layer, wherein the electro-optic dielectric layer is disposed between the first light-transmitting component and the reflective layer;
At least one transparent conductive layer is disposed between the electro-optic dielectric layer and the reflective layer;
At least one electrical connector is connected to the electro-optic dielectric layer and transmits an electric energy to the electro-optic dielectric layer to change a transparency of the electro-optic dielectric layer; and at least one control element is connected to the electrical connector. When light exceeding a brightness is generated in the image, the control element controls the electrical connector to provide the electric energy to the electro-optic dielectric layer.
如請求項1所述之行動載具輔助系統,其中該行動載具輔助系統是一車用電子後視鏡。The mobile vehicle assistance system according to claim 1, wherein the mobile vehicle assistance system is an electronic rearview mirror for a vehicle. 如請求項1所述之行動載具輔助系統,其中該電光介質層係選自電致變色(electrochromic)層、聚合物分散液晶(polymer dispersed liquid crystal,PDLC)層或懸浮顆粒裝置(suspended particle device,SPD)層之任一者。The mobile vehicle assistance system according to claim 1, wherein the electro-optic dielectric layer is selected from an electrochromic layer, a polymer dispersed liquid crystal (PDLC) layer, or a suspended particle device , SPD). 如請求項1所述之行動載具輔助系統,其中該反射層包含選自於銀、銅、鋁、鉻、鈦、鉬所構成材料群組之至少一種材料或其合金,或包含二氧化矽或透明導電材料。The mobile vehicle assistance system according to claim 1, wherein the reflective layer includes at least one material or an alloy selected from the group consisting of silver, copper, aluminum, chromium, titanium, and molybdenum, or includes silicon dioxide Or transparent conductive material. 如請求項1所述之行動載具輔助系統,其中該透明導電層包含選自於氧化銦錫、氟摻雜氧化錫所構成材料群組之至少一種材料。The mobile vehicle assistance system according to claim 1, wherein the transparent conductive layer includes at least one material selected from the group consisting of indium tin oxide and fluorine-doped tin oxide. 如請求項1所述之行動載具輔助系統,其中該第一透光組件,係以一光學膠黏合於該第二收光面上,且該光學膠係形成之一光學膠層。The mobile vehicle assistance system according to claim 1, wherein the first light-transmitting component is adhered to the second light-receiving surface with an optical adhesive, and the optical adhesive system forms an optical adhesive layer. 如請求項1所述之行動載具輔助系統,其中更包含至少一顯示裝置,其係可呈現至少一環境影像訊號,並包含:
一第三透光組件,係設置於該第二收光面上,包含:
一第三收光面;及
一第三出光面,該影像係由該第三收光面入射至該第三透光組件,並由該第三出光面出射至該第二收光面。
The mobile vehicle assistance system according to claim 1, further comprising at least one display device capable of presenting at least one environmental image signal and including:
A third light-transmitting component is disposed on the second light-receiving surface and includes:
A third light-receiving surface; and a third light-emitting surface, the image is incident from the third light-receiving surface to the third light-transmitting component, and is emitted from the third light-receiving surface to the second light-receiving surface.
如請求項7所述之行動載具輔助系統,其中更包含至少一光學成像系統,其可擷取該環境影像訊號並投射該環境影像訊號至該顯示裝置。The mobile vehicle assistance system according to claim 7, further comprising at least one optical imaging system that can capture the environmental image signal and project the environmental image signal to the display device. 如請求項8所述之行動載具輔助系統,其中該光學成像系統具有至少一透鏡組,該透鏡組包含有至少二片具有屈光力之透鏡;此外,該透鏡組更滿足下列條件:
1.0≦f/HEP≦10.0;
0 deg<HAF≦150 deg;及
0.9≦2(ARE/HEP)≦2.0
其中,f為該透鏡組的焦距;HEP為該透鏡組之入射瞳直徑;HAF為該透鏡組之最大可視角度的一半; ARE係以該透鏡組中任一透鏡之任一透鏡表面與光軸的交點為起點,並以距離光軸1/2入射瞳直徑之垂直高度處的位置為終點,延著該透鏡表面的輪廓所得之輪廓曲線長度。
The mobile vehicle assistance system according to claim 8, wherein the optical imaging system has at least one lens group, and the lens group includes at least two lenses having refractive power. In addition, the lens group further satisfies the following conditions:
1.0 ≦ f / HEP ≦ 10.0;
0 deg < HAF ≦ 150 deg; and
0.9 ≦ 2 (ARE / HEP) ≦ 2.0
Among them, f is the focal length of the lens group; HEP is the entrance pupil diameter of the lens group; HAF is half of the maximum viewing angle of the lens group; ARE refers to any lens surface and optical axis of any lens in the lens group The length of the contour curve obtained by extending the contour of the lens surface from the intersection point of the starting point and the position at the vertical height of 1/2 of the entrance pupil diameter from the optical axis as the end point.
如請求項9所述之行動載具輔助系統,其中該透鏡組更滿足下列條件:
0.9≦ARS/EHD≦2.0;其中,ARS係以該透鏡組中任一透鏡之任一透鏡表面與光軸的交點為起點,並以該透鏡表面之最大有效半徑處為終點,延著該透鏡表面的輪廓所得之輪廓曲線長度;EHD為該透鏡組中任一透鏡之任一表面的最大有效半徑。
The mobile vehicle assistance system according to claim 9, wherein the lens group further satisfies the following conditions:
0.9 ≦ ARS / EHD ≦ 2.0; where ARS starts from the intersection of any lens surface of any lens in the lens group with the optical axis, and ends at the maximum effective radius of the lens surface, extending the lens The length of the contour curve obtained from the contour of the surface; EHD is the maximum effective radius of any surface of any lens in the lens group.
如請求項9所述之行動載具輔助系統,其中該透鏡組更滿足下列條件:
PLTA≦100 µm;PSTA≦100 µm;NLTA≦100 µm;
NSTA≦100 µm;SLTA≦100 µm;SSTA≦100 µm;以及│TDT│< 250 %;
其中,先定義HOI為該成像面上垂直於光軸之最大成像高度;PLTA為該光學成像系統的正向子午面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差;PSTA為該光學成像系統的正向子午面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差;NLTA為該光學成像系統的負向子午面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差;NSTA為該光學成像系統的負向子午面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差;SLTA為該光學成像系統的弧矢面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差;SSTA為該光學成像系統的弧矢面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差;TDT為該光學成像系統於結像時之TV畸變。
The mobile vehicle assistance system according to claim 9, wherein the lens group further satisfies the following conditions:
PLTA ≦ 100 μm; PSTA ≦ 100 μm; NLTA ≦ 100 μm;
NSTA ≦ 100 μm; SLTA ≦ 100 μm; SSTA ≦ 100 μm; and │TDT│ < 250%;
Among them, first define HOI as the maximum imaging height perpendicular to the optical axis on the imaging surface; PLTA is the longest working wavelength of the visible light of the positive meridional fan of the optical imaging system passes through the edge of the entrance pupil and is incident on the imaging surface 0.7 Horizontal aberration at HOI; PSTA is the shortest working wavelength of the visible light of the positive meridional fan of the optical imaging system that passes through the edge of the entrance pupil and is incident on the imaging surface at 0.7 HOI; NLTA is the optical imaging The longest working wavelength of the visible light of the negative meridional fan of the system passes through the edge of the entrance pupil and enters the lateral aberration at 0.7HOI on the imaging surface; NSTA is the shortest visible light of the negative meridional fan of the optical imaging system The lateral aberration of the wavelength passing through the edge of the entrance pupil and incident on the imaging plane at 0.7HOI; SLTA is the longest working wavelength of the visible light of the sagittal plane fan of the optical imaging system passes through the entrance pupil edge and incident on the imaging plane 0.7 Horizontal aberration at HOI; SSTA is the shortest working wavelength of the visible light of the sagittal plane fan of the optical imaging system passes through the edge of the entrance pupil and is incident on the imaging plane. .7 lateral aberrations at HOI; TDT is the TV distortion of the optical imaging system at the time of image formation.
如請求項9所述之行動載具輔助系統,其中該透鏡組包含四片具有屈折力之透鏡,由物側至像側依序為一第一透鏡、一第二透鏡、一第三透鏡以及一第四透鏡,且該透鏡組滿足下列條件:
0.1≦InTL/HOS≦0.95;其中,HOS為該第一透鏡之物側面至該成像面於光軸上之距離;InTL為該第一透鏡之物側面至該第四透鏡之像側面於光軸上之距離。
The mobile vehicle assistance system according to claim 9, wherein the lens group includes four lenses having refractive power, and a first lens, a second lens, a third lens, and A fourth lens, and the lens group satisfies the following conditions:
0.1 ≦ InTL / HOS ≦ 0.95; where HOS is the distance from the object side of the first lens to the imaging surface on the optical axis; InTL is the object side of the first lens to the image side of the fourth lens on the optical axis On the distance.
如請求項9所述之行動載具輔助系統,其中該透鏡組包含五片具有屈折力之透鏡,由物側至像側依序為一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡以及一第五透鏡,且該透鏡組滿足下列條件:
0.1≦InTL/HOS≦0.95;其中,HOS為該該第一透鏡之物側面至該成像面於光軸上之距離;InTL為該第一透鏡之物側面至該第五透鏡之像側面於光軸上之距離。
The mobile vehicle assistance system according to claim 9, wherein the lens group includes five lenses having refractive power, and sequentially from the object side to the image side are a first lens, a second lens, a third lens, A fourth lens and a fifth lens, and the lens group satisfies the following conditions:
0.1 ≦ InTL / HOS ≦ 0.95; where HOS is the distance from the object side of the first lens to the imaging plane on the optical axis; InTL is the object side of the first lens to the image side of the fifth lens in light Distance on the axis.
如請求項9所述之行動載具輔助系統,其中該透鏡組包含六片具有屈折力之透鏡,由物側至像側依序為一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡以及一第六透鏡,且該透鏡組滿足下列條件:
0.1≦InTL/HOS≦0.95;其中,HOS為該該第一透鏡之物側面至該成像面於光軸上之距離;InTL為該第一透鏡之物側面至該第六透鏡之像側面於光軸上之距離。
The mobile vehicle assistance system according to claim 9, wherein the lens group includes six lenses having refractive power, and sequentially from the object side to the image side are a first lens, a second lens, a third lens, A fourth lens, a fifth lens, and a sixth lens, and the lens group satisfies the following conditions:
0.1 ≦ InTL / HOS ≦ 0.95; where HOS is the distance from the object side of the first lens to the imaging surface on the optical axis; InTL is the object side of the first lens to the image side of the sixth lens in light Distance on the axis.
如請求項9所述之行動載具輔助系統,其中該透鏡組包含七片具有屈折力之透鏡,由物側至像側依序為一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡、一第六透鏡以及一第七透鏡,且該透鏡組滿足下列條件:
0.1≦InTL/HOS≦0.95;其中,HOS為該該第一透鏡之物側面至該成像面於光軸上之距離;InTL為該第一透鏡之物側面至該第七透鏡之像側面於光軸上之距離。
The mobile vehicle assistance system according to claim 9, wherein the lens group includes seven lenses having refractive power, and sequentially from the object side to the image side are a first lens, a second lens, a third lens, A fourth lens, a fifth lens, a sixth lens, and a seventh lens, and the lens group satisfies the following conditions:
0.1 ≦ InTL / HOS ≦ 0.95; where HOS is the distance from the object side of the first lens to the imaging surface on the optical axis; InTL is the object side of the first lens to the image side of the seventh lens in light Distance on the axis.
如請求項7所述之行動載具輔助系統,其中該顯示裝置係包含LCD、LED、OLED、電漿或數位投影元件及液晶顯示模組中的一項或數項。The mobile vehicle assistance system according to claim 7, wherein the display device includes one or more of LCD, LED, OLED, plasma or digital projection elements, and a liquid crystal display module. 如請求項1所述之行動載具輔助系統,其中該電性連接件係包含軟性電路板、銅箔、電線中的一項或數項。The mobile vehicle assistance system according to claim 1, wherein the electrical connector includes one or more of a flexible circuit board, a copper foil, and a wire. 如請求項7所述之行動載具輔助系統,其中該行動載具輔助系統設置於一行動載具,該行動載具輔助系統更包含一感光元件,係與該控制元件電性連接,係感測該行動載具內部之一環境亮度,該控制元件係依據該環境亮度控制該顯示裝置之亮度。The mobile vehicle assistance system according to claim 7, wherein the mobile vehicle assistance system is disposed on a mobile vehicle, and the mobile vehicle assistance system further includes a photosensitive element, which is electrically connected to the control element, An ambient brightness inside the mobile vehicle is measured, and the control element controls the brightness of the display device according to the ambient brightness. 如請求項18所述之行動載具輔助系統,其中當該環境亮度下降時,該影像之亮度下降,當該環境亮度上升時,該影像之亮度上升。The mobile vehicle assistance system according to claim 18, wherein when the ambient brightness decreases, the brightness of the image decreases, and when the ambient brightness increases, the brightness of the image increases. 一種行動載具輔助系統,係包含:
一第一透光組件,係包含:
一第一收光面;及
一第一出光面,一影像係由該第一收光面入射至該第一透光組件,並由該第一出光面出射;
一第二透光組件,係設置於該第一出光面上,並與該第一透光組件形成一間隙,並包含:
一第二收光面;及
一第二出光面,該影像係由該第一出光面出射至該第二透光組件,並由該第二出光面出射;
一電光介質層,係設置於該第一透光組件之該第一出光面及該第二透光組件之該第二收光面所形成之該間隙之間;
至少一透光電極,配置於該第一透光組件以及該電光介質層之間;
至少一反射層,其中該電光介質層配置於該第一透光組件以及該反射層之間;
至少一透明導電層,配置於該電光介質層以及該反射層之間;
至少一電性連接件,係與該電光介質層相連接,並傳輸一電能至該電光介質層,改變該電光介質層之一透明度;
至少一控制元件,係與該電性連接件相連接,當超過一亮度之光線產生於該影像時,該控制元件係控制該電性連接件對該電光介質層提供該電能;
至少一顯示裝置,其係可呈現至少一環境影像訊號;以及
至少一光學成像系統,其可擷取該環境影像訊號並投射該環境影像訊號至該顯示裝置,該光學成像系統具有至少一透鏡組,該透鏡組包含有至少二片具有屈光力之透鏡;此外,該透鏡組更滿足下列條件:
1.0≦f/HEP≦10.0;
0 deg<HAF≦150 deg;及
0.9≦2(ARE/HEP)≦2.0
其中,f為該透鏡組的焦距;HEP為該透鏡組之入射瞳直徑;HAF為該透鏡組之最大可視角度的一半; ARE係以該透鏡組中任一透鏡之任一透鏡表面與光軸的交點為起點,並以距離光軸1/2入射瞳直徑之垂直高度處的位置為終點,延著該透鏡表面的輪廓所得之輪廓曲線長度。
A mobile vehicle assistance system includes:
A first light-transmitting component includes:
A first light-receiving surface; and a first light-emitting surface, an image is incident from the first light-receiving surface to the first light-transmitting component, and is emitted from the first light-emitting surface;
A second light-transmitting component is disposed on the first light-emitting surface, forms a gap with the first light-transmitting component, and includes:
A second light-receiving surface; and a second light-emitting surface, the image is emitted from the first light-emitting surface to the second light-transmitting component, and is emitted from the second light-emitting surface;
An electro-optic dielectric layer is disposed between the first light emitting surface of the first light transmitting component and the gap formed by the second light receiving surface of the second light transmitting component;
At least one light-transmitting electrode disposed between the first light-transmitting component and the electro-optic dielectric layer;
At least one reflective layer, wherein the electro-optic dielectric layer is disposed between the first light-transmitting component and the reflective layer;
At least one transparent conductive layer is disposed between the electro-optic dielectric layer and the reflective layer;
At least one electrical connector is connected to the electro-optic dielectric layer and transmits an electric energy to the electro-optic dielectric layer to change the transparency of one of the electro-optic dielectric layers;
At least one control element is connected to the electrical connection element, and when light exceeding a brightness is generated in the image, the control element controls the electrical connection element to provide the electrical energy to the electro-optic layer;
At least one display device capable of presenting at least one environmental image signal; and at least one optical imaging system capable of capturing the environmental image signal and projecting the environmental image signal to the display device, the optical imaging system having at least one lens group The lens group includes at least two lenses having refractive power. In addition, the lens group further meets the following conditions:
1.0 ≦ f / HEP ≦ 10.0;
0 deg < HAF ≦ 150 deg; and
0.9 ≦ 2 (ARE / HEP) ≦ 2.0
Among them, f is the focal length of the lens group; HEP is the entrance pupil diameter of the lens group; HAF is half of the maximum viewing angle of the lens group; ARE refers to any lens surface and optical axis of any lens in the lens group The length of the contour curve obtained by extending the contour of the lens surface from the intersection point of the starting point and the position at the vertical height of 1/2 of the entrance pupil diameter from the optical axis as the end point.
如請求項20所述之行動載具輔助系統,其中該行動載具輔助系統是一車用電子後視鏡。The mobile vehicle assistance system according to claim 20, wherein the mobile vehicle assistance system is an electronic rearview mirror for a vehicle. 如請求項20所述之行動載具輔助系統,其中該顯示裝置之最低亮度大於1000尼特(nts)並且可呈現高動態範圍(HDR)之影像。The mobile vehicle assistance system according to claim 20, wherein the minimum brightness of the display device is greater than 1000 nits (nts) and can display a high dynamic range (HDR) image. 如請求項20所述之行動載具輔助系統,其中更包括一訊號輸入裝置,該訊號輸入裝置與該顯示裝置電性耦合,並且可將非來自該光學成像系統的一異質訊號傳送至顯示裝置以數值或是圖形化方式呈現。The mobile vehicle assistance system according to claim 20, further comprising a signal input device, the signal input device is electrically coupled to the display device, and can transmit a heterogeneous signal not from the optical imaging system to the display device. Present numerically or graphically. 如請求項23所述之行動載具輔助系統,其中該訊號輸入裝置係一胎壓感測器。The mobile vehicle assistance system according to claim 23, wherein the signal input device is a tire pressure sensor. 如請求項20所述之行動載具輔助系統,其中該行動載具輔助系統設置於一行動載具,該行動載具為一車輛,該行動載具輔助系統更包括複數個光學成像系統,各該複數個光學成像系統可分別設置於車輛左右後視鏡、車內前擋風玻璃後方、車內後擋風玻璃前方或是車輛前後保險桿處,前述各該複數個光學成像系統所擷取的個別外部影像訊號均可傳送至顯示裝置並且可選擇以非疊合方式或影像拼接方式同時呈現給駕駛者不同視角行駛資訊。The mobile vehicle assistance system according to claim 20, wherein the mobile vehicle assistance system is disposed on a mobile vehicle, the mobile vehicle is a vehicle, and the mobile vehicle assistance system further includes a plurality of optical imaging systems, each The plurality of optical imaging systems can be respectively disposed on the left and right rearview mirrors of the vehicle, behind the front windshield of the vehicle, in front of the rear windshield of the vehicle, or at the front and rear bumpers of the vehicle. Individual external image signals can be transmitted to the display device and can be presented to the driver at different angles in non-overlapping mode or image stitching mode. 如請求項20所述之行動載具輔助系統,其中包含至少一移動偵測器以及複數個光學成像系統,各該複數個光學成像系統可分別設置於車輛左右後視鏡、車內前擋風玻璃後方、車內後擋風玻璃前方或是車輛前後保險桿處,當車輛處於關閉動力系統且停止行駛之狀態,該移動偵測器即啟動持續偵測車輛本身是否遭到碰撞或震動,若遭到碰撞或震動,則該移動偵測器將啟動複數個光學成像系統即時進行錄影。The mobile vehicle assistance system according to claim 20, which includes at least one motion detector and a plurality of optical imaging systems, and each of the plurality of optical imaging systems can be respectively installed on the left and right rearview mirrors of the vehicle, and the front windshield of the vehicle. Behind the glass, in front of the rear windshield of the car, or at the front and rear bumpers of the vehicle, when the vehicle is powered off and stopped, the motion detector starts to continuously detect whether the vehicle itself has been impacted or vibrated. In the event of a collision or vibration, the motion detector will activate multiple optical imaging systems to record immediately. 如請求項20所述之行動載具輔助系統,其中更包含一切換控制器以及二個光學成像系統,該行動載具輔助系統設置於一行動載具,其中一光學成像系統設置於該行動載具之前方,另一個光學成像系統設置於後方,當該行動載具處於倒退方向行駛時,可經由該切換控制器令顯示裝置呈現後方影像並即時進行錄影。The mobile vehicle assistance system according to claim 20, further comprising a switching controller and two optical imaging systems. The mobile vehicle assistance system is provided on a mobile vehicle, and an optical imaging system is provided on the mobile vehicle. In front of the tool, another optical imaging system is set at the rear. When the mobile vehicle is traveling in the reverse direction, the display device can be displayed by the switching controller and the video can be recorded immediately. 如請求項20所述之行動載具輔助系統,其中更包含一資通訊裝置,該資通訊裝置可以對外聯繫預設之聯絡人或機構。The mobile vehicle assistance system according to claim 20, further comprising a telematics device, and the telematics device can externally contact a preset contact person or organization. 如請求項20所述之行動載具輔助系統,其中更包含一行駛設定器以及一個生物性辨識裝置,該行駛啟動器以及該生物性辨識裝置間電性連接,該行動載具輔助系統設置於一行動載具,當特定駕駛者進入該行動載具並面對該生物性辨識裝置,即可進行身份識別並啟動該行駛設定器,該行駛設定器可依個別駕駛者預先所設定之參數而控制該行動載具。The mobile vehicle assistance system according to claim 20, further comprising a driving setter and a biometric identification device, the driving starter and the biometric identification device are electrically connected, and the mobile vehicle assistance system is provided at A mobile vehicle, when a specific driver enters the mobile vehicle and faces the biometric identification device, the identity can be identified and the driving setter can be activated. The driving setter can be set according to the parameters set by individual drivers in advance. Control the action vehicle. 一種車用電子後視鏡,係包含:
一第一透光組件,係包含:
一第一收光面;及
一第一出光面,一影像係由該第一收光面入射至該第一透光組件,並由該第一出光面出射;
一第二透光組件,係設置於該第一出光面上,並與該第一透光組件形成一間隙,並包含:
一第二收光面;及
一第二出光面,該影像係由該第一出光面出射至該第二透光組件,並由該第二出光面出射;
一電光介質層,係設置於該第一透光組件之該第一出光面及該第二透光組件之該第二收光面所形成之該間隙之間;
至少一透光電極,配置於該第一透光組件以及該電光介質層之間;
至少一反射層,其中該電光介質層配置於該第一透光組件以及該反射層之間;
至少一透明導電層,配置於該電光介質層以及該反射層之間;
至少一電性連接件,係與該電光介質層相連接,並傳輸一電能至該電光介質層,改變該電光介質層之一透明度;
至少一控制元件,係與該電性連接件相連接,當超過一亮度之光線產生於該影像時,該控制元件係控制該電性連接件對該電光介質層提供該電能;以及
至少一顯示裝置,其係可呈現至少一環境影像訊號。
An electronic rearview mirror for a vehicle, comprising:
A first light-transmitting component includes:
A first light-receiving surface; and a first light-emitting surface, an image is incident from the first light-receiving surface to the first light-transmitting component, and is emitted from the first light-emitting surface;
A second light-transmitting component is disposed on the first light-emitting surface, forms a gap with the first light-transmitting component, and includes:
A second light-receiving surface; and a second light-emitting surface, the image is emitted from the first light-emitting surface to the second light-transmitting component, and is emitted from the second light-emitting surface;
An electro-optic dielectric layer is disposed between the first light emitting surface of the first light transmitting component and the gap formed by the second light receiving surface of the second light transmitting component;
At least one light-transmitting electrode disposed between the first light-transmitting component and the electro-optic dielectric layer;
At least one reflective layer, wherein the electro-optic dielectric layer is disposed between the first light-transmitting component and the reflective layer;
At least one transparent conductive layer is disposed between the electro-optic dielectric layer and the reflective layer;
At least one electrical connector is connected to the electro-optic dielectric layer and transmits an electric energy to the electro-optic dielectric layer to change the transparency of one of the electro-optic dielectric layers;
At least one control element is connected to the electrical connection element. When light exceeding a brightness is generated in the image, the control element controls the electrical connection element to provide the electrical energy to the electro-optic medium layer; and at least one display A device capable of presenting at least one environmental image signal.
如請求項30所述之車用電子後視鏡,其中該電光介質層係電致變色(electrochromic)層、聚合物分散液晶(polymer dispersed liquid crystal,PDLC)層或懸浮顆粒裝置(suspended particle device,SPD)層之任一者。The electronic rear-view mirror for a vehicle according to claim 30, wherein the electro-optic dielectric layer is an electrochromic layer, a polymer dispersed liquid crystal (PDLC) layer, or a suspended particle device, SPD). 如請求項30所述之車用電子後視鏡,其中更包含至少一光學成像系統,該環境影像訊號係藉由該光學成像系統所擷取者,該光學成像系統電性連接於該顯示裝置,並投射該環境影像訊號至該顯示裝置。The electronic rear-view mirror for a vehicle according to claim 30, further comprising at least one optical imaging system, the environmental image signal is captured by the optical imaging system, and the optical imaging system is electrically connected to the display device. , And project the environmental image signal to the display device. 如請求項32所述之車用電子後視鏡,其中該光學成像系統具有至少一透鏡組,該透鏡組包含有至少二片具有屈光力之透鏡;此外,該透鏡組更滿足下列條件:
1.0≦f/HEP≦10.0;
0 deg<HAF≦150 deg;
0.9≦2(ARE/HEP)≦2.0;及
其中f為該透鏡組的焦距;HEP為該透鏡組之入射瞳直徑;HAF為該透鏡組之最大可視角度的一半;ARE係以該透鏡組中任一透鏡之任一透鏡表面與光軸的交點為起點,並以距離光軸1/2入射瞳直徑之垂直高度處的位置為終點,延著該透鏡表面的輪廓所得之輪廓曲線長度。
The electronic rear-view mirror for a vehicle according to claim 32, wherein the optical imaging system has at least one lens group, and the lens group includes at least two lenses having refractive power; in addition, the lens group further satisfies the following conditions:
1.0 ≦ f / HEP ≦ 10.0;
0 deg < HAF ≦ 150 deg;
0.9 ≦ 2 (ARE / HEP) ≦ 2.0; and f is the focal length of the lens group; HEP is the entrance pupil diameter of the lens group; HAF is half of the maximum viewing angle of the lens group; ARE is based on the lens group The length of the contour curve obtained by extending the contour of the lens surface from the intersection of any lens surface of any lens with the optical axis as the starting point, and ending at a position at a vertical height 1/2 of the entrance pupil diameter from the optical axis.
如請求項33所述之車用電子後視鏡,其中該透鏡組更滿足下列條件:
0.9≦ARS/EHD≦2.0;其中,ARS係以該透鏡組中任一透鏡之任一透鏡表面與光軸的交點為起點,並以該透鏡表面之最大有效半徑處為終點,延著該透鏡表面的輪廓所得之輪廓曲線長度;EHD為該透鏡組中任一透鏡之任一表面的最大有效半徑。
The electronic rear-view mirror for a vehicle as described in claim 33, wherein the lens group further meets the following conditions:
0.9 ≦ ARS / EHD ≦ 2.0; where ARS starts from the intersection of any lens surface of any lens in the lens group with the optical axis, and ends at the maximum effective radius of the lens surface, extending the lens The length of the contour curve obtained from the contour of the surface; EHD is the maximum effective radius of any surface of any lens in the lens group.
如請求項33所述之車用電子後視鏡,其中該透鏡組更包括一光圈,且該光圈滿足下列公式:0.2≦InS/HOS≦1.1;其中,InS為該光圈至該成像面於光軸上之距離;HOS為該透鏡組最遠離該成像面之透鏡表面至該成像面於光軸上之距離。The electronic rear-view mirror for a vehicle according to claim 33, wherein the lens group further includes an aperture, and the aperture satisfies the following formula: 0.2 ≦ InS / HOS ≦ 1.1; where InS is the aperture from the imaging surface to the light The distance on the axis; HOS is the distance from the lens surface of the lens group farthest from the imaging surface to the imaging surface on the optical axis.
TW108200277U 2019-01-07 2019-01-07 Mobile carrier auxiliary system and vehicle electronic rear-view mirror TWM579728U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108200277U TWM579728U (en) 2019-01-07 2019-01-07 Mobile carrier auxiliary system and vehicle electronic rear-view mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108200277U TWM579728U (en) 2019-01-07 2019-01-07 Mobile carrier auxiliary system and vehicle electronic rear-view mirror

Publications (1)

Publication Number Publication Date
TWM579728U true TWM579728U (en) 2019-06-21

Family

ID=67703453

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108200277U TWM579728U (en) 2019-01-07 2019-01-07 Mobile carrier auxiliary system and vehicle electronic rear-view mirror

Country Status (1)

Country Link
TW (1) TWM579728U (en)

Similar Documents

Publication Publication Date Title
TWI718467B (en) Mobile Vehicle Assist System
US10960829B2 (en) Movable carrier auxiliary system and control method thereof
TWI784172B (en) Mobile vehicle assistance system and parking assistance method thereof
TWI786311B (en) Mobile vehicle assist system and parking control method thereof
US20230145024A1 (en) Movable carrier auxiliary system and vehicle auxiliary system
CN209858830U (en) Action carrier auxiliary system
TWM578804U (en) Assisting system for mobile vehicles
TWM585938U (en) Auxiliary system for mobile vehicle
TWI740085B (en) Mobile Vehicle Assist System
US11318954B2 (en) Movable carrier auxiliary system
TWI784166B (en) Mobile Vehicle Assist System
TWM579603U (en) Mobile device auxiliary system
TWM583818U (en) Assisting system for mobile vehicles
TWM580051U (en) Mobile vehicle auxiliary system and vehicle auxiliary system
TW202041399A (en) Action vehicle auxiliary system
TWM585412U (en) Assisting system for mobile vehicles
TWI786307B (en) Mobile vehicle assist system and braking control method thereof
TWM585732U (en) Auxiliary system for mobile vehicle
TWM580054U (en) Mobile device auxiliary system
TWM583396U (en) Assisting system for mobile vehicles
TWM579728U (en) Mobile carrier auxiliary system and vehicle electronic rear-view mirror
TWM585220U (en) Assisting system for mobile vehicles
TWM579729U (en) Mobile device auxiliary system