TWM575120U - Optical imaging module - Google Patents

Optical imaging module Download PDF

Info

Publication number
TWM575120U
TWM575120U TW107212960U TW107212960U TWM575120U TW M575120 U TWM575120 U TW M575120U TW 107212960 U TW107212960 U TW 107212960U TW 107212960 U TW107212960 U TW 107212960U TW M575120 U TWM575120 U TW M575120U
Authority
TW
Taiwan
Prior art keywords
lens
optical axis
imaging module
optical
optical imaging
Prior art date
Application number
TW107212960U
Other languages
Chinese (zh)
Inventor
張永明
賴建勳
劉燿維
Original Assignee
先進光電科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 先進光電科技股份有限公司 filed Critical 先進光電科技股份有限公司
Priority to TW107212960U priority Critical patent/TWM575120U/en
Priority to CN201821704762.XU priority patent/CN209327647U/en
Publication of TWM575120U publication Critical patent/TWM575120U/en

Links

Landscapes

  • Lenses (AREA)

Abstract

一種光學成像模組包含一電路組件及一透鏡組件。該電路組件包含一電路基板及一影像感測元件;電路基板上具有複數個電路接點,影像感測元件的第一表面朝向電路基板,第一表面具有複數個影像接點且透過訊號傳導元件連接對應之電路接點,第二表面具有感測面。透鏡組件包含一透鏡基座及一透鏡組;透鏡基座以不透光材質製成,且具有一容置孔貫穿兩端而呈中空;另外,透鏡基座係設置於電路基板上使影像感測元件位於容置孔中;透鏡組包含有至少二片具有屈光力之透鏡,且設置於透鏡基座上並位於容置孔中,使光線可通過透鏡組並投射至感測面。An optical imaging module includes a circuit component and a lens component. The circuit component includes a circuit substrate and an image sensing element. The circuit substrate has a plurality of circuit contacts. The first surface of the image sensing element faces the circuit substrate. The first surface has a plurality of image contacts and passes through the signal conducting element. The corresponding circuit contacts are connected, and the second surface has a sensing surface. The lens assembly includes a lens base and a lens group; the lens base is made of opaque material and has a receiving hole passing through both ends to be hollow; in addition, the lens base is arranged on a circuit substrate to make the image sense The measuring element is located in the containing hole; the lens group includes at least two lenses having refractive power, and is arranged on the lens base and located in the containing hole, so that light can pass through the lens group and be projected onto the sensing surface.

Description

光學成像模組Optical imaging module

本創作是有關於一種光學成像模組,且特別是有關於一種應用於電子產品上且可達到小型化目的之光學成像模組。This creation is about an optical imaging module, and in particular, it relates to an optical imaging module that is applied to electronic products and can achieve miniaturization.

近年來,隨著具有攝影功能的可攜式電子產品的興起,光學系統的需求日漸提高。一般光學系統的感光元件不外乎是感光耦合元件(Charge Coupled Device; CCD)或互補性金屬氧化半導體元件(Complementary Metal-Oxide Semiconductor Sensor;CMOS Sensor)兩種,且隨著半導體製程技術的精進,使得感光元件的畫素尺寸縮小,光學系統逐漸往高畫素領域發展,因此對成像品質的要求也日益增加。In recent years, with the rise of portable electronic products with photographic functions, the demand for optical systems has been increasing. The photosensitive elements of general optical systems are nothing more than two types: photosensitive coupled device (CCD) or complementary metal-Oxide semiconductor sensor (CMOS sensor). With the advancement of semiconductor process technology, The pixel size of the photosensitive element is reduced, and the optical system is gradually developed in the high pixel field, so the requirements for imaging quality are also increasing.

傳統搭載於可攜式裝置上的光學系統,由於可攜式裝置不斷朝提昇畫素並且終端消費者對大光圈的需求例如微光與夜拍功能,習知的光學成像模組的尺寸與成像品質已無法滿足更高階的攝影要求。The optical system traditionally mounted on portable devices, due to the continuous improvement of the pixels of portable devices and the end consumers' requirements for large apertures such as low light and night shooting functions, the size and imaging of conventional optical imaging modules The quality can no longer meet the requirements of higher-level photography.

因此,如何有效地達到小型化的結構,同時進一步提高成像的品質,便成為一個相當重要的議題。Therefore, how to effectively achieve a miniaturized structure and further improve the quality of imaging has become a very important issue.

本創作實施例之態樣係針對一種光學成像模組,能夠利用結構尺寸之設計並配合二個以上的透鏡的屈光力、凸面與凹面的組合 (本創作所述凸面或凹面原則上係指各透鏡之物側面或像側面距離光軸不同高度的幾何形狀變化之描述),進而達到小型化之目的,並同時有效地提高光學成像模組之進光量與增加光學成像鏡頭的視角,如此一來,便可使光學成像模組具備有一定相對照度及提高成像的總畫素與品質,進而可以應用於小型或窄邊框的電子產品上。The aspect of this creative embodiment is directed to an optical imaging module that can use the design of the structural size and cooperate with the combination of the refractive power, convex and concave surfaces of more than two lenses (the convex or concave surface in this creation refers to each lens in principle Description of the change in the geometric shape of the object side or image side at different heights from the optical axis), thereby achieving the purpose of miniaturization, and at the same time effectively increasing the amount of light entering the optical imaging module and increasing the viewing angle of the optical imaging lens. It can make the optical imaging module have a certain degree of contrast and improve the total pixels and quality of imaging, and then it can be applied to small or narrow-frame electronic products.

本創作實施例相關之機構元件參數的用語與其代號詳列如下,作為後續描述的參考:The terms of the parameters of the mechanism components related to this creative embodiment and their codes are listed in detail below as a reference for subsequent descriptions:

在此先以第1A圖為例,說明所使用之機構元件的用語。光學成像模組主要包含有一電路組件以及一透鏡組件。該電路組件可包括一電路基板EB及一影像感測元件S,且於本創作中,該影像感測元件S係以晶片尺寸封裝(Chip Scale Package)之封裝方式固定於該電路基板EB上。亦可為晶圓級晶片尺寸封裝(Wafer Level Chip Scale Package)之封裝方式。Let us first use Figure 1A as an example to explain the terminology of the mechanical components used. The optical imaging module mainly includes a circuit component and a lens component. The circuit component may include a circuit substrate EB and an image sensing element S, and in the present creation, the image sensing element S is fixed on the circuit substrate EB by a chip scale package. It can also be a packaging method of Wafer Level Chip Scale Package.

該透鏡組件可包括一透鏡基座LB1及一透鏡組L。透鏡基座LB1主要由金屬(例如鋁、銅、銀、金等)、或是選用塑膠例如聚碳酸酯 (PC)、液晶塑膠(LCP)等不透光之材質製成。另外,該透鏡基座LB1之外周緣且垂直於該透鏡組之光軸的平面上的最小邊長的最大值以PhiD表示,且該透鏡基座LB1具有一容置孔貫穿兩端而呈中空。更詳而言之,該透鏡基座LB1可具有一透鏡支架LH1及一鏡筒B。該透鏡支架LH1係呈中空並且不具透光性,該鏡筒B同樣呈中空且不具透光性並設置於該透鏡支架LH1中,且該鏡筒B內部與該透鏡支架LH1共同構成該容置孔。此外,該透鏡支架之最大厚度以TH1表示。該鏡筒之最小厚度以TH2表示。The lens assembly may include a lens base LB1 and a lens group L. The lens base LB1 is mainly made of metal (for example, aluminum, copper, silver, gold, etc.), or plastics such as polycarbonate (PC), liquid crystal plastic (LCP), and other opaque materials. In addition, the maximum value of the minimum side length on a plane outside the peripheral edge of the lens base LB1 and perpendicular to the optical axis of the lens group is represented by PhiD, and the lens base LB1 has a receiving hole through both ends to be hollow. . More specifically, the lens base LB1 may have a lens holder LH1 and a lens barrel B. The lens holder LH1 is hollow and does not have light transmission. The lens barrel B is also hollow and does not have light transmission and is disposed in the lens holder LH1. The interior of the lens barrel B and the lens holder LH1 form the accommodation together. hole. In addition, the maximum thickness of the lens holder is represented by TH1. The minimum thickness of the lens barrel is represented by TH2.

該透鏡組包含有至少二片具有屈光力之透鏡,且設置於該透鏡基座LB1上並位於該容置孔中。本創作實施例相關之透鏡參數的用語與其代號詳列如下,作為後續描述的參考:The lens group includes at least two lenses having refractive power, and is disposed on the lens base LB1 and located in the accommodation hole. The terms of the lens parameters and their codes related to this creative embodiment are listed in detail below as a reference for subsequent descriptions:

與長度或高度有關之透鏡參數Lens parameters related to length or height

光學成像模組之最大成像高度以HOI表示;光學成像模組之高度(即第一片透鏡之物側面至成像面之於光軸上的距離)以HOS表示;光學成像模組之第一透鏡物側面至最後一片透鏡像側面間的距離以InTL表示;光學成像模組之固定光欄 (光圈)至成像面間的距離以InS表示;光學成像模組之第一透鏡與第二透鏡間的距離以IN12表示(例示);光學成像模組之第一透鏡於光軸上的厚度以TP1表示(例示)。The maximum imaging height of the optical imaging module is represented by HOI; the height of the optical imaging module (that is, the distance from the object side of the first lens to the imaging surface on the optical axis) is represented by HOS; the first lens of the optical imaging module The distance from the object side to the image side of the last lens is represented by InTL; the distance from the fixed light barrier (aperture) of the optical imaging module to the imaging surface is represented by InS; the distance between the first lens and the second lens of the optical imaging module The distance is represented by IN12 (example); the thickness of the first lens of the optical imaging module on the optical axis is represented by TP1 (example).

與材料有關之透鏡參數 光學成像模組之第一透鏡的色散係數以NA1表示(例示);第一透鏡的折射律以Nd1表示(例示)。Material-related lens parameters The dispersion coefficient of the first lens of the optical imaging module is represented by NA1 (example); the refraction law of the first lens is represented by Nd1 (example).

與視角有關之透鏡參數 視角以AF表示;視角的一半以HAF表示;主光線角度以MRA表示。Lens parameters related to viewing angle The viewing angle is represented by AF; half of the viewing angle is represented by HAF; the principal ray angle is represented by MRA.

與出入瞳有關之透鏡參數Lens parameters related to exit pupil

光學成像模組之入射瞳直徑以HEP表示;單一透鏡之任一表面的最大有效半徑係指系統最大視角入射光通過入射瞳最邊緣的光線於該透鏡表面交會點(Effective Half Diameter;EHD),該交會點與光軸之間的垂直高度。例如第一透鏡物側面的最大有效半徑以EHD11表示,第一透鏡像側面的最大有效半徑以EHD12表示。第二透鏡物側面的最大有效半徑以EHD21表示,第二透鏡像側面的最大有效半徑以EHD22表示。光學成像模組中其餘透鏡之任一表面的最大有效半徑表示方式以此類推。光學成像模組中最接近成像面之透鏡的像側面之最大有效直徑以PhiA表示,其滿足條件式PhiA=2倍EHD,若該表面為非球面,則最大有效直徑之截止點即為含有非球面之截止點。單一透鏡之任一表面的無效半徑(Ineffective Half Diameter;IHD) 係指朝遠離光軸方向延伸自同一表面之最大有效半徑的截止點(若該表面為非球面,即該表面上具非球面係數之終點)的表面區段。光學成像模組中最接近成像面之透鏡的像側面之最大直徑以PhiB表示,其滿足條件式PhiB=2倍 (最大有效半徑EHD + 最大無效半徑IHD)= PhiA + 2倍 (最大無效半徑IHD)。The diameter of the entrance pupil of an optical imaging module is represented by HEP; the maximum effective radius of any surface of a single lens refers to the point where the system ’s maximum viewing angle of incident light passes through the edge of the entrance pupil at the intersection of the lens surface (Effective Half Diameter; EHD), The vertical height between the intersection and the optical axis. For example, the maximum effective radius of the object side of the first lens is represented by EHD11, and the maximum effective radius of the image side of the first lens is represented by EHD12. The maximum effective radius of the object side of the second lens is represented by EHD21, and the maximum effective radius of the image side of the second lens is represented by EHD22. The maximum effective radius of any of the surfaces of the remaining lenses in the optical imaging module is expressed in the same manner. The maximum effective diameter of the image side of the lens closest to the imaging surface in the optical imaging module is represented by PhiA, which satisfies the conditional expression PhiA = 2 times EHD. If the surface is aspherical, the cutoff point of the maximum effective diameter is Spherical cut-off point. Ineffective Half Diameter (IHD) of any surface of a single lens refers to the cut-off point of the maximum effective radius extending from the same surface away from the optical axis (if the surface is aspherical, that is, the surface has an aspheric coefficient End point). The maximum diameter of the image side of the lens closest to the imaging surface in the optical imaging module is represented by PhiB, which satisfies the condition PhiB = 2 times (maximum effective radius EHD + maximum invalid radius IHD) = PhiA + 2 times (maximum invalid radius IHD ).

光學成像模組中最接近成像面 (即像空間)之透鏡像側面的最大有效直徑,又可稱之為光學出瞳,其以PhiA表示,若光學出瞳位於第三透鏡像側面則以PhiA3表示,若光學出瞳位於第四透鏡像側面則以PhiA4表示,若光學出瞳位於第五透鏡像側面則以PhiA5表示,若光學出瞳位於第六透鏡像側面則以PhiA6表示,若光學成像模組具有不同具屈折力片數之透鏡,其光學出瞳表示方式以此類推。光學成像模組之瞳放比以PMR表示,其滿足條件式為PMR = PhiA / HEP。The maximum effective diameter of the image side of the lens closest to the imaging surface (that is, the image space) in the optical imaging module can also be referred to as the optical exit pupil, which is represented by PhiA. Indicates that if the optical exit pupil is located on the image side of the fourth lens, it is represented by PhiA4; if the optical exit pupil is located on the image side of the fifth lens, it is represented by PhiA5; if the optical exit pupil is located on the image side of the sixth lens, it is represented by PhiA6; The module has different lenses with refractive power, and the optical exit pupil is expressed in the same manner. The pupil ratio of the optical imaging module is represented by PMR, which satisfies the conditional expression PMR = PhiA / HEP.

與透鏡面形弧長及表面輪廓有關之參數 單一透鏡之任一表面的最大有效半徑之輪廓曲線長度,係指該透鏡之表面與所屬光學成像模組之光軸的交點為起始點,自該起始點沿著該透鏡之表面輪廓直至其最大有效半徑之終點為止,前述兩點間的曲線弧長為最大有效半徑之輪廓曲線長度,並以ARS表示。例如第一透鏡物側面的最大有效半徑之輪廓曲線長度以ARS11表示,第一透鏡像側面的最大有效半徑之輪廓曲線長度以ARS12表示。第二透鏡物側面的最大有效半徑之輪廓曲線長度以ARS21表示,第二透鏡像側面的最大有效半徑之輪廓曲線長度以ARS22表示。光學成像模組中其餘透鏡之任一表面的最大有效半徑之輪廓曲線長度表示方式以此類推。Parameters related to the lens surface arc length and surface contour. The length of the contour curve of the maximum effective radius of any surface of a single lens refers to the intersection of the surface of the lens and the optical axis of the optical imaging module. The starting point follows the surface contour of the lens until the end of its maximum effective radius, and the arc length between the two points is the length of the contour curve of the maximum effective radius, and is expressed by ARS. For example, the length of the contour curve of the maximum effective radius on the object side of the first lens is represented by ARS11, and the length of the contour curve of the maximum effective radius of the image side of the first lens is represented by ARS12. The length of the contour curve of the maximum effective radius on the object side of the second lens is represented by ARS21, and the length of the contour curve of the maximum effective radius of the image side of the second lens is represented by ARS22. The length of the contour curve of the maximum effective radius of any surface of the remaining lenses in the optical imaging module is expressed in the same manner.

單一透鏡之任一表面的1/2入射瞳直徑(HEP)之輪廓曲線長度,係指該透鏡之表面與所屬光學成像模組之光軸的交點為起始點,自該起始點沿著該透鏡之表面輪廓直至該表面上距離光軸1/2入射瞳直徑的垂直高度之座標點為止,前述兩點間的曲線弧長為1/2入射瞳直徑(HEP)之輪廓曲線長度,並以ARE表示。例如第一透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE11表示,第一透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE12表示。第二透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE21表示,第二透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE22表示。光學成像模組中其餘透鏡之任一表面的1/2入射瞳直徑(HEP)之輪廓曲線長度表示方式以此類推。The length of the contour curve of 1/2 of the entrance pupil diameter (HEP) of any surface of a single lens refers to the intersection point between the surface of the lens and the optical axis of the optical imaging module to which it belongs. The surface contour of the lens is up to the coordinate point of the vertical height of the entrance pupil diameter of 1/2 of the diameter from the optical axis, and the arc length between the two points is the contour curve length of 1/2 entrance pupil diameter (HEP), and Expressed as ARE. For example, the contour curve length of 1/2 incident pupil diameter (HEP) on the object side of the first lens is represented by ARE11, and the contour curve length of 1/2 incident pupil diameter (HEP) on the image side of the first lens is represented by ARE12. The length of the profile curve of 1/2 incident pupil diameter (HEP) on the object side of the second lens is represented by ARE21, and the length of the profile curve of 1/2 incident pupil diameter (HEP) on the image side of the second lens is represented by ARE22. The expression of the contour curve length of 1/2 of the entrance pupil diameter (HEP) of any surface of the remaining lenses in the optical imaging module can be deduced by analogy.

與透鏡面形深度有關之參數 第六透鏡物側面於光軸上的交點至第六透鏡物側面的最大有效半徑之終點為止,前述兩點間水平於光軸的距離以InRS61表示 (最大有效半徑深度);第六透鏡像側面於光軸上的交點至第六透鏡像側面的最大有效半徑之終點為止,前述兩點間水平於光軸的距離以InRS62表示 (最大有效半徑深度)。其他透鏡物側面或像側面之最大有效半徑的深度 (沉陷量) 表示方式比照前述。Parameters related to the depth of the lens surface The intersection point of the sixth lens object side on the optical axis to the end of the maximum effective radius of the sixth lens object side, the distance between the two points horizontal to the optical axis is expressed by InRS61 (the maximum effective radius Depth); the intersection of the sixth lens image side on the optical axis to the end of the maximum effective radius of the sixth lens image side, the distance between the two points horizontal to the optical axis is represented by InRS62 (the maximum effective radius depth). The depth (sinking amount) of the maximum effective radius of the object side or image side of other lenses is expressed in the same manner as described above.

與透鏡面型有關之參數 臨界點C係指特定透鏡表面上,除與光軸的交點外,一與光軸相垂直之切面相切的點。承上,例如第五透鏡物側面的臨界點C51與光軸的垂直距離為HVT51(例示),第五透鏡像側面的臨界點C52與光軸的垂直距離為HVT52(例示),第六透鏡物側面的臨界點C61與光軸的垂直距離為HVT61(例示),第六透鏡像側面的臨界點C62與光軸的垂直距離為HVT62(例示)。其他透鏡之物側面或像側面上的臨界點及其與光軸的垂直距離的表示方式比照前述。Parameters related to the shape of the lens The critical point C refers to a point on a specific lens surface that is tangent to a tangent plane perpendicular to the optical axis, except for the point of intersection with the optical axis. For example, the vertical distance between the critical point C51 on the object side of the fifth lens and the optical axis is HVT51 (example), the vertical distance between the critical point C52 on the image side of the fifth lens and the optical axis is HVT52 (example), and the sixth lens object The vertical distance between the critical point C61 on the side and the optical axis is HVT61 (illustrated), and the vertical distance between the critical point C62 on the side of the sixth lens image and the optical axis is HVT62 (illustrated). The critical points on the object side or image side of other lenses and their vertical distance from the optical axis are expressed in the same manner as described above.

第七透鏡物側面上最接近光軸的反曲點為IF711,該點沉陷量SGI711(例示),SGI711亦即第七透鏡物側面於光軸上的交點至第七透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離,IF711該點與光軸間的垂直距離為HIF711(例示)。第七透鏡像側面上最接近光軸的反曲點為IF721,該點沉陷量SGI721(例示),SGI711亦即第七透鏡像側面於光軸上的交點至第七透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離,IF721該點與光軸間的垂直距離為HIF721(例示)。The inflection point closest to the optical axis on the object side of the seventh lens is IF711. This point has a subsidence of SGI711 (example). SGI711 is the intersection of the object side of the seventh lens on the optical axis and the closest optical axis of the object side of the seventh lens. The horizontal displacement distance between the inflection points is parallel to the optical axis. The vertical distance between this point and the optical axis is IF711 (illustration). The inflection point on the image side of the seventh lens that is closest to the optical axis is IF721. This point sinks SGI721 (for example). SGI711 is the intersection of the seventh lens image side on the optical axis and the closest optical axis of the seventh lens image side. The horizontal displacement distance between the inflection points parallel to the optical axis, and the vertical distance between this point of IF721 and the optical axis is HIF721 (illustration).

第七透鏡物側面上第二接近光軸的反曲點為IF712,該點沉陷量SGI712(例示),SGI712亦即第七透鏡物側面於光軸上的交點至第七透鏡物側面第二接近光軸的反曲點之間與光軸平行的水平位移距離,IF712該點與光軸間的垂直距離為 HIF712(例示)。第七透鏡像側面上第二接近光軸的反曲點為IF722,該點沉陷量SGI722(例示),SGI722亦即第七透鏡像側面於光軸上的交點至第七透鏡像側面第二接近光軸的反曲點之間與光軸平行的水平位移距離,IF722該點與光軸間的垂直距離為HIF722(例示)。The second inflection point on the object side of the seventh lens approaching the optical axis is IF712. This point has a subsidence of SGI712 (for example). SGI712, that is, the intersection of the object side of the seventh lens on the optical axis, is the second closest to the object side of the seventh lens. The horizontal displacement distance between the inflection points of the optical axis and the optical axis is parallel. The vertical distance between this point of the IF712 and the optical axis is HIF712 (example). The second inflection point on the seventh lens image side that is close to the optical axis is IF722. This point has a subsidence of SGI722 (for example). SGI722 is the intersection of the seventh lens image side on the optical axis and the seventh lens image side is the second closest. The horizontal displacement distance between the inflection points of the optical axis and the optical axis is parallel, and the vertical distance between this point and the optical axis of IF722 is HIF722 (illustration).

第七透鏡物側面上第三接近光軸的反曲點為IF713,該點沉陷量SGI713(例示),SGI713亦即第七透鏡物側面於光軸上的交點至第七透鏡物側面第三接近光軸的反曲點之間與光軸平行的水平位移距離,IF713該點與光軸間的垂直距離為 HIF713(例示)。第七透鏡像側面上第三接近光軸的反曲點為IF723,該點沉陷量SGI723(例示),SGI723亦即第七透鏡像側面於光軸上的交點至第七透鏡像側面第三接近光軸的反曲點之間與光軸平行的水平位移距離,IF723該點與光軸間的垂直距離為HIF723(例示)。The third inflection point on the object side of the seventh lens approaching the optical axis is IF713. This point has a subsidence of SGI713 (for example). SGI713, that is, the intersection of the object side of the seventh lens on the optical axis is the third closest to the object side of the seventh lens. The horizontal displacement distance between the inflection points of the optical axis and the optical axis is parallel, and the vertical distance between this point and the optical axis of IF713 is HIF713 (illustration). The third inflection point on the seventh lens image side close to the optical axis is IF723, which is the amount of subsidence SGI723 (for example), SGI723, that is, the intersection of the seventh lens image side on the optical axis to the seventh lens image side third approach The horizontal displacement distance between the inflection points of the optical axis is parallel to the optical axis, and the vertical distance between this point of the IF723 and the optical axis is HIF723 (example).

第七透鏡物側面上第四接近光軸的反曲點為IF714,該點沉陷量SGI714(例示),SGI714亦即第七透鏡物側面於光軸上的交點至第七透鏡物側面第四接近光軸的反曲點之間與光軸平行的水平位移距離,IF714該點與光軸間的垂直距離為 HIF714(例示)。第七透鏡像側面上第四接近光軸的反曲點為IF724,該點沉陷量SGI724(例示),SGI724亦即第七透鏡像側面於光軸上的交點至第七透鏡像側面第四接近光軸的反曲點之間與光軸平行的水平位移距離,IF724該點與光軸間的垂直距離為HIF724(例示)。The inflection point of the fourth lens close to the optical axis on the seventh lens object side is IF714. This point has a subsidence of SGI714 (for example). SGI714, that is, the intersection of the seventh lens object side on the optical axis and the seventh lens object side is fourth closer. The horizontal displacement distance between the inflection points of the optical axis is parallel to the optical axis. The vertical distance between this point and the optical axis of IF714 is HIF714 (illustration). The inflection point on the seventh lens image side close to the optical axis is IF724, which is the amount of subsidence SGI724 (for example). SGI724, that is, the intersection of the seventh lens image side on the optical axis to the seventh lens image side fourth approach The horizontal displacement distance between the inflection points of the optical axis and the optical axis is parallel. The vertical distance between this point and the optical axis of IF724 is HIF724 (illustration).

其他透鏡物側面或像側面上的反曲點及其與光軸的垂直距離或其沉陷量的表示方式比照前述。The inflection points on the object side or image side of other lenses and their vertical distance from the optical axis or the amount of their subsidence are expressed in the same manner as described above.

與像差有關之變數 光學成像模組之光學畸變 (Optical Distortion) 以ODT表示;其TV畸變 (TV Distortion)以TDT表示,並且可以進一步限定描述在成像50%至100%視野間像差偏移的程度;球面像差偏移量以DFS表示;慧星像差偏移量以DFC表示。Aberration-related variables Optical Distortion of the optical imaging module is represented by ODT; its TV Distortion is represented by TDT, and the aberration shift between 50% and 100% of the field of view can be further described. The degree of spherical aberration shift is represented by DFS; the comet aberration shift is represented by DFC.

本創作提供一種光學成像模組,其第六透鏡的物側面或像側面可設置有反曲點,可有效調整各視場入射於第六透鏡的角度,並針對光學畸變與TV畸變進行補正。另外,第六透鏡的表面可具備更佳的光路調節能力,以提升成像品質。This creation provides an optical imaging module. The object side or the image side of the sixth lens can be provided with inflection points, which can effectively adjust the angle of incidence of each field of view on the sixth lens, and correct optical distortion and TV distortion. In addition, the surface of the sixth lens may have better light path adjustment capabilities to improve imaging quality.

依據本創作提供一種光學成像模組,其包含一電路組件以及一透鏡組件。其中,該電路組件包含有一電路基板及一影像感測元件;該電路基板上具有複數電路接點,該影像感測元件具有一第一表面與一第二表面,該第一表面朝向該電路基板並具有複數影像接點,且該些影像接點上分別設有一訊號傳導元件,而該等訊號傳導元件分別與該電路基板上之該等電路接點連接,使該等影像接點透過設置於其上之訊號傳導元件電性連接對應之電路接點;該第二表面上具有一感測面。該透鏡組件包含有一透鏡基座及一透鏡組;該透鏡基座以不透光材質製成,且具有一容置孔貫穿該透鏡基座兩端而使該透鏡基座呈中空;另外,該透鏡基座係設置於該電路基板上而使該影像感測元件位於該容置孔中;該透鏡組包含有至少二片具有屈光力之透鏡,且設置於該透鏡基座上並位於該容置孔中;另外,該透鏡組之成像面位於該感測面,且該透鏡組之光軸與該感測面的中心法線重疊,使光線可通過該容置孔中之該透鏡組並投射至該感測面。此外,該光學成像模組更滿足下列條件:1.0≦f/HEP≦10.0;0 deg<HAF≦150 deg;0 mm< PhiD≦18 mm;0 < PhiA/PhiD≦0.99;及0.9≦2(ARE/HEP)≦2.0。According to the present invention, an optical imaging module is provided, which includes a circuit component and a lens component. The circuit component includes a circuit substrate and an image sensing element. The circuit substrate has a plurality of circuit contacts. The image sensing element has a first surface and a second surface. The first surface faces the circuit substrate. And has a plurality of image contacts, and each of the image contacts is provided with a signal conducting element, and the signal conducting elements are respectively connected with the circuit contacts on the circuit substrate, so that the image contacts are disposed through The signal conducting element is electrically connected to the corresponding circuit contact; the second surface has a sensing surface. The lens assembly includes a lens base and a lens group; the lens base is made of opaque material, and has a receiving hole penetrating both ends of the lens base to make the lens base hollow; in addition, the lens base is hollow; The lens base is disposed on the circuit substrate so that the image sensing element is located in the accommodation hole; the lens group includes at least two lenses having refractive power, and is disposed on the lens base and located in the accommodation In addition, the imaging surface of the lens group is located on the sensing surface, and the optical axis of the lens group overlaps the center normal of the sensing surface, so that light can pass through the lens group in the accommodation hole and be projected. To the sensing surface. In addition, the optical imaging module further meets the following conditions: 1.0 ≦ f / HEP ≦ 10.0; 0 deg <HAF ≦ 150 deg; 0 mm <PhiD ≦ 18 mm; 0 <PhiA / PhiD ≦ 0.99; and 0.9 ≦ 2 (ARE /HEP)≦2.0.

單一透鏡之任一表面在最大有效半徑範圍內之輪廓曲線長度影響該表面修正像差以及各視場光線間光程差的能力,輪廓曲線長度越長則修正像差的能力提升,然而同時亦會增加生產製造上的困難度,因此必須控制單一透鏡之任一表面在最大有效半徑範圍內之輪廓曲線長度,特別是控制該表面之最大有效半徑範圍內之輪廓曲線長度(ARS)與該表面所屬之該透鏡於光軸上之厚度(TP)間的比例關係(ARS / TP)。例如第一透鏡物側面的最大有效半徑之輪廓曲線長度以ARS11表示,第一透鏡於光軸上之厚度為TP1,兩者間的比值為ARS11 / TP1,第一透鏡像側面的最大有效半徑之輪廓曲線長度以ARS12表示,其與TP1間的比值為ARS12 / TP1。第二透鏡物側面的最大有效半徑之輪廓曲線長度以ARS21表示,第二透鏡於光軸上之厚度為TP2,兩者間的比值為ARS21 / TP2,第二透鏡像側面的最大有效半徑之輪廓曲線長度以ARS22表示,其與TP2間的比值為ARS22 / TP2。光學成像模組中其餘透鏡之任一表面的最大有效半徑之輪廓曲線長度與該表面所屬之該透鏡於光軸上之厚度(TP)間的比例關係,其表示方式以此類推。此外,該光學成像模組更滿足下列條件:0.9≦ARS/EHD≦2.0。The length of the contour curve of any surface of a single lens within the maximum effective radius affects the surface's ability to correct aberrations and the optical path difference between rays of each field of view. The longer the length of the contour curve, the greater the ability to correct aberrations. It will increase the difficulty in production. Therefore, it is necessary to control the length of the contour curve within the maximum effective radius of any surface of a single lens, especially the length of the contour curve (ARS) and the surface within the maximum effective radius of the surface. The proportional relationship (ARS / TP) between the thickness (TP) of the lens on the optical axis. For example, the length of the contour curve of the maximum effective radius of the object side of the first lens is represented by ARS11, the thickness of the first lens on the optical axis is TP1, and the ratio between the two is ARS11 / TP1. The length of the contour curve is represented by ARS12, and the ratio between it and TP1 is ARS12 / TP1. The length of the contour curve of the maximum effective radius of the object side of the second lens is represented by ARS21, the thickness of the second lens on the optical axis is TP2, and the ratio between the two is ARS21 / TP2. The contour of the maximum effective radius of the image side of the second lens The length of the curve is represented by ARS22, and the ratio between it and TP2 is ARS22 / TP2. The proportional relationship between the length of the contour curve of the maximum effective radius of any of the surfaces of the remaining lenses in the optical imaging module and the thickness (TP) of the lens on the optical axis to which the surface belongs, and the expressions are deduced by analogy. In addition, the optical imaging module satisfies the following conditions: 0.9 ≦ ARS / EHD ≦ 2.0.

該光學成像模組的正向子午面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以PLTA表示;該光學成像模組的正向子午面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以PSTA表示。該光學成像模組的負向子午面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以NLTA表示;該光學成像模組的負向子午面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以NSTA表示;該光學成像模組的弧矢面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以SLTA表示;該光學成像模組的弧矢面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以SSTA表示。此外,該光學成像模組更滿足下列條件:PLTA≦100 µm;PSTA≦100 µm;NLTA≦100 µm;NSTA≦100 µm;SLTA≦100 µm;SSTA≦100 µm;│TDT│< 250 %;0.1≦InTL/HOS≦0.95;以及0.2≦InS/HOS≦1.1。The longest working wavelength of the visible light of the positive meridional fan of the optical imaging module passes through the edge of the entrance pupil and is incident on the imaging surface at 0.7HOI. The lateral aberration is represented by PLTA; the positive meridian of the optical imaging module The shortest working wavelength of the visible light of the fan passes through the edge of the entrance pupil and is incident on the imaging plane at 0.7HOI. The lateral aberration is represented by PSTA. The longest working wavelength of the visible light of the negative meridional fan of the optical imaging module passes through the edge of the entrance pupil and is incident on the imaging plane at 0.7HOI. The lateral aberration is represented by NLTA; the negative meridian of the optical imaging module The shortest working wavelength of the visible light of the optical fan passes through the edge of the entrance pupil and the transverse aberration at 0.7HOI incident on the imaging plane is represented by NSTA; the longest working wavelength of the visible light of the sagittal plane fan of the optical imaging module passes through the edge of the incident pupil The lateral aberration at 0.7HOI incident on the imaging plane is represented by SLTA; the shortest working wavelength of the visible light of the sagittal plane fan of the optical imaging module passes through the edge of the entrance pupil and is incident on the imaging plane at 0.7HOI transverse The aberration is represented by SSTA. In addition, the optical imaging module more satisfies the following conditions: PLTA ≦ 100 μm; PSTA ≦ 100 μm; NLTA ≦ 100 μm; NSTA ≦ 100 μm; SLTA ≦ 100 μm; SSTA ≦ 100 μm; │TDT│ <250%; 0.1 ≦ InTL / HOS ≦ 0.95; and 0.2 ≦ InS / HOS ≦ 1.1.

可見光在該成像面上之光軸處於空間頻率110 cycles/mm時之調制轉換對比轉移率以MTFQ0表示;可見光在該成像面上之0.3HOI處於空間頻率110 cycles/mm時之調制轉換對比轉移率以MTFQ3表示;可見光在該成像面上之0.7HOI處於空間頻率110 cycles/mm時之調制轉換對比轉移率以MTFQ7表示。此外,該光學成像模組更滿足下列條件:MTFQ0≧0.2;MTFQ3≧0.01;以及MTFQ7≧0.01。The modulation conversion contrast transfer rate when the optical axis of visible light on the imaging plane is at a spatial frequency of 110 cycles / mm is expressed as MTFQ0; the modulation conversion contrast transfer rate of 0.3HOI of visible light on the imaging plane is at a spatial frequency of 110 cycles / mm. It is represented by MTFQ3; the modulation conversion contrast transfer rate of 0.7HOI of visible light on the imaging surface at the spatial frequency of 110 cycles / mm is represented by MTFQ7. In addition, the optical imaging module satisfies the following conditions: MTFQ0 ≧ 0.2; MTFQ3 ≧ 0.01; and MTFQ7 ≧ 0.01.

單一透鏡之任一表面在1/2入射瞳直徑(HEP)高度範圍內之輪廓曲線長度特別影響該表面上在各光線視場共用區域之修正像差以及各視場光線間光程差的能力,輪廓曲線長度越長則修正像差的能力提升,然而同時亦會增加生產製造上的困難度,因此必須控制單一透鏡之任一表面在1/2入射瞳直徑(HEP)高度範圍內之輪廓曲線長度,特別是控制該表面之1/2入射瞳直徑(HEP)高度範圍內之輪廓曲線長度(ARE)與該表面所屬之該透鏡於光軸上之厚度(TP)間的比例關係(ARE / TP)。例如第一透鏡物側面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度以ARE11表示,第一透鏡於光軸上之厚度為TP1,兩者間的比值為ARE11 / TP1,第一透鏡像側面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度以ARE12表示,其與TP1間的比值為ARE12 / TP1。第二透鏡物側面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度以ARE21表示,第二透鏡於光軸上之厚度為TP2,兩者間的比值為ARE21 / TP2,第二透鏡像側面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度以ARE22表示,其與TP2間的比值為ARE22 / TP2。光學成像模組中其餘透鏡之任一表面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度與該表面所屬之該透鏡於光軸上之厚度(TP)間的比例關係,其表示方式以此類推。The length of the contour curve of any surface of a single lens within the height range of 1/2 entrance pupil diameter (HEP) particularly affects the ability of the surface to correct aberrations in the common area of each ray field of view and the optical path difference between the fields of light. The longer the length of the contour curve, the better the ability to correct aberrations. However, it will also increase the difficulty of manufacturing. Therefore, it is necessary to control the contour of any surface of a single lens within the height of 1/2 incident pupil diameter (HEP). The length of the curve, especially the proportional relationship between the length of the contour curve (ARE) within the height of 1/2 of the entrance pupil diameter (HEP) of the surface and the thickness (TP) of the lens on the optical axis to which the surface belongs (ARE / TP). For example, the length of the contour curve of the 1/2 entrance pupil diameter (HEP) height of the first lens object side is represented by ARE11, the thickness of the first lens on the optical axis is TP1, and the ratio between the two is ARE11 / TP1. The length of the profile curve of the 1/2 entrance pupil diameter (HEP) height on the side of the mirror is represented by ARE12, and the ratio between it and TP1 is ARE12 / TP1. The length of the contour curve of the 1/2 entrance pupil diameter (HEP) height of the second lens object side is represented by ARE21, the thickness of the second lens on the optical axis is TP2, and the ratio between the two is ARE21 / TP2. The second lens image The profile curve length of the 1/2 entrance pupil diameter (HEP) height on the side is represented by ARE22, and the ratio between it and TP2 is ARE22 / TP2. The proportional relationship between the length of the contour curve of the 1/2 entrance pupil diameter (HEP) height of any of the surfaces of the remaining lenses in the optical imaging module and the thickness (TP) of the lens on the optical axis to which the surface belongs, and its expression And so on.

光學成像模組主要設計內容包含有結構實施設計與光學實施設計,以下先就結構實施例進行相關內容之說明:The main design content of the optical imaging module includes the structural implementation design and the optical implementation design. The following first describes the related content of the structural embodiment:

請參照第1A圖,本創作第一較佳結構實施例之光學成像模組主要包含有一電路組件以及一透鏡組件。該電路組件包括一影像感測元件S及一電路基板EB,該影像感測元件S之外周緣且垂直於光軸之平面上的最小邊長的最大值為LS,且該影像感測元件S於本實施例中係以晶片尺寸封裝(Chip Scale Package)封裝方式固定於該電路基板EB上,更詳而言之,該電路基板EB上具有複數電路接點EP,該影像感測元件具有第一表面S1及第二表面S2,第一表面S1朝向該電路基板EB並具有複數影像接點IP,且該些影像接點IP上分別設有一訊號傳導元件SC1,該等訊號傳導元件SC1分別與該電路基板EB上之該等電路接點EP連接,使該等影像接點IP透過設置於其上之訊號傳導元件SC1電性連接對應之電路接點EP。第二表面S2上具有一感測面。而於本實施例中,各該訊號傳導元件SC1為錫球。如此一來,當該影像感測元件S之感測面測得影像光訊號並轉換為電訊號後,便可透過該些影像接點IP與該些訊號傳導元件SC1將電訊號輸出予至電路接點EP,而使得該電路基板EB可將該電訊號再傳導至外部其他元件進行後續處理。Referring to FIG. 1A, the optical imaging module according to the first preferred embodiment of the present invention mainly includes a circuit component and a lens component. The circuit component includes an image sensing element S and a circuit substrate EB. The maximum value of the minimum side length on the outer periphery of the image sensing element S and on a plane perpendicular to the optical axis is LS, and the image sensing element S In this embodiment, a chip scale package is used to fix the circuit substrate EB. More specifically, the circuit substrate EB has a plurality of circuit contacts EP, and the image sensing element has a first A surface S1 and a second surface S2. The first surface S1 faces the circuit substrate EB and has a plurality of image contact points IP. The image contact points are respectively provided with a signal conducting element SC1, and the signal conducting elements SC1 and The circuit contacts EP on the circuit substrate EB are connected, so that the image contacts IP are electrically connected to the corresponding circuit contacts EP through the signal conducting element SC1 provided thereon. The second surface S2 has a sensing surface. In this embodiment, each of the signal conducting elements SC1 is a solder ball. In this way, after the image light signal is measured by the sensing surface of the image sensing element S and converted into an electrical signal, the electrical signal can be output to the circuit through the image contact IP and the signal conducting elements SC1. The contact EP allows the circuit board EB to conduct the electrical signal to other external components for subsequent processing.

該透鏡組件包括一透鏡基座LB1、一透鏡組L以及一紅外線濾光片IR1。該透鏡基座LB1於本實施例中是選用塑膠材質製成而不具透光性,且包含有一透鏡支架LH1以及一鏡筒B1。更詳而言之,該透鏡支架LH1具有一預定壁厚TH1,且透鏡支架LH1之外周緣且垂直於光軸之平面上的最小邊長的最大值以PhiD表示。另外,該透鏡支架LH1具有一貫穿該透鏡支架LH1兩端之下通孔DH1而呈現中空,且該透鏡支架LH1係固定於該電路基板EB上且而使該影像感測元件S位於該下通孔DH1中。該鏡筒B1具有一預定壁厚TH2且其外周緣垂直於光軸之平面上的最大直徑為PhiC。另外,該鏡筒B1係設置於該透鏡支架LH1中而位於該下通孔DH1內,且該鏡筒B1具有一貫穿該鏡筒B1兩端之上通孔UH1,而使該上通孔UH1與該下通孔DH1連通而共同構成一容置孔,且該鏡筒之上通孔UH1係正對該影像感測元件S之感測面。The lens assembly includes a lens base LB1, a lens group L, and an infrared filter IR1. In this embodiment, the lens base LB1 is made of plastic material without translucency, and includes a lens holder LH1 and a lens barrel B1. More specifically, the lens holder LH1 has a predetermined wall thickness TH1, and the maximum value of the minimum side length on the outer periphery of the lens holder LH1 and on a plane perpendicular to the optical axis is represented by PhiD. In addition, the lens holder LH1 has a through hole DH1 penetrating below the two ends of the lens holder LH1 and appears hollow, and the lens holder LH1 is fixed on the circuit substrate EB and the image sensing element S is located in the lower channel. Hole DH1. The lens barrel B1 has a predetermined wall thickness TH2 and a maximum diameter on a plane whose outer periphery is perpendicular to the optical axis is PhiC. In addition, the lens barrel B1 is disposed in the lens holder LH1 and is located in the lower through hole DH1, and the lens barrel B1 has a through hole UH1 passing through both ends of the lens barrel B1, so that the upper through hole UH1 The lower through hole DH1 communicates with each other to form a receiving hole, and the upper hole UH1 on the lens barrel is directly facing the sensing surface of the image sensing element S.

該透鏡組L包含有至少二片具有屈光力之透鏡,其詳細之相關光學設計容後再述。該透鏡組L係設置於該透鏡基座LB1之鏡筒B1上並位於該上通孔UH1中。另外,該透鏡組L之成像面位於該影像感測元件S之感測面,且該透鏡組L之光軸與該感測面的中心法線重疊,使光線可通過該容置孔中之該透鏡組L並投射至該影像感測元件S之感測面上。此外,該透鏡組L最接近成像面之透鏡的像側面之最大直徑以PhiB表示,而該透鏡組L中最接近成像面 (即像空間)之透鏡像側面的最大有效直徑(又可稱之為光學出瞳)以PhiA表示。The lens group L includes at least two lenses having refractive power, and detailed optical design thereof will be described later. The lens group L is disposed on the lens barrel B1 of the lens base LB1 and is located in the upper through hole UH1. In addition, the imaging surface of the lens group L is located on the sensing surface of the image sensing element S, and the optical axis of the lens group L and the center normal of the sensing surface overlap so that light can pass through the accommodation hole. The lens group L is projected onto a sensing surface of the image sensing element S. In addition, the maximum diameter of the image side of the lens group L closest to the imaging surface is represented by PhiB, and the maximum effective diameter of the image side of the lens group L closest to the imaging surface (that is, image space) (also known as (Optical exit pupil) is represented by PhiA.

該紅外線濾光片IR1則是固定於透鏡基座LB1的該透鏡支架LH1上,並位於該透鏡組L與該影像感測元件S之間,藉以濾除通過該透鏡組L之影像光中多餘的紅外線,以提升成像品質。The infrared filter IR1 is fixed on the lens holder LH1 of the lens base LB1 and is located between the lens group L and the image sensing element S, so as to filter out excess light in the image light passing through the lens group L. Infrared to enhance imaging quality.

值得一提的是,為達上述該透鏡組L之光軸與該影像感測元件S感測面的中心法線重疊之效果,本實施例之光學成像模組係設計該鏡筒B1之外側不完全接觸該透鏡支架LH1的內周緣而留有些許空隙,因此可允許該透鏡支架LH1以及該鏡筒B1之間先行塗上可固化膠,同時調整該透鏡組L的光軸與該影像感測元件S的中心法線相重疊,然後固化可固化膠而將該鏡筒B1固定於該透鏡支架LH1上,即進行所謂為主動對位 (active alignment) 組裝。而目前越精密的光學成像模組或是特殊應用(例如複數鏡頭的組裝)均需使用主動對位技術,而本創作之光學成像模組即可滿足此需求。It is worth mentioning that, in order to achieve the effect that the optical axis of the lens group L overlaps with the center normal of the sensing surface of the image sensing element S, the optical imaging module of this embodiment is designed on the outer side of the lens barrel B1 The lens holder LH1 does not fully touch the inner periphery of the lens holder, leaving a slight gap. Therefore, the lens holder LH1 and the lens barrel B1 can be coated with curable glue in advance, and the optical axis of the lens group L and the image sense can be adjusted at the same time. The center normals of the measuring elements S are overlapped, and then the curable glue is cured to fix the lens barrel B1 to the lens holder LH1, that is, so-called active alignment assembly is performed. At present, the more sophisticated optical imaging modules or special applications (such as the assembly of multiple lenses) need to use active alignment technology, and the optical imaging modules of this creation can meet this demand.

為達到小型化與高光學品質之效果,本實施例之PhiA滿足下列條件:0 mm<PhiA≦17.4 mm,較佳地可滿足下列條件:0 mm<PhiA≦13.5 mm;PhiC滿足下列條件:0 mm<PhiC≦17.7 mm,較佳地可滿足下列條件:0 mm<PhiC≦14 mm;PhiD滿足下列條件:0 mm<PhiD≦18 mm,較佳地可滿足下列條件:0 mm<PhiD≦15 mm;TH1滿足下列條件:0 mm<TH1≦5 mm,較佳地可滿足下列條件:0 mm<≦TH1≦0.5 mm;TH2滿足下列條件:0 mm<TH2≦5 mm,較佳地可滿足下列條件:0 mm<TH2≦0.5 mm;PhiA / PhiD滿足下列條件:0 <PhiA / PhiD≦0.99,較佳地可滿足下列條件:0 <PhiA / PhiD≦0.97;TH1+TH2滿足下列條件:0 mm < TH1+TH2≦1.5mm,較佳地可滿足下列條件:0 mm<TH1+TH2≦1 mm;2倍(TH1+TH2) /PhiA滿足下列條件:0 <2倍(TH1+TH2) /PhiA≦0.95,較佳地可滿足下列條件:0<2倍(TH1+TH2) /PhiA≦0.5。In order to achieve the effect of miniaturization and high optical quality, the PhiA of this embodiment satisfies the following conditions: 0 mm <PhiA ≦ 17.4 mm, preferably can satisfy the following conditions: 0 mm <PhiA ≦ 13.5 mm; PhiC satisfies the following conditions: 0 mm <PhiC ≦ 17.7 mm, preferably can satisfy the following conditions: 0 mm <PhiC ≦ 14 mm; PhiD meets the following conditions: 0 mm <PhiD ≦ 18 mm, preferably can satisfy the following conditions: 0 mm <PhiD ≦ 15 mm; TH1 satisfies the following conditions: 0 mm <TH1 ≦ 5 mm, preferably satisfies the following conditions: 0 mm <≦ TH1 ≦ 0.5 mm; TH2 satisfies the following conditions: 0 mm <TH2 ≦ 5 mm, preferably satisfies The following conditions: 0 mm <TH2 ≦ 0.5 mm; PhiA / PhiD satisfies the following conditions: 0 <PhiA / PhiD ≦ 0.99, preferably can satisfy the following conditions: 0 <PhiA / PhiD ≦ 0.97; TH1 + TH2 satisfies the following conditions: 0 mm < TH1 + TH2 ≦ 1.5mm, preferably can satisfy the following conditions: 0 mm < TH1 + TH2 ≦ 1 mm; 2 times (TH1 + TH2) / PhiA meets the following conditions: 0 <2 times (TH1 + TH2) / PhiA ≦ 0.95, preferably satisfies the following conditions: 0 <2 times (TH1 + TH2) /PhiA≦0.5.

除上述光學成像模組之結構外,請參閱第1B圖至第1G圖,為本創作第二較佳結構實施例至第五較佳結構實施例之光學成像模組,其結構設計與第一較佳結構實施例之光學成像模組有需許差異,但同樣能達到小型化與高光學品質之效果。In addition to the structure of the above-mentioned optical imaging module, please refer to FIG. 1B to FIG. 1G. This is the creation of the second to fifth preferred structural embodiment to the optical imaging module of the fifth preferred structural embodiment. The optical imaging module of the preferred embodiment has some differences, but it can also achieve the effects of miniaturization and high optical quality.

請參閱第1B圖,為本創作第二較佳結構實施例之光學成像模組,與第一較佳結構實施例相同之處不再贅述,而不同之處在於其鏡筒B2之外周壁上具有外螺紋OT2,而透鏡支架LH2於下通孔DH2之孔壁上具有內螺紋IT2與該外螺紋OT2螺合,藉以達到使該鏡筒B2固定設置於該透鏡支架LH2內之效果。另外,紅外線濾光片IR2則是改固定於該鏡筒B2中來達到濾除紅外線之目的。此外,本創作第二較佳結構實施例之光學成像模組同樣滿足第一結構實施例中所述之條件式,而可同樣達到小型化與高光學品質之效果。Please refer to FIG. 1B, which is the optical imaging module of the second preferred structural embodiment of the creation. The same points as the first preferred structural embodiment will not be repeated, and the difference lies in the outer peripheral wall of the lens barrel B2. It has an external thread OT2, and the lens holder LH2 has an internal thread IT2 on the wall of the lower through hole DH2 to be screwed with the external thread OT2, thereby achieving the effect that the lens barrel B2 is fixedly disposed in the lens holder LH2. In addition, the infrared filter IR2 is fixed in the lens barrel B2 to achieve the purpose of filtering infrared rays. In addition, the optical imaging module of the second preferred structural embodiment of the present invention also satisfies the conditional expression described in the first structural embodiment, and can also achieve the effects of miniaturization and high optical quality.

請參閱第1C圖,為本創作第三較佳結構實施例之光學成像模組,與第一較佳結構實施例相同之處不再贅述,而不同之處在於其透鏡基座LB3係以一體成型方式製成,而不再區分為鏡筒與透鏡支架,進而可達到減少零件製成與組裝作業時間之效果。此外,該透鏡基座LB3之外周緣且垂直於光軸之平面上的最小邊長的最大值以PhiD表示。Please refer to FIG. 1C, which is the optical imaging module of the third preferred structural embodiment of the creation. The same points as the first preferred structural embodiment will not be repeated, and the difference lies in that the lens base LB3 is integrated. It is made by the molding method, and it is no longer distinguished into a lens barrel and a lens holder, so that the effect of reducing the time for making and assembling parts can be achieved. In addition, the maximum value of the minimum side length on the outer periphery of the lens base LB3 and on a plane perpendicular to the optical axis is represented by PhiD.

另外,本實施例之光學成像模組同樣滿足下列條件:PhiA滿足下列條件:0 mm<PhiA≦17.4 mm,較佳地可滿足下列條件:0 mm<PhiA≦13.5 mm; PhiD滿足下列條件:0 mm<PhiD≦18 mm,較佳地可滿足下列條件:0 mm<PhiD≦15 mm;PhiA / PhiD滿足下列條件:0 <PhiA / PhiD≦0.99,較佳地可滿足下列條件:0 <PhiA / PhiD≦0.97;TH1+TH2滿足下列條件:0 mm<TH1+TH2≦1.5mm,較佳地可滿足下列條件:0 mm<TH1+TH2≦1 mm;2倍(TH1+TH2) /PhiA滿足下列條件:0 <2倍(TH1+TH2) /PhiA≦0.95,較佳地可滿足下列條件:0<2倍(TH1+TH2) /PhiA≦0.5。由上述內容可知,本創作第三較佳結構實施例之光學成像模組滿足第一結構實施例中所述之部分條件式,而可同樣達到小型化與高成像品質之效果。In addition, the optical imaging module of this embodiment also satisfies the following conditions: PhiA satisfies the following conditions: 0 mm <PhiA ≦ 17.4 mm, and preferably satisfies the following conditions: 0 mm <PhiA ≦ 13.5 mm; PhiD satisfies the following conditions: 0 mm <PhiD ≦ 18 mm, preferably meets the following conditions: 0 mm <PhiD ≦ 15 mm; PhiA / PhiD satisfies the following conditions: 0 <PhiA / PhiD ≦ 0.99, preferably satisfies the following conditions: 0 <PhiA / PhiD ≦ 0.97; TH1 + TH2 satisfies the following conditions: 0 mm <TH1 + TH2 ≦ 1.5mm, preferably satisfies the following conditions: 0 mm <TH1 + TH2 ≦ 1 mm; 2 times (TH1 + TH2) / PhiA meets the following Conditions: 0 <2 times (TH1 + TH2) /PhiA≦0.95, preferably satisfy the following conditions: 0 <2 times (TH1 + TH2) /PhiA≦0.5. It can be known from the foregoing that the optical imaging module of the third preferred structural embodiment of the present invention satisfies some of the conditional expressions described in the first structural embodiment, and can also achieve the effects of miniaturization and high imaging quality.

請參閱第1D圖,為本創作第四較佳結構實施例之光學成像模組,與第一較佳結構實施例相同之處不再贅述,而不同之處在於其透鏡基座LB4包含有一濾光片支架IRH4、一透鏡支架LH4以及一鏡筒B4。該濾光片支架IRH4具有一貫穿該濾光片支架IRH4兩端之濾光片通孔IH,且該濾光片支架IRH4係設置於電路基板EB上,而紅外線濾光片IR4係設置於該濾光片支架IRH4中並位於該濾光片通孔IH內,使該紅外線濾光片IR4位於影像感測元件S上方。該透鏡支架LH4則固定於該濾光片支架IRH4上而該鏡筒B4則同樣設置於該透鏡支架LH4中,使該鏡筒B4之上通孔UH4、該透鏡支架LH4之下通孔DH4及該濾光片支架IRH4之濾光片通孔IH相互連通而共同構成容置孔。此外,本創作第四較佳結構實施例之光學成像模組同樣滿足第一結構實施例中所述之條件式,且同樣可透過黏膠固定進行主動對位 (active alignment) 組裝,進而可同樣達到小型化與高光學品質之效果。Please refer to FIG. 1D, which is an optical imaging module of the fourth preferred structural embodiment of the creation. The same points as the first preferred structural embodiment will not be repeated, and the difference is that the lens base LB4 includes a filter A light lens holder IRH4, a lens holder LH4, and a lens barrel B4. The filter holder IRH4 has a filter through hole IH penetrating through both ends of the filter holder IRH4, and the filter holder IRH4 is disposed on the circuit substrate EB, and the infrared filter IR4 is disposed on the filter holder IRH4. The filter holder IRH4 is located in the filter through hole IH, so that the infrared filter IR4 is located above the image sensing element S. The lens holder LH4 is fixed on the filter holder IRH4, and the lens barrel B4 is also disposed in the lens holder LH4, so that the through hole UH4 above the lens barrel B4, the through hole DH4 below the lens holder LH4, and The filter through holes IH of the filter holder IRH4 communicate with each other to form a receiving hole together. In addition, the optical imaging module of the fourth preferred structural embodiment of the present invention also satisfies the conditional formula described in the first structural embodiment, and can also be assembled by active alignment through adhesive fixation, which can also be the same. To achieve the effect of miniaturization and high optical quality.

請參閱第1E圖,為本創作第五較佳結構實施例之光學成像模組,與第四較佳結構實施例相同之處不再贅述,而不同之處在於其鏡筒B5之外周壁上具有外螺紋OT5,而透鏡支架LH5於下通孔DH5之孔壁上具有內螺紋IT5與該外螺紋OT5螺合,以達到使該鏡筒B5設置於該透鏡支架LH5中且固定於該下通孔DH5內之效果。此外,本創作第五較佳結構實施例之光學成像模組同樣滿足第一結構實施例中所述之條件式,而可同樣達到小型化與高光學品質之效果。Please refer to FIG. 1E, which is an optical imaging module of the fifth preferred structural embodiment of the present invention. The same points as the fourth preferred structural embodiment will not be repeated, and the difference lies in the outer peripheral wall of the lens barrel B5. It has an external thread OT5, and the lens holder LH5 has an internal thread IT5 on the wall of the lower through hole DH5 and is screwed with the external thread OT5, so that the lens barrel B5 is set in the lens holder LH5 and fixed to the lower channel. Effect within hole DH5. In addition, the optical imaging module of the fifth preferred structural embodiment of the present invention also satisfies the conditional formula described in the first structural embodiment, and can also achieve the effects of miniaturization and high optical quality.

當然,在實際實施上,本創作之訊號傳導元件除使用前述之錫球外,亦可使用導體製成之凸塊、接腳或是其組成群組來達到傳輸電訊號之目的。Of course, in actual implementation, in addition to the aforementioned solder balls, the signal conducting elements of this creation can also use bumps, pins, or groups of conductors made of conductors to achieve the purpose of transmitting electrical signals.

另外,除上述之各結構實施例外,以下茲就該透鏡組L可行之光學實施例進行說明。於本創作之光學成像模組可使用三個工作波長進行設計,分別為486.1 nm、587.5 nm、656.2 nm,其中587.5 nm為主要參考波長為主要提取技術特徵之參考波長。光學成像模組亦可使用五個工作波長進行設計,分別為470 nm、510 nm、555 nm、610 nm、650 nm,其中555 nm為主要參考波長為主要提取技術特徵之參考波長。In addition, in addition to the implementation of each of the above-mentioned structures, the following is a description of feasible optical embodiments of the lens group L. The optical imaging module in this creation can be designed using three working wavelengths, which are 486.1 nm, 587.5 nm, and 656.2 nm, of which 587.5 nm is the main reference wavelength and the reference wavelength for the main extraction technology features. The optical imaging module can also be designed with five working wavelengths: 470 nm, 510 nm, 555 nm, 610 nm, and 650 nm, of which 555 nm is the main reference wavelength and the reference wavelength for the main extraction technology features.

光學成像模組的焦距f與每一片具有正屈折力之透鏡的焦距fp之比值PPR,光學成像模組的焦距f與每一片具有負屈折力之透鏡的焦距fn之比值NPR,所有正屈折力之透鏡的PPR總和為ΣPPR,所有負屈折力之透鏡的NPR總和為ΣNPR,當滿足下列條件時有助於控制光學成像模組的總屈折力以及總長度:0.5≦ΣPPR/│ΣNPR│≦15,較佳地,可滿足下列條件:1≦ΣPPR/│ΣNPR│≦3.0。The ratio of the focal length f of the optical imaging module to the focal length fp of each lens with a positive refractive power PPR, the ratio of the focal length f of the optical imaging module to the focal length fn of each lens with a negative refractive power NPR, all positive refractive powers The total PPR of the lens is ΣPPR, and the total NPR of all lenses with negative refractive power is ΣNPR. It helps to control the total refractive power and total length of the optical imaging module when the following conditions are met: 0.5 ≦ ΣPPR / │ΣNPR│ ≦ 15 , Preferably, the following conditions can be satisfied: 1 ≦ ΣPPR / │ΣNPR│ ≦ 3.0.

光學成像模組可更包含一影像感測元件,其設置於成像面。影像感測元件有效感測區域對角線長的一半(即為光學成像模組之成像高度或稱最大像高) 為HOI,第一透鏡物側面至成像面於光軸上的距離為HOS,其滿足下列條件:HOS/HOI≦50;以及0.5≦HOS/f≦150。較佳地,可滿足下列條件:1≦HOS/HOI≦40;以及1≦HOS/f≦140。藉此,可維持光學成像模組的小型化,以搭載於輕薄可攜式的電子產品上。The optical imaging module may further include an image sensing element disposed on the imaging surface. The half of the diagonal length of the effective sensing area of the image sensing element (that is, the imaging height or maximum image height of the optical imaging module) is HOI, and the distance from the object side of the first lens to the imaging surface on the optical axis is HOS. It satisfies the following conditions: HOS / HOI ≦ 50; and 0.5 ≦ HOS / f ≦ 150. Preferably, the following conditions can be satisfied: 1 ≦ HOS / HOI ≦ 40; and 1 ≦ HOS / f ≦ 140. Thereby, the miniaturization of the optical imaging module can be maintained to be mounted on a thin and light portable electronic product.

另外,本創作的光學成像模組中,依需求可設置至少一光圈,以減少雜散光,有助於提昇影像品質。In addition, in the creative optical imaging module, at least one aperture can be set as required to reduce stray light and help improve image quality.

本創作的光學成像模組中,光圈配置可為前置光圈或中置光圈,其中前置光圈意即光圈設置於被攝物與第一透鏡間,中置光圈則表示光圈設置於第一透鏡與成像面間。若光圈為前置光圈,可使光學成像模組的出瞳與成像面產生較長的距離而容置更多光學元件,並可增加影像感測元件接收影像的效率;若為中置光圈,係有助於擴大系統的視場角,使光學成像模組具有廣角鏡頭的優勢。前述光圈至成像面間的距離為InS,其滿足下列條件:0.1≦InS/HOS≦1.1。藉此,可同時兼顧維持光學成像模組的小型化以及具備廣角的特性。In the optical imaging module of this creation, the aperture configuration can be a front aperture or a middle aperture. The front aperture means that the aperture is set between the subject and the first lens, and the middle aperture means that the aperture is set on the first lens. And imaging surface. If the aperture is a front aperture, it can make the exit pupil of the optical imaging module and the imaging surface have a longer distance to accommodate more optical elements, and increase the efficiency of the image sensing element to receive images; if it is a middle aperture, The system helps to expand the field of view of the system, giving the optical imaging module the advantages of a wide-angle lens. The distance from the aforementioned aperture to the imaging surface is InS, which satisfies the following conditions: 0.1 ≦ InS / HOS ≦ 1.1. Thereby, both the miniaturization of the optical imaging module and the characteristics of having a wide angle can be achieved at the same time.

本創作的光學成像模組中,第一透鏡物側面至第六透鏡像側面間的距離為InTL,於光軸上所有具屈折力之透鏡的厚度總和為ΣTP,藉此,當其滿足下列條件:0.1≦ΣTP/InTL≦0.9,可同時兼顧系統成像的對比度以及透鏡製造的良率並提供適當的後焦距以容置其他元件。當此外,其滿足下列條件:0.1≦InTL/HOS≦0.95,可維持光學成像模組的小型化,以搭載於輕薄可攜式的電子產品上。In the created optical imaging module, the distance between the object side of the first lens and the image side of the sixth lens is InTL, and the sum of the thicknesses of all refractive lenses on the optical axis is ΣTP. Therefore, when it meets the following conditions : 0.1 ≦ ΣTP / InTL ≦ 0.9, which can simultaneously take into account the contrast of system imaging and the yield of lens manufacturing and provide an appropriate back focus to accommodate other components. In addition, it satisfies the following conditions: 0.1 ≦ InTL / HOS ≦ 0.95, which can maintain the miniaturization of the optical imaging module to be mounted on thin and light portable electronic products.

該光學成像模組的正向子午面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以PLTA表示;該光學成像模組的正向子午面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以PSTA表示。該光學成像模組的負向子午面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以NLTA表示;該光學成像模組的負向子午面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以NSTA表示;該光學成像模組的弧矢面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以SLTA表示;該光學成像模組的弧矢面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以SSTA表示。此外,當其滿足下列條件: PLTA≦100 µm;PSTA≦100 µm;NLTA≦100 µm;NSTA≦100 µm;SLTA≦100 µm;SSTA≦100 µm時,具有較佳之成像效果。The longest working wavelength of the visible light of the positive meridional fan of the optical imaging module passes through the edge of the entrance pupil and is incident on the imaging surface at 0.7HOI. The lateral aberration is represented by PLTA; the positive meridian of the optical imaging module The shortest working wavelength of the visible light of the fan passes through the edge of the entrance pupil and is incident on the imaging plane at 0.7HOI. The lateral aberration is represented by PSTA. The longest working wavelength of the visible light of the negative meridional fan of the optical imaging module passes through the edge of the entrance pupil and is incident on the imaging plane at 0.7HOI. The lateral aberration is represented by NLTA; the negative meridian of the optical imaging module The shortest working wavelength of the visible light of the optical fan passes through the edge of the entrance pupil and the transverse aberration at 0.7HOI incident on the imaging plane is represented by NSTA; the longest working wavelength of the visible light of the sagittal plane fan of the optical imaging module passes through the edge of the incident pupil The lateral aberration at 0.7HOI incident on the imaging plane is represented by SLTA; the shortest working wavelength of the visible light of the sagittal plane fan of the optical imaging module passes through the edge of the entrance pupil and is incident on the imaging plane at 0.7HOI transverse The aberration is represented by SSTA. In addition, when it meets the following conditions: PLTA ≦ 100 μm; PSTA ≦ 100 μm; NLTA ≦ 100 μm; NSTA ≦ 100 μm; SLTA ≦ 100 μm; SSTA ≦ 100 μm, it has better imaging results.

第一透鏡物側面的曲率半徑為R1,第一透鏡像側面的曲率半徑為R2,其滿足下列條件:0.001≦│R1/R2│≦25。藉此,第一透鏡的具備適當正屈折力強度,避免球差增加過速。較佳地,可滿足下列條件:0.01≦│R1/R2│<12。The curvature radius of the object side of the first lens is R1, and the curvature radius of the image side of the first lens is R2, which satisfies the following conditions: 0.001 ≦ │R1 / R2│ ≦ 25. Thereby, the first lens has an appropriate positive refractive power strength, and avoids an increase in spherical aberration from overspeed. Preferably, the following conditions can be satisfied: 0.01 ≦ │R1 / R2│ <12.

第六透鏡物側面的曲率半徑為R11,第六透鏡像側面的曲率半徑為R12,其滿足下列條件:-7 <(R11-R12)/(R11+R12)<50。藉此,有利於修正光學成像模組所產生的像散。The curvature radius of the object side of the sixth lens is R11, and the curvature radius of the image side of the sixth lens is R12, which satisfies the following conditions: -7 <(R11-R12) / (R11 + R12) <50. This is beneficial for correcting astigmatism generated by the optical imaging module.

第一透鏡與第二透鏡於光軸上的間隔距離為IN12,其滿足下列條件:IN12 / f ≦60藉此,有助於改善透鏡的色差以提升其性能。The distance between the first lens and the second lens on the optical axis is IN12, which satisfies the following conditions: IN12 / f ≦ 60. This helps to improve the chromatic aberration of the lens and improve its performance.

第五透鏡與第六透鏡於光軸上的間隔距離為IN56,其滿足下列條件:IN56 / f ≦3.0,有助於改善透鏡的色差以提升其性能。The distance between the fifth lens and the sixth lens on the optical axis is IN56, which satisfies the following conditions: IN56 / f ≦ 3.0, which helps to improve the chromatic aberration of the lens to improve its performance.

第一透鏡與第二透鏡於光軸上的厚度分別為TP1以及TP2,其滿足下列條件:0.1≦(TP1+IN12) / TP2≦10。藉此,有助於控制光學成像模組製造的敏感度並提升其性能。The thicknesses of the first lens and the second lens on the optical axis are respectively TP1 and TP2, which satisfy the following conditions: 0.1 ≦ (TP1 + IN12) / TP2 ≦ 10. This helps to control the sensitivity of the optical imaging module manufacturing and improve its performance.

第五透鏡與第六透鏡於光軸上的厚度分別為TP5以及TP6,前述兩透鏡於光軸上的間隔距離為IN56,其滿足下列條件:0.1≦(TP6+IN56) / TP5≦15藉此,有助於控制光學成像模組製造的敏感度並降低系統總高度。The thicknesses of the fifth lens and the sixth lens on the optical axis are TP5 and TP6, respectively. The distance between the two lenses on the optical axis is IN56, which satisfies the following conditions: 0.1 ≦ (TP6 + IN56) / TP5 ≦ 15. , Which helps control the sensitivity of optical imaging module manufacturing and reduce the overall system height.

第二透鏡、第三透鏡與第四透鏡於光軸上的厚度分別為TP2、TP3以及TP4,第二透鏡與第三透鏡於光軸上的間隔距離為IN23,第三透鏡與第四透鏡於光軸上的間隔距離為IN45,第一透鏡物側面至第六透鏡像側面間的距離為InTL,其滿足下列條件:0.1≦TP4/ (IN34+TP4+IN45)<1。藉此,有助層層微幅修正入射光行進過程所產生的像差並降低系統總高度。The thicknesses of the second lens, the third lens, and the fourth lens on the optical axis are TP2, TP3, and TP4. The distance between the second lens and the third lens on the optical axis is IN23. The third lens and the fourth lens are on the optical axis. The separation distance on the optical axis is IN45, and the distance from the object side of the first lens to the image side of the sixth lens is InTL, which satisfies the following conditions: 0.1 ≦ TP4 / (IN34 + TP4 + IN45) <1. This helps the layers to slightly correct the aberrations generated by the incident light and reduces the overall system height.

本創作的光學成像模組中,第六透鏡物側面的臨界點C61與光軸的垂直距離為 HVT61,第六透鏡像側面的臨界點C62與光軸的垂直距離為HVT62,第六透鏡物側面於光軸上的交點至臨界點C61位置於光軸的水平位移距離為SGC61,第六透鏡像側面於光軸上的交點至臨界點C62位置於光軸的水平位移距離為SGC62,可滿足下列條件:0 mm≦HVT61≦3 mm;0 mm < HVT62≦6 mm;0≦HVT61/HVT62;0 mm≦∣SGC61∣≦0.5 mm;0 mm<∣SGC62∣≦2 mm;以及0 <∣SGC62∣/(∣SGC62∣+TP6)≦0.9。藉此,可有效修正離軸視場的像差。In the created optical imaging module, the vertical distance between the critical point C61 of the sixth lens object side and the optical axis is HVT61, the vertical distance between the critical point C62 of the sixth lens image side and the optical axis is HVT62, and the sixth lens object side The horizontal displacement distance from the intersection point on the optical axis to the critical point C61 on the optical axis is SGC61, and the horizontal displacement distance from the intersection point on the optical axis of the sixth lens image side to the critical point C62 on the optical axis is SGC62, which can meet the following Conditions: 0 mm ≦ HVT61 ≦ 3 mm; 0 mm <HVT62 ≦ 6 mm; 0 ≦ HVT61 / HVT62; 0 mm ≦ ∣SGC61∣ ≦ 0.5 mm; 0 mm <∣SGC62∣ ≦ 2 mm; and 0 <∣SGC62∣ /(∣SGC62∣+TP6)≦0.9. This can effectively correct aberrations in the off-axis field of view.

本創作的光學成像模組其滿足下列條件:0.2≦HVT62/ HOI≦0.9。較佳地,可滿足下列條件:0.3≦HVT62/ HOI≦0.8。藉此,有助於光學成像模組之週邊視場的像差修正。The optical imaging module of this creation meets the following conditions: 0.2 ≦ HVT62 / HOI ≦ 0.9. Preferably, the following conditions can be satisfied: 0.3 ≦ HVT62 / HOI ≦ 0.8. This is helpful for aberration correction of the peripheral field of view of the optical imaging module.

本創作的光學成像模組其滿足下列條件:0≦HVT62/ HOS≦0.5。較佳地,可滿足下列條件:0.2≦HVT62/ HOS≦0.45。藉此,有助於光學成像模組之週邊視場的像差修正。The optical imaging module of this creation meets the following conditions: 0 ≦ HVT62 / HOS ≦ 0.5. Preferably, the following conditions can be satisfied: 0.2 ≦ HVT62 / HOS ≦ 0.45. This is helpful for aberration correction of the peripheral field of view of the optical imaging module.

本創作的光學成像模組中,第六透鏡物側面於光軸上的交點至第六透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI611表示,第六透鏡像側面於光軸上的交點至第六透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI621表示,其滿足下列條件:0 < SGI611 /( SGI611+TP6)≦0.9;0 < SGI621 /( SGI621+TP6)≦0.9。較佳地,可滿足下列條件:0.1≦SGI611 /( SGI611+TP6)≦0.6;0.1≦SGI621 /( SGI621+TP6)≦0.6。In this creative optical imaging module, the horizontal displacement distance parallel to the optical axis between the intersection point of the sixth lens object side on the optical axis and the closest optical axis inflection point on the sixth lens object side is represented by SGI611. The horizontal displacement distance parallel to the optical axis between the intersection point of the mirror image side on the optical axis and the closest optical axis of the sixth lens image side is represented by SGI621, which satisfies the following conditions: 0 <SGI611 / (SGI611 + TP6) ≦ 0.9; 0 <SGI621 / (SGI621 + TP6) ≦ 0.9. Preferably, the following conditions can be satisfied: 0.1 ≦ SGI611 / (SGI611 + TP6) ≦ 0.6; 0.1 ≦ SGI621 / (SGI621 + TP6) ≦ 0.6.

第六透鏡物側面於光軸上的交點至第六透鏡物側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI612表示,第六透鏡像側面於光軸上的交點至第六透鏡像側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI622表示,其滿足下列條件:0 < SGI612/( SGI612+TP6)≦0.9;0 < SGI622 /( SGI622+TP6)≦0.9。較佳地,可滿足下列條件:0.1≦SGI612 /( SGI612+TP6)≦0.6;0.1≦SGI622 /( SGI622+TP6)≦0.6。The horizontal displacement distance parallel to the optical axis between the intersection of the object side of the sixth lens on the optical axis and the second curved point near the optical axis of the object side of the sixth lens is represented by SGI612. The image side of the sixth lens on the optical axis The horizontal displacement distance parallel to the optical axis between the intersection point and the second curved optical axis of the sixth lens image side parallel to the optical axis is represented by SGI622, which satisfies the following conditions: 0 <SGI612 / (SGI612 + TP6) ≦ 0.9; 0 <SGI622 / (SGI622 + TP6) ≦ 0.9. Preferably, the following conditions can be satisfied: 0.1 ≦ SGI612 / (SGI612 + TP6) ≦ 0.6; 0.1 ≦ SGI622 / (SGI622 + TP6) ≦ 0.6.

第六透鏡物側面最近光軸的反曲點與光軸間的垂直距離以HIF611表示,第六透鏡像側面於光軸上的交點至第六透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF621表示,其滿足下列條件:0.001 mm≦│HIF611∣≦5 mm;0.001 mm≦│HIF621∣≦5 mm。較佳地,可滿足下列條件: 0.1 mm≦│HIF611∣≦3.5 mm;1.5 mm≦│HIF621∣≦3.5 mm。The vertical distance between the inflection point of the closest optical axis of the sixth lens object side and the optical axis is represented by HIF611. The intersection of the sixth lens image side on the optical axis to the closest optical axis of the sixth lens image side and the inflection point of the optical axis The vertical distance between them is represented by HIF621, which meets the following conditions: 0.001 mm ≦ │HIF611∣ ≦ 5 mm; 0.001 mm ≦ │HIF621∣ ≦ 5 mm. Preferably, the following conditions can be satisfied: 0.1 mm ≦ │HIF611∣ ≦ 3.5 mm; 1.5 mm ≦ │HIF621∣ ≦ 3.5 mm.

第六透鏡物側面第二接近光軸的反曲點與光軸間的垂直距離以HIF612表示,第六透鏡像側面於光軸上的交點至第六透鏡像側面第二接近光軸的反曲點與光軸間的垂直距離以HIF622表示,其滿足下列條件:0.001 mm≦│HIF612∣≦5 mm;0.001 mm≦│HIF622∣≦5 mm。較佳地,可滿足下列條件:0.1 mm≦│HIF622∣≦3.5 mm;0.1 mm≦│HIF612∣≦3.5 mm。The vertical distance between the second curved point closest to the optical axis and the optical axis of the sixth lens object side is represented by HIF612. The intersection of the sixth lens image side on the optical axis to the sixth lens image side second curve near the optical axis The vertical distance between the point and the optical axis is represented by HIF622, which meets the following conditions: 0.001 mm ≦ │HIF612IF ≦ 5 mm; 0.001 mm ≦ │HIF622∣ ≦ 5 mm. Preferably, the following conditions can be satisfied: 0.1 mm ≦ │HIF622∣ ≦ 3.5 mm; 0.1 mm ≦ │HIF612∣ ≦ 3.5 mm.

第六透鏡物側面第三接近光軸的反曲點與光軸間的垂直距離以HIF613表示,第六透鏡像側面於光軸上的交點至第六透鏡像側面第三接近光軸的反曲點與光軸間的垂直距離以HIF623表示,其滿足下列條件:0.001 mm≦│HIF613∣≦5 mm;0.001 mm≦│HIF623∣≦5 mm。較佳地,可滿足下列條件:0.1 mm≦│HIF623∣≦3.5 mm;0.1 mm≦│HIF613∣≦3.5 mm。The vertical distance between the inflection point of the sixth lens object side close to the optical axis and the optical axis is represented by HIF613. The intersection of the sixth lens image side on the optical axis to the third lens image side third inflection near the optical axis The vertical distance between the point and the optical axis is represented by HIF623, which satisfies the following conditions: 0.001 mm ≦ │HIF613∣ ≦ 5 mm; 0.001 mm ≦ │HIF623∣ ≦ 5 mm. Preferably, the following conditions can be satisfied: 0.1 mm ≦ │HIF623∣ ≦ 3.5 mm; 0.1 mm ≦ │HIF613∣ ≦ 3.5 mm.

第六透鏡物側面第四接近光軸的反曲點與光軸間的垂直距離以HIF614表示,第六透鏡像側面於光軸上的交點至第六透鏡像側面第四接近光軸的反曲點與光軸間的垂直距離以HIF624表示,其滿足下列條件:0.001 mm≦│HIF614∣≦5 mm;0.001 mm≦│HIF624∣≦5 mm。較佳地,可滿足下列條件:0.1 mm≦│HIF624∣≦3.5 mm;0.1 mm≦│HIF614∣≦3.5 mm。The vertical distance between the inflection point of the sixth lens object side close to the optical axis and the optical axis is represented by HIF614. The intersection of the sixth lens image side on the optical axis to the fourth lens image side is the fourth curve close to the optical axis. The vertical distance between the point and the optical axis is represented by HIF624, which meets the following conditions: 0.001 mm ≦ │HIF614∣ ≦ 5 mm; 0.001 mm ≦ │HIF624∣ ≦ 5 mm. Preferably, the following conditions can be satisfied: 0.1 mm ≦ │HIF624∣ ≦ 3.5 mm; 0.1 mm ≦ │HIF614∣ ≦ 3.5 mm.

本創作的光學成像模組中,(TH1+TH2) / HOI滿足下列條件:0 < (TH1+TH2) / HOI≦0.95,較佳地可滿足下列條件:0 < (TH1+TH2) / HOI≦0.5;(TH1+TH2) /HOS滿足下列條件:0 < (TH1+TH2) /HOS≦0.95,較佳地可滿足下列條件:0 < (TH1+TH2) /HOS≦0.5;2倍(TH1+TH2) /PhiA滿足下列條件:0 <2倍(TH1+TH2) /PhiA≦0.95,較佳地可滿足下列條件:0<2倍(TH1+TH2) /PhiA≦0.5。In the optical imaging module of this creation, (TH1 + TH2) / HOI satisfies the following conditions: 0 <(TH1 + TH2) / HOI ≦ 0.95, and preferably satisfies the following conditions: 0 <(TH1 + TH2) / HOI ≦ 0.5; (TH1 + TH2) / HOS satisfies the following conditions: 0 <(TH1 + TH2) /HOS≦0.95, and preferably satisfies the following conditions: 0 <(TH1 + TH2) /HOS≦0.5; 2 times (TH1 + TH2) / PhiA satisfies the following conditions: 0 <2 times (TH1 + TH2) /PhiA≦0.95, and preferably satisfies the following conditions: 0 <2 times (TH1 + TH2) /PhiA≦0.5.

本創作的光學成像模組之一種實施方式,可藉由具有高色散係數與低色散係數之透鏡交錯排列,而助於光學成像模組色差的修正。An embodiment of the optical imaging module of the present invention can help stagger the chromatic aberration of the optical imaging module by staggering the lenses with high dispersion coefficient and low dispersion coefficient.

上述非球面之方程式係為: z=ch 2/[1+[1(k+1)c2h2]0.5]+A4h 4+A6h 6+A8h 8+A10h 10+A12h 12+A14h 14+A16h 16+A18h 18+A20h 20+… (1) The equation of the above aspheric surface is: z = ch 2 /[1+[1(k+1)c2h2]0.5]+A4h 4 + A6h 6 + A8h 8 + A10h 10 + A12h 12 + A14h 14 + A16h 16 + A18h 18 + A20h 20 +… (1)

其中,z為沿光軸方向在高度為h的位置以表面頂點作參考的位置值,k為錐面係數,c為曲率半徑的倒數,且A4、A6、A8、A10、A12、A14、A16、A18以及A20為高階非球面係數。Among them, z is the position value with the surface vertex as the reference at the position of height h along the optical axis direction, k is the cone surface coefficient, c is the inverse of the radius of curvature, and A4, A6, A8, A10, A12, A14, A16 , A18 and A20 are high-order aspheric coefficients.

本創作提供的光學成像模組中,透鏡的材質可為塑膠或玻璃。當透鏡材質為塑膠,可以有效降低生產成本與重量。另當透鏡的材質為玻璃,則可以控制熱效應並且增加光學成像模組屈折力配置的設計空間。此外,光學成像模組中第一透鏡至第七透鏡的物側面及像側面可為非球面,其可獲得較多的控制變數,除用以消減像差外,相較於傳統玻璃透鏡的使用甚至可縮減透鏡使用的數目,因此能有效降低本創作光學成像模組的總高度。In the optical imaging module provided by this creation, the material of the lens can be plastic or glass. When the lens is made of plastic, it can effectively reduce production costs and weight. In addition, when the material of the lens is glass, the thermal effect can be controlled and the design space of the refractive power configuration of the optical imaging module can be increased. In addition, the object side and the image side of the first lens to the seventh lens in the optical imaging module can be aspheric, which can obtain more control variables. In addition to reducing aberrations, compared to the use of traditional glass lenses It can even reduce the number of lenses used, so it can effectively reduce the overall height of the creative optical imaging module.

再者,本創作提供的光學成像模組中,若透鏡表面係為凸面,原則上表示透鏡表面於近光軸處為凸面;若透鏡表面係為凹面,原則上表示透鏡表面於近光軸處為凹面。Furthermore, in the optical imaging module provided by this creation, if the lens surface is convex, in principle, the lens surface is convex at the near optical axis; if the lens surface is concave, in principle, the lens surface is at the near optical axis. It is concave.

本創作的光學成像模組更可視需求應用於移動對焦的光學系統中,並兼具優良像差修正與良好成像品質的特色,從而擴大應用層面。The optical imaging module of this creation can be applied to the optical system of mobile focusing according to the needs, and has the characteristics of excellent aberration correction and good imaging quality, thereby expanding the application level.

本創作的光學成像模組更可視需求包括一驅動模組,該驅動模組可與該些透鏡相耦合並使該些透鏡產生位移。前述驅動模組可以是音圈馬達(VCM)用於帶動鏡頭進行對焦,或者為光學防手振元件(OIS)用於降低拍攝過程因鏡頭振動所導致失焦的發生頻率。The optical imaging module of this creation may further include a driving module according to requirements. The driving module may be coupled to the lenses and cause the lenses to be displaced. The aforementioned driving module may be a voice coil motor (VCM) for driving the lens to focus, or an optical anti-shake element (OIS) for reducing the frequency of out-of-focus caused by lens vibration during shooting.

本創作的光學成像模組更可視需求令第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡、第六透鏡及第七透鏡中至少一透鏡為波長小於500nm之光線濾除元件,其可藉由該特定具濾除功能之透鏡的至少一表面上鍍膜或該透鏡本身即由具可濾除短波長之材質所製作而達成。According to the optical imaging module of this creation, at least one of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, and the seventh lens can be filtered by light having a wavelength less than 500 nm according to the needs. The component can be achieved by coating on at least one surface of the specific lens having a filtering function or the lens itself is made of a material having a short wavelength that can be filtered out.

本創作的光學成像模組之成像面更可視需求選擇為一平面或一曲面。當成像面為一曲面 (例如具有一曲率半徑的球面),有助於降低聚焦光線於成像面所需之入射角,除有助於達成微縮光學成像模組之長度(TTL)外,對於提升相對照度同時有所助益。The imaging surface of the optical imaging module of this creation can be selected as a flat surface or a curved surface as required. When the imaging surface is a curved surface (such as a spherical surface with a radius of curvature), it helps to reduce the incident angle required to focus the light on the imaging surface. In addition to helping to achieve the miniature optical imaging module length (TTL), Contrast is also helpful.

根據上述實施方式,以下茲以第一較佳結構實施例配合下述光學實施例提出具體實施例並配合圖式予以詳細說明。但實際實施上,下述之光學實施例同樣可應用於其他結構實施例。According to the above-mentioned implementation manners, the following describes the first preferred structural embodiment in combination with the following optical embodiments to present specific embodiments and describes them in detail with reference to the drawings. However, in actual implementation, the following optical embodiments can also be applied to other structural embodiments.

第一光學實施例First optical embodiment

請參照第2A圖及第2B圖,其中第2A圖繪示依照本創作第一光學實施例的一種光學成像模組的透鏡組示意圖,第2B圖由左至右依序為第一光學實施例的光學成像模組的球差、像散及光學畸變曲線圖。由第2A圖可知,光學成像模組由物側至像側依序包含第一透鏡110、光圈100、第二透鏡120、第三透鏡130、第四透鏡140、第五透鏡150、第六透鏡160、紅外線濾光片180、成像面190以及影像感測元件192。Please refer to FIG. 2A and FIG. 2B, wherein FIG. 2A shows a schematic diagram of a lens group of an optical imaging module according to the first optical embodiment of the creation, and FIG. 2B is the first optical embodiment in order from left to right Spherical aberration, astigmatism and optical distortion curves of the optical imaging module. It can be seen from FIG. 2A that the optical imaging module includes the first lens 110, the aperture 100, the second lens 120, the third lens 130, the fourth lens 140, the fifth lens 150, and the sixth lens in order from the object side to the image side. 160, an infrared filter 180, an imaging surface 190, and an image sensing element 192.

第一透鏡110具有負屈折力,且為塑膠材質,其物側面112為凹面,其像側面114為凹面,並皆為非球面,且其物側面112具有二反曲點。第一透鏡物側面的最大有效半徑之輪廓曲線長度以ARS11表示,第一透鏡像側面的最大有效半徑之輪廓曲線長度以ARS12表示。第一透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE11表示,第一透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE12表示。第一透鏡於光軸上之厚度為TP1。The first lens 110 has a negative refractive power and is made of plastic. The object side 112 is concave, the image side 114 is concave, and both are aspheric. The object side 112 has two inflection points. The length of the contour curve of the maximum effective radius on the object side of the first lens is represented by ARS11, and the length of the contour curve of the maximum effective radius of the image side of the first lens is represented by ARS12. The length of the contour curve of the 1/2 incident pupil diameter (HEP) on the object side of the first lens is represented by ARE11, and the length of the contour curve of the 1/2 incidence pupil diameter (HEP) of the first lens image side is represented by ARE12. The thickness of the first lens on the optical axis is TP1.

第一透鏡110物側面112於光軸上的交點至第一透鏡110物側面112最近光軸的反曲點之間與光軸平行的水平位移距離以SGI111表示,第一透鏡110像側面114於光軸上的交點至第一透鏡110像側面114最近光軸的反曲點之間與光軸平行的水平位移距離以SGI121表示,其滿足下列條件:SGI111= -0.0031 mm;∣SGI111∣/(∣SGI111∣+TP1)= 0.0016。The horizontal displacement distance parallel to the optical axis between the intersection point of the object side surface 112 of the first lens 110 on the optical axis and the closest optical axis inflection point of the object side surface 112 of the first lens 110 is represented by SGI111. The horizontal displacement distance parallel to the optical axis between the intersection point on the optical axis and the inflection point of the closest optical axis of the image side 114 of the first lens 110 is represented by SGI121, which satisfies the following conditions: SGI111 = -0.0031 mm; ∣SGI111∣ / ( (SGI111∣ + TP1) = 0.0016.

第一透鏡110物側面112於光軸上的交點至第一透鏡110物側面112第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI112表示,第一透鏡110像側面114於光軸上的交點至第一透鏡110像側面114第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI122表示,其滿足下列條件:SGI112=1.3178 mm;∣SGI112∣/(∣SGI112∣+TP1)= 0.4052。The horizontal displacement distance parallel to the optical axis between the intersection of the object side 112 of the first lens 110 on the optical axis and the second curved point near the object side 112 of the first lens 110 is parallel to the optical axis. The horizontal displacement distance parallel to the optical axis between the intersection point of 114 on the optical axis to the first lens 110 image side 114 and the second curved point close to the optical axis is represented by SGI122, which meets the following conditions: SGI112 = 1.3178 mm; ∣SGI112 ∣ / (∣SGI112∣ + TP1) = 0.4052.

第一透鏡110物側面112最近光軸的反曲點與光軸間的垂直距離以HIF111表示,第一透鏡110像側面114於光軸上的交點至第一透鏡110像側面114最近光軸的反曲點與光軸間的垂直距離以HIF121表示,其滿足下列條件:HIF111=0.5557 mm;HIF111/ HOI=0.1111。The vertical distance between the inflection point of the closest optical axis of the object side surface 112 of the first lens 110 and the optical axis is represented by HIF111. The intersection of the image side 114 of the first lens 110 on the optical axis to the closest optical axis of the image side 114 of the first lens 110 The vertical distance between the inflection point and the optical axis is represented by HIF121, which satisfies the following conditions: HIF111 = 0.5557 mm; HIF111 / HOI = 0.1111.

第一透鏡110物側面112第二接近光軸的反曲點與光軸間的垂直距離以HIF112表示,第一透鏡110像側面114於光軸上的交點至第一透鏡110像側面114第二接近光軸的反曲點與光軸間的垂直距離以HIF122表示,其滿足下列條件:HIF112=5.3732 mm;HIF112/ HOI=1.0746。The vertical distance between the inflection point of the second lens object 110 near the optical axis and the optical axis is represented by HIF112. The intersection of the first lens 110 image side 114 on the optical axis to the first lens 110 image side 114 second The vertical distance between the inflection point near the optical axis and the optical axis is represented by HIF122, which meets the following conditions: HIF112 = 5.3732 mm; HIF112 / HOI = 1.0746.

第二透鏡120具有正屈折力,且為塑膠材質,其物側面122為凸面,其像側面124為凸面,並皆為非球面,且其物側面122具有一反曲點。第二透鏡物側面的最大有效半徑之輪廓曲線長度以ARS21表示,第二透鏡像側面的最大有效半徑之輪廓曲線長度以ARS22表示。第二透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE21表示,第二透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE22表示。第二透鏡於光軸上之厚度為TP2。The second lens 120 has a positive refractive power and is made of plastic. The object side surface 122 is convex, the image side surface 124 is convex, and both are aspheric. The object side surface 122 has an inflection point. The length of the contour curve of the maximum effective radius on the object side of the second lens is represented by ARS21, and the length of the contour curve of the maximum effective radius of the image side of the second lens is represented by ARS22. The length of the profile curve of 1/2 incident pupil diameter (HEP) on the object side of the second lens is represented by ARE21, and the length of the profile curve of 1/2 incident pupil diameter (HEP) on the image side of the second lens is represented by ARE22. The thickness of the second lens on the optical axis is TP2.

第二透鏡120物側面122於光軸上的交點至第二透鏡120物側面122最近光軸的反曲點之間與光軸平行的水平位移距離以SGI211表示,第二透鏡120像側面124於光軸上的交點至第二透鏡120像側面124最近光軸的反曲點之間與光軸平行的水平位移距離以SGI221表示,其滿足下列條件:SGI211=0.1069 mm;∣SGI211∣/(∣SGI211∣+TP2)= 0.0412;SGI221=0 mm;∣SGI221∣/(∣SGI221∣+TP2)= 0。The horizontal displacement distance parallel to the optical axis between the intersection of the object side 122 of the second lens 120 on the optical axis and the closest optical axis of the object side 122 of the second lens 120 is represented by SGI211. The horizontal displacement distance parallel to the optical axis between the intersection point on the optical axis and the inflection point of the closest optical axis of the second lens 120 image side 124 is represented by SGI221, which meets the following conditions: SGI211 = 0.1069 mm; ∣SGI211∣ / (∣ SGI211∣ + TP2) = 0.0412; SGI221 = 0 mm; ∣SGI221∣ / (∣SGI221∣ + TP2) = 0.

第二透鏡120物側面122最近光軸的反曲點與光軸間的垂直距離以HIF211表示,第二透鏡120像側面124於光軸上的交點至第二透鏡120像側面124最近光軸的反曲點與光軸間的垂直距離以HIF221表示,其滿足下列條件:HIF211=1.1264 mm;HIF211/ HOI=0.2253;HIF221=0 mm;HIF221/ HOI=0。The vertical distance between the inflection point of the closest optical axis of the object side 122 of the second lens 120 and the optical axis is represented by HIF211. The intersection of the image side 124 of the second lens 120 on the optical axis to the closest optical axis of the image side 124 of the second lens 120 The vertical distance between the inflection point and the optical axis is represented by HIF221, which satisfies the following conditions: HIF211 = 1.1264 mm; HIF211 / HOI = 0.2253; HIF221 = 0 mm; HIF221 / HOI = 0.

第三透鏡130具有負屈折力,且為塑膠材質,其物側面132為凹面,其像側面134為凸面,並皆為非球面,且其物側面132以及像側面134均具有一反曲點。第三透鏡物側面的最大有效半徑之輪廓曲線長度以ARS31表示,第三透鏡像側面的最大有效半徑之輪廓曲線長度以ARS32表示。第三透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE31表示,第三透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE32表示。第三透鏡於光軸上之厚度為TP3。The third lens 130 has a negative refractive power and is made of plastic. Its object side surface 132 is concave, its image side surface 134 is convex, and both are aspheric. The object side surface 132 and the image side surface 134 have an inflection point. The length of the contour curve of the maximum effective radius on the object side of the third lens is represented by ARS31, and the length of the contour curve of the maximum effective radius of the image side of the third lens is represented by ARS32. The length of the contour curve of 1/2 incident pupil diameter (HEP) on the object side of the third lens is represented by ARE31, and the length of the contour curve of 1/2 incident pupil diameter (HEP) on the image side of the third lens is represented by ARE32. The thickness of the third lens on the optical axis is TP3.

第三透鏡130物側面132於光軸上的交點至第三透鏡130物側面132最近光軸的反曲點之間與光軸平行的水平位移距離以SGI311表示,第三透鏡130像側面134於光軸上的交點至第三透鏡130像側面134最近光軸的反曲點之間與光軸平行的水平位移距離以SGI321表示,其滿足下列條件:SGI311= -0.3041 mm;∣SGI311∣/(∣SGI311∣+TP3)= 0.4445;SGI321= -0.1172 mm;∣SGI321∣/(∣SGI321∣+TP3)= 0.2357。The horizontal displacement distance parallel to the optical axis between the intersection of the object side 132 of the third lens 130 on the optical axis and the closest optical axis of the object side 132 of the third lens 130 is represented by SGI311. The horizontal displacement distance from the intersection point on the optical axis to the inflection point of the closest optical axis of the third lens 130 image side 134 parallel to the optical axis is represented by SGI321, which satisfies the following conditions: SGI311 = -0.3041 mm; ∣SGI311∣ / ( (∣SGI311∣ + TP3) = 0.4445; SGI321 = -0.1172 mm; ∣SGI321∣ / (∣SGI321∣ + TP3) = 0.2357.

第三透鏡130物側面132最近光軸的反曲點與光軸間的垂直距離以HIF311表示,第三透鏡130像側面134於光軸上的交點至第三透鏡130像側面134最近光軸的反曲點與光軸間的垂直距離以HIF321表示,其滿足下列條件:HIF311=1.5907 mm;HIF311/ HOI=0.3181;HIF321=1.3380 mm;HIF321/ HOI=0.2676。The vertical distance between the inflection point of the closest optical axis of the object side surface 132 of the third lens 130 and the optical axis is represented by HIF311. The intersection of the image side 134 of the third lens 130 on the optical axis to the closest optical axis of the image side 134 of the third lens 130 The vertical distance between the inflection point and the optical axis is represented by HIF321, which satisfies the following conditions: HIF311 = 1.5907 mm; HIF311 / HOI = 0.3181; HIF321 = 1.3380 mm; HIF321 / HOI = 0.2676.

第四透鏡140具有正屈折力,且為塑膠材質,其物側面142為凸面,其像側面144為凹面,並皆為非球面,且其物側面142具有二反曲點以及像側面144具有一反曲點。第四透鏡物側面的最大有效半徑之輪廓曲線長度以ARS41表示,第四透鏡像側面的最大有效半徑之輪廓曲線長度以ARS42表示。第四透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE41表示,第四透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE42表示。第四透鏡於光軸上之厚度為TP4。The fourth lens 140 has a positive refractive power and is made of plastic. Its object side 142 is convex, its image side 144 is concave and both are aspheric, and its object side 142 has two inflection points and the image side 144 has a Inflection point. The length of the contour curve of the maximum effective radius on the object side of the fourth lens is represented by ARS41, and the length of the contour curve of the maximum effective radius of the image side of the fourth lens is represented by ARS42. The length of the contour curve of the 1/2 incident pupil diameter (HEP) on the object side of the fourth lens is represented by ARE41, and the length of the contour curve of the 1/2 incidence pupil diameter (HEP) of the fourth lens image side is represented by ARE42. The thickness of the fourth lens on the optical axis is TP4.

第四透鏡140物側面142於光軸上的交點至第四透鏡140物側面142最近光軸的反曲點之間與光軸平行的水平位移距離以SGI411表示,第四透鏡140像側面144於光軸上的交點至第四透鏡140像側面144最近光軸的反曲點之間與光軸平行的水平位移距離以SGI421表示,其滿足下列條件:SGI411=0.0070 mm;∣SGI411∣/(∣SGI411∣+TP4)= 0.0056;SGI421=0.0006 mm;∣SGI421∣/(∣SGI421∣+TP4)= 0.0005。The horizontal displacement distance parallel to the optical axis between the intersection of the object side 142 of the fourth lens 140 on the optical axis and the closest optical axis inflection point of the object side 142 of the fourth lens 140 is represented by SGI411. The horizontal displacement distance parallel to the optical axis between the intersection point on the optical axis and the inflection point of the closest optical axis of the fourth lens 140 image side 144 is represented by SGI421, which satisfies the following conditions: SGI411 = 0.0070 mm; ∣SGI411∣ / (∣ SGI411∣ + TP4) = 0.0056; SGI421 = 0.0006 mm; ∣SGI421∣ / (∣SGI421∣ + TP4) = 0.0005.

第四透鏡140物側面142於光軸上的交點至第四透鏡140物側面142第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI412表示,第四透鏡140像側面144於光軸上的交點至第四透鏡140像側面144第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI422表示,其滿足下列條件:SGI412=-0.2078 mm;∣SGI412∣/(∣SGI412∣+ TP4)= 0.1439。The horizontal displacement distance parallel to the optical axis between the intersection of the object side 142 of the fourth lens 140 on the optical axis and the second inflection point of the object side 142 of the fourth lens 140 near the optical axis is represented by SGI412. The fourth lens 140 is like a side The horizontal displacement distance between the intersection of 144 on the optical axis to the fourth lens 140 image side 144 and the second curved point close to the optical axis is parallel to the optical axis as SGI422, which meets the following conditions: SGI412 = -0.2078 mm; ∣ SGI412∣ / (∣SGI412∣ + TP4) = 0.1439.

第四透鏡140物側面142最近光軸的反曲點與光軸間的垂直距離以HIF411表示,第四透鏡140像側面144於光軸上的交點至第四透鏡140像側面144最近光軸的反曲點與光軸間的垂直距離以HIF421表示,其滿足下列條件:HIF411=0.4706 mm;HIF411/ HOI=0.0941;HIF421=0.1721 mm;HIF421/ HOI=0.0344。The vertical distance between the inflection point of the closest optical axis of the fourth lens 140 object side 142 and the optical axis is represented by HIF411. The intersection of the fourth lens 140 image side 144 on the optical axis to the fourth lens 140 image side 144 nearest the optical axis. The vertical distance between the inflection point and the optical axis is represented by HIF421, which satisfies the following conditions: HIF411 = 0.4706 mm; HIF411 / HOI = 0.0941; HIF421 = 0.1721 mm; HIF421 / HOI = 0.0344.

第四透鏡140物側面142第二接近光軸的反曲點與光軸間的垂直距離以HIF412表示,第四透鏡140像側面144於光軸上的交點至第四透鏡140像側面144第二接近光軸的反曲點與光軸間的垂直距離以HIF422表示,其滿足下列條件:HIF412=2.0421 mm;HIF412/ HOI=0.4084。The vertical distance between the second curved surface of the object side 142 of the fourth lens 140 near the optical axis and the optical axis is represented by HIF412. The intersection of the fourth lens 140 image side 144 on the optical axis to the fourth lens 140 image side 144 second The vertical distance between the inflection point near the optical axis and the optical axis is represented by HIF422, which meets the following conditions: HIF412 = 2.0421 mm; HIF412 / HOI = 0.4084.

第五透鏡150具有正屈折力,且為塑膠材質,其物側面152為凸面,其像側面154為凸面,並皆為非球面,且其物側面152具有二反曲點以及像側面154具有一反曲點。第五透鏡物側面的最大有效半徑之輪廓曲線長度以ARS51表示,第五透鏡像側面的最大有效半徑之輪廓曲線長度以ARS52表示。第五透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE51表示,第五透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE52表示。第五透鏡於光軸上之厚度為TP5。The fifth lens 150 has a positive refractive power and is made of plastic. Its object side 152 is convex, its image side 154 is convex, and both are aspheric. The object side 152 has two inflection points and the image side 154 has a Inflection point. The length of the contour curve of the maximum effective radius on the object side of the fifth lens is represented by ARS51, and the length of the contour curve of the maximum effective radius of the image side of the fifth lens is represented by ARS52. The contour curve length of 1/2 incident pupil diameter (HEP) on the object side of the fifth lens is represented by ARE51, and the contour curve length of 1/2 incident pupil diameter (HEP) on the image side of the fifth lens is represented by ARE52. The thickness of the fifth lens on the optical axis is TP5.

第五透鏡150物側面152於光軸上的交點至第五透鏡150物側面152最近光軸的反曲點之間與光軸平行的水平位移距離以SGI511表示,第五透鏡150像側面154於光軸上的交點至第五透鏡150像側面154最近光軸的反曲點之間與光軸平行的水平位移距離以SGI521表示,其滿足下列條件:SGI511=0.00364 mm;∣SGI511∣/(∣SGI511∣+TP5)= 0.00338;SGI521=-0.63365 mm;∣SGI521∣/(∣SGI521∣+TP5)= 0.37154。The horizontal displacement distance between the intersection of the object side surface 152 of the fifth lens 150 on the optical axis and the closest optical axis inflection point of the object side 152 of the fifth lens 150 is parallel to the optical axis as SGI511. The fifth lens 150 is like the side surface 154 at The horizontal displacement distance parallel to the optical axis between the intersection point on the optical axis and the inflection point of the closest optical axis of the image side 154 of the fifth lens 150 is represented by SGI521, which satisfies the following conditions: SGI511 = 0.00364 mm; ∣SGI511∣ / (∣ SGI511∣ + TP5) = 0.00338; SGI521 = -0.63365 mm; ∣SGI521∣ / (∣SGI521∣ + TP5) = 0.37154.

第五透鏡150物側面152於光軸上的交點至第五透鏡150物側面152第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI512表示,第五透鏡150像側面154於光軸上的交點至第五透鏡150像側面154第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI522表示,其滿足下列條件:SGI512= -0.32032 mm;∣SGI512∣/(∣SGI512∣+ TP5)= 0.23009。The horizontal displacement distance between the intersection of the object side surface 152 of the fifth lens 150 on the optical axis and the second inflection point of the object side 152 of the fifth lens 150 close to the optical axis is parallel to the optical axis as SGI512. The fifth lens 150 is like a side The horizontal displacement distance parallel to the optical axis between the intersection of 154 on the optical axis to the fifth lens 150 image side 154 and the second curved point close to the optical axis is represented by SGI522, which satisfies the following conditions: SGI512 = -0.32032 mm; ∣ SGI512∣ / (∣SGI512∣ + TP5) = 0.23009.

第五透鏡150物側面152於光軸上的交點至第五透鏡150物側面152第三接近光軸的反曲點之間與光軸平行的水平位移距離以SGI513表示,第五透鏡150像側面154於光軸上的交點至第五透鏡150像側面154第三接近光軸的反曲點之間與光軸平行的水平位移距離以SGI523表示,其滿足下列條件:SGI513=0 mm;∣SGI513∣/(∣SGI513∣+ TP5)= 0;SGI523=0 mm;∣SGI523∣/(∣SGI523∣+TP5)= 0。The horizontal displacement distance parallel to the optical axis between the intersection of the object side 152 of the fifth lens 150 on the optical axis and the third inflection point of the object side 152 of the fifth lens 150 near the optical axis is represented by SGI513. The fifth lens 150 is like a side The horizontal displacement distance parallel to the optical axis between the intersection of 154 on the optical axis to the fifth lens 150 image side 154 and the third curved point near the optical axis is represented by SGI523, which satisfies the following conditions: SGI513 = 0 mm; ∣SGI513 ∣ / (∣SGI513∣ + TP5) = 0; SGI523 = 0 mm; ∣SGI523∣ / (∣SGI523∣ + TP5) = 0.

第五透鏡150物側面152於光軸上的交點至第五透鏡150物側面152第四接近光軸的反曲點之間與光軸平行的水平位移距離以SGI514表示,第五透鏡150像側面154於光軸上的交點至第五透鏡150像側面154第四接近光軸的反曲點之間與光軸平行的水平位移距離以SGI524表示,其滿足下列條件:SGI514=0 mm;∣SGI514∣/(∣SGI514∣+ TP5)= 0;SGI524=0 mm;∣SGI524∣/(∣SGI524∣+TP5)= 0。The horizontal displacement distance between the intersection of the object side surface 152 of the fifth lens 150 on the optical axis and the fourth inflection point of the object side 152 of the fifth lens 150 close to the optical axis is parallel to the optical axis as SGI514. The fifth lens 150 is like a side The horizontal displacement distance parallel to the optical axis between the intersection point of 154 on the optical axis and the fifth lens 150 image side 154, the fourth inflection point close to the optical axis, is represented by SGI524, which satisfies the following conditions: SGI514 = 0 mm; ∣SGI514 ∣ / (∣SGI514∣ + TP5) = 0; SGI524 = 0 mm; ∣SGI524∣ / (∣SGI524∣ + TP5) = 0.

第五透鏡150物側面152最近光軸的反曲點與光軸間的垂直距離以HIF511表示,第五透鏡150像側面154最近光軸的反曲點與光軸間的垂直距離以HIF521表示,其滿足下列條件:HIF511=0.28212 mm;HIF511/ HOI=0.05642;HIF521=2.13850 mm;HIF521/ HOI=0.42770。The vertical distance between the inflection point of the closest optical axis of the object side 152 of the fifth lens 150 and the optical axis is represented by HIF511, and the vertical distance between the inflection point of the closest optical axis of the fifth lens 150 and the side of the image 154 and the optical axis is represented by HIF521. It meets the following conditions: HIF511 = 0.28212 mm; HIF511 / HOI = 0.05642; HIF521 = 2.13850 mm; HIF521 / HOI = 0.42770.

第五透鏡150物側面152第二接近光軸的反曲點與光軸間的垂直距離以HIF512表示,第五透鏡150像側面154第二接近光軸的反曲點與光軸間的垂直距離以HIF522表示,其滿足下列條件:HIF512=2.51384 mm;HIF512/ HOI=0.50277。The vertical distance between the second inflection point of the fifth lens 150 near the optical axis and the optical axis is represented by HIF512, and the fifth lens 150 is the vertical distance between the second inflection point of the fifth lens 150 near the optical axis and the optical axis. By HIF522, it meets the following conditions: HIF512 = 2.51384 mm; HIF512 / HOI = 0.50277.

第五透鏡150物側面152第三接近光軸的反曲點與光軸間的垂直距離以HIF513表示,第五透鏡150像側面154第三接近光軸的反曲點與光軸間的垂直距離以HIF523表示,其滿足下列條件:HIF513=0 mm;HIF513/ HOI=0;HIF523=0 mm;HIF523/ HOI=0。The vertical distance between the inflection point of the fifth side of the object 150 on the fifth lens 150 and the optical axis is represented by HIF513, and the vertical distance between the inflection point of the third side 150 on the side of the optical axis 154 and the optical axis It is represented by HIF523, which satisfies the following conditions: HIF513 = 0 mm; HIF513 / HOI = 0; HIF523 = 0 mm; HIF523 / HOI = 0.

第五透鏡150物側面152第四接近光軸的反曲點與光軸間的垂直距離以HIF514表示,第五透鏡150像側面154第四接近光軸的反曲點與光軸間的垂直距離以HIF524表示,其滿足下列條件:HIF514=0 mm;HIF514/ HOI=0;HIF524=0 mm;HIF524/ HOI=0。The vertical distance between the fifth inflection point 152 of the fifth lens 150 and the optical axis is indicated by HIF514, and the fifth lens 150 is the vertical distance between the inflection point of the fifth lens 150 and the fourth optical axis in close proximity to the optical axis It is represented by HIF524, which satisfies the following conditions: HIF514 = 0 mm; HIF514 / HOI = 0; HIF524 = 0 mm; HIF524 / HOI = 0.

第六透鏡160具有負屈折力,且為塑膠材質,其物側面162為凹面,其像側面164為凹面,且其物側面162具有二反曲點以及像側面164具有一反曲點。藉此,可有效調整各視場入射於第六透鏡的角度而改善像差。第六透鏡物側面的最大有效半徑之輪廓曲線長度以ARS61表示,第六透鏡像側面的最大有效半徑之輪廓曲線長度以ARS62表示。第六透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE61表示,第六透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE62表示。第六透鏡於光軸上之厚度為TP6。The sixth lens 160 has a negative refractive power and is made of plastic. Its object side surface 162 is concave, its image side 164 is concave, and its object side 162 has two inflection points and the image side 164 has one inflection point. This can effectively adjust the angle of incidence of each field of view on the sixth lens to improve aberrations. The length of the contour curve of the maximum effective radius on the object side of the sixth lens is represented by ARS61, and the length of the contour curve of the maximum effective radius of the image side of the sixth lens is represented by ARS62. The length of the contour curve of the 1/2 incident pupil diameter (HEP) on the object side of the sixth lens is represented by ARE61, and the length of the contour curve of the 1/2 incidence pupil diameter (HEP) of the sixth lens image side is represented by ARE62. The thickness of the sixth lens on the optical axis is TP6.

第六透鏡160物側面162於光軸上的交點至第六透鏡160物側面162最近光軸的反曲點之間與光軸平行的水平位移距離以SGI611表示,第六透鏡160像側面164於光軸上的交點至第六透鏡160像側面164最近光軸的反曲點之間與光軸平行的水平位移距離以SGI621表示,其滿足下列條件:SGI611= -0.38558 mm;∣SGI611∣/(∣SGI611∣+TP6)= 0.27212;SGI621= 0.12386 mm;∣SGI621∣/(∣SGI621∣+TP6)= 0.10722。The horizontal displacement distance parallel to the optical axis between the intersection of the object side surface 162 of the sixth lens 160 on the optical axis and the closest optical axis inflection point of the object side 162 of the sixth lens 160 is represented by SGI611. The sixth lens 160 is like the side surface 164 at The horizontal displacement distance parallel to the optical axis between the intersection point on the optical axis and the inflection point of the closest optical axis on the image side 164 of the sixth lens 160 is represented by SGI621, which satisfies the following conditions: SGI611 = -0.38558 mm; ∣SGI611∣ / ( (∣SGI611∣ + TP6) = 0.27212; SGI621 = 0.12386 mm; ∣SGI621∣ / (∣SGI621∣ + TP6) = 0.10722.

第六透鏡160物側面162於光軸上的交點至第六透鏡160物側面162第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI612表示,第六透鏡160像側面164於光軸上的交點至第六透鏡160像側面164第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI621表示,其滿足下列條件:SGI612=-0.47400 mm;∣SGI612∣/(∣SGI612∣+TP6)= 0.31488;SGI622=0 mm;∣SGI622∣/(∣SGI622∣+TP6)= 0。The horizontal displacement distance between the intersection of the object side surface 162 of the sixth lens 160 on the optical axis and the second inflection point of the object side surface 162 of the sixth lens 160 close to the optical axis is parallel to the optical axis as SGI612. The sixth lens 160 is like a side The horizontal displacement distance between the intersection of 164 on the optical axis to the sixth lens 160 image side 164 and the second inflection point close to the optical axis parallel to the optical axis is represented by SGI621, which satisfies the following conditions: SGI612 = -0.47400 mm; ∣ SGI612∣ / (∣SGI612∣ + TP6) = 0.31488; SGI622 = 0 mm; ∣SGI622∣ / (∣SGI622∣ + TP6) = 0.

第六透鏡160物側面162最近光軸的反曲點與光軸間的垂直距離以HIF611表示,第六透鏡160像側面164最近光軸的反曲點與光軸間的垂直距離以HIF621表示,其滿足下列條件:HIF611=2.24283 mm;HIF611/ HOI=0.44857;HIF621=1.07376 mm;HIF621/ HOI=0.21475。The vertical distance between the inflection point of the closest optical axis of the object side surface 162 of the sixth lens 160 and the optical axis is represented by HIF611, and the vertical distance between the inflection point of the closest optical axis of the sixth lens 160 as the side surface 164 and the optical axis is represented by HIF621. It meets the following conditions: HIF611 = 2.24283 mm; HIF611 / HOI = 0.44857; HIF621 = 1.07376 mm; HIF621 / HOI = 0.21475.

第六透鏡160物側面162第二接近光軸的反曲點與光軸間的垂直距離以HIF612表示,第六透鏡160像側面164第二接近光軸的反曲點與光軸間的垂直距離以HIF622表示,其滿足下列條件:HIF612=2.48895 mm;HIF612/ HOI=0.49779。The vertical distance between the second inflection point of the sixth lens 160 near the optical axis and the optical axis is represented by HIF612, and the vertical distance between the second inflection point of the sixth lens 160 near the optical axis and the optical axis as the side 164 It is represented by HIF622, which satisfies the following conditions: HIF612 = 2.48895 mm; HIF612 / HOI = 0.49779.

第六透鏡160物側面162第三接近光軸的反曲點與光軸間的垂直距離以HIF613表示,第六透鏡160像側面164第三接近光軸的反曲點與光軸間的垂直距離以HIF623表示,其滿足下列條件:HIF613=0 mm;HIF613/ HOI=0;HIF623=0 mm;HIF623/ HOI=0。The vertical distance between the third inflection point of the sixth lens 160 near the optical axis and the optical axis is represented by HIF613, and the vertical distance between the third inflection point of the sixth lens 160 and the optical axis near the third optical axis 164 It is represented by HIF623, which satisfies the following conditions: HIF613 = 0 mm; HIF613 / HOI = 0; HIF623 = 0 mm; HIF623 / HOI = 0.

第六透鏡160物側面162第四接近光軸的反曲點與光軸間的垂直距離以HIF614表示,第六透鏡160像側面164第四接近光軸的反曲點與光軸間的垂直距離以HIF624表示,其滿足下列條件:HIF614=0 mm;HIF614/ HOI=0;HIF624=0 mm;HIF624/ HOI=0。The vertical distance between the fourth inverse curved point of the sixth lens 160 near the optical axis and the optical axis is represented by HIF614, and the vertical distance between the fourth inverse curved point of the sixth lens 160 and the optical axis near the fourth optical axis 164 HIF624 indicates that it meets the following conditions: HIF614 = 0 mm; HIF614 / HOI = 0; HIF624 = 0 mm; HIF624 / HOI = 0.

紅外線濾光片180為玻璃材質,其設置於第六透鏡160及成像面190間且不影響光學成像模組的焦距。The infrared filter 180 is made of glass and is disposed between the sixth lens 160 and the imaging surface 190 without affecting the focal length of the optical imaging module.

本實施例的光學成像模組中,該透鏡組的焦距為f,入射瞳直徑為HEP,最大視角的一半為HAF,其數值如下:f=4.075 mm;f/HEP=1.4;以及HAF=50.001度與tan(HAF)=1.1918。In the optical imaging module of this embodiment, the focal length of the lens group is f, the entrance pupil diameter is HEP, half of the maximum viewing angle is HAF, and the values are as follows: f = 4.075 mm; f / HEP = 1.4; and HAF = 50.001 Degree and tan (HAF) = 1.1918.

本實施例的該透鏡組中,第一透鏡110的焦距為f1,第六透鏡160的焦距為f6,其滿足下列條件:f1= -7.828 mm;∣f/f1│=0.52060;f6= -4.886;以及│f1│>│f6│。In the lens group of this embodiment, the focal length of the first lens 110 is f1 and the focal length of the sixth lens 160 is f6, which satisfies the following conditions: f1 = -7.828 mm; ∣f / f1│ = 0.52060; f6 = -4.886 ; And │f1│ > │f6│.

本實施例的光學成像模組中,第二透鏡120至第五透鏡150的焦距分別為f2、f3、f4、f5,其滿足下列條件:│f2│+│f3│+│f4│+│f5│= 95.50815 mm;∣f1│+∣f6│= 12.71352 mm以及│f2│+│f3│+│f4│+│f5│>∣f1│+∣f6│。In the optical imaging module of this embodiment, the focal lengths of the second lens 120 to the fifth lens 150 are f2, f3, f4, and f5, respectively, which satisfy the following conditions: │f2│ + │f3│ + │f4│ + │f5 │ = 95.50815 mm; ∣f1│ + ∣f6│ = 12.71352 mm and │f2│ + │f3│ + │f4│ + │f5│> ∣f1│ + ∣f6│.

光學成像模組的焦距f與每一片具有正屈折力之透鏡的焦距fp之比值PPR,光學成像模組的焦距f與每一片具有負屈折力之透鏡的焦距fn之比值NPR,本實施例的光學成像模組中,所有正屈折力之透鏡的PPR總和為ΣPPR=f/f2+f/f4+f/f5 =1.63290,所有負屈折力之透鏡的NPR總和為ΣNPR=│f/f1│+│f/f3│+│f/f6│= 1.51305,ΣPPR/│ΣNPR│= 1.07921。同時亦滿足下列條件:∣f/f2│= 0.69101;∣f/f3│=0.15834;∣f/f4│=0.06883;∣f/f5│=0.87305;∣f/f6│=0.83412。The ratio PPR of the focal length f of the optical imaging module to the focal length fp of each lens with a positive refractive power, and the ratio NPR of the focal length f of the optical imaging module to the focal length fn of each lens with a negative refractive power, NPR. In the optical imaging module, the sum of PPR of all lenses with positive refractive power is ΣPPR = f / f2 + f / f4 + f / f5 = 1.63290, and the sum of NPR of all lenses with negative refractive power is ΣNPR = │f / f1│ + │f / f3│ + │f / f6│ = 1.51305, ΣPPR / │ΣNPR│ = 1.07921. The following conditions are also met: ∣f / f2│ = 0.69101; ∣f / f3│ = 0.15834; ∣f / f4│ = 0.06883; ∣f / f5│ = 0.87305; ∣f / f6│ = 0.83412.

本實施例的光學成像模組中,第一透鏡110物側面112至第六透鏡160像側面164間的距離為InTL,第一透鏡110物側面112至成像面190間的距離為HOS,光圈100至成像面180間的距離為InS,影像感測元件192有效感測區域對角線長的一半為HOI,第六透鏡像側面164至成像面190間的距離為BFL,其滿足下列條件:InTL+BFL=HOS;HOS= 19.54120 mm;HOI= 5.0 mm; HOS/HOI= 3.90824;HOS/f= 4.7952;InS=11.685 mm;以及InS/HOS= 0.59794。In the optical imaging module of this embodiment, the distance between the object side 112 of the first lens 110 to the image side 164 of the sixth lens 160 is InTL, the distance between the object side 112 of the first lens 110 to the imaging surface 190 is HOS, and the aperture 100 The distance to the imaging surface 180 is InS, half of the diagonal length of the effective sensing area of the image sensing element 192 is HOI, and the distance from the image side 164 of the sixth lens to the imaging surface 190 is BFL, which meets the following conditions: InTL + BFL = HOS; HOS = 19.54120 mm; HOI = 5.0 mm; HOS / HOI = 3.90824; HOS / f = 4.7952; InS = 11.685 mm; and InS / HOS = 0.59794.

本實施例的光學成像模組中,於光軸上所有具屈折力之透鏡的厚度總和為ΣTP,其滿足下列條件:ΣTP= 8.13899 mm;以及ΣTP/InTL= 0.52477。藉此,當可同時兼顧系統成像的對比度以及透鏡製造的良率並提供適當的後焦距以容置其他元件。In the optical imaging module of this embodiment, the total thickness of all lenses with refractive power on the optical axis is ΣTP, which satisfies the following conditions: ΣTP = 8.13899 mm; and ΣTP / InTL = 0.52477. Thereby, the contrast of the system imaging and the yield of lens manufacturing can be taken into account at the same time, and an appropriate back focus can be provided to accommodate other components.

本實施例的光學成像模組中,第一透鏡110物側面112的曲率半徑為R1,第一透鏡110像側面114的曲率半徑為R2,其滿足下列條件:│R1/R2│= 8.99987。藉此,第一透鏡110的具備適當正屈折力強度,避免球差增加過速。In the optical imaging module of this embodiment, the curvature radius of the object side 112 of the first lens 110 is R1, and the curvature radius of the image side 114 of the first lens 110 is R2, which satisfies the following conditions: │R1 / R2│ = 8.99987. Thereby, the first lens 110 is provided with an appropriate positive refractive power strength to prevent the spherical aberration from increasing at an excessive speed.

本實施例的光學成像模組中,第六透鏡160物側面162的曲率半徑為R11,第六透鏡160像側面164的曲率半徑為R12,其滿足下列條件:(R11-R12)/(R11+R12)= 1.27780。藉此,有利於修正光學成像模組所產生的像散。In the optical imaging module of this embodiment, the curvature radius of the object side 162 of the sixth lens 160 is R11, and the curvature radius of the image side 164 of the sixth lens 160 is R12, which satisfies the following conditions: (R11-R12) / (R11 + R12) = 1.27780. This is beneficial for correcting astigmatism generated by the optical imaging module.

本實施例的光學成像模組中,所有具正屈折力的透鏡之焦距總和為ΣPP,其滿足下列條件:ΣPP= f2+f4+f5 = 69.770 mm;以及f5/ (f2+f4+f5)= 0.067。藉此,有助於適當分配單一透鏡之正屈折力至其他正透鏡,以抑制入射光線行進過程顯著像差的產生。In the optical imaging module of this embodiment, the sum of the focal lengths of all lenses with positive refractive power is ΣPP, which satisfies the following conditions: ΣPP = f2 + f4 + f5 = 69.770 mm; and f5 / (f2 + f4 + f5) = 0.067. This helps to properly allocate the positive refractive power of a single lens to other positive lenses, so as to suppress the occurrence of significant aberrations during the traveling of incident light.

本實施例的光學成像模組中,所有具負屈折力的透鏡之焦距總和為ΣNP,其滿足下列條件:ΣNP=f1+f3+f6= -38.451 mm;以及f6/ (f1+f3+f6)= 0.127。藉此,有助於適當分配第六透鏡160之負屈折力至其他負透鏡,以抑制入射光線行進過程顯著像差的產生。In the optical imaging module of this embodiment, the total focal length of all lenses with negative refractive power is ΣNP, which satisfies the following conditions: ΣNP = f1 + f3 + f6 = -38.451 mm; and f6 / (f1 + f3 + f6) = 0.127. Therefore, it is helpful to appropriately allocate the negative refractive power of the sixth lens 160 to other negative lenses, so as to suppress the occurrence of significant aberrations during the traveling process of incident light.

本實施例的光學成像模組中,第一透鏡110與第二透鏡120於光軸上的間隔距離為IN12,其滿足下列條件:IN12= 6.418 mm;IN12 / f = 1.57491。藉此,有助於改善透鏡的色差以提升其性能。In the optical imaging module of this embodiment, the distance between the first lens 110 and the second lens 120 on the optical axis is IN12, which satisfies the following conditions: IN12 = 6.418 mm; IN12 / f = 1.57491. This helps to improve the chromatic aberration of the lens to improve its performance.

本實施例的光學成像模組中,第五透鏡150與第六透鏡160於光軸上的間隔距離為IN56,其滿足下列條件:IN56= 0.025 mm;IN56 / f = 0.00613。藉此,有助於改善透鏡的色差以提升其性能。In the optical imaging module of this embodiment, the distance between the fifth lens 150 and the sixth lens 160 on the optical axis is IN56, which satisfies the following conditions: IN56 = 0.025 mm; IN56 / f = 0.00613. This helps to improve the chromatic aberration of the lens to improve its performance.

本實施例的光學成像模組中,第一透鏡110與第二透鏡120於光軸上的厚度分別為TP1以及TP2,其滿足下列條件:TP1= 1.934 mm;TP2= 2.486 mm;以及(TP1+IN12) / TP2= 3.36005。藉此,有助於控制光學成像模組製造的敏感度並提升其性能。In the optical imaging module of this embodiment, the thicknesses of the first lens 110 and the second lens 120 on the optical axis are TP1 and TP2, respectively, which satisfy the following conditions: TP1 = 1.934 mm; TP2 = 2.486 mm; and (TP1 + IN12) / TP2 = 3.36005. This helps to control the sensitivity of the optical imaging module manufacturing and improve its performance.

本實施例的光學成像模組中,第五透鏡150與第六透鏡160於光軸上的厚度分別為TP5以及TP6,前述兩透鏡於光軸上的間隔距離為IN56,其滿足下列條件:TP5= 1.072 mm;TP6= 1.031 mm;以及(TP6+IN56) / TP5= 0.98555。藉此,有助於控制光學成像模組製造的敏感度並降低系統總高度。In the optical imaging module of this embodiment, the thicknesses of the fifth lens 150 and the sixth lens 160 on the optical axis are TP5 and TP6, respectively. The distance between the two lenses on the optical axis is IN56, which meets the following conditions: TP5 = 1.072 mm; TP6 = 1.031 mm; and (TP6 + IN56) / TP5 = 0.98555. This helps to control the sensitivity of the optical imaging module manufacturing and reduce the overall system height.

本實施例的光學成像模組中,第三透鏡130與第四透鏡140於光軸上的間隔距離為IN34,第四透鏡140與第五透鏡150於光軸上的間隔距離為IN45,其滿足下列條件:IN34= 0.401 mm;IN45= 0.025 mm;以及TP4 / (IN34+TP4+IN45)= 0.74376。藉此,有助於層層微幅修正入射光線行進過程所產生的像差並降低系統總高度。In the optical imaging module of this embodiment, the distance between the third lens 130 and the fourth lens 140 on the optical axis is IN34, and the distance between the fourth lens 140 and the fifth lens 150 on the optical axis is IN45, which satisfies The following conditions: IN34 = 0.401 mm; IN45 = 0.025 mm; and TP4 / (IN34 + TP4 + IN45) = 0.74376. This helps to correct the aberrations produced by the incident light and to reduce the total height of the system.

本實施例的光學成像模組中,第五透鏡150物側面152於光軸上的交點至第五透鏡150物側面152的最大有效半徑位置於光軸的水平位移距離為InRS51,第五透鏡150像側面154於光軸上的交點至第五透鏡150像側面154的最大有效半徑位置於光軸的水平位移距離為InRS52,第五透鏡150於光軸上的厚度為TP5,其滿足下列條件:InRS51= -0.34789 mm;InRS52= -0.88185 mm;│InRS51∣/ TP5 =0.32458 以及│InRS52∣/ TP5 = 0.82276。藉此,有利於鏡片的製作與成型,並有效維持其小型化。In the optical imaging module of this embodiment, the horizontal displacement distance between the intersection of the object side 152 of the fifth lens 150 on the optical axis and the maximum effective radius position of the object side 152 of the fifth lens 150 on the optical axis is InRS51, and the fifth lens 150 The horizontal displacement distance from the intersection of the image side 154 on the optical axis to the maximum effective radius position of the image side 154 of the fifth lens 150 on the optical axis is InRS52. The thickness of the fifth lens 150 on the optical axis is TP5, which meets the following conditions: InRS51 = -0.34789 mm; InRS52 = -0.88185 mm; │InRS51∣ / TP5 = 0.32458 and │InRS52∣ / TP5 = 0.82276. This helps to make and shape the lens, and effectively maintains its miniaturization.

本實施例的光學成像模組中,第五透鏡150物側面152的臨界點與光軸的垂直距離為 HVT51,第五透鏡150像側面154的臨界點與光軸的垂直距離為HVT52,其滿足下列條件:HVT51=0.515349 mm;HVT52=0 mm。In the optical imaging module of this embodiment, the vertical distance between the critical point of the object side 152 of the fifth lens 150 and the optical axis is HVT51, and the vertical distance between the critical point of the fifth side 150 of the image side 154 and the optical axis is HVT52, which satisfies The following conditions: HVT51 = 0.515349 mm; HVT52 = 0 mm.

本實施例的光學成像模組中,第六透鏡160物側面162於光軸上的交點至第六透鏡160物側面162的最大有效半徑位置於光軸的水平位移距離為InRS61,第六透鏡160像側面164於光軸上的交點至第六透鏡160像側面164的最大有效半徑位置於光軸的水平位移距離為InRS62,第六透鏡160於光軸上的厚度為TP6,其滿足下列條件:InRS61= -0.58390 mm;InRS62= 0.41976 mm;│InRS61∣/ TP6=0.56616 以及│InRS62∣/ TP6= 0.40700。藉此,有利於鏡片的製作與成型,並有效維持其小型化。In the optical imaging module of this embodiment, the horizontal displacement distance of the sixth lens 160 from the intersection of the object side 162 of the sixth lens 160 on the optical axis to the maximum effective radius position of the object side 162 of the sixth lens 160 on the optical axis is InRS61, and the sixth lens 160 The horizontal displacement distance from the intersection of the image side 164 on the optical axis to the maximum effective radius position of the image side 164 of the sixth lens 160 on the optical axis is InRS62. The thickness of the sixth lens 160 on the optical axis is TP6, which meets the following conditions: InRS61 = -0.58390 mm; InRS62 = 0.41976 mm; │InRS61∣ / TP6 = 0.56616 and │InRS62∣ / TP6 = 0.40700. This helps to make and shape the lens, and effectively maintains its miniaturization.

本實施例的光學成像模組中,第六透鏡160物側面162的臨界點與光軸的垂直距離為 HVT61,第六透鏡160像側面164的臨界點與光軸的垂直距離為HVT62,其滿足下列條件:HVT61=0 mm;HVT62= 0 mm。In the optical imaging module of this embodiment, the vertical distance between the critical point of the object side surface 162 of the sixth lens 160 and the optical axis is HVT61, and the vertical distance of the critical point of the image side 164 of the sixth lens 160 and the optical axis is HVT62, which satisfies The following conditions: HVT61 = 0 mm; HVT62 = 0 mm.

本實施例的光學成像模組中,其滿足下列條件:HVT51/ HOI=0.1031。藉此,有助於光學成像模組之週邊視場的像差修正。In the optical imaging module of this embodiment, it satisfies the following conditions: HVT51 / HOI = 0.1031. This is helpful for aberration correction of the peripheral field of view of the optical imaging module.

本實施例的光學成像模組中,其滿足下列條件:HVT51/ HOS= 0.02634。藉此,有助於光學成像模組之週邊視場的像差修正。In the optical imaging module of this embodiment, it satisfies the following conditions: HVT51 / HOS = 0.02634. This is helpful for aberration correction of the peripheral field of view of the optical imaging module.

本實施例的光學成像模組中,第二透鏡120、第三透鏡130以及第六透鏡160具有負屈折力,第二透鏡120的色散係數為NA2,第三透鏡130的色散係數為NA3,第六透鏡160的色散係數為NA6,其滿足下列條件: NA6/NA2≦1。藉此,有助於光學成像模組色差的修正。In the optical imaging module of this embodiment, the second lens 120, the third lens 130, and the sixth lens 160 have a negative refractive power. The dispersion coefficient of the second lens 120 is NA2, and the dispersion coefficient of the third lens 130 is NA3. The dispersion coefficient of the six lenses 160 is NA6, which satisfies the following conditions: NA6 / NA2 ≦ 1. This helps to correct the chromatic aberration of the optical imaging module.

本實施例的光學成像模組中,光學成像模組於結像時之TV畸變為TDT,結像時之光學畸變為ODT,其滿足下列條件:TDT= 2.124 %;ODT=5.076 %。In the optical imaging module of this embodiment, the TV distortion of the optical imaging module during the image formation is TDT, and the optical distortion of the optical image formation during the image formation is ODT, which satisfies the following conditions: TDT = 2.124%; ODT = 5.076%.

本實施例的光學成像模組中,LS為12 mm,PhiA為2倍EHD62=6.726 mm (EHD62 :第六透鏡160像側面164的最大有效半徑),PhiC=PhiA+2倍TH2=7.026 mm,PhiD=PhiC+2倍(TH1+TH2)=7.426 mm,TH1為0.2mm,TH2為0.15 mm,PhiA / PhiD為,TH1+TH2為0.35 mm,(TH1+TH2) / HOI為0.035,(TH1+TH2) /HOS為0.0179,2倍(TH1+TH2) /PhiA為0.1041,(TH1+TH2) / LS為0.0292。In the optical imaging module of this embodiment, LS is 12 mm, PhiA is 2 times EHD62 = 6.726 mm (EHD62: the maximum effective radius of the sixth lens 160 image side 164), PhiC = PhiA + 2 times TH2 = 7.026 mm, PhiD = PhiC + 2 (TH1 + TH2) = 7.426 mm, TH1 is 0.2mm, TH2 is 0.15 mm, PhiA / PhiD is, TH1 + TH2 is 0.35 mm, (TH1 + TH2) / HOI is 0.035, (TH1 + TH2) / HOS is 0.0179, 2 times (TH1 + TH2) / PhiA is 0.1041, and (TH1 + TH2) / LS is 0.0292.

再配合參照下列表一以及表二。 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表一 第 一 光 學 實 施 例 透 鏡 數 據 </td><td> </td></tr><tr><td> f(焦距)= 4.075 mm ; f/HEP =1.4 ; HAF(半視角)= 50.000 deg </td><td> </td></tr><tr><td> 表面 </td><td> 曲率半徑 </td><td> 厚度 (mm) </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td><td> </td></tr><tr><td> 0 </td><td> 被攝物 </td><td> 平面 </td><td> 平面 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> 第一透鏡 </td><td> -40.99625704 </td><td> 1.934 </td><td> 塑膠 </td><td> 1.515 </td><td> 56.55 </td><td> -7.828 </td><td> </td></tr><tr><td> 2 </td><td></td><td> 4.555209289 </td><td> 5.923 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 光圈 </td><td> 平面 </td><td> 0.495 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 4 </td><td> 第二透鏡 </td><td> 5.333427366 </td><td> 2.486 </td><td> 塑膠 </td><td> 1.544 </td><td> 55.96 </td><td> 5.897 </td><td> </td></tr><tr><td> 5 </td><td></td><td> -6.781659971 </td><td> 0.502 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 6 </td><td> 第三透鏡 </td><td> -5.697794287 </td><td> 0.380 </td><td> 塑膠 </td><td> 1.642 </td><td> 22.46 </td><td> -25.738 </td><td> </td></tr><tr><td> 7 </td><td></td><td> -8.883957518 </td><td> 0.401 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 8 </td><td> 第四透鏡 </td><td> 13.19225664 </td><td> 1.236 </td><td> 塑膠 </td><td> 1.544 </td><td> 55.96 </td><td> 59.205 </td><td> </td></tr><tr><td> 9 </td><td></td><td> 21.55681832 </td><td> 0.025 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 10 </td><td> 第五透鏡 </td><td> 8.987806345 </td><td> 1.072 </td><td> 塑膠 </td><td> 1.515 </td><td> 56.55 </td><td> 4.668 </td><td> </td></tr><tr><td> 11 </td><td></td><td> -3.158875374 </td><td> 0.025 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 12 </td><td> 第六透鏡 </td><td> -29.46491425 </td><td> 1.031 </td><td> 塑膠 </td><td> 1.642 </td><td> 22.46 </td><td> -4.886 </td><td> </td></tr><tr><td> 13 </td><td></td><td> 3.593484273 </td><td> 2.412 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 14 </td><td> 紅外線 濾光片 </td><td> 平面 </td><td> 0.200 </td><td> </td><td> 1.517 </td><td> 64.13 </td><td> </td><td> </td></tr><tr><td> 15 </td><td> </td><td> 平面 </td><td> 1.420 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 16 </td><td> 成像面 </td><td> 平面 </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 參考波長為555 nm;進行擋光位置: 擋第1面其通光有效半徑5.800 mm;擋第3面其通光有效半徑1.570 mm;擋第5面其通光有效半徑1.950 mm </td><td> </td><td> </td></tr></TBODY></TABLE>表二、第一光學實施例之非球面係數 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表二 非球面係數 </td></tr><tr><td> 表面 </td><td> 1 </td><td> 2 </td><td> 4 </td><td> 5 </td><td> 6 </td><td> 7 </td><td> 8 </td></tr><tr><td> k </td><td> 4.310876E+01 </td><td> -4.707622E+00 </td><td> 2.616025E+00 </td><td> 2.445397E+00 </td><td> 5.645686E+00 </td><td> -2.117147E+01 </td><td> -5.287220E+00 </td></tr><tr><td> A4 </td><td> 7.054243E-03 </td><td> 1.714312E-02 </td><td> -8.377541E-03 </td><td> -1.789549E-02 </td><td> -3.379055E-03 </td><td> -1.370959E-02 </td><td> -2.937377E-02 </td></tr><tr><td> A6 </td><td> -5.233264E-04 </td><td> -1.502232E-04 </td><td> -1.838068E-03 </td><td> -3.657520E-03 </td><td> -1.225453E-03 </td><td> 6.250200E-03 </td><td> 2.743532E-03 </td></tr><tr><td> A8 </td><td> 3.077890E-05 </td><td> -1.359611E-04 </td><td> 1.233332E-03 </td><td> -1.131622E-03 </td><td> -5.979572E-03 </td><td> -5.854426E-03 </td><td> -2.457574E-03 </td></tr><tr><td> A10 </td><td> -1.260650E-06 </td><td> 2.680747E-05 </td><td> -2.390895E-03 </td><td> 1.390351E-03 </td><td> 4.556449E-03 </td><td> 4.049451E-03 </td><td> 1.874319E-03 </td></tr><tr><td> A12 </td><td> 3.319093E-08 </td><td> -2.017491E-06 </td><td> 1.998555E-03 </td><td> -4.152857E-04 </td><td> -1.177175E-03 </td><td> -1.314592E-03 </td><td> -6.013661E-04 </td></tr><tr><td> A14 </td><td> -5.051600E-10 </td><td> 6.604615E-08 </td><td> -9.734019E-04 </td><td> 5.487286E-05 </td><td> 1.370522E-04 </td><td> 2.143097E-04 </td><td> 8.792480E-05 </td></tr><tr><td> A16 </td><td> 3.380000E-12 </td><td> -1.301630E-09 </td><td> 2.478373E-04 </td><td> -2.919339E-06 </td><td> -5.974015E-06 </td><td> -1.399894E-05 </td><td> -4.770527E-06 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表二 非球面係數 </td></tr><tr><td> 表面 </td><td> 9 </td><td> 10 </td><td> 11 </td><td> 12 </td><td> 13 </td><td> </td><td> </td></tr><tr><td> k </td><td> 6.200000E+01 </td><td> -2.114008E+01 </td><td> -7.699904E+00 </td><td> -6.155476E+01 </td><td> -3.120467E-01 </td><td> </td><td> </td></tr><tr><td> A4 </td><td> -1.359965E-01 </td><td> -1.263831E-01 </td><td> -1.927804E-02 </td><td> -2.492467E-02 </td><td> -3.521844E-02 </td><td> </td><td> </td></tr><tr><td> A6 </td><td> 6.628518E-02 </td><td> 6.965399E-02 </td><td> 2.478376E-03 </td><td> -1.835360E-03 </td><td> 5.629654E-03 </td><td> </td><td> </td></tr><tr><td> A8 </td><td> -2.129167E-02 </td><td> -2.116027E-02 </td><td> 1.438785E-03 </td><td> 3.201343E-03 </td><td> -5.466925E-04 </td><td> </td><td> </td></tr><tr><td> A10 </td><td> 4.396344E-03 </td><td> 3.819371E-03 </td><td> -7.013749E-04 </td><td> -8.990757E-04 </td><td> 2.231154E-05 </td><td> </td><td> </td></tr><tr><td> A12 </td><td> -5.542899E-04 </td><td> -4.040283E-04 </td><td> 1.253214E-04 </td><td> 1.245343E-04 </td><td> 5.548990E-07 </td><td> </td><td> </td></tr><tr><td> A14 </td><td> 3.768879E-05 </td><td> 2.280473E-05 </td><td> -9.943196E-06 </td><td> -8.788363E-06 </td><td> -9.396920E-08 </td><td> </td><td> </td></tr><tr><td> A16 </td><td> -1.052467E-06 </td><td> -5.165452E-07 </td><td> 2.898397E-07 </td><td> 2.494302E-07 </td><td> 2.728360E-09 </td><td> </td><td> </td></tr></TBODY></TABLE>Refer to Tables 1 and 2 below for further cooperation.         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Table 1 Lens data of the first optical embodiment </ td> <td> </ td> < / tr> <tr> <td> f (focal length) = 4.075 mm; f / HEP = 1.4; HAF (half angle of view) = 50.000 deg </ td> <td> </ td> </ tr> <tr> <tr> < td> surface </ td> <td> radius of curvature </ td> <td> thickness (mm) </ td> <td> material </ td> <td> refractive index </ td> <td> dispersion coefficient < / td> <td> Focal length </ td> <td> </ td> </ tr> <tr> <td> 0 </ td> <td> Subject </ td> <td> Plane </ td > <td> plane </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr > <td> 1 </ td> <td> first lens </ td> <td> -40.99625704 </ td> <td> 1.934 </ td> <td> plastic </ td> <td> 1.515 </ td> <td> 56.55 </ td> <td> -7.828 </ td> <td> </ td> </ tr> <tr> <td> 2 </ td> <td> </ td> <td > 4.555209289 </ td> <td> 5.923 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> < / tr> <tr> <td> 3 </ td> <td> Aperture </ td> <td> Plane </ td> <td> 0.495 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 4 </ td> <td> Second lens </ td> <td > 5.33 3427366 </ td> <td> 2.486 </ td> <td> Plastic </ td> <td> 1.544 </ td> <td> 55.96 </ td> <td> 5.897 </ td> <td> </ td> </ tr> <tr> <td> 5 </ td> <td> </ td> <td> -6.781659971 </ td> <td> 0.502 </ td> <td> </ td> <td > </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 6 </ td> <td> Third lens </ td > <td> -5.697794287 </ td> <td> 0.380 </ td> <td> Plastic </ td> <td> 1.642 </ td> <td> 22.46 </ td> <td> -25.738 </ td > <td> </ td> </ tr> <tr> <td> 7 </ td> <td> </ td> <td> -8.883957518 </ td> <td> 0.401 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 8 </ td> <td> Fourth lens </ td> <td> 13.19225664 </ td> <td> 1.236 </ td> <td> Plastic </ td> <td> 1.544 </ td> <td> 55.96 </ td> <td> 59.205 </ td> <td> </ td> </ tr> <tr> <td> 9 </ td> <td> </ td> <td> 21.55681832 </ td> <td> 0.025 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 10 </ td> <td> Fifth lens </ td> <td> 8.987806345 </ td> <td> 1.072 </ td> <td> Plastic </ td> <td> 1.515 </ td> <td> 56.55 </ td> <td> 4.668 </ td> <td> </ td> </ tr> <tr> <td> 11 </ td> <td> </ td> <td> -3.1 58875374 </ td> <td> 0.025 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 12 </ td> <td> Sixth lens </ td> <td> -29.46491425 </ td> <td> 1.031 </ td> <td> Plastic </ td> <td > 1.642 </ td> <td> 22.46 </ td> <td> -4.886 </ td> <td> </ td> </ tr> <tr> <td> 13 </ td> <td> </ td> <td> 3.593484273 </ td> <td> 2.412 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> <td> < / td> </ tr> <tr> <td> 14 </ td> <td> Infrared filter </ td> <td> Flat </ td> <td> 0.200 </ td> <td> </ td> <td> 1.517 </ td> <td> 64.13 </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 15 </ td> <td> </ td> <td> Plane </ td> <td> 1.420 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> <td > </ td> </ tr> <tr> <td> 16 </ td> <td> imaging surface </ td> <td> plane </ td> <td> </ td> <td> </ td > <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> The reference wavelength is 555 nm; the light blocking position: The effective radius of light transmission on the first side is 5.800 mm; the effective radius of light transmission on the third side is 1.570 mm; the effective radius of light transmission on the fifth side is 1.950 mm. </ Td> <td> </ td> <td> < / td> </ tr> </ TB ODY> </ TABLE> Table 2. Aspheric coefficients of the first optical embodiment         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Table 2 Aspheric Coefficients </ td> </ tr> <tr> <td> Surface < / td> <td> 1 </ td> <td> 2 </ td> <td> 4 </ td> <td> 5 </ td> <td> 6 </ td> <td> 7 </ td > <td> 8 </ td> </ tr> <tr> <td> k </ td> <td> 4.310876E + 01 </ td> <td> -4.707622E + 00 </ td> <td> 2.616025E + 00 </ td> <td> 2.445397E + 00 </ td> <td> 5.645686E + 00 </ td> <td> -2.117147E + 01 </ td> <td> -5.287220E + 00 </ td> </ tr> <tr> <td> A4 </ td> <td> 7.054243E-03 </ td> <td> 1.714312E-02 </ td> <td> -8.377541E-03 < / td> <td> -1.789549E-02 </ td> <td> -3.379055E-03 </ td> <td> -1.370959E-02 </ td> <td> -2.937377E-02 </ td > </ tr> <tr> <td> A6 </ td> <td> -5.233264E-04 </ td> <td> -1.502232E-04 </ td> <td> -1.838068E-03 </ td> <td> -3.657520E-03 </ td> <td> -1.225453E-03 </ td> <td> 6.250200E-03 </ td> <td> 2.743532E-03 </ td> </ td> tr> <tr> <td> A8 </ td> <td> 3.077890E-05 </ td> <td> -1.359611E-04 </ td> <td> 1.233332E-03 </ td> <td> -1.131622E-03 </ td> <td> -5.979572E-03 </ td> <td> -5.854426E-03 </ td> <td> -2.457574E-03 </ td> </ tr> < tr> <td> A10 </ td> <td> -1.260650E-06 </ t d> <td> 2.680747E-05 </ td> <td> -2.390895E-03 </ td> <td> 1.390351E-03 </ td> <td> 4.556449E-03 </ td> <td> 4.049451E-03 </ td> <td> 1.874319E-03 </ td> </ tr> <tr> <td> A12 </ td> <td> 3.319093E-08 </ td> <td> -2.017491 E-06 </ td> <td> 1.998555E-03 </ td> <td> -4.152857E-04 </ td> <td> -1.177175E-03 </ td> <td> -1.314592E-03 </ td> <td> -6.013661E-04 </ td> </ tr> <tr> <td> A14 </ td> <td> -5.051600E-10 </ td> <td> 6.604615E-08 </ td> <td> -9.734019E-04 </ td> <td> 5.487286E-05 </ td> <td> 1.370522E-04 </ td> <td> 2.143097E-04 </ td> < td> 8.792480E-05 </ td> </ tr> <tr> <td> A16 </ td> <td> 3.380000E-12 </ td> <td> -1.301630E-09 </ td> <td > 2.478373E-04 </ td> <td> -2.919339E-06 </ td> <td> -5.974015E-06 </ td> <td> -1.399894E-05 </ td> <td> -4.770527 E-06 </ td> </ tr> </ TBODY> </ TABLE> <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Table 2 Aspheric coefficient </ td> </ tr> <tr> <td> Surface </ td> <td> 9 </ td> <td> 10 </ td> <td> 11 </ td> <td> 12 </ td> <td> 13 </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> k </ td> <td> 6.200000E + 01 </ td> <td> -2.114008E + 01 < / td> <td> -7.699904E + 00 </ td> <td> -6.155476E + 01 </ td> <td> -3.120467E-01 </ td> <td> </ td> <td> < / td> </ tr> <tr> <td> A4 </ td> <td> -1.359965E-01 </ td> <td> -1.263831E-01 </ td> <td> -1.927804E-02 </ td> <td> -2.492467E-02 </ td> <td> -3.521844E-02 </ td> <td> </ td> <td> </ td> </ tr> <tr> < td> A6 </ td> <td> 6.628518E-02 </ td> <td> 6.965399E-02 </ td> <td> 2.478376E-03 </ td> <td> -1.835360E-03 </ td> td> <td> 5.629654E-03 </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> A8 </ td> <td> -2.129167E-02 </ td> <td> -2.116027E-02 </ td> <td> 1.438785E-03 </ td> <td> 3.201343E-03 </ td> <td> -5.466925E-04 </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> A10 </ td> <td> 4.396344E-03 </ td> <td> 3.819371E-03 </ td > <td> -7.013749E-04 </ td> <td> -8.990757E-04 </ td> <td> 2.231154E-05 </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> A12 </ td> <td> -5.542899E-04 </ td> <td> -4.040283E-04 </ td> <td> 1.253214E-04 </ td> <td> 1.245343E-04 </ td> <td> 5.548990E-07 </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> A14 </ td > <td> 3.768879E-05 </ td> <td> 2.280473E-05 </ td> <td> -9.943 196E-06 </ td> <td> -8.788363E-06 </ td> <td> -9.396920E-08 </ td> <td> </ td> <td> </ td> </ tr> < tr> <td> A16 </ td> <td> -1.052467E-06 </ td> <td> -5.165452E-07 </ td> <td> 2.898397E-07 </ td> <td> 2.494302E -07 </ td> <td> 2.728360E-09 </ td> <td> </ td> <td> </ td> </ tr> </ TBODY> </ TABLE>

依據表一及表二可得到下列輪廓曲線長度相關之數値: <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第一光學實施例 (使用主要參考波長 555 nm) </td></tr><tr><td> ARE </td><td> 1/2(HEP) </td><td> ARE value </td><td> ARE-1/2(HEP) </td><td> 2(ARE/HEP) % </td><td> TP </td><td> ARE /TP (%) </td></tr><tr><td> 11 </td><td> 1.455 </td><td> 1.455 </td><td> -0.00033 </td><td> 99.98% </td><td> 1.934 </td><td> 75.23% </td></tr><tr><td> 12 </td><td> 1.455 </td><td> 1.495 </td><td> 0.03957 </td><td> 102.72% </td><td> 1.934 </td><td> 77.29% </td></tr><tr><td> 21 </td><td> 1.455 </td><td> 1.465 </td><td> 0.00940 </td><td> 100.65% </td><td> 2.486 </td><td> 58.93% </td></tr><tr><td> 22 </td><td> 1.455 </td><td> 1.495 </td><td> 0.03950 </td><td> 102.71% </td><td> 2.486 </td><td> 60.14% </td></tr><tr><td> 31 </td><td> 1.455 </td><td> 1.486 </td><td> 0.03045 </td><td> 102.09% </td><td> 0.380 </td><td> 391.02% </td></tr><tr><td> 32 </td><td> 1.455 </td><td> 1.464 </td><td> 0.00830 </td><td> 100.57% </td><td> 0.380 </td><td> 385.19% </td></tr><tr><td> 41 </td><td> 1.455 </td><td> 1.458 </td><td> 0.00237 </td><td> 100.16% </td><td> 1.236 </td><td> 117.95% </td></tr><tr><td> 42 </td><td> 1.455 </td><td> 1.484 </td><td> 0.02825 </td><td> 101.94% </td><td> 1.236 </td><td> 120.04% </td></tr><tr><td> 51 </td><td> 1.455 </td><td> 1.462 </td><td> 0.00672 </td><td> 100.46% </td><td> 1.072 </td><td> 136.42% </td></tr><tr><td> 52 </td><td> 1.455 </td><td> 1.499 </td><td> 0.04335 </td><td> 102.98% </td><td> 1.072 </td><td> 139.83% </td></tr><tr><td> 61 </td><td> 1.455 </td><td> 1.465 </td><td> 0.00964 </td><td> 100.66% </td><td> 1.031 </td><td> 142.06% </td></tr><tr><td> 62 </td><td> 1.455 </td><td> 1.469 </td><td> 0.01374 </td><td> 100.94% </td><td> 1.031 </td><td> 142.45% </td></tr><tr><td> ARS </td><td> EHD </td><td> ARS value </td><td> ARS-EHD </td><td> (ARS/EHD)% </td><td> TP </td><td> ARS / TP (%) </td></tr><tr><td> 11 </td><td> 5.800 </td><td> 6.141 </td><td> 0.341 </td><td> 105.88% </td><td> 1.934 </td><td> 317.51% </td></tr><tr><td> 12 </td><td> 3.299 </td><td> 4.423 </td><td> 1.125 </td><td> 134.10% </td><td> 1.934 </td><td> 228.70% </td></tr><tr><td> 21 </td><td> 1.664 </td><td> 1.674 </td><td> 0.010 </td><td> 100.61% </td><td> 2.486 </td><td> 67.35% </td></tr><tr><td> 22 </td><td> 1.950 </td><td> 2.119 </td><td> 0.169 </td><td> 108.65% </td><td> 2.486 </td><td> 85.23% </td></tr><tr><td> 31 </td><td> 1.980 </td><td> 2.048 </td><td> 0.069 </td><td> 103.47% </td><td> 0.380 </td><td> 539.05% </td></tr><tr><td> 32 </td><td> 2.084 </td><td> 2.101 </td><td> 0.017 </td><td> 100.83% </td><td> 0.380 </td><td> 552.87% </td></tr><tr><td> 41 </td><td> 2.247 </td><td> 2.287 </td><td> 0.040 </td><td> 101.80% </td><td> 1.236 </td><td> 185.05% </td></tr><tr><td> 42 </td><td> 2.530 </td><td> 2.813 </td><td> 0.284 </td><td> 111.22% </td><td> 1.236 </td><td> 227.63% </td></tr><tr><td> 51 </td><td> 2.655 </td><td> 2.690 </td><td> 0.035 </td><td> 101.32% </td><td> 1.072 </td><td> 250.99% </td></tr><tr><td> 52 </td><td> 2.764 </td><td> 2.930 </td><td> 0.166 </td><td> 106.00% </td><td> 1.072 </td><td> 273.40% </td></tr><tr><td> 61 </td><td> 2.816 </td><td> 2.905 </td><td> 0.089 </td><td> 103.16% </td><td> 1.031 </td><td> 281.64% </td></tr><tr><td> 62 </td><td> 3.363 </td><td> 3.391 </td><td> 0.029 </td><td> 100.86% </td><td> 1.031 </td><td> 328.83% </td></tr></TBODY></TABLE>According to Tables 1 and 2, the following correlations can be obtained for the length of the contour curve:         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> First optical embodiment (using the main reference wavelength of 555 nm) </ td> </ tr> <tr> <td> ARE </ td> <td> 1/2 (HEP) </ td> <td> ARE value </ td> <td> ARE-1 / 2 (HEP) </ td> <td > 2 (ARE / HEP)% </ td> <td> TP </ td> <td> ARE / TP (%) </ td> </ tr> <tr> <td> 11 </ td> <td > 1.455 </ td> <td> 1.455 </ td> <td> -0.00033 </ td> <td> 99.98% </ td> <td> 1.934 </ td> <td> 75.23% </ td> < / tr> <tr> <td> 12 </ td> <td> 1.455 </ td> <td> 1.495 </ td> <td> 0.03957 </ td> <td> 102.72% </ td> <td> 1.934 </ td> <td> 77.29% </ td> </ tr> <tr> <td> 21 </ td> <td> 1.455 </ td> <td> 1.465 </ td> <td> 0.00940 < / td> <td> 100.65% </ td> <td> 2.486 </ td> <td> 58.93% </ td> </ tr> <tr> <td> 22 </ td> <td> 1.455 </ td> <td> 1.495 </ td> <td> 0.03950 </ td> <td> 102.71% </ td> <td> 2.486 </ td> <td> 60.14% </ td> </ tr> <tr > <td> 31 </ td> <td> 1.455 </ td> <td> 1.486 </ td> <td> 0.03045 </ td> <td> 102.09% </ td> <td> 0.380 </ td> <td> 391.02% </ td> </ tr> <tr> <td> 32 </ td> <td> 1.455 </ td> <td> 1.464 </ td> <td> 0.00830 </ td> <td > 100.57% </ td> <td> 0.380 </ td> <td> 3 85.19% </ td> </ tr> <tr> <td> 41 </ td> <td> 1.455 </ td> <td> 1.458 </ td> <td> 0.00237 </ td> <td> 100.16% </ td> <td> 1.236 </ td> <td> 117.95% </ td> </ tr> <tr> <td> 42 </ td> <td> 1.455 </ td> <td> 1.484 </ td> <td> 0.02825 </ td> <td> 101.94% </ td> <td> 1.236 </ td> <td> 120.04% </ td> </ tr> <tr> <td> 51 </ td > <td> 1.455 </ td> <td> 1.462 </ td> <td> 0.00672 </ td> <td> 100.46% </ td> <td> 1.072 </ td> <td> 136.42% </ td > </ tr> <tr> <td> 52 </ td> <td> 1.455 </ td> <td> 1.499 </ td> <td> 0.04335 </ td> <td> 102.98% </ td> < td> 1.072 </ td> <td> 139.83% </ td> </ tr> <tr> <td> 61 </ td> <td> 1.455 </ td> <td> 1.465 </ td> <td> 0.00964 </ td> <td> 100.66% </ td> <td> 1.031 </ td> <td> 142.06% </ td> </ tr> <tr> <td> 62 </ td> <td> 1.455 </ td> <td> 1.469 </ td> <td> 0.01374 </ td> <td> 100.94% </ td> <td> 1.031 </ td> <td> 142.45% </ td> </ tr> <tr> <td> ARS </ td> <td> EHD </ td> <td> ARS value </ td> <td> ARS-EHD </ td> <td> (ARS / EHD)% </ td > <td> TP </ td> <td> ARS / TP (%) </ td> </ tr> <tr> <td> 11 </ td> <td> 5.800 </ td> <td> 6.141 < / td> <td> 0.341 </ td> <td> 105.88% </ td> <td> 1.934 </ td> <td> 317 .51% </ td> </ tr> <tr> <td> 12 </ td> <td> 3.299 </ td> <td> 4.423 </ td> <td> 1.125 </ td> <td> 134.10 % </ td> <td> 1.934 </ td> <td> 228.70% </ td> </ tr> <tr> <td> 21 </ td> <td> 1.664 </ td> <td> 1.674 < / td> <td> 0.010 </ td> <td> 100.61% </ td> <td> 2.486 </ td> <td> 67.35% </ td> </ tr> <tr> <td> 22 </ td> <td> 1.950 </ td> <td> 2.119 </ td> <td> 0.169 </ td> <td> 108.65% </ td> <td> 2.486 </ td> <td> 85.23% </ td> </ tr> <tr> <td> 31 </ td> <td> 1.980 </ td> <td> 2.048 </ td> <td> 0.069 </ td> <td> 103.47% </ td> <td> 0.380 </ td> <td> 539.05% </ td> </ tr> <tr> <td> 32 </ td> <td> 2.084 </ td> <td> 2.101 </ td> <td > 0.017 </ td> <td> 100.83% </ td> <td> 0.380 </ td> <td> 552.87% </ td> </ tr> <tr> <td> 41 </ td> <td> 2.247 </ td> <td> 2.287 </ td> <td> 0.040 </ td> <td> 101.80% </ td> <td> 1.236 </ td> <td> 185.05% </ td> </ tr > <tr> <td> 42 </ td> <td> 2.530 </ td> <td> 2.813 </ td> <td> 0.284 </ td> <td> 111.22% </ td> <td> 1.236 < / td> <td> 227.63% </ td> </ tr> <tr> <td> 51 </ td> <td> 2.655 </ td> <td> 2.690 </ td> <td> 0.035 </ td > <td> 101.32% </ td> <td> 1.072 </ td> <td> 250.99% </ td> </ tr> <tr> <td> 52 </ td> <td> 2.764 </ td> <td> 2.930 </ td> <td> 0.166 </ td> <td> 106.00% </ td> <td> 1.072 </ td> <td> 273.40% </ td> </ tr> <tr> <td> 61 </ td> <td> 2.816 </ td> <td> 2.905 </ td> <td> 0.089 </ td> <td> 103.16% </ td> <td> 1.031 </ td> <td> 281.64% </ td> </ tr> <tr> <td> 62 </ td> <td> 3.363 </ td> <td> 3.391 </ td> <td> 0.029 </ td> <td> 100.86% </ td> <td> 1.031 </ td> <td> 328.83% </ td> </ tr> </ TBODY> </ TABLE>

表一為第1圖第一光學實施例詳細的結構數據,其中曲率半徑、厚度、距離及焦距的單位為mm,且表面0-16依序表示由物側至像側的表面。表二為第一光學實施例中的非球面數據,其中,k表非球面曲線方程式中的錐面係數,A1-A20則表示各表面第1-20階非球面係數。此外,以下各光學實施例表格乃對應各光學實施例的示意圖與像差曲線圖,表格中數據的定義皆與第一光學實施例的表一及表二的定義相同,在此不加贅述。再者,以下各光學實施例之機構元件參數的定義皆與第一光學實施例相同。Table 1 shows the detailed structural data of the first optical embodiment in FIG. 1, where the units of the radius of curvature, thickness, distance, and focal length are mm, and the surface 0-16 sequentially represents the surface from the object side to the image side. Table 2 shows the aspherical data in the first optical embodiment, where k represents the cone coefficient in the aspheric curve equation, and A1-A20 represents the aspherical coefficients of order 1-20 on each surface. In addition, the following tables of optical embodiments are schematic diagrams and aberration curves corresponding to the optical embodiments. The definitions of the data in the tables are the same as those of Tables 1 and 2 of the first optical embodiment, and will not be repeated here. Furthermore, the definitions of the mechanical element parameters of the following optical embodiments are the same as those of the first optical embodiment.

第二光學實施例 請參照第3A圖及第3B圖,其中第3A圖繪示依照本創作第二光學實施例的一種光學成像模組的透鏡組示意圖,第3B圖由左至右依序為第二光學實施例的光學成像模組的球差、像散及光學畸變曲線圖。由第3A圖可知,光學成像模組由物側至像側依序包含光圈200、第一透鏡210、第二透鏡220、第三透鏡230、第四透鏡240、第五透鏡250、第六透鏡260以及第七透鏡270、紅外線濾光片280、成像面290以及影像感測元件292。For the second optical embodiment, please refer to FIG. 3A and FIG. 3B. FIG. 3A shows a schematic diagram of a lens group of an optical imaging module according to the second optical embodiment of the present invention. Spherical aberration, astigmatism and optical distortion curves of the optical imaging module of the second optical embodiment. It can be seen from FIG. 3A that the optical imaging module includes the aperture 200, the first lens 210, the second lens 220, the third lens 230, the fourth lens 240, the fifth lens 250, and the sixth lens in order from the object side to the image side. 260 and a seventh lens 270, an infrared filter 280, an imaging surface 290, and an image sensing element 292.

第一透鏡210具有負屈折力,且為塑膠材質,其物側面212為凸面,其像側面214為凹面,並皆為非球面,其物側面212以及像側面214均具有一反曲點。The first lens 210 has a negative refractive power and is made of plastic. The object side surface 212 is convex, the image side 214 is concave, and both are aspheric. The object side 212 and the image side 214 each have an inflection point.

第二透鏡220具有負屈折力,且為塑膠材質,其物側面222為凸面,其像側面224為凹面,並皆為非球面,其物側面222以及像側面224均具有一反曲點。The second lens 220 has a negative refractive power and is made of plastic. Its object side surface 222 is convex, its image side 224 is concave, and both are aspheric. Its object side 222 and image side 224 both have an inflection point.

第三透鏡230具有正屈折力,且為塑膠材質,其物側面232為凸面,其像側面234為凹面,並皆為非球面,其物側面232具有一反曲點。The third lens 230 has a positive refractive power and is made of plastic. The object side surface 232 is convex, the image side surface 234 is concave, and both are aspheric. The object side surface 232 has an inflection point.

第四透鏡240具有正屈折力,且為塑膠材質,其物側面242為凹面,其像側面244為凸面,並皆為非球面,且其物側面242具有一反曲點以及像側面244具有二反曲點。The fourth lens 240 has a positive refractive power and is made of plastic. Its object side surface 242 is concave, its image side 244 is convex, and both are aspheric. The object side 242 has an inflection point and the image side 244 has two points. Inflection point.

第五透鏡250具有正屈折力,且為塑膠材質,其物側面252為凸面,其像側面254為凹面,並皆為非球面,且其物側面252以及像側面254均具有一反曲點。The fifth lens 250 has a positive refractive power and is made of plastic. Its object side surface 252 is convex, its image side surface 254 is concave, and both are aspheric, and its object side surface 252 and image side surface 254 each have an inflection point.

第六透鏡260具有負屈折力,且為塑膠材質,其物側面262為凹面,其像側面264為凸面,並皆為非球面,且其物側面262以及像側面264均具有二反曲點。藉此,可有效調整各視場入射於第六透鏡260的角度而改善像差。The sixth lens 260 has a negative refractive power and is made of plastic. The object side surface 262 is concave, the image side 264 is convex, and both are aspheric. The object side 262 and the image side 264 have two inflection points. Accordingly, the angle of incidence of each field of view on the sixth lens 260 can be effectively adjusted to improve aberrations.

第七透鏡270具有負屈折力,且為塑膠材質,其物側面272為凸面,其像側面274為凹面。藉此,有利於縮短其後焦距以維持小型化。另外,第七透鏡物側面272以及像側面274均具有一反曲點,可有效地壓制離軸視場光線入射的角度,進一步可修正離軸視場的像差。The seventh lens 270 has a negative refractive power and is made of plastic. The object side surface 272 is a convex surface and the image side surface 274 is a concave surface. Thereby, it is advantageous to shorten the back focal length to maintain miniaturization. In addition, both the object side surface 272 and the image side surface 274 of the seventh lens have an inflection point, which can effectively suppress the incident angle of the off-axis field of view and further correct the aberration of the off-axis field of view.

紅外線濾光片280為玻璃材質,其設置於第七透鏡270及成像面290間且不影響光學成像模組的焦距。The infrared filter 280 is made of glass and is disposed between the seventh lens 270 and the imaging surface 290 without affecting the focal length of the optical imaging module.

請配合參照下列表三以及表四。 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表三 第 二 光 學 實 施 例 透 鏡 數 據 </td></tr><tr><td> f(焦距)= 4.7601 mm ; f/HEP =2.2 ; HAF(半視角)= 95.98 deg </td></tr><tr><td> 表面 </td><td> 曲率半徑 </td><td> 厚度(mm) </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td></tr><tr><td> 0 </td><td> 被攝物 </td><td> 1E+18 </td><td> 1E+18 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> 第一透鏡 </td><td> 47.71478323 </td><td> 4.977 </td><td> 玻璃 </td><td> 2.001 </td><td> 29.13 </td><td> -12.647 </td></tr><tr><td> 2 </td><td> </td><td> 9.527614761 </td><td> 13.737 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 第二透鏡 </td><td> -14.88061107 </td><td> 5.000 </td><td> 玻璃 </td><td> 2.001 </td><td> 29.13 </td><td> -99.541 </td></tr><tr><td> 4 </td><td> </td><td> -20.42046946 </td><td> 10.837 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 第三透鏡 </td><td> 182.4762997 </td><td> 5.000 </td><td> 玻璃 </td><td> 1.847 </td><td> 23.78 </td><td> 44.046 </td></tr><tr><td> 6 </td><td> </td><td> -46.71963608 </td><td> 13.902 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 7 </td><td> 光圈 </td><td> 1E+18 </td><td> 0.850 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 8 </td><td> 第四透鏡 </td><td> 28.60018103 </td><td> 4.095 </td><td> 玻璃 </td><td> 1.834 </td><td> 37.35 </td><td> 19.369 </td></tr><tr><td> 9 </td><td></td><td> -35.08507586 </td><td> 0.323 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 10 </td><td> 第五透鏡 </td><td> 18.25991342 </td><td> 1.539 </td><td> 玻璃 </td><td> 1.609 </td><td> 46.44 </td><td> 20.223 </td></tr><tr><td> 11 </td><td></td><td> -36.99028878 </td><td> 0.546 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 12 </td><td> 第六透鏡 </td><td> -18.24574524 </td><td> 5.000 </td><td> 玻璃 </td><td> 2.002 </td><td> 19.32 </td><td> -7.668 </td></tr><tr><td> 13 </td><td> </td><td> 15.33897192 </td><td> 0.215 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 14 </td><td> 第七透鏡 </td><td> 16.13218937 </td><td> 4.933 </td><td> 玻璃 </td><td> 1.517 </td><td> 64.20 </td><td> 13.620 </td></tr><tr><td> 15 </td><td></td><td> -11.24007 </td><td> 8.664 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 16 </td><td> 紅外線 濾光片 </td><td> 1E+18 </td><td> 1.000 </td><td> BK_7 </td><td> 1.517 </td><td> 64.2 </td><td> </td></tr><tr><td> 17 </td><td></td><td> 1E+18 </td><td> 1.007 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 18 </td><td> 成像面 </td><td> 1E+18 </td><td> -0.007 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 參考波長 (d-line) 為555 nm </td></tr></TBODY></TABLE>表四、第二光學實施例之非球面係數 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表四 非球面係數 </td></tr><tr><td> 表面 </td><td> 1 </td><td> 2 </td><td> 3 </td><td> 4 </td><td> 5 </td><td> 6 </td><td> 8 </td></tr><tr><td> k </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A4 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A6 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A8 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A10 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A12 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表四 非球面係數 </td></tr><tr><td> 表面 </td><td> 9 </td><td> 10 </td><td> 11 </td><td> 12 </td><td> 13 </td><td> 14 </td><td> 15 </td></tr><tr><td> k </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A4 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A6 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A8 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A10 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A12 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr></TBODY></TABLE>Please refer to Tables 3 and 4 below.         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Table 3 Lens data of the second optical embodiment </ td> </ tr> <tr> < td> f (focal length) = 4.7601 mm; f / HEP = 2.2; HAF (half angle of view) = 95.98 deg </ td> </ tr> <tr> <td> surface </ td> <td> radius of curvature </ td> <td> thickness (mm) </ td> <td> material </ td> <td> refractive index </ td> <td> dispersion coefficient </ td> <td> focal length </ td> </ tr > <tr> <td> 0 </ td> <td> Subject </ td> <td> 1E + 18 </ td> <td> 1E + 18 </ td> <td> </ td> < td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 1 </ td> <td> First lens </ td> <td> 47.71478323 < / td> <td> 4.977 </ td> <td> Glass </ td> <td> 2.001 </ td> <td> 29.13 </ td> <td> -12.647 </ td> </ tr> <tr > <td> 2 </ td> <td> </ td> <td> 9.527614761 </ td> <td> 13.737 </ td> <td> </ td> <td> </ td> <td> < / td> <td> </ td> </ tr> <tr> <td> 3 </ td> <td> Second lens </ td> <td> -14.88061107 </ td> <td> 5.000 </ td> <td> Glass </ td> <td> 2.001 </ td> <td> 29.13 </ td> <td> -99.541 </ td> </ tr> <tr> <td> 4 </ td> <td> </ td> <td> -20.42046946 </ td> <td> 10.837 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 5 </ td> <td> Third lens </ td> <td> 182.4762997 </ td > <td> 5.000 </ td> <td> glass </ td> <td> 1.847 </ td> <td> 23.78 </ td> <td> 44.046 </ td> </ tr> <tr> <td > 6 </ td> <td> </ td> <td> -46.71963608 </ td> <td> 13.902 </ td> <td> </ td> <td> </ td> <td> </ td > <td> </ td> </ tr> <tr> <td> 7 </ td> <td> Aperture </ td> <td> 1E + 18 </ td> <td> 0.850 </ td> < td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 8 </ td> <td> Fourth lens </ td> <td> 28.60018103 </ td> <td> 4.095 </ td> <td> Glass </ td> <td> 1.834 </ td> <td> 37.35 </ td> <td> 19.369 </ td> </ tr> <tr> <td> 9 </ td> <td> </ td> <td> -35.08507586 </ td> <td> 0.323 </ td> <td> </ td> <td> < / td> <td> </ td> <td> </ td> </ tr> <tr> <td> 10 </ td> <td> Fifth lens </ td> <td> 18.25991342 </ td> <td> 1.539 </ td> <td> glass </ td> <td> 1.609 </ td> <td> 46.44 </ td> <td> 20.223 </ td> </ tr> <tr> <td> 11 </ td> <td> </ td> <td> -36.99028878 </ td> <td> 0.546 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 12 </ td> <td> Sixth lens </ td> <td>- 18.24574524 </ td> <td> 5.000 </ td> <td> Glass </ td> <td> 2.002 </ td> <td> 19.32 </ td> <td> -7.668 </ td> </ tr> <tr> <td> 13 </ td> <td> </ td> <td> 15.33897192 </ td> <td> 0.215 </ td> <td> </ td> <td> </ td> <td > </ td> <td> </ td> </ tr> <tr> <td> 14 </ td> <td> Seventh lens </ td> <td> 16.13218937 </ td> <td> 4.933 < / td> <td> Glass </ td> <td> 1.517 </ td> <td> 64.20 </ td> <td> 13.620 </ td> </ tr> <tr> <td> 15 </ td> <td> </ td> <td> -11.24007 </ td> <td> 8.664 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 16 </ td> <td> Infrared filter </ td> <td> 1E + 18 </ td> <td> 1.000 </ td> <td> BK_7 </ td> <td> 1.517 </ td> <td> 64.2 </ td> <td> </ td> </ tr> <tr> <td> 17 </ td> <td> </ td> < td> 1E + 18 </ td> <td> 1.007 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> < tr> <td> 18 </ td> <td> imaging surface </ td> <td> 1E + 18 </ td> <td> -0.007 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> Reference wavelength (d-line) is 555 nm </ td> </ tr> </ TBODY> </ TABLE> Table 4. Aspheric coefficients of the second optical embodiment         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Table 4 Aspheric coefficients </ td> </ tr> <tr> <td> Surface < / td> <td> 1 </ td> <td> 2 </ td> <td> 3 </ td> <td> 4 </ td> <td> 5 </ td> <td> 6 </ td > <td> 8 </ td> </ tr> <tr> <td> k </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E +00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> < sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> </ tr> <tr> <td> A4 </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td > <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub > </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> </ tr> <tr> <td > A6 </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E +00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> < sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> </ tr> <tr> <td> A8 </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td > <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> </ tr> <tr> <td> A10 </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 < /sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000 E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> </ tr > <tr> <td> A12 </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td > <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> </ tr> </ TBODY> </ TABLE> <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Table 4 Aspheric coefficients </ td> </ tr> <tr> <td> Surface < / td> <td> 9 </ td> <td> 10 </ td> <td> 11 </ td> <td> 12 </ td> <td> 13 </ td> <td> 14 </ td > <td> 15 </ td> </ tr> <tr> <td> k </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E +00 </ sub> </ td > <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub > </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> </ tr> <tr> <td > A4 </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E +00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> < sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> </ tr> <tr> <td> A6 </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td > <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub > </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> </ tr> <tr> <td> A8 </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E +00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> < sub> 0.000000E + 00 </ sub> </ td> </ tr> <tr> <td> A10 </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000 000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> </ tr> <tr> <td> A12 </ td> <td > <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> <td> <sub> 0.000000E + 00 </ sub> </ td> </ tr> </ TBODY> </ TABLE>

第二光學實施例中,非球面的曲線方程式表示如第一光學實施例的形式。此外,下表參數的定義皆與第一光學實施例相同,在此不加以贅述。In the second optical embodiment, the curve equation of the aspherical surface is expressed as the first optical embodiment. In addition, the definitions of the parameters in the following table are the same as those of the first optical embodiment, and will not be repeated here.

依據表三及表四可得到下列條件式數値: <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第二光學實施例 (使用主要參考波長 555 nm) </td></tr><tr><td> ∣f/f1│ </td><td> ∣f/f2│ </td><td> ∣f/f3│ </td><td> ∣f/f4│ </td><td> ∣f/f5│ </td><td> ∣f/f6│ </td></tr><tr><td> 0.3764 </td><td> 0.0478 </td><td> 0.1081 </td><td> 0.2458 </td><td> 0.2354 </td><td> 0.6208 </td></tr><tr><td> ∣f/f7│ </td><td> ΣPPR </td><td> ΣNPR </td><td> ΣPPR /│ΣNPR∣ </td><td> IN12 / f </td><td> IN67 / f </td></tr><tr><td> 0.3495 </td><td> 1.3510 </td><td> 0.6327 </td><td> 2.1352 </td><td> 2.8858 </td><td> 0.0451 </td></tr><tr><td> ∣f1/f2│ </td><td> ∣f2/f3│ </td><td> (TP1+IN12)/ TP2 </td><td> (TP7+IN67)/ TP6 </td></tr><tr><td> 0.1271 </td><td> 2.2599 </td><td> 3.7428 </td><td> 1.0296 </td></tr><tr><td> HOS </td><td> InTL </td><td> HOS / HOI </td><td> InS/ HOS </td><td> ODT % </td><td> TDT % </td></tr><tr><td> 81.6178 </td><td> 70.9539 </td><td> 13.6030 </td><td> 0.3451 </td><td> -113.2790 </td><td> 84.4806 </td></tr><tr><td> HVT11 </td><td> HVT12 </td><td> HVT21 </td><td> HVT22 </td><td> HVT31 </td><td> HVT32 </td></tr><tr><td> 0.0000 </td><td> 0.0000 </td><td> 0.0000 </td><td> 0.0000 </td><td> 0.0000 </td><td> 0.0000 </td></tr><tr><td> HVT61 </td><td> HVT62 </td><td> HVT71 </td><td> HVT72 </td><td> HVT72/ HOI </td><td> HVT72/ HOS </td></tr><tr><td> 0.0000 </td><td> 0.0000 </td><td> 0.0000 </td><td> 0.0000 </td><td> 0.0000 </td><td> 0.0000 </td></tr><tr><td> PhiA </td><td> PhiC </td><td> PhiD </td><td> TH1 </td><td> TH2 </td><td> HOI </td></tr><tr><td> 11.962 mm </td><td> 12.362 mm </td><td> 12.862 mm </td><td> 0.25 mm </td><td> 0.2 mm </td><td> 6 mm </td></tr><tr><td> PhiA / PhiD </td><td> TH1+TH2 </td><td> (TH1+TH2) / HOI </td><td> (TH1+TH2) /HOS </td><td> 2(TH1+TH2) / PhiA </td><td> </td></tr><tr><td> 0.9676 </td><td> 0.45 mm </td><td> 0.075 </td><td> 0.0055 </td><td> 0.0752 </td><td> </td></tr><tr><td> PSTA </td><td> PLTA </td><td> NSTA </td><td> NLTA </td><td> SSTA </td><td> SLTA </td></tr><tr><td> 0.060 mm </td><td> -0.005 mm </td><td> 0.016 mm </td><td> 0.006 mm </td><td> 0.020 mm </td><td> -0.008 mm </td></tr></TBODY></TABLE>According to Tables 3 and 4, the following conditional expressions can be obtained:         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Second optical embodiment (using the main reference wavelength of 555 nm) </ td> </ tr> <tr> <td> ∣f / f1│ </ td> <td> ∣f / f2│ </ td> <td> ∣f / f3│ </ td> <td> ∣f / f4│ </ td > <td> ∣f / f5│ </ td> <td> ∣f / f6│ </ td> </ tr> <tr> <td> 0.3764 </ td> <td> 0.0478 </ td> <td > 0.1081 </ td> <td> 0.2458 </ td> <td> 0.2354 </ td> <td> 0.6208 </ td> </ tr> <tr> <td> ∣f / f7│ </ td> < td> ΣPPR </ td> <td> ΣNPR </ td> <td> ΣPPR / │ΣNPR∣ </ td> <td> IN12 / f </ td> <td> IN67 / f </ td> </ tr > <tr> <td> 0.3495 </ td> <td> 1.3510 </ td> <td> 0.6327 </ td> <td> 2.1352 </ td> <td> 2.8858 </ td> <td> 0.0451 </ td> </ tr> <tr> <td> ∣f1 / f2│ </ td> <td> ∣f2 / f3│ </ td> <td> (TP1 + IN12) / TP2 </ td> <td> (TP7 + IN67) / TP6 </ td> </ tr> <tr> <td> 0.1271 </ td> <td> 2.2599 </ td> <td> 3.7428 </ td> <td> 1.0296 </ td> </ tr> <tr> <td> HOS </ td> <td> InTL </ td> <td> HOS / HOI </ td> <td> InS / HOS </ td> <td> ODT% </ td> <td> TDT% </ td> </ tr> <tr> <td> 81.6178 </ td> <td> 70.9539 </ td> <td> 13.6030 </ td> <td> 0.3451 </ td> <td> -113.2790 </ td> <td> 84.4806 </ td> </ tr> <tr> <td> HVT11 </ td> <td> HVT12 </ td> <td> HVT21 </ td> <td> HVT22 </ td > <td> HVT31 </ td> <td> HVT32 </ td> </ tr> <tr> <td> 0.0000 </ td> <td> 0.0000 </ td> <td> 0.0000 </ td> <td > 0.0000 </ td> <td> 0.0000 </ td> <td> 0.0000 </ td> </ tr> <tr> <td> HVT61 </ td> <td> HVT62 </ td> <td> HVT71 < / td> <td> HVT72 </ td> <td> HVT72 / HOI </ td> <td> HVT72 / HOS </ td> </ tr> <tr> <td> 0.0000 </ td> <td> 0.0000 </ td> <td> 0.0000 </ td> <td> 0.0000 </ td> <td> 0.0000 </ td> <td> 0.0000 </ td> </ tr> <tr> <td> PhiA </ td > <td> PhiC </ td> <td> PhiD </ td> <td> TH1 </ td> <td> TH2 </ td> <td> HOI </ td> </ tr> <tr> <td > 11.962 mm </ td> <td> 12.362 mm </ td> <td> 12.862 mm </ td> <td> 0.25 mm </ td> <td> 0.2 mm </ td> <td> 6 mm </ td> </ tr> <tr> <td> PhiA / PhiD </ td> <td> TH1 + TH2 </ td> <td> (TH1 + TH2) / HOI </ td> <td> (TH1 + TH2 ) / HOS </ td> <td> 2 (TH1 + TH2) / PhiA </ td> <td> </ td> </ tr> <tr> <td> 0.9676 </ td> <td> 0.45 mm < / td> <td> 0.075 </ td> <td> 0.0055 </ td> <td> 0.0752 </ td> <td> </ td> </ tr> <tr> <td> PSTA </ td> < td> PLTA </ td> <td> NSTA </ td> <td> NLTA </ td> <td> SSTA </ td> <td> SLTA </ td> </ tr> <tr> <td> 0.060 mm </ td> <td> -0.005 mm </ td> <td> 0.016 mm </ td> <td > 0.006 mm </ td> <td> 0.020 mm </ td> <td> -0.008 mm </ td> </ tr> </ TBODY> </ TABLE>

依據表三及表四可得到下列條件式數値:依據表一及表二可得到下列輪廓曲線長度相關之數値: <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第二光學實施例 (使用主要參考波長 555 nm) </td></tr><tr><td> ARE </td><td> 1/2(HEP) </td><td> ARE value </td><td> ARE-1/2(HEP) </td><td> 2(ARE/HEP) % </td><td> TP </td><td> ARE /TP (%) </td></tr><tr><td> 11 </td><td> 1.082 </td><td> 1.081 </td><td> -0.00075 </td><td> 99.93% </td><td> 4.977 </td><td> 21.72% </td></tr><tr><td> 12 </td><td> 1.082 </td><td> 1.083 </td><td> 0.00149 </td><td> 100.14% </td><td> 4.977 </td><td> 21.77% </td></tr><tr><td> 21 </td><td> 1.082 </td><td> 1.082 </td><td> 0.00011 </td><td> 100.01% </td><td> 5.000 </td><td> 21.64% </td></tr><tr><td> 22 </td><td> 1.082 </td><td> 1.082 </td><td> -0.00034 </td><td> 99.97% </td><td> 5.000 </td><td> 21.63% </td></tr><tr><td> 31 </td><td> 1.082 </td><td> 1.081 </td><td> -0.00084 </td><td> 99.92% </td><td> 5.000 </td><td> 21.62% </td></tr><tr><td> 32 </td><td> 1.082 </td><td> 1.081 </td><td> -0.00075 </td><td> 99.93% </td><td> 5.000 </td><td> 21.62% </td></tr><tr><td> 41 </td><td> 1.082 </td><td> 1.081 </td><td> -0.00059 </td><td> 99.95% </td><td> 4.095 </td><td> 26.41% </td></tr><tr><td> 42 </td><td> 1.082 </td><td> 1.081 </td><td> -0.00067 </td><td> 99.94% </td><td> 4.095 </td><td> 26.40% </td></tr><tr><td> 51 </td><td> 1.082 </td><td> 1.082 </td><td> -0.00021 </td><td> 99.98% </td><td> 1.539 </td><td> 70.28% </td></tr><tr><td> 52 </td><td> 1.082 </td><td> 1.081 </td><td> -0.00069 </td><td> 99.94% </td><td> 1.539 </td><td> 70.25% </td></tr><tr><td> 61 </td><td> 1.082 </td><td> 1.082 </td><td> -0.00021 </td><td> 99.98% </td><td> 5.000 </td><td> 21.63% </td></tr><tr><td> 62 </td><td> 1.082 </td><td> 1.082 </td><td> 0.00005 </td><td> 100.00% </td><td> 5.000 </td><td> 21.64% </td></tr><tr><td> 71 </td><td> 1.082 </td><td> 1.082 </td><td> -0.00003 </td><td> 100.00% </td><td> 4.933 </td><td> 21.93% </td></tr><tr><td> 72 </td><td> 1.082 </td><td> 1.083 </td><td> 0.00083 </td><td> 100.08% </td><td> 4.933 </td><td> 21.95% </td></tr><tr><td> ARS </td><td> EHD </td><td> ARS value </td><td> ARS-EHD </td><td> (ARS/EHD)% </td><td> TP </td><td> ARS / TP (%) </td></tr><tr><td> 11 </td><td> 20.767 </td><td> 21.486 </td><td> 0.719 </td><td> 103.46% </td><td> 4.977 </td><td> 431.68% </td></tr><tr><td> 12 </td><td> 9.412 </td><td> 13.474 </td><td> 4.062 </td><td> 143.16% </td><td> 4.977 </td><td> 270.71% </td></tr><tr><td> 21 </td><td> 8.636 </td><td> 9.212 </td><td> 0.577 </td><td> 106.68% </td><td> 5.000 </td><td> 184.25% </td></tr><tr><td> 22 </td><td> 9.838 </td><td> 10.264 </td><td> 0.426 </td><td> 104.33% </td><td> 5.000 </td><td> 205.27% </td></tr><tr><td> 31 </td><td> 8.770 </td><td> 8.772 </td><td> 0.003 </td><td> 100.03% </td><td> 5.000 </td><td> 175.45% </td></tr><tr><td> 32 </td><td> 8.511 </td><td> 8.558 </td><td> 0.047 </td><td> 100.55% </td><td> 5.000 </td><td> 171.16% </td></tr><tr><td> 41 </td><td> 4.600 </td><td> 4.619 </td><td> 0.019 </td><td> 100.42% </td><td> 4.095 </td><td> 112.80% </td></tr><tr><td> 42 </td><td> 4.965 </td><td> 4.981 </td><td> 0.016 </td><td> 100.32% </td><td> 4.095 </td><td> 121.64% </td></tr><tr><td> 51 </td><td> 5.075 </td><td> 5.143 </td><td> 0.067 </td><td> 101.33% </td><td> 1.539 </td><td> 334.15% </td></tr><tr><td> 52 </td><td> 5.047 </td><td> 5.062 </td><td> 0.015 </td><td> 100.30% </td><td> 1.539 </td><td> 328.89% </td></tr><tr><td> 61 </td><td> 5.011 </td><td> 5.075 </td><td> 0.064 </td><td> 101.28% </td><td> 5.000 </td><td> 101.50% </td></tr><tr><td> 62 </td><td> 5.373 </td><td> 5.489 </td><td> 0.116 </td><td> 102.16% </td><td> 5.000 </td><td> 109.79% </td></tr><tr><td> 71 </td><td> 5.513 </td><td> 5.625 </td><td> 0.112 </td><td> 102.04% </td><td> 4.933 </td><td> 114.03% </td></tr><tr><td> 72 </td><td> 5.981 </td><td> 6.307 </td><td> 0.326 </td><td> 105.44% </td><td> 4.933 </td><td> 127.84% </td></tr></TBODY></TABLE>According to Tables 3 and 4, the following conditional expressions can be obtained: According to Tables 1 and 2, the following values related to the length of the contour curve can be obtained:         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Second optical embodiment (using the main reference wavelength of 555 nm) </ td> </ tr> <tr> <td> ARE </ td> <td> 1/2 (HEP) </ td> <td> ARE value </ td> <td> ARE-1 / 2 (HEP) </ td> <td > 2 (ARE / HEP)% </ td> <td> TP </ td> <td> ARE / TP (%) </ td> </ tr> <tr> <td> 11 </ td> <td > 1.082 </ td> <td> 1.081 </ td> <td> -0.00075 </ td> <td> 99.93% </ td> <td> 4.977 </ td> <td> 21.72% </ td> < / tr> <tr> <td> 12 </ td> <td> 1.082 </ td> <td> 1.083 </ td> <td> 0.00149 </ td> <td> 100.14% </ td> <td> 4.977 </ td> <td> 21.77% </ td> </ tr> <tr> <td> 21 </ td> <td> 1.082 </ td> <td> 1.082 </ td> <td> 0.00011 < / td> <td> 100.01% </ td> <td> 5.000 </ td> <td> 21.64% </ td> </ tr> <tr> <td> 22 </ td> <td> 1.082 </ td> <td> 1.082 </ td> <td> -0.00034 </ td> <td> 99.97% </ td> <td> 5.000 </ td> <td> 21.63% </ td> </ tr> < tr> <td> 31 </ td> <td> 1.082 </ td> <td> 1.081 </ td> <td> -0.00084 </ td> <td> 99.92% </ td> <td> 5.000 </ td> <td> 21.62% </ td> </ tr> <tr> <td> 32 </ td> <td> 1.082 </ td> <td> 1.081 </ td> <td> -0.00075 </ td > <td> 99.93% </ td> <td> 5.000 </ td> <td> 21 .62% </ td> </ tr> <tr> <td> 41 </ td> <td> 1.082 </ td> <td> 1.081 </ td> <td> -0.00059 </ td> <td> 99.95% </ td> <td> 4.095 </ td> <td> 26.41% </ td> </ tr> <tr> <td> 42 </ td> <td> 1.082 </ td> <td> 1.081 </ td> <td> -0.00067 </ td> <td> 99.94% </ td> <td> 4.095 </ td> <td> 26.40% </ td> </ tr> <tr> <td> 51 </ td> <td> 1.082 </ td> <td> 1.082 </ td> <td> -0.00021 </ td> <td> 99.98% </ td> <td> 1.539 </ td> <td> 70.28 % </ td> </ tr> <tr> <td> 52 </ td> <td> 1.082 </ td> <td> 1.081 </ td> <td> -0.00069 </ td> <td> 99.94% </ td> <td> 1.539 </ td> <td> 70.25% </ td> </ tr> <tr> <td> 61 </ td> <td> 1.082 </ td> <td> 1.082 </ td> <td> -0.00021 </ td> <td> 99.98% </ td> <td> 5.000 </ td> <td> 21.63% </ td> </ tr> <tr> <td> 62 </ td> <td> 1.082 </ td> <td> 1.082 </ td> <td> 0.00005 </ td> <td> 100.00% </ td> <td> 5.000 </ td> <td> 21.64% </ td> </ tr> <tr> <td> 71 </ td> <td> 1.082 </ td> <td> 1.082 </ td> <td> -0.00003 </ td> <td> 100.00% </ td > <td> 4.933 </ td> <td> 21.93% </ td> </ tr> <tr> <td> 72 </ td> <td> 1.082 </ td> <td> 1.083 </ td> < td> 0.00083 </ td> <td> 100.08% </ td> <td> 4.933 </ td> <td> 21.95% </ td> </ tr> <tr> <td> ARS </ td> <td> EHD </ td> <td> ARS value </ td> <td> ARS-EHD </ td> <td> (ARS / EHD)% </ td > <td> TP </ td> <td> ARS / TP (%) </ td> </ tr> <tr> <td> 11 </ td> <td> 20.767 </ td> <td> 21.486 < / td> <td> 0.719 </ td> <td> 103.46% </ td> <td> 4.977 </ td> <td> 431.68% </ td> </ tr> <tr> <td> 12 </ td> <td> 9.412 </ td> <td> 13.474 </ td> <td> 4.062 </ td> <td> 143.16% </ td> <td> 4.977 </ td> <td> 270.71% </ td> </ tr> <tr> <td> 21 </ td> <td> 8.636 </ td> <td> 9.212 </ td> <td> 0.577 </ td> <td> 106.68% </ td> <td> 5.000 </ td> <td> 184.25% </ td> </ tr> <tr> <td> 22 </ td> <td> 9.838 </ td> <td> 10.264 </ td> <td > 0.426 </ td> <td> 104.33% </ td> <td> 5.000 </ td> <td> 205.27% </ td> </ tr> <tr> <td> 31 </ td> <td> 8.770 </ td> <td> 8.772 </ td> <td> 0.003 </ td> <td> 100.03% </ td> <td> 5.000 </ td> <td> 175.45% </ td> </ tr > <tr> <td> 32 </ td> <td> 8.511 </ td> <td> 8.558 </ td> <td> 0.047 </ td> <td> 100.55% </ td> <td> 5.000 < / td> <td> 171.16% </ td> </ tr> <tr> <td> 41 </ td> <td> 4.600 </ td> <td> 4.619 </ td> <td> 0.019 </ td > <td> 100.42% </ td> <td> 4.095 </ td> <td> 112.80% </ td> </ tr> <tr> <td> 4 2 </ td> <td> 4.965 </ td> <td> 4.981 </ td> <td> 0.016 </ td> <td> 100.32% </ td> <td> 4.095 </ td> <td> 121.64 % </ td> </ tr> <tr> <td> 51 </ td> <td> 5.075 </ td> <td> 5.143 </ td> <td> 0.067 </ td> <td> 101.33% < / td> <td> 1.539 </ td> <td> 334.15% </ td> </ tr> <tr> <td> 52 </ td> <td> 5.047 </ td> <td> 5.062 </ td > <td> 0.015 </ td> <td> 100.30% </ td> <td> 1.539 </ td> <td> 328.89% </ td> </ tr> <tr> <td> 61 </ td> <td> 5.011 </ td> <td> 5.075 </ td> <td> 0.064 </ td> <td> 101.28% </ td> <td> 5.000 </ td> <td> 101.50% </ td> </ tr> <tr> <td> 62 </ td> <td> 5.373 </ td> <td> 5.489 </ td> <td> 0.116 </ td> <td> 102.16% </ td> <td > 5.000 </ td> <td> 109.79% </ td> </ tr> <tr> <td> 71 </ td> <td> 5.513 </ td> <td> 5.625 </ td> <td> 0.112 </ td> <td> 102.04% </ td> <td> 4.933 </ td> <td> 114.03% </ td> </ tr> <tr> <td> 72 </ td> <td> 5.981 < / td> <td> 6.307 </ td> <td> 0.326 </ td> <td> 105.44% </ td> <td> 4.933 </ td> <td> 127.84% </ td> </ tr> < / TBODY> </ TABLE>

依據表三及表四可得到下列條件式數値: <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第二光學實施例反曲點相關數值 (使用主要參考波長 555 nm) </td></tr><tr><td> HIF111 </td><td> 0 </td><td> HIF111/HOI </td><td> 0 </td><td> SGI111 </td><td> 0 </td><td> │SGI111∣/(│SGI111∣+TP1) </td><td> 0 </td></tr></TBODY></TABLE>According to Tables 3 and 4, the following conditional expressions can be obtained:         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Relevant value of the inflection point of the second optical embodiment (using the main reference wavelength of 555 nm) </ td > </ tr> <tr> <td> HIF111 </ td> <td> 0 </ td> <td> HIF111 / HOI </ td> <td> 0 </ td> <td> SGI111 </ td> <td> 0 </ td> <td> │SGI111∣ / (│SGI111∣ + TP1) </ td> <td> 0 </ td> </ tr> </ TBODY> </ TABLE>

第三光學實施例 請參照第4A圖及第4B圖,其中第4A圖繪示依照本創作第三光學實施例的一種光學成像模組的透鏡組示意圖,第4B圖由左至右依序為第三光學實施例的光學成像模組的球差、像散及光學畸變曲線圖。由第4A圖可知,光學成像模組由物側至像側依序包含第一透鏡310、第二透鏡320、第三透鏡330、光圈300、第四透鏡340、第五透鏡350、第六透鏡360、紅外線濾光片380、成像面390以及影像感測元件392。For the third optical embodiment, please refer to FIG. 4A and FIG. 4B. FIG. 4A shows a schematic diagram of a lens group of an optical imaging module according to the third optical embodiment of the present invention. Spherical aberration, astigmatism and optical distortion curves of the optical imaging module of the third optical embodiment. It can be seen from FIG. 4A that the optical imaging module includes a first lens 310, a second lens 320, a third lens 330, an aperture 300, a fourth lens 340, a fifth lens 350, and a sixth lens in order from the object side to the image side. 360, an infrared filter 380, an imaging surface 390, and an image sensing element 392.

第一透鏡310具有負屈折力,且為玻璃材質,其物側面312為凸面,其像側面314為凹面,並皆為球面。The first lens 310 has a negative refractive power and is made of glass. The object side 312 is convex, the image side 314 is concave, and both are spherical.

第二透鏡320具有負屈折力,且為玻璃材質,其物側面322為凹面,其像側面324為凸面,並皆為球面。The second lens 320 has a negative refractive power and is made of glass. The object side surface 322 is a concave surface, and the image side surface 324 is a convex surface, and they are all spherical surfaces.

第三透鏡330具有正屈折力,且為塑膠材質,其物側面332為凸面,其像側面334為凸面,並皆為非球面,且其像側面334具有一反曲點。The third lens 330 has a positive refractive power and is made of plastic material. Its object side surface 332 is convex, its image side 334 is convex, and all of them are aspheric, and its image side 334 has an inflection point.

第四透鏡340具有負屈折力,且為塑膠材質,其物側面342為凹面,其像側面344為凹面,並皆為非球面,且其像側面344具有一反曲點。The fourth lens 340 has a negative refractive power and is made of plastic material. Its object side surface 342 is concave, its image side 344 is concave, and both are aspheric, and its image side 344 has an inflection point.

第五透鏡350具有正屈折力,且為塑膠材質,其物側面352為凸面,其像側面354為凸面,並皆為非球面。The fifth lens 350 has a positive refractive power and is made of plastic. The object side surface 352 is a convex surface, and the image side surface 354 is a convex surface.

第六透鏡360具有負屈折力,且為塑膠材質,其物側面362為凸面,其像側面364為凹面,並皆為非球面,且其物側面362以及像側面364均具有一反曲點。藉此,有利於縮短其後焦距以維持小型化。另外,可有效地壓制離軸視場光線入射的角度,進一步可修正離軸視場的像差。The sixth lens 360 has a negative refractive power and is made of plastic. Its object side surface 362 is convex, its image side 364 is concave, and both are aspheric. The object side 362 and the image side 364 both have an inflection point. Thereby, it is advantageous to shorten the back focal length to maintain miniaturization. In addition, it can effectively suppress the incident angle of the off-axis field of view, and further correct the aberration of the off-axis field of view.

紅外線濾光片380為玻璃材質,其設置於第六透鏡360及成像面390間且不影響光學成像模組的焦距。The infrared filter 380 is made of glass and is disposed between the sixth lens 360 and the imaging surface 390 without affecting the focal length of the optical imaging module.

請配合參照下列表五以及表六。 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表五 第 三 光 學 實 施 例 透 鏡 數 據 </td></tr><tr><td> f(焦距)= 2.808 mm ; f/HEP =1.6 ; HAF(半視角)= 100 deg </td></tr><tr><td> 表面 </td><td> 曲率半徑 </td><td> 厚度 (mm) </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td></tr><tr><td> 0 </td><td> 被攝物 </td><td> 1E+18 </td><td> 1E+18 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> 第一透鏡 </td><td> 71.398124 </td><td> 7.214 </td><td> 玻璃 </td><td> 1.702 </td><td> 41.15 </td><td> -11.765 </td></tr><tr><td> 2 </td><td> </td><td> 7.117272355 </td><td> 5.788 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 第二透鏡 </td><td> -13.29213699 </td><td> 10.000 </td><td> 玻璃 </td><td> 2.003 </td><td> 19.32 </td><td> -4537.460 </td></tr><tr><td> 4 </td><td> </td><td> -18.37509887 </td><td> 7.005 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 第三透鏡 </td><td> 5.039114804 </td><td> 1.398 </td><td> 塑膠 </td><td> 1.514 </td><td> 56.80 </td><td> 7.553 </td></tr><tr><td> 6 </td><td> </td><td> -15.53136631 </td><td> -0.140 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 7 </td><td> 光圈 </td><td> 1E+18 </td><td> 2.378 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 8 </td><td> 第四透鏡 </td><td> -18.68613609 </td><td> 0.577 </td><td> 塑膠 </td><td> 1.661 </td><td> 20.40 </td><td> -4.978 </td></tr><tr><td> 9 </td><td> </td><td> 4.086545927 </td><td> 0.141 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 10 </td><td> 第五透鏡 </td><td> 4.927609282 </td><td> 2.974 </td><td> 塑膠 </td><td> 1.565 </td><td> 58.00 </td><td> 4.709 </td></tr><tr><td> 11 </td><td> </td><td> -4.551946605 </td><td> 1.389 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 12 </td><td> 第六透鏡 </td><td> 9.184876531 </td><td> 1.916 </td><td> 塑膠 </td><td> 1.514 </td><td> 56.80 </td><td> -23.405 </td></tr><tr><td> 13 </td><td> </td><td> 4.845500046 </td><td> 0.800 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 14 </td><td> 紅外線 濾光片 </td><td> 1E+18 </td><td> 0.500 </td><td> BK_7 </td><td> 1.517 </td><td> 64.13 </td><td> </td></tr><tr><td> 15 </td><td> </td><td> 1E+18 </td><td> 0.371 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 16 </td><td> 成像面 </td><td> 1E+18 </td><td> 0.005 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 參考波長為555 nm;無 </td></tr></TBODY></TABLE>表六、第三光學實施例之非球面係數 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表六 非球面係數 </td></tr><tr><td> 表面 </td><td> 1 </td><td> 2 </td><td> 3 </td><td> 4 </td><td> 5 </td><td> 6 </td><td> 8 </td></tr><tr><td> k </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 1.318519E-01 </td><td> 3.120384E+00 </td><td> -1.494442E+01 </td></tr><tr><td> A4 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 6.405246E-05 </td><td> 2.103942E-03 </td><td> -1.598286E-03 </td></tr><tr><td> A6 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 2.278341E-05 </td><td> -1.050629E-04 </td><td> -9.177115E-04 </td></tr><tr><td> A8 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> -3.672908E-06 </td><td> 6.168906E-06 </td><td> 1.011405E-04 </td></tr><tr><td> A10 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 3.748457E-07 </td><td> -1.224682E-07 </td><td> -4.919835E-06 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表六 非球面係數 </td></tr><tr><td> 表面 </td><td> 9 </td><td> 10 </td><td> 11 </td><td> 12 </td><td> 13 </td><td> </td><td> </td></tr><tr><td> k </td><td> 2.744228E-02 </td><td> -7.864013E+00 </td><td> -2.263702E+00 </td><td> -4.206923E+01 </td><td> -7.030803E+00 </td><td> </td><td> </td></tr><tr><td> A4 </td><td> -7.291825E-03 </td><td> 1.405243E-04 </td><td> -3.919567E-03 </td><td> -1.679499E-03 </td><td> -2.640099E-03 </td><td> </td><td> </td></tr><tr><td> A6 </td><td> 9.730714E-05 </td><td> 1.837602E-04 </td><td> 2.683449E-04 </td><td> -3.518520E-04 </td><td> -4.507651E-05 </td><td> </td><td> </td></tr><tr><td> A8 </td><td> 1.101816E-06 </td><td> -2.173368E-05 </td><td> -1.229452E-05 </td><td> 5.047353E-05 </td><td> -2.600391E-05 </td><td> </td><td> </td></tr><tr><td> A10 </td><td> -6.849076E-07 </td><td> 7.328496E-07 </td><td> 4.222621E-07 </td><td> -3.851055E-06 </td><td> 1.161811E-06 </td><td> </td><td> </td></tr></TBODY></TABLE>第三光學實施例中,非球面的曲線方程式表示如第一光學實施例的形式。此外,下表參數的定義皆與第一光學實施例相同,在此不加以贅述。 Please refer to Table 5 and Table 6 below.         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Table 5 Lens data of the third optical embodiment </ td> </ tr> <tr> < td> f (focal length) = 2.808 mm; f / HEP = 1.6; HAF (half angle of view) = 100 deg </ td> </ tr> <tr> <td> surface </ td> <td> radius of curvature </ td> <td> thickness (mm) </ td> <td> material </ td> <td> refractive index </ td> <td> dispersion coefficient </ td> <td> focal length </ td> </ tr > <tr> <td> 0 </ td> <td> Subject </ td> <td> 1E + 18 </ td> <td> 1E + 18 </ td> <td> </ td> < td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 1 </ td> <td> First lens </ td> <td> 71.398124 < / td> <td> 7.214 </ td> <td> Glass </ td> <td> 1.702 </ td> <td> 41.15 </ td> <td> -11.765 </ td> </ tr> <tr > <td> 2 </ td> <td> </ td> <td> 7.117272355 </ td> <td> 5.788 </ td> <td> </ td> <td> </ td> <td> < / td> <td> </ td> </ tr> <tr> <td> 3 </ td> <td> Second lens </ td> <td> -13.29213699 </ td> <td> 10.000 </ td> <td> Glass </ td> <td> 2.003 </ td> <td> 19.32 </ td> <td> -4537.460 </ td> </ tr> <tr> <td> 4 </ td> <td> </ td> <td> -18.37509887 </ td> <td> 7.005 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 5 </ td> <td> Third lens </ td> <td> 5.039114804 </ td> < td> 1.398 </ td> <td> Plastic </ td> <td> 1.514 </ td> <td> 56.80 </ td> <td> 7.553 </ td> </ tr> <tr> <td> 6 </ td> <td> </ td> <td> -15.53136631 </ td> <td> -0.140 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 7 </ td> <td> Aperture </ td> <td> 1E + 18 </ td> <td> 2.378 </ td> <td > </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 8 </ td> <td> Fourth lens </ td > <td> -18.68613609 </ td> <td> 0.577 </ td> <td> Plastic </ td> <td> 1.661 </ td> <td> 20.40 </ td> <td> -4.978 </ td > </ tr> <tr> <td> 9 </ td> <td> </ td> <td> 4.086545927 </ td> <td> 0.141 </ td> <td> </ td> <td> < / td> <td> </ td> <td> </ td> </ tr> <tr> <td> 10 </ td> <td> Fifth lens </ td> <td> 4.927609282 </ td> <td> 2.974 </ td> <td> Plastic </ td> <td> 1.565 </ td> <td> 58.00 </ td> <td> 4.709 </ td> </ tr> <tr> <td> 11 </ td> <td> </ td> <td> -4.551946605 </ td> <td> 1.389 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 12 </ td> <td> Sixth lens </ td> <td> 9.184876531 </ td> <td> 1.916 </ td> <td> Plastic </ td> <td> 1.514 </ td> <td> 56.80 </ td> <td> -23.405 </ td> </ tr> <tr> <td> 13 </ td> <td> </ td> <td> 4.845500046 </ td> <td> 0.800 </ td> <td> </ td> <td> </ td> <td > </ td> <td> </ td> </ tr> <tr> <td> 14 </ td> <td> Infrared filter </ td> <td> 1E + 18 </ td> <td > 0.500 </ td> <td> BK_7 </ td> <td> 1.517 </ td> <td> 64.13 </ td> <td> </ td> </ tr> <tr> <td> 15 </ td> <td> </ td> <td> 1E + 18 </ td> <td> 0.371 </ td> <td> </ td> <td> </ td> <td> </ td> <td > </ td> </ tr> <tr> <td> 16 </ td> <td> imaging surface </ td> <td> 1E + 18 </ td> <td> 0.005 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> Reference wavelength is 555 nm; none </ td> </ tr> </ TBODY> </ TABLE> Table 6. Aspheric coefficients of the third optical embodiment         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Table 6 Aspheric Coefficients </ td> </ tr> <tr> <td> Surface < / td> <td> 1 </ td> <td> 2 </ td> <td> 3 </ td> <td> 4 </ td> <td> 5 </ td> <td> 6 </ td > <td> 8 </ td> </ tr> <tr> <td> k </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000 E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 1.318519E-01 </ td> <td> 3.120384E + 00 </ td> <td> -1.494442E + 01 </ td> </ tr> <tr> <td> A4 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 6.405246E-05 </ td> <td> 2.103942E-03 </ td> <td> -1.598286E-03 </ td> </ tr> < tr> <td> A6 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 2.278341E-05 </ td> <td> -1.050629E-04 </ td> <td> -9.177115E-04 </ td> </ tr> <tr> <td> A8 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td > -3.672908E-06 </ td> <td> 6.168906E-06 </ td> <td> 1.011405E-04 </ td> </ tr> <tr> <td> A10 </ td> <td> 0.000000E + 00 </ td> <td> 0.00000 0E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 3.748457E-07 </ td> <td> -1.224682E-07 </ td> <td> -4.919835E-06 </ td> </ tr> </ TBODY> </ TABLE> <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> < tr> <td> Table 6 Aspheric coefficients </ td> </ tr> <tr> <td> Surface </ td> <td> 9 </ td> <td> 10 </ td> <td> 11 < / td> <td> 12 </ td> <td> 13 </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> k </ td> <td > 2.744228E-02 </ td> <td> -7.864013E + 00 </ td> <td> -2.263702E + 00 </ td> <td> -4.206923E + 01 </ td> <td> -7.030803 E + 00 </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> A4 </ td> <td> -7.291825E-03 </ td> <td > 1.405243E-04 </ td> <td> -3.919567E-03 </ td> <td> -1.679499E-03 </ td> <td> -2.640099E-03 </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> A6 </ td> <td> 9.730714E-05 </ td> <td> 1.837602E-04 </ td> <td> 2.683449 E-04 </ td> <td> -3.518520E-04 </ td> <td> -4.507651E-05 </ td> <td> </ td> <td> </ td> </ tr> < tr> <td> A8 </ td> <td> 1.101816E-06 </ td> <td> -2.173368E-05 </ td> <td> -1.229452E-05 </ td> <td> 5.047353E -05 </ td> <td> -2.600391E-05 </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> A10 </ td> <td> -6.849076E-07 </ td> <td> 7.328496E-07 </ td> <td> 4.222621E-07 </ td> <td> -3.851055E-06 </ td> <td> 1.161811E-06 </ td> <td> </ td> <td> </ td> </ tr> < / TBODY> </ TABLE> In the third optical embodiment, the curve equation of the aspherical surface is expressed as the first optical embodiment. In addition, the definitions of the parameters in the following table are the same as those of the first optical embodiment, and will not be repeated here.       

依據表五及表六可得到下列條件式數値: <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第三光學實施例 (使用主要參考波長 555 nm) </td></tr><tr><td> ∣f/f1│ </td><td> ∣f/f2│ </td><td> ∣f/f3│ </td><td> ∣f/f4│ </td><td> ∣f/f5│ </td><td> ∣f/f6│ </td></tr><tr><td> 0.23865 </td><td> 0.00062 </td><td> 0.37172 </td><td> 0.56396 </td><td> 0.59621 </td><td> 0.11996 </td></tr><tr><td> ΣPPR </td><td> ΣNPR </td><td> ΣPPR /│ΣNPR∣ </td><td> IN12 / f </td><td> IN56 / f </td><td> TP4/ (IN34+TP4+IN45) </td></tr><tr><td> 1.77054 </td><td> 0.12058 </td><td> 14.68400 </td><td> 2.06169 </td><td> 0.49464 </td><td> 0.19512 </td></tr><tr><td> ∣f1/f2│ </td><td> ∣f2/f3│ </td><td> (TP1+IN12)/ TP2 </td><td> (TP6+IN56)/ TP5 </td></tr><tr><td> 0.00259 </td><td> 600.74778 </td><td> 1.30023 </td><td> 1.11131 </td></tr><tr><td> HOS </td><td> InTL </td><td> HOS / HOI </td><td> InS/ HOS </td><td> ODT% </td><td> TDT% </td></tr><tr><td> 42.31580 </td><td> 40.63970 </td><td> 10.57895 </td><td> 0.26115 </td><td> -122.32700 </td><td> 93.33510 </td></tr><tr><td> HVT51 </td><td> HVT52 </td><td> HVT61 </td><td> HVT62 </td><td> HVT62/ HOI </td><td> HVT62/ HOS </td></tr><tr><td> 0 </td><td> 0 </td><td> 2.22299 </td><td> 2.60561 </td><td> 0.65140 </td><td> 0.06158 </td></tr><tr><td> TP2 / TP3 </td><td> TP3 / TP4 </td><td> InRS61 </td><td> InRS62 </td><td> │InRS61│/TP6 </td><td> │InRS62│/TP6 </td></tr><tr><td> 7.15374 </td><td> 2.42321 </td><td> -0.20807 </td><td> -0.24978 </td><td> 0.10861 </td><td> 0.13038 </td></tr><tr><td> PhiA </td><td> PhiC </td><td> PhiD </td><td> TH1 </td><td> TH2 </td><td> HOI </td></tr><tr><td> 6.150 mm </td><td> 6.41 mm </td><td> 6.71 mm </td><td> 0.15 mm </td><td> 0.13 mm </td><td> 4 mm </td></tr><tr><td> PhiA / PhiD </td><td> TH1+TH2 </td><td> (TH1+TH2) / HOI </td><td> (TH1+TH2) /HOS </td><td> 2(TH1+TH2) / PhiA </td><td> </td></tr><tr><td> 0.9165 </td><td> 0.28 mm </td><td> 0.07 </td><td> 0.0066 </td><td> 0.0911 </td><td> </td></tr><tr><td> PSTA </td><td> PLTA </td><td> NSTA </td><td> NLTA </td><td> SSTA </td><td> SLTA </td></tr><tr><td> 0.014 mm </td><td> 0.002 mm </td><td> -0.003 mm </td><td> -0.002 mm </td><td> 0.011 mm </td><td> -0.001 mm </td></tr></TBODY></TABLE>According to Table 5 and Table 6, the following conditional expressions can be obtained:         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Third optical embodiment (using the main reference wavelength of 555 nm) </ td> </ tr> <tr> <td> ∣f / f1│ </ td> <td> ∣f / f2│ </ td> <td> ∣f / f3│ </ td> <td> ∣f / f4│ </ td > <td> ∣f / f5│ </ td> <td> ∣f / f6│ </ td> </ tr> <tr> <td> 0.23865 </ td> <td> 0.00062 </ td> <td > 0.37172 </ td> <td> 0.56396 </ td> <td> 0.59621 </ td> <td> 0.11996 </ td> </ tr> <tr> <td> ΣPPR </ td> <td> ΣNPR < / td> <td> ΣPPR / │ΣNPR∣ </ td> <td> IN12 / f </ td> <td> IN56 / f </ td> <td> TP4 / (IN34 + TP4 + IN45) </ td > </ tr> <tr> <td> 1.77054 </ td> <td> 0.12058 </ td> <td> 14.68400 </ td> <td> 2.06169 </ td> <td> 0.49464 </ td> <td > 0.19512 </ td> </ tr> <tr> <td> ∣f1 / f2│ </ td> <td> ∣f2 / f3│ </ td> <td> (TP1 + IN12) / TP2 </ td > <td> (TP6 + IN56) / TP5 </ td> </ tr> <tr> <td> 0.00259 </ td> <td> 600.74778 </ td> <td> 1.30023 </ td> <td> 1.11131 </ td> </ tr> <tr> <td> HOS </ td> <td> InTL </ td> <td> HOS / HOI </ td> <td> InS / HOS </ td> <td> ODT% </ td> <td> TDT% </ td> </ tr> <tr> <td> 42.31580 </ td> <td> 40.63970 </ td> <td> 10.57895 </ td> < td> 0.26115 </ td> <td> -122.32700 </ td> <td> 93.33510 </ td> </ tr> <tr> <td> HVT51 </ td> <td> HVT52 </ td> <td> HVT61 </ td> <td> HVT62 </ td> <td> HVT62 / HOI </ td> <td> HVT62 / HOS </ td> </ tr> <tr> <td> 0 </ td> <td > 0 </ td> <td> 2.22299 </ td> <td> 2.60561 </ td> <td> 0.65140 </ td> <td> 0.06158 </ td> </ tr> <tr> <td> TP2 / TP3 </ td> <td> TP3 / TP4 </ td> <td> InRS61 </ td> <td> InRS62 </ td> <td> │InRS61│ / TP6 </ td> <td> │InRS62│ / TP6 </ td> </ tr> <tr> <td> 7.15374 </ td> <td> 2.42321 </ td> <td> -0.20807 </ td> <td> -0.24978 </ td> <td> 0.10861 </ td> <td> 0.13038 </ td> </ tr> <tr> <td> PhiA </ td> <td> PhiC </ td> <td> PhiD </ td> <td> TH1 </ td > <td> TH2 </ td> <td> HOI </ td> </ tr> <tr> <td> 6.150 mm </ td> <td> 6.41 mm </ td> <td> 6.71 mm </ td > <td> 0.15 mm </ td> <td> 0.13 mm </ td> <td> 4 mm </ td> </ tr> <tr> <td> PhiA / PhiD </ td> <td> TH1 + TH2 </ td> <td> (TH1 + TH2) / HOI </ td> <td> (TH1 + TH2) / HOS </ td> <td> 2 (TH1 + TH2) / PhiA </ td> <td > </ td> </ tr> <tr> <td> 0.9165 </ td> <td> 0.28 mm </ td> <td> 0.07 </ td> <td> 0.0066 </ td> <td> 0.0911 < / td> <td> </ td> </ tr> <tr> <t d> PSTA </ td> <td> PLTA </ td> <td> NSTA </ td> <td> NLTA </ td> <td> SSTA </ td> <td> SLTA </ td> </ tr > <tr> <td> 0.014 mm </ td> <td> 0.002 mm </ td> <td> -0.003 mm </ td> <td> -0.002 mm </ td> <td> 0.011 mm </ td > <td> -0.001 mm </ td> </ tr> </ TBODY> </ TABLE>

依據表五及表六可得到下列輪廓曲線長度相關之數値: <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第三光學實施例 (使用主要參考波長 555 nm) </td></tr><tr><td> ARE </td><td> 1/2(HEP) </td><td> ARE value </td><td> ARE-1/2(HEP) </td><td> 2(ARE/HEP) % </td><td> TP </td><td> ARE /TP (%) </td></tr><tr><td> 11 </td><td> 0.877 </td><td> 0.877 </td><td> -0.00036 </td><td> 99.96% </td><td> 7.214 </td><td> 12.16% </td></tr><tr><td> 12 </td><td> 0.877 </td><td> 0.879 </td><td> 0.00186 </td><td> 100.21% </td><td> 7.214 </td><td> 12.19% </td></tr><tr><td> 21 </td><td> 0.877 </td><td> 0.878 </td><td> 0.00026 </td><td> 100.03% </td><td> 10.000 </td><td> 8.78% </td></tr><tr><td> 22 </td><td> 0.877 </td><td> 0.877 </td><td> -0.00004 </td><td> 100.00% </td><td> 10.000 </td><td> 8.77% </td></tr><tr><td> 31 </td><td> 0.877 </td><td> 0.882 </td><td> 0.00413 </td><td> 100.47% </td><td> 1.398 </td><td> 63.06% </td></tr><tr><td> 32 </td><td> 0.877 </td><td> 0.877 </td><td> 0.00004 </td><td> 100.00% </td><td> 1.398 </td><td> 62.77% </td></tr><tr><td> 41 </td><td> 0.877 </td><td> 0.877 </td><td> -0.00001 </td><td> 100.00% </td><td> 0.577 </td><td> 152.09% </td></tr><tr><td> 42 </td><td> 0.877 </td><td> 0.883 </td><td> 0.00579 </td><td> 100.66% </td><td> 0.577 </td><td> 153.10% </td></tr><tr><td> 51 </td><td> 0.877 </td><td> 0.881 </td><td> 0.00373 </td><td> 100.43% </td><td> 2.974 </td><td> 29.63% </td></tr><tr><td> 52 </td><td> 0.877 </td><td> 0.883 </td><td> 0.00521 </td><td> 100.59% </td><td> 2.974 </td><td> 29.68% </td></tr><tr><td> 61 </td><td> 0.877 </td><td> 0.878 </td><td> 0.00064 </td><td> 100.07% </td><td> 1.916 </td><td> 45.83% </td></tr><tr><td> 62 </td><td> 0.877 </td><td> 0.881 </td><td> 0.00368 </td><td> 100.42% </td><td> 1.916 </td><td> 45.99% </td></tr><tr><td> ARS </td><td> EHD </td><td> ARS value </td><td> ARS-EHD </td><td> (ARS/EHD)% </td><td> TP </td><td> ARS / TP (%) </td></tr><tr><td> 11 </td><td> 17.443 </td><td> 17.620 </td><td> 0.178 </td><td> 101.02% </td><td> 7.214 </td><td> 244.25% </td></tr><tr><td> 12 </td><td> 6.428 </td><td> 8.019 </td><td> 1.592 </td><td> 124.76% </td><td> 7.214 </td><td> 111.16% </td></tr><tr><td> 21 </td><td> 6.318 </td><td> 6.584 </td><td> 0.266 </td><td> 104.20% </td><td> 10.000 </td><td> 65.84% </td></tr><tr><td> 22 </td><td> 6.340 </td><td> 6.472 </td><td> 0.132 </td><td> 102.08% </td><td> 10.000 </td><td> 64.72% </td></tr><tr><td> 31 </td><td> 2.699 </td><td> 2.857 </td><td> 0.158 </td><td> 105.84% </td><td> 1.398 </td><td> 204.38% </td></tr><tr><td> 32 </td><td> 2.476 </td><td> 2.481 </td><td> 0.005 </td><td> 100.18% </td><td> 1.398 </td><td> 177.46% </td></tr><tr><td> 41 </td><td> 2.601 </td><td> 2.652 </td><td> 0.051 </td><td> 101.96% </td><td> 0.577 </td><td> 459.78% </td></tr><tr><td> 42 </td><td> 3.006 </td><td> 3.119 </td><td> 0.113 </td><td> 103.75% </td><td> 0.577 </td><td> 540.61% </td></tr><tr><td> 51 </td><td> 3.075 </td><td> 3.171 </td><td> 0.096 </td><td> 103.13% </td><td> 2.974 </td><td> 106.65% </td></tr><tr><td> 52 </td><td> 3.317 </td><td> 3.624 </td><td> 0.307 </td><td> 109.24% </td><td> 2.974 </td><td> 121.88% </td></tr><tr><td> 61 </td><td> 3.331 </td><td> 3.427 </td><td> 0.095 </td><td> 102.86% </td><td> 1.916 </td><td> 178.88% </td></tr><tr><td> 62 </td><td> 3.944 </td><td> 4.160 </td><td> 0.215 </td><td> 105.46% </td><td> 1.916 </td><td> 217.14% </td></tr></TBODY></TABLE>According to Tables 5 and 6, the following correlations of the lengths of the contour curves can be obtained:         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Third optical embodiment (using the main reference wavelength of 555 nm) </ td> </ tr> <tr> <td> ARE </ td> <td> 1/2 (HEP) </ td> <td> ARE value </ td> <td> ARE-1 / 2 (HEP) </ td> <td > 2 (ARE / HEP)% </ td> <td> TP </ td> <td> ARE / TP (%) </ td> </ tr> <tr> <td> 11 </ td> <td > 0.877 </ td> <td> 0.877 </ td> <td> -0.00036 </ td> <td> 99.96% </ td> <td> 7.214 </ td> <td> 12.16% </ td> < / tr> <tr> <td> 12 </ td> <td> 0.877 </ td> <td> 0.879 </ td> <td> 0.00186 </ td> <td> 100.21% </ td> <td> 7.214 </ td> <td> 12.19% </ td> </ tr> <tr> <td> 21 </ td> <td> 0.877 </ td> <td> 0.878 </ td> <td> 0.00026 < / td> <td> 100.03% </ td> <td> 10.000 </ td> <td> 8.78% </ td> </ tr> <tr> <td> 22 </ td> <td> 0.877 </ td> <td> 0.877 </ td> <td> -0.00004 </ td> <td> 100.00% </ td> <td> 10.000 </ td> <td> 8.77% </ td> </ tr> < tr> <td> 31 </ td> <td> 0.877 </ td> <td> 0.882 </ td> <td> 0.00413 </ td> <td> 100.47% </ td> <td> 1.398 </ td > <td> 63.06% </ td> </ tr> <tr> <td> 32 </ td> <td> 0.877 </ td> <td> 0.877 </ td> <td> 0.00004 </ td> < td> 100.00% </ td> <td> 1.398 </ td> <td> 6 2.77% </ td> </ tr> <tr> <td> 41 </ td> <td> 0.877 </ td> <td> 0.877 </ td> <td> -0.00001 </ td> <td> 100.00 % </ td> <td> 0.577 </ td> <td> 152.09% </ td> </ tr> <tr> <td> 42 </ td> <td> 0.877 </ td> <td> 0.883 < / td> <td> 0.00579 </ td> <td> 100.66% </ td> <td> 0.577 </ td> <td> 153.10% </ td> </ tr> <tr> <td> 51 </ td> <td> 0.877 </ td> <td> 0.881 </ td> <td> 0.00373 </ td> <td> 100.43% </ td> <td> 2.974 </ td> <td> 29.63% </ td> </ tr> <tr> <td> 52 </ td> <td> 0.877 </ td> <td> 0.883 </ td> <td> 0.00521 </ td> <td> 100.59% </ td> <td> 2.974 </ td> <td> 29.68% </ td> </ tr> <tr> <td> 61 </ td> <td> 0.877 </ td> <td> 0.878 </ td> <td > 0.00064 </ td> <td> 100.07% </ td> <td> 1.916 </ td> <td> 45.83% </ td> </ tr> <tr> <td> 62 </ td> <td> 0.877 </ td> <td> 0.881 </ td> <td> 0.00368 </ td> <td> 100.42% </ td> <td> 1.916 </ td> <td> 45.99% </ td> </ tr > <tr> <td> ARS </ td> <td> EHD </ td> <td> ARS value </ td> <td> ARS-EHD </ td> <td> (ARS / EHD)% </ td> <td> TP </ td> <td> ARS / TP (%) </ td> </ tr> <tr> <td> 11 </ td> <td> 17.443 </ td> <td> 17.620 </ td> <td> 0.178 </ td> <td> 101.02% </ td> <td> 7.214 </ td> <td> 244.2 5% </ td> </ tr> <tr> <td> 12 </ td> <td> 6.428 </ td> <td> 8.019 </ td> <td> 1.592 </ td> <td> 124.76% </ td> <td> 7.214 </ td> <td> 111.16% </ td> </ tr> <tr> <td> 21 </ td> <td> 6.318 </ td> <td> 6.584 </ td> <td> 0.266 </ td> <td> 104.20% </ td> <td> 10.000 </ td> <td> 65.84% </ td> </ tr> <tr> <td> 22 </ td > <td> 6.340 </ td> <td> 6.472 </ td> <td> 0.132 </ td> <td> 102.08% </ td> <td> 10.000 </ td> <td> 64.72% </ td > </ tr> <tr> <td> 31 </ td> <td> 2.699 </ td> <td> 2.857 </ td> <td> 0.158 </ td> <td> 105.84% </ td> < td> 1.398 </ td> <td> 204.38% </ td> </ tr> <tr> <td> 32 </ td> <td> 2.476 </ td> <td> 2.481 </ td> <td> 0.005 </ td> <td> 100.18% </ td> <td> 1.398 </ td> <td> 177.46% </ td> </ tr> <tr> <td> 41 </ td> <td> 2.601 </ td> <td> 2.652 </ td> <td> 0.051 </ td> <td> 101.96% </ td> <td> 0.577 </ td> <td> 459.78% </ td> </ tr> <tr> <td> 42 </ td> <td> 3.006 </ td> <td> 3.119 </ td> <td> 0.113 </ td> <td> 103.75% </ td> <td> 0.577 </ td> <td> 540.61% </ td> </ tr> <tr> <td> 51 </ td> <td> 3.075 </ td> <td> 3.171 </ td> <td> 0.096 </ td> <td> 103.13% </ td> <td> 2.974 </ td> <td> 106.65% </ td> </ tr> <tr> <td> 52 </ td> <td> 3.317 </ td> <td> 3.624 </ td> <td> 0.307 </ td> <td> 109.24% </ td> <td> 2.974 </ td> <td> 121.88% </ td> </ tr> <tr> <td> 61 </ td> <td> 3.331 </ td> <td> 3.427 </ td> <td> 0.095 </ td> <td> 102.86% </ td> <td> 1.916 </ td> <td> 178.88% </ td> </ tr> <tr> <td> 62 </ td> <td> 3.944 </ td> <td> 4.160 </ td> <td> 0.215 </ td> <td> 105.46% </ td> <td> 1.916 </ td> <td> 217.14% </ td> </ tr> </ TBODY> </ TABLE>

依據表五及表六可得到下列條件式數値: <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第三光學實施例反曲點相關數值 (使用主要參考波長 555 nm) </td></tr><tr><td> HIF321 </td><td> 2.0367 </td><td> HIF321/HOI </td><td> 0.5092 </td><td> SGI321 </td><td> -0.1056 </td><td> ∣SGI321│/(∣SGI321│+TP3) </td><td> 0.0702 </td></tr><tr><td> HIF421 </td><td> 2.4635 </td><td> HIF421/HOI </td><td> 0.6159 </td><td> SGI421 </td><td> 0.5780 </td><td> ∣SGI421│/(∣SGI421│+TP4) </td><td> 0.5005 </td></tr><tr><td> HIF611 </td><td> 1.2364 </td><td> HIF611/HOI </td><td> 0.3091 </td><td> SGI611 </td><td> 0.0668 </td><td> │SGI611∣/(│SGI611∣+TP6) </td><td> 0.0337 </td></tr><tr><td> HIF621 </td><td> 1.5488 </td><td> HIF621/HOI </td><td> 0.3872 </td><td> SGI621 </td><td> 0.2014 </td><td> ∣SGI621│/(∣SGI621│+TP6) </td><td> 0.0951 </td></tr></TBODY></TABLE>According to Table 5 and Table 6, the following conditional expressions can be obtained:         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> The value of the inflection point of the third optical embodiment (using the main reference wavelength of 555 nm) </ td > </ tr> <tr> <td> HIF321 </ td> <td> 2.0367 </ td> <td> HIF321 / HOI </ td> <td> 0.5092 </ td> <td> SGI321 </ td> <td> -0.1056 </ td> <td> ∣SGI321│ / (∣SGI321│ + TP3) </ td> <td> 0.0702 </ td> </ tr> <tr> <td> HIF421 </ td> <td> 2.4635 </ td> <td> HIF421 / HOI </ td> <td> 0.6159 </ td> <td> SGI421 </ td> <td> 0.5780 </ td> <td> ∣SGI421│ / ( ∣SGI421│ + TP4) </ td> <td> 0.5005 </ td> </ tr> <tr> <td> HIF611 </ td> <td> 1.2364 </ td> <td> HIF611 / HOI </ td > <td> 0.3091 </ td> <td> SGI611 </ td> <td> 0.0668 </ td> <td> │SGI611∣ / (│SGI611∣ + TP6) </ td> <td> 0.0337 </ td > </ tr> <tr> <td> HIF621 </ td> <td> 1.5488 </ td> <td> HIF621 / HOI </ td> <td> 0.3872 </ td> <td> SGI621 </ td> <td> 0.2014 </ td> <td> ∣SGI621│ / (∣SGI621│ + TP6) </ td> <td> 0.0951 </ td> </ tr> </ TBODY> </ TABLE>

第四光學實施例 請參照第5A圖及第5B圖,其中第5A圖繪示依照本創作第四光學實施例的一種光學成像模組的透鏡組示意圖,第5B圖由左至右依序為第四光學實施例的光學成像模組的球差、像散及光學畸變曲線圖。由第5A圖可知,光學成像模組由物側至像側依序包含第一透鏡410、第二透鏡420、光圈400、第三透鏡430、第四透鏡440、第五透鏡450、紅外線濾光片480、成像面490以及影像感測元件492。For the fourth optical embodiment, please refer to FIG. 5A and FIG. 5B. FIG. 5A shows a schematic diagram of a lens group of an optical imaging module according to the fourth optical embodiment of the present invention. Spherical aberration, astigmatism and optical distortion curves of the optical imaging module of the fourth optical embodiment. It can be seen from FIG. 5A that the optical imaging module includes a first lens 410, a second lens 420, an aperture 400, a third lens 430, a fourth lens 440, a fifth lens 450, and an infrared filter in order from the object side to the image side. A sheet 480, an imaging surface 490, and an image sensing element 492.

第一透鏡410具有負屈折力,且為玻璃材質,其物側面412為凸面,其像側面414為凹面,並皆為球面。The first lens 410 has a negative refractive power and is made of glass. The object side surface 412 is a convex surface, and the image side surface 414 is a concave surface, and all of them are spherical.

第二透鏡420具有負屈折力,且為塑膠材質,其物側面422為凹面,其像側面424為凹面,並皆為非球面,且其物側面422具有一反曲點。The second lens 420 has a negative refractive power and is made of plastic. Its object side surface 422 is concave, its image side surface 424 is concave, and both of them are aspheric, and its object side surface 422 has an inflection point.

第三透鏡430具有正屈折力,且為塑膠材質,其物側面432為凸面,其像側面434為凸面,並皆為非球面,且其物側面432具有一反曲點。The third lens 430 has a positive refractive power and is made of plastic. The object side surface 432 is convex, the image side surface 434 is convex, and both are aspheric. The object side surface 432 has an inflection point.

第四透鏡440具有正屈折力,且為塑膠材質,其物側面442為凸面,其像側面444為凸面,並皆為非球面,且其物側面442具有一反曲點。The fourth lens 440 has a positive refractive power and is made of plastic. Its object side 442 is convex, its image side 444 is convex, and both are aspheric. The object side 442 has an inflection point.

第五透鏡450具有負屈折力,且為塑膠材質,其物側面452為凹面,其像側面454為凹面,並皆為非球面,且其物側面452具有二反曲點。藉此,有利於縮短其後焦距以維持小型化。The fifth lens 450 has a negative refractive power and is made of plastic. Its object side surface 452 is concave, its image side surface 454 is concave, and both are aspheric. The object side surface 452 has two inflection points. Thereby, it is advantageous to shorten the back focal length to maintain miniaturization.

紅外線濾光片480為玻璃材質,其設置於第五透鏡450及成像面490間且不影響光學成像模組的焦距。The infrared filter 480 is made of glass and is disposed between the fifth lens 450 and the imaging surface 490 without affecting the focal length of the optical imaging module.

請配合參照下列表七以及表八。 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表七 第 四 光 學 實 施 例 透 鏡 數 據 </td></tr><tr><td> f(焦距)= 2.7883 mm ; f/HEP =1.8 ; HAF(半視角)= 101 deg </td></tr><tr><td> 表面 </td><td> 曲率半徑 </td><td> 厚度(mm) </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td></tr><tr><td> 0 </td><td> 被攝物 </td><td> 1E+18 </td><td> 1E+18 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> 第一透鏡 </td><td> 76.84219 </td><td> 6.117399 </td><td> 玻璃 </td><td> 1.497 </td><td> 81.61 </td><td> -31.322 </td></tr><tr><td> 2 </td><td> </td><td> 12.62555 </td><td> 5.924382 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 第二透鏡 </td><td> -37.0327 </td><td> 3.429817 </td><td> 塑膠 </td><td> 1.565 </td><td> 54.5 </td><td> -8.70843 </td></tr><tr><td> 4 </td><td> </td><td> 5.88556 </td><td> 5.305191 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 第三透鏡 </td><td> 17.99395 </td><td> 14.79391 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 6 </td><td> </td><td> -5.76903 </td><td> -0.4855 </td><td> 塑膠 </td><td> 1.565 </td><td> 58 </td><td> 9.94787 </td></tr><tr><td> 7 </td><td> 光圈 </td><td> 1E+18 </td><td> 0.535498 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 8 </td><td> 第四透鏡 </td><td> 8.19404 </td><td> 4.011739 </td><td> 塑膠 </td><td> 1.565 </td><td> 58 </td><td> 5.24898 </td></tr><tr><td> 9 </td><td></td><td> -3.84363 </td><td> 0.050366 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 10 </td><td> 第五透鏡 </td><td> -4.34991 </td><td> 2.088275 </td><td> 塑膠 </td><td> 1.661 </td><td> 20.4 </td><td> -4.97515 </td></tr><tr><td> 11 </td><td> </td><td> 16.6609 </td><td> 0.6 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 12 </td><td> 紅外線 濾光片 </td><td> 1E+18 </td><td> 0.5 </td><td> BK_7 </td><td> 1.517 </td><td> 64.13 </td><td> </td></tr><tr><td> 13 </td><td> </td><td> 1E+18 </td><td> 3.254927 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 14 </td><td> 成像面 </td><td> 1E+18 </td><td> -0.00013 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 參考波長為555 nm </td></tr></TBODY></TABLE>表八、第四光學實施例之非球面係數 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表八 非球面係數 </td></tr><tr><td> 表面 </td><td> 1 </td><td> 2 </td><td> 3 </td><td> 4 </td><td> 5 </td><td> 6 </td><td> 8 </td></tr><tr><td> k </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.131249 </td><td> -0.069541 </td><td> -0.324555 </td><td> 0.009216 </td><td> -0.292346 </td></tr><tr><td> A4 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 3.99823E-05 </td><td> -8.55712E-04 </td><td> -9.07093E-04 </td><td> 8.80963E-04 </td><td> -1.02138E-03 </td></tr><tr><td> A6 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 9.03636E-08 </td><td> -1.96175E-06 </td><td> -1.02465E-05 </td><td> 3.14497E-05 </td><td> -1.18559E-04 </td></tr><tr><td> A8 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 1.91025E-09 </td><td> -1.39344E-08 </td><td> -8.18157E-08 </td><td> -3.15863E-06 </td><td> 1.34404E-05 </td></tr><tr><td> A10 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> -1.18567E-11 </td><td> -4.17090E-09 </td><td> -2.42621E-09 </td><td> 1.44613E-07 </td><td> -2.80681E-06 </td></tr><tr><td> A12 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表八 非球面係數 </td></tr><tr><td> 表面 </td><td> 9 </td><td> 10 </td><td> 11 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> k </td><td> -0.18604 </td><td> -6.17195 </td><td> 27.541383 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A4 </td><td> 4.33629E-03 </td><td> 1.58379E-03 </td><td> 7.56932E-03 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A6 </td><td> -2.91588E-04 </td><td> -1.81549E-04 </td><td> -7.83858E-04 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A8 </td><td> 9.11419E-06 </td><td> -1.18213E-05 </td><td> 4.79120E-05 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A10 </td><td> 1.28365E-07 </td><td> 1.92716E-06 </td><td> -1.73591E-06 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A12 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> </td><td> </td><td> </td><td> </td></tr></TBODY></TABLE>Please refer to Table 7 and Table 8 below.         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Table 7 Lens data of the fourth optical embodiment </ td> </ tr> <tr> < td> f (focal length) = 2.7883 mm; f / HEP = 1.8; HAF (half angle of view) = 101 deg </ td> </ tr> <tr> <td> surface </ td> <td> radius of curvature </ td> <td> thickness (mm) </ td> <td> material </ td> <td> refractive index </ td> <td> dispersion coefficient </ td> <td> focal length </ td> </ tr > <tr> <td> 0 </ td> <td> Subject </ td> <td> 1E + 18 </ td> <td> 1E + 18 </ td> <td> </ td> < td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 1 </ td> <td> First lens </ td> <td> 76.84219 < / td> <td> 6.117399 </ td> <td> Glass </ td> <td> 1.497 </ td> <td> 81.61 </ td> <td> -31.322 </ td> </ tr> <tr > <td> 2 </ td> <td> </ td> <td> 12.62555 </ td> <td> 5.924382 </ td> <td> </ td> <td> </ td> <td> < / td> <td> </ td> </ tr> <tr> <td> 3 </ td> <td> Second lens </ td> <td> -37.0327 </ td> <td> 3.429817 </ td> <td> Plastic </ td> <td> 1.565 </ td> <td> 54.5 </ td> <td> -8.70843 </ td> </ tr> <tr> <td> 4 </ td> <td> </ td> <td> 5.88556 </ td> <td> 5.305191 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 5 </ td> <td> Third lens </ td> <td> 17.99395 </ td > <td> 14.79391 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 6 </ td> <td> </ td> <td> -5.76903 </ td> <td> -0.4855 </ td> <td> Plastic </ td> <td> 1.565 </ td> <td> 58 </ td > <td> 9.94787 </ td> </ tr> <tr> <td> 7 </ td> <td> Aperture </ td> <td> 1E + 18 </ td> <td> 0.535498 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 8 </ td> <td> Fourth lens < / td> <td> 8.19404 </ td> <td> 4.011739 </ td> <td> Plastic </ td> <td> 1.565 </ td> <td> 58 </ td> <td> 5.24898 </ td > </ tr> <tr> <td> 9 </ td> <td> </ td> <td> -3.84363 </ td> <td> 0.050366 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 10 </ td> <td> Fifth lens </ td> <td> -4.34991 </ td> td> <td> 2.088275 </ td> <td> Plastic </ td> <td> 1.661 </ td> <td> 20.4 </ td> <td> -4.97515 </ td> </ tr> <tr> <td> 11 </ td> <td> </ td> <td> 16.6609 </ td> <td> 0.6 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 12 </ td> <td> Infrared filter </ td> <td> 1E + 1 8 </ td> <td> 0.5 </ td> <td> BK_7 </ td> <td> 1.517 </ td> <td> 64.13 </ td> <td> </ td> </ tr> <tr > <td> 13 </ td> <td> </ td> <td> 1E + 18 </ td> <td> 3.254927 </ td> <td> </ td> <td> </ td> <td > </ td> <td> </ td> </ tr> <tr> <td> 14 </ td> <td> imaging surface </ td> <td> 1E + 18 </ td> <td>- 0.00013 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> Reference wavelength is 555 nm </ td> </ tr> </ TBODY> </ TABLE> Table 8. Aspheric coefficients of the fourth optical embodiment         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Table 8 Aspheric coefficients </ td> </ tr> <tr> <td> Surface < / td> <td> 1 </ td> <td> 2 </ td> <td> 3 </ td> <td> 4 </ td> <td> 5 </ td> <td> 6 </ td > <td> 8 </ td> </ tr> <tr> <td> k </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 0.131249 </ td> <td> -0.069541 </ td> <td> -0.324555 </ td> <td> 0.009216 </ td> <td> -0.292346 </ td> </ tr> <tr> <td> A4 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 3.99823E-05 </ td> <td> -8.55712E-04 </ td> < td> -9.07093E-04 </ td> <td> 8.80963E-04 </ td> <td> -1.02138E-03 </ td> </ tr> <tr> <td> A6 </ td> < td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 9.03636E-08 </ td> <td> -1.96175E-06 </ td> <td> -1.02465E -05 </ td> <td> 3.14497E-05 </ td> <td> -1.18559E-04 </ td> </ tr> <tr> <td> A8 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 1.91025E-09 </ td> <td> -1.39344E-08 </ td> <td> -8.18157E-08 </ td > <td> -3.15863E-06 </ td> <td> 1.34404E-05 </ td> </ tr> <tr> <td> A10 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> -1.18567E-11 </ td> <td> -4.17090E-09 </ td> <td> -2.42621E-09 </ td> <td> 1.44613E-07 </ td> <td> -2.80681E-06 </ td > </ tr> <tr> <td> A12 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> < td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> </ tr> </ TBODY > </ TABLE> <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Table 8 aspheric coefficients </ td> </ tr> <tr> <td> surface </ td> <td> 9 </ td> <td> 10 </ td> <td> 11 </ td> <td> </ td> <td> </ td> <td> < / td> <td> </ td> </ tr> <tr> <td> k </ td> <td> -0.18604 </ td> <td> -6.17195 </ td> <td> 27.541383 </ td > <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> A4 </ td> <td> 4.33629E- 03 </ td> <td> 1.58379E-03 </ td> <td> 7.56932E-03 </ td> <td> </ td> <td> </ td> <td> </ td> <td > </ td> </ tr> <tr> <td> A6 </ td> <td> -2.91588E-04 </ td> <td> -1.81549E-04 </ td> <td> -7.83858E -04 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> A8 </ td> < td> 9.11419E-06 </ td> <td> -1.18213E-05 </ td> <td> 4.79120E-05 </ td > <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> A10 </ td> <td> 1.28365E- 07 </ td> <td> 1.92716E-06 </ td> <td> -1.73591E-06 </ td> <td> </ td> <td> </ td> <td> </ td> < td> </ td> </ tr> <tr> <td> A12 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> </ TBODY> </ TABLE>

第四光學實施例中,非球面的曲線方程式表示如第一光學實施例的形式。此外,下表參數的定義皆與第一光學實施例相同,在此不加以贅述。In the fourth optical embodiment, the curve equation of the aspherical surface is expressed as the first optical embodiment. In addition, the definitions of the parameters in the following table are the same as those of the first optical embodiment, and will not be repeated here.

依據表七及表八可得到下列條件式數値: <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第四光學實施例 (使用主要參考波長 555 nm) </td></tr><tr><td> ∣f/f1│ </td><td> ∣f/f2│ </td><td> ∣f/f3│ </td><td> ∣f/f4│ </td><td> ∣f/f5│ </td><td> ∣f1/f2│ </td></tr><tr><td> 0.08902 </td><td> 0.32019 </td><td> 0.28029 </td><td> 0.53121 </td><td> 0.56045 </td><td> 3.59674 </td></tr><tr><td> ΣPPR </td><td> ΣNPR </td><td> ΣPPR /│ΣNPR∣ </td><td> IN12 / f </td><td> IN45 / f </td><td> ∣f2/f3│ </td></tr><tr><td> 1.4118 </td><td> 0.3693 </td><td> 3.8229 </td><td> 2.1247 </td><td> 0.0181 </td><td> 0.8754 </td></tr><tr><td> TP3 / (IN23+TP3+IN34) </td><td> (TP1+IN12)/ TP2 </td><td> (TP5+IN45)/ TP4 </td></tr><tr><td> 0.73422 </td><td> 3.51091 </td><td> 0.53309 </td></tr><tr><td> HOS </td><td> InTL </td><td> HOS / HOI </td><td> InS/ HOS </td><td> ODT% </td><td> TDT% </td></tr><tr><td> 46.12590 </td><td> 41.77110 </td><td> 11.53148 </td><td> 0.23936 </td><td> -125.266 </td><td> 99.1671 </td></tr><tr><td> HVT41 </td><td> HVT42 </td><td> HVT51 </td><td> HVT52 </td><td> HVT52/ HOI </td><td> HVT52/ HOS </td></tr><tr><td> 0.00000 </td><td> 0.00000 </td><td> 0.00000 </td><td> 0.00000 </td><td> 0.00000 </td><td> 0.00000 </td></tr><tr><td> TP2 / TP3 </td><td> TP3 / TP4 </td><td> InRS51 </td><td> InRS52 </td><td> │InRS51│/TP5 </td><td> │InRS52│/TP5 </td></tr><tr><td> 0.23184 </td><td> 3.68765 </td><td> -0.679265 </td><td> 0.5369 </td><td> 0.32528 </td><td> 0.25710 </td></tr><tr><td> PhiA </td><td> PhiC </td><td> PhiD </td><td> TH1 </td><td> TH2 </td><td> HOI </td></tr><tr><td> 5.598 mm </td><td> 5.858 mm </td><td> 6.118 mm </td><td> 0.13 mm </td><td> 0.13 mm </td><td> 4 mm </td></tr><tr><td> PhiA / PhiD </td><td> TH1+TH2 </td><td> (TH1+TH2) / HOI </td><td> (TH1+TH2) /HOS </td><td> 2(TH1+TH2) / PhiA </td><td> </td></tr><tr><td> 0.9150 </td><td> 0.26 mm </td><td> 0.065 </td><td> 0.0056 </td><td> 0.0929 </td><td> </td></tr><tr><td> PSTA </td><td> PLTA </td><td> NSTA </td><td> NLTA </td><td> SSTA </td><td> SLTA </td></tr><tr><td> -0.011 mm </td><td> 0.005 mm </td><td> -0.010 mm </td><td> -0.003 mm </td><td> 0.005 mm </td><td> -0.00026 mm </td></tr></TBODY></TABLE>According to Tables 7 and 8, the following conditional expressions can be obtained:         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Fourth optical embodiment (using the main reference wavelength of 555 nm) </ td> </ tr> <tr> <td> ∣f / f1│ </ td> <td> ∣f / f2│ </ td> <td> ∣f / f3│ </ td> <td> ∣f / f4│ </ td > <td> ∣f / f5│ </ td> <td> ∣f1 / f2│ </ td> </ tr> <tr> <td> 0.08902 </ td> <td> 0.32019 </ td> <td > 0.28029 </ td> <td> 0.53121 </ td> <td> 0.56045 </ td> <td> 3.59674 </ td> </ tr> <tr> <td> ΣPPR </ td> <td> ΣNPR < / td> <td> ΣPPR / │ΣNPR∣ </ td> <td> IN12 / f </ td> <td> IN45 / f </ td> <td> ∣f2 / f3│ </ td> </ tr > <tr> <td> 1.4118 </ td> <td> 0.3693 </ td> <td> 3.8229 </ td> <td> 2.1247 </ td> <td> 0.0181 </ td> <td> 0.8754 </ td> </ tr> <tr> <td> TP3 / (IN23 + TP3 + IN34) </ td> <td> (TP1 + IN12) / TP2 </ td> <td> (TP5 + IN45) / TP4 < / td> </ tr> <tr> <td> 0.73422 </ td> <td> 3.51091 </ td> <td> 0.53309 </ td> </ tr> <tr> <td> HOS </ td> < td> InTL </ td> <td> HOS / HOI </ td> <td> InS / HOS </ td> <td> ODT% </ td> <td> TDT% </ td> </ tr> < tr> <td> 46.12590 </ td> <td> 41.77110 </ td> <td> 11.53148 </ td> <td> 0.23936 </ td> <td> -125.266 </ td> <td> 99.167 1 </ td> </ tr> <tr> <td> HVT41 </ td> <td> HVT42 </ td> <td> HVT51 </ td> <td> HVT52 </ td> <td> HVT52 / HOI </ td> <td> HVT52 / HOS </ td> </ tr> <tr> <td> 0.00000 </ td> <td> 0.00000 </ td> <td> 0.00000 </ td> <td> 0.00000 < / td> <td> 0.00000 </ td> <td> 0.00000 </ td> </ tr> <tr> <td> TP2 / TP3 </ td> <td> TP3 / TP4 </ td> <td> InRS51 </ td> <td> InRS52 </ td> <td> │InRS51│ / TP5 </ td> <td> │InRS52│ / TP5 </ td> </ tr> <tr> <td> 0.23184 </ td > <td> 3.68765 </ td> <td> -0.679265 </ td> <td> 0.5369 </ td> <td> 0.32528 </ td> <td> 0.25710 </ td> </ tr> <tr> < td> PhiA </ td> <td> PhiC </ td> <td> PhiD </ td> <td> TH1 </ td> <td> TH2 </ td> <td> HOI </ td> </ tr > <tr> <td> 5.598 mm </ td> <td> 5.858 mm </ td> <td> 6.118 mm </ td> <td> 0.13 mm </ td> <td> 0.13 mm </ td> < td> 4 mm </ td> </ tr> <tr> <td> PhiA / PhiD </ td> <td> TH1 + TH2 </ td> <td> (TH1 + TH2) / HOI </ td> < td> (TH1 + TH2) / HOS </ td> <td> 2 (TH1 + TH2) / PhiA </ td> <td> </ td> </ tr> <tr> <td> 0.9150 </ td> <td> 0.26 mm </ td> <td> 0.065 </ td> <td> 0.0056 </ td> <td> 0.0929 </ td> <td> </ td> </ tr> <tr> <td> PSTA </ td> <td> PLTA </ td> <td> NST A </ td> <td> NLTA </ td> <td> SSTA </ td> <td> SLTA </ td> </ tr> <tr> <td> -0.011 mm </ td> <td> 0.005 mm </ td> <td> -0.010 mm </ td> <td> -0.003 mm </ td> <td> 0.005 mm </ td> <td> -0.00026 mm </ td> </ tr> </ TBODY> </ TABLE>

依據表七及表八可得到下列輪廓曲線長度相關之數値: <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第四光學實施例 (使用主要參考波長 555 nm) </td></tr><tr><td> ARE </td><td> 1/2(HEP) </td><td> ARE value </td><td> ARE-1/2(HEP) </td><td> 2(ARE/HEP) % </td><td> TP </td><td> ARE /TP (%) </td></tr><tr><td> 11 </td><td> 0.775 </td><td> 0.774 </td><td> -0.00052 </td><td> 99.93% </td><td> 6.117 </td><td> 12.65% </td></tr><tr><td> 12 </td><td> 0.775 </td><td> 0.774 </td><td> -0.00005 </td><td> 99.99% </td><td> 6.117 </td><td> 12.66% </td></tr><tr><td> 21 </td><td> 0.775 </td><td> 0.774 </td><td> -0.00048 </td><td> 99.94% </td><td> 3.430 </td><td> 22.57% </td></tr><tr><td> 22 </td><td> 0.775 </td><td> 0.776 </td><td> 0.00168 </td><td> 100.22% </td><td> 3.430 </td><td> 22.63% </td></tr><tr><td> 31 </td><td> 0.775 </td><td> 0.774 </td><td> -0.00031 </td><td> 99.96% </td><td> 14.794 </td><td> 5.23% </td></tr><tr><td> 32 </td><td> 0.775 </td><td> 0.776 </td><td> 0.00177 </td><td> 100.23% </td><td> 14.794 </td><td> 5.25% </td></tr><tr><td> 41 </td><td> 0.775 </td><td> 0.775 </td><td> 0.00059 </td><td> 100.08% </td><td> 4.012 </td><td> 19.32% </td></tr><tr><td> 42 </td><td> 0.775 </td><td> 0.779 </td><td> 0.00453 </td><td> 100.59% </td><td> 4.012 </td><td> 19.42% </td></tr><tr><td> 51 </td><td> 0.775 </td><td> 0.778 </td><td> 0.00311 </td><td> 100.40% </td><td> 2.088 </td><td> 37.24% </td></tr><tr><td> 52 </td><td> 0.775 </td><td> 0.774 </td><td> -0.00014 </td><td> 99.98% </td><td> 2.088 </td><td> 37.08% </td></tr><tr><td> ARS </td><td> EHD </td><td> ARS value </td><td> ARS-EHD </td><td> (ARS/EHD)% </td><td> TP </td><td> ARS / TP (%) </td></tr><tr><td> 11 </td><td> 23.038 </td><td> 23.397 </td><td> 0.359 </td><td> 101.56% </td><td> 6.117 </td><td> 382.46% </td></tr><tr><td> 12 </td><td> 10.140 </td><td> 11.772 </td><td> 1.632 </td><td> 116.10% </td><td> 6.117 </td><td> 192.44% </td></tr><tr><td> 21 </td><td> 10.138 </td><td> 10.178 </td><td> 0.039 </td><td> 100.39% </td><td> 3.430 </td><td> 296.74% </td></tr><tr><td> 22 </td><td> 5.537 </td><td> 6.337 </td><td> 0.800 </td><td> 114.44% </td><td> 3.430 </td><td> 184.76% </td></tr><tr><td> 31 </td><td> 4.490 </td><td> 4.502 </td><td> 0.012 </td><td> 100.27% </td><td> 14.794 </td><td> 30.43% </td></tr><tr><td> 32 </td><td> 2.544 </td><td> 2.620 </td><td> 0.076 </td><td> 102.97% </td><td> 14.794 </td><td> 17.71% </td></tr><tr><td> 41 </td><td> 2.735 </td><td> 2.759 </td><td> 0.024 </td><td> 100.89% </td><td> 4.012 </td><td> 68.77% </td></tr><tr><td> 42 </td><td> 3.123 </td><td> 3.449 </td><td> 0.326 </td><td> 110.43% </td><td> 4.012 </td><td> 85.97% </td></tr><tr><td> 51 </td><td> 2.934 </td><td> 3.023 </td><td> 0.089 </td><td> 103.04% </td><td> 2.088 </td><td> 144.74% </td></tr><tr><td> 52 </td><td> 2.799 </td><td> 2.883 </td><td> 0.084 </td><td> 103.00% </td><td> 2.088 </td><td> 138.08% </td></tr></TBODY></TABLE>According to Tables 7 and 8, the following correlations between the lengths of the contour curves can be obtained:         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Fourth optical embodiment (using the main reference wavelength of 555 nm) </ td> </ tr> <tr> <td> ARE </ td> <td> 1/2 (HEP) </ td> <td> ARE value </ td> <td> ARE-1 / 2 (HEP) </ td> <td > 2 (ARE / HEP)% </ td> <td> TP </ td> <td> ARE / TP (%) </ td> </ tr> <tr> <td> 11 </ td> <td > 0.775 </ td> <td> 0.774 </ td> <td> -0.00052 </ td> <td> 99.93% </ td> <td> 6.117 </ td> <td> 12.65% </ td> < / tr> <tr> <td> 12 </ td> <td> 0.775 </ td> <td> 0.774 </ td> <td> -0.00005 </ td> <td> 99.99% </ td> <td > 6.117 </ td> <td> 12.66% </ td> </ tr> <tr> <td> 21 </ td> <td> 0.775 </ td> <td> 0.774 </ td> <td>- 0.00048 </ td> <td> 99.94% </ td> <td> 3.430 </ td> <td> 22.57% </ td> </ tr> <tr> <td> 22 </ td> <td> 0.775 </ td> <td> 0.776 </ td> <td> 0.00168 </ td> <td> 100.22% </ td> <td> 3.430 </ td> <td> 22.63% </ td> </ tr> <tr> <td> 31 </ td> <td> 0.775 </ td> <td> 0.774 </ td> <td> -0.00031 </ td> <td> 99.96% </ td> <td> 14.794 < / td> <td> 5.23% </ td> </ tr> <tr> <td> 32 </ td> <td> 0.775 </ td> <td> 0.776 </ td> <td> 0.00177 </ td > <td> 100.23% </ td> <td> 14.794 </ td> <td> 5 .25% </ td> </ tr> <tr> <td> 41 </ td> <td> 0.775 </ td> <td> 0.775 </ td> <td> 0.00059 </ td> <td> 100.08 % </ td> <td> 4.012 </ td> <td> 19.32% </ td> </ tr> <tr> <td> 42 </ td> <td> 0.775 </ td> <td> 0.779 < / td> <td> 0.00453 </ td> <td> 100.59% </ td> <td> 4.012 </ td> <td> 19.42% </ td> </ tr> <tr> <td> 51 </ td> <td> 0.775 </ td> <td> 0.778 </ td> <td> 0.00311 </ td> <td> 100.40% </ td> <td> 2.088 </ td> <td> 37.24% </ td> </ tr> <tr> <td> 52 </ td> <td> 0.775 </ td> <td> 0.774 </ td> <td> -0.00014 </ td> <td> 99.98% </ td > <td> 2.088 </ td> <td> 37.08% </ td> </ tr> <tr> <td> ARS </ td> <td> EHD </ td> <td> ARS value </ td> <td> ARS-EHD </ td> <td> (ARS / EHD)% </ td> <td> TP </ td> <td> ARS / TP (%) </ td> </ tr> <tr > <td> 11 </ td> <td> 23.038 </ td> <td> 23.397 </ td> <td> 0.359 </ td> <td> 101.56% </ td> <td> 6.117 </ td> <td> 382.46% </ td> </ tr> <tr> <td> 12 </ td> <td> 10.140 </ td> <td> 11.772 </ td> <td> 1.632 </ td> <td > 116.10% </ td> <td> 6.117 </ td> <td> 192.44% </ td> </ tr> <tr> <td> 21 </ td> <td> 10.138 </ td> <td> 10.178 </ td> <td> 0.039 </ td> <td> 100.39% </ td> <td> 3.430 </ td> <td> 296.74% </ td> </ tr> <tr> <td> 22 </ td> <td> 5.537 </ td> <td> 6.337 </ td> <td> 0.800 </ td> <td> 114.44% </ td> <td> 3.430 </ td> <td> 184.76% </ td> </ tr> <tr> <td> 31 </ td> <td> 4.490 </ td> <td> 4.502 </ td> <td> 0.012 </ td> <td> 100.27% </ td> <td> 14.794 </ td> <td> 30.43% </ td> </ tr> <tr> <td> 32 </ td> < td> 2.544 </ td> <td> 2.620 </ td> <td> 0.076 </ td> <td> 102.97% </ td> <td> 14.794 </ td> <td> 17.71% </ td> < / tr> <tr> <td> 41 </ td> <td> 2.735 </ td> <td> 2.759 </ td> <td> 0.024 </ td> <td> 100.89% </ td> <td> 4.012 </ td> <td> 68.77% </ td> </ tr> <tr> <td> 42 </ td> <td> 3.123 </ td> <td> 3.449 </ td> <td> 0.326 < / td> <td> 110.43% </ td> <td> 4.012 </ td> <td> 85.97% </ td> </ tr> <tr> <td> 51 </ td> <td> 2.934 </ td> <td> 3.023 </ td> <td> 0.089 </ td> <td> 103.04% </ td> <td> 2.088 </ td> <td> 144.74% </ td> </ tr> <tr > <td> 52 </ td> <td> 2.799 </ td> <td> 2.883 </ td> <td> 0.084 </ td> <td> 103.00% </ td> <td> 2.088 </ td> <td> 138.08% </ td> </ tr> </ TBODY> </ TABLE>

依據表七及表八可得到下列條件式數値: <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第四光學實施例反曲點相關數值 (使用主要參考波長 555 nm) </td></tr><tr><td> HIF211 </td><td> 6.3902 </td><td> HIF211/HOI </td><td> 1.5976 </td><td> SGI211 </td><td> -0.4793 </td><td> │SGI211∣/(│SGI211∣+TP2) </td><td> 0.1226 </td></tr><tr><td> HIF311 </td><td> 2.1324 </td><td> HIF311/HOI </td><td> 0.5331 </td><td> SGI311 </td><td> 0.1069 </td><td> │SGI311∣/(│SGI311∣+TP3) </td><td> 0.0072 </td></tr><tr><td> HIF411 </td><td> 2.0278 </td><td> HIF411/HOI </td><td> 0.5070 </td><td> SGI411 </td><td> 0.2287 </td><td> │SGI411∣/(│SGI411∣+TP4) </td><td> 0.0539 </td></tr><tr><td> HIF511 </td><td> 2.6253 </td><td> HIF511/HOI </td><td> 0.6563 </td><td> SGI511 </td><td> -0.5681 </td><td> │SGI511∣/(│SGI511∣+TP5) </td><td> 0.2139 </td></tr><tr><td> HIF512 </td><td> 2.1521 </td><td> HIF512/HOI </td><td> 0.5380 </td><td> SGI512 </td><td> -0.8314 </td><td> │SGI512∣/(│SGI512∣+TP5) </td><td> 0.2848 </td></tr></TBODY></TABLE>According to Tables 7 and 8, the following conditional expressions can be obtained:         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> The value of the inflection point of the fourth optical embodiment (using the main reference wavelength of 555 nm) </ td > </ tr> <tr> <td> HIF211 </ td> <td> 6.3902 </ td> <td> HIF211 / HOI </ td> <td> 1.5976 </ td> <td> SGI211 </ td> <td> -0.4793 </ td> <td> │SGI211∣ / (│SGI211∣ + TP2) </ td> <td> 0.1226 </ td> </ tr> <tr> <td> HIF311 </ td> <td> 2.1324 </ td> <td> HIF311 / HOI </ td> <td> 0.5331 </ td> <td> SGI311 </ td> <td> 0.1069 </ td> <td> │SGI311∣ / ( │SGI311∣ + TP3) </ td> <td> 0.0072 </ td> </ tr> <tr> <td> HIF411 </ td> <td> 2.0278 </ td> <td> HIF411 / HOI </ td > <td> 0.5070 </ td> <td> SGI411 </ td> <td> 0.2287 </ td> <td> │SGI411∣ / (│SGI411∣ + TP4) </ td> <td> 0.0539 </ td > </ tr> <tr> <td> HIF511 </ td> <td> 2.6253 </ td> <td> HIF511 / HOI </ td> <td> 0.6563 </ td> <td> SGI511 </ td> <td> -0.5681 </ td> <td> │SGI511∣ / (│SGI511∣ + TP5) </ td> <td> 0.2139 </ td> </ tr> <tr> <td> HIF512 </ td> <td> 2.1521 </ td> <td> HIF512 / HOI </ td> <td> 0.5380 </ td> <td> SGI512 </ td> <td> -0.8314 </ td> <td> │SGI512∣ / (│SGI512∣ + TP5) </ td> <td> 0.2848 </ td> </ tr> </ TBODY> </ TABLE>

第五光學實施例 請參照第6A圖及第6B圖,其中第6A圖繪示依照本創作第五光學實施例的一種光學成像模組的透鏡組示意圖,第6B圖由左至右依序為第五光學實施例的光學成像模組的球差、像散及光學畸變曲線圖。由第6A圖可知,光學成像模組由物側至像側依序包含光圈500、第一透鏡510、第二透鏡520、第三透鏡530、第四透鏡540、紅外線濾光片570、成像面580以及影像感測元件590。For the fifth optical embodiment, please refer to FIG. 6A and FIG. 6B, where FIG. 6A shows a schematic diagram of a lens group of an optical imaging module according to the fifth optical embodiment of the present invention, and FIG. 6B is from left to right in order. Spherical aberration, astigmatism and optical distortion curves of the optical imaging module of the fifth optical embodiment. It can be seen from FIG. 6A that the optical imaging module includes an aperture 500, a first lens 510, a second lens 520, a third lens 530, a fourth lens 540, an infrared filter 570, and an imaging surface in order from the object side to the image side. 580 and the image sensing element 590.

第一透鏡510具有正屈折力,且為塑膠材質,其物側面512為凸面,其像側面514為凸面,並皆為非球面,且其物側面512具有一反曲點。The first lens 510 has a positive refractive power and is made of plastic. Its object side 512 is convex, its image side 514 is convex, and both are aspheric, and its object side 512 has an inflection point.

第二透鏡520具有負屈折力,且為塑膠材質,其物側面522為凸面,其像側面524為凹面,並皆為非球面,且其物側面522具有二反曲點以及像側面524具有一反曲點。The second lens 520 has a negative refractive power and is made of plastic. Its object side 522 is convex, its image side 524 is concave and both are aspheric, and its object side 522 has two inflection points and the image side 524 has a Inflection point.

第三透鏡530具有正屈折力,且為塑膠材質,其物側面532為凹面,其像側面534為凸面,並皆為非球面,且其物側面532具有三反曲點以及像側面534具有一反曲點。The third lens 530 has a positive refractive power and is made of plastic. The object side 532 is concave, the image side 534 is convex, and both are aspheric. The object side 532 has three inflection points and the image side 534 has a Inflection point.

第四透鏡540具有負屈折力,且為塑膠材質,其物側面542為凹面,其像側面544為凹面,並皆為非球面,且其物側面542具有二反曲點以及像側面544具有一反曲點。The fourth lens 540 has a negative refractive power and is made of plastic. Its object side surface 542 is concave, its image side 544 is concave, and both are aspheric. The object side 542 has two inflection points and the image side 544 has a Inflection point.

紅外線濾光片570為玻璃材質,其設置於第四透鏡540及成像面580間且不影響光學成像模組的焦距。The infrared filter 570 is made of glass and is disposed between the fourth lens 540 and the imaging surface 580 without affecting the focal length of the optical imaging module.

請配合參照下列表九以及表十。 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表九 第 五 光 學 實 施 例 透 鏡 數 據 </td><td> </td></tr><tr><td> f(焦距)= 1.04102 mm ; f/HEP =1.4 ; HAF(半視角)= 44.0346 deg </td><td> </td></tr><tr><td> 表面 </td><td> 曲率半徑 </td><td> 厚度 (mm) </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td><td> </td></tr><tr><td> 0 </td><td> 被攝物 </td><td> 1E+18 </td><td> 600 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> 光圈 </td><td> 1E+18 </td><td> -0.020 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 2 </td><td> 第一透鏡 </td><td> 0.890166851 </td><td> 0.210 </td><td> 塑膠 </td><td> 1.545 </td><td> 55.96 </td><td> 1.587 </td><td> </td></tr><tr><td> 3 </td><td> </td><td> -29.11040115 </td><td> -0.010 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 4 </td><td> </td><td> 1E+18 </td><td> 0.116 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 第二透鏡 </td><td> 10.67765398 </td><td> 0.170 </td><td> 塑膠 </td><td> 1.642 </td><td> 22.46 </td><td> -14.569 </td><td> </td></tr><tr><td> 6 </td><td> </td><td> 4.977771922 </td><td> 0.049 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 7 </td><td> 第三透鏡 </td><td> -1.191436932 </td><td> 0.349 </td><td> 塑膠 </td><td> 1.545 </td><td> 55.96 </td><td> 0.510 </td><td> </td></tr><tr><td> 8 </td><td> </td><td> -0.248990674 </td><td> 0.030 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 9 </td><td> 第四透鏡 </td><td> -38.08537212 </td><td> 0.176 </td><td> 塑膠 </td><td> 1.642 </td><td> 22.46 </td><td> -0.569 </td><td> </td></tr><tr><td> 10 </td><td> </td><td> 0.372574476 </td><td> 0.152 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 11 </td><td> 紅外線 濾光片 </td><td> 1E+18 </td><td> 0.210 </td><td> BK_7 </td><td> 1.517 </td><td> 64.13 </td><td> </td><td> </td></tr><tr><td> 12 </td><td> </td><td> 1E+18 </td><td> 0.185 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 13 </td><td> 成像面 </td><td> 1E+18 </td><td> 0.005 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 參考波長為555 nm; 擋光位置:第4面其通光孔半徑0.360 mm </td><td> </td></tr></TBODY></TABLE>表十、第五光學實施例之非球面係數 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表十 非球面係數 </td></tr><tr><td> 表面 </td><td> 2 </td><td> 3 </td><td> 5 </td><td> 6 </td><td> 7 </td><td> 8 </td></tr><tr><td> k = </td><td> -1.106629E+00 </td><td> 2.994179E-07 </td><td> -7.788754E+01 </td><td> -3.440335E+01 </td><td> -8.522097E-01 </td><td> -4.735945E+00 </td></tr><tr><td> A4 = </td><td> 8.291155E-01 </td><td> -6.401113E-01 </td><td> -4.958114E+00 </td><td> -1.875957E+00 </td><td> -4.878227E-01 </td><td> -2.490377E+00 </td></tr><tr><td> A6= </td><td> -2.398799E+01 </td><td> -1.265726E+01 </td><td> 1.299769E+02 </td><td> 8.568480E+01 </td><td> 1.291242E+02 </td><td> 1.524149E+02 </td></tr><tr><td> A8 = </td><td> 1.825378E+02 </td><td> 8.457286E+01 </td><td> -2.736977E+03 </td><td> -1.279044E+03 </td><td> -1.979689E+03 </td><td> -4.841033E+03 </td></tr><tr><td> A10= </td><td> -6.211133E+02 </td><td> -2.157875E+02 </td><td> 2.908537E+04 </td><td> 8.661312E+03 </td><td> 1.456076E+04 </td><td> 8.053747E+04 </td></tr><tr><td> A12 = </td><td> -4.719066E+02 </td><td> -6.203600E+02 </td><td> -1.499597E+05 </td><td> -2.875274E+04 </td><td> -5.975920E+04 </td><td> -7.936887E+05 </td></tr><tr><td> A14 = </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 2.992026E+05 </td><td> 3.764871E+04 </td><td> 1.351676E+05 </td><td> 4.811528E+06 </td></tr><tr><td> A16 = </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> -1.329001E+05 </td><td> -1.762293E+07 </td></tr><tr><td> A18 = </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 3.579891E+07 </td></tr><tr><td> A20 = </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> -3.094006E+07 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表十 非球面係數 </td></tr><tr><td> 表面 </td><td> 9 </td><td> 10 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> k = </td><td> -2.277155E+01 </td><td> -8.039778E-01 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A4 = </td><td> 1.672704E+01 </td><td> -7.613206E+00 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A6= </td><td> -3.260722E+02 </td><td> 3.374046E+01 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A8 = </td><td> 3.373231E+03 </td><td> -1.368453E+02 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A10= </td><td> -2.177676E+04 </td><td> 4.049486E+02 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A12 = </td><td> 8.951687E+04 </td><td> -9.711797E+02 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A14 = </td><td> -2.363737E+05 </td><td> 1.942574E+03 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A16 = </td><td> 3.983151E+05 </td><td> -2.876356E+03 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A18 = </td><td> -4.090689E+05 </td><td> 2.562386E+03 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A20 = </td><td> 2.056724E+05 </td><td> -9.943657E+02 </td><td> </td><td> </td><td> </td><td> </td></tr></TBODY></TABLE>Please refer to Tables 9 and 10 below.         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Table 9 Lens data of the fifth optical embodiment </ td> <td> </ td> < / tr> <tr> <td> f (focal length) = 1.04102 mm; f / HEP = 1.4; HAF (half angle of view) = 44.0346 deg </ td> <td> </ td> </ tr> <tr> < td> surface </ td> <td> radius of curvature </ td> <td> thickness (mm) </ td> <td> material </ td> <td> refractive index </ td> <td> dispersion coefficient < / td> <td> Focal length </ td> <td> </ td> </ tr> <tr> <td> 0 </ td> <td> Subject </ td> <td> 1E + 18 < / td> <td> 600 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 1 </ td> <td> Aperture </ td> <td> 1E + 18 </ td> <td> -0.020 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 2 </ td> <td> First lens </ td> <td > 0.890166851 </ td> <td> 0.210 </ td> <td> Plastic </ td> <td> 1.545 </ td> <td> 55.96 </ td> <td> 1.587 </ td> <td> < / td> </ tr> <tr> <td> 3 </ td> <td> </ td> <td> -29.11040115 </ td> <td> -0.010 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 4 </ td> <td> </ td> <td> 1E + 18 < / td> <td> 0.116 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 5 </ td> <td> Second lens </ td> <td> 10.67765398 </ td> <td> 0.170 </ td> <td> Plastic </ td> <td> 1.642 < / td> <td> 22.46 </ td> <td> -14.569 </ td> <td> </ td> </ tr> <tr> <td> 6 </ td> <td> </ td> < td> 4.977771922 </ td> <td> 0.049 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 7 </ td> <td> Third lens </ td> <td> -1.191436932 </ td> <td> 0.349 </ td> <td> Plastic </ td> <td> 1.545 </ td> <td> 55.96 </ td> <td> 0.510 </ td> <td> </ td> </ tr> <tr> <td> 8 </ td> <td> < / td> <td> -0.248990674 </ td> <td> 0.030 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> <td > </ td> </ tr> <tr> <td> 9 </ td> <td> Fourth lens </ td> <td> -38.08537212 </ td> <td> 0.176 </ td> <td> Plastic </ td> <td> 1.642 </ td> <td> 22.46 </ td> <td> -0.569 </ td> <td> </ td> </ tr> <tr> <td> 10 </ td> <td> </ td> <td> 0.372574476 </ td> <td> 0.152 </ td> <td> </ td> <td> </ td> <td> </ td> <td> < / td> <td> </ td> </ tr> <tr> <td> 11 </ td> <td> Infrared filter </ td> <td> 1E + 18 </ td> <td> 0.210 </ td> <td> BK_7 </ td> <td> 1.517 </ td> <td> 64.13 </ td> <td> </ td> <td> < / td> </ tr> <tr> <td> 12 </ td> <td> </ td> <td> 1E + 18 </ td> <td> 0.185 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 13 </ td> <td> imaging surface </ td> <td> 1E + 18 </ td> <td> 0.005 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> <td > </ td> </ tr> <tr> <td> The reference wavelength is 555 nm; the light blocking position: the clear hole radius of the fourth side is 0.360 mm </ td> <td> </ td> </ tr> </ TBODY> </ TABLE> Table 10. Aspheric coefficients of the fifth optical embodiment         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Table ten aspheric coefficients </ td> </ tr> <tr> <td> Surface < / td> <td> 2 </ td> <td> 3 </ td> <td> 5 </ td> <td> 6 </ td> <td> 7 </ td> <td> 8 </ td > </ tr> <tr> <td> k = </ td> <td> -1.106629E + 00 </ td> <td> 2.994179E-07 </ td> <td> -7.788754E + 01 </ td> <td> -3.440335E + 01 </ td> <td> -8.522097E-01 </ td> <td> -4.735945E + 00 </ td> </ tr> <tr> <td> A4 = </ td> <td> 8.291155E-01 </ td> <td> -6.401113E-01 </ td> <td> -4.958114E + 00 </ td> <td> -1.875957E + 00 </ td > <td> -4.878227E-01 </ td> <td> -2.490377E + 00 </ td> </ tr> <tr> <td> A6 = </ td> <td> -2.398799E + 01 < / td> <td> -1.265726E + 01 </ td> <td> 1.299769E + 02 </ td> <td> 8.568480E + 01 </ td> <td> 1.291242E + 02 </ td> <td > 1.524149E + 02 </ td> </ tr> <tr> <td> A8 = </ td> <td> 1.825378E + 02 </ td> <td> 8.457286E + 01 </ td> <td> -2.736977E + 03 </ td> <td> -1.279044E + 03 </ td> <td> -1.979689E + 03 </ td> <td> -4.841033E + 03 </ td> </ tr> < tr> <td> A10 = </ td> <td> -6.211133E + 02 </ td> <td> -2.157875E + 02 </ td> <td> 2.908537E + 04 </ td> <td> 8.661312 E + 03 </ td> <td> 1.456076E + 04 </ td> <td > 8.053747E + 04 </ td> </ tr> <tr> <td> A12 = </ td> <td> -4.719066E + 02 </ td> <td> -6.203600E + 02 </ td> < td> -1.499597E + 05 </ td> <td> -2.875274E + 04 </ td> <td> -5.975920E + 04 </ td> <td> -7.936887E + 05 </ td> </ tr > <tr> <td> A14 = </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 2.992026E + 05 </ td> <td> 3.764871 E + 04 </ td> <td> 1.351676E + 05 </ td> <td> 4.811528E + 06 </ td> </ tr> <tr> <td> A16 = </ td> <td> 0.000000E +00 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> -1.329001E + 05 </ td > <td> -1.762293E + 07 </ td> </ tr> <tr> <td> A18 = </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td > <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 3.579891E + 07 </ td> </ tr> < tr> <td> A20 = </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> 0.000000E + 00 </ td> <td> -3.094006E + 07 </ td> </ tr> </ TBODY> </ TABLE> <TABLE border = "1" borderColor = " # 000000 "width =" 85% "> <TBODY> <tr> <td> Table ten aspheric coefficients </ td> </ tr> <tr> <td> Surface </ td> <td> 9 </ td > < td> 10 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> k = </ td > <td> -2.277155E + 01 </ td> <td> -8.039778E-01 </ td> <td> </ td> <td> </ td> <td> </ td> <td> < / td> </ tr> <tr> <td> A4 = </ td> <td> 1.672704E + 01 </ td> <td> -7.613206E + 00 </ td> <td> </ td> < td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> A6 = </ td> <td> -3.260722E + 02 </ td> <td > 3.374046E + 01 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> A8 = < / td> <td> 3.373231E + 03 </ td> <td> -1.368453E + 02 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> A10 = </ td> <td> -2.177676E + 04 </ td> <td> 4.049486E + 02 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> A12 = </ td> <td> 8.951687E + 04 </ td> <td > -9.711797E + 02 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> A14 = </ td> <td> -2.363737E + 05 </ td> <td> 1.942574E + 03 </ td> <td> </ td> <td> </ td> <td> </ td> <td > </ td> </ tr> <tr> <td> A16 = </ td> <td> 3.983151E + 05 </ td> <td> -2.876356E + 03 </ td> <td> </ td > <td> </ td> <td> </ t d> <td> </ td> </ tr> <tr> <td> A18 = </ td> <td> -4.090689E + 05 </ td> <td> 2.562386E + 03 </ td> <td > </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> A20 = </ td> <td> 2.056724E + 05 < / td> <td> -9.943657E + 02 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> </ TBODY > </ TABLE>

第五光學實施例中,非球面的曲線方程式表示如第一光學實施例的形式。此外,下表參數的定義皆與第一光學實施例相同,在此不加以贅述。In the fifth optical embodiment, the curve equation of the aspherical surface is expressed as the first optical embodiment. In addition, the definitions of the parameters in the following table are the same as those of the first optical embodiment, and will not be repeated here.

依據表九及表十可得到下列條件式數値: <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第五光學實施例 (使用主要參考波長 555 nm) </td></tr><tr><td> InRS41 </td><td> InRS42 </td><td> HVT41 </td><td> HVT42 </td><td> ODT% </td><td> TDT% </td></tr><tr><td> -0.07431 </td><td> 0.00475 </td><td> 0.00000 </td><td> 0.53450 </td><td> 2.09403 </td><td> 0.84704 </td></tr><tr><td> ∣f/f1│ </td><td> ∣f/f2│ </td><td> ∣f/f3│ </td><td> ∣f/f4│ </td><td> ∣f1/f2│ </td><td> ∣f2/f3│ </td></tr><tr><td> 0.65616 </td><td> 0.07145 </td><td> 2.04129 </td><td> 1.83056 </td><td> 0.10890 </td><td> 28.56826 </td></tr><tr><td> ΣPPR </td><td> ΣNPR </td><td> ΣPPR /│ΣNPR∣ </td><td> ΣPP </td><td> ΣNP </td><td> f1/ΣPP </td></tr><tr><td> 2.11274 </td><td> 2.48672 </td><td> 0.84961 </td><td> -14.05932 </td><td> 1.01785 </td><td> 1.03627 </td></tr><tr><td> f4/ΣNP </td><td> IN12 / f </td><td> IN23 / f </td><td> IN34 / f </td><td> TP3 / f </td><td> TP4 / f </td></tr><tr><td> 1.55872 </td><td> 0.10215 </td><td> 0.04697 </td><td> 0.02882 </td><td> 0.33567 </td><td> 0.16952 </td></tr><tr><td> InTL </td><td> HOS </td><td> HOS / HOI </td><td> InS/ HOS </td><td> InTL / HOS </td><td> ΣTP / InTL </td></tr><tr><td> 1.09131 </td><td> 1.64329 </td><td> 1.59853 </td><td> 0.98783 </td><td> 0.66410 </td><td> 0.83025 </td></tr><tr><td> (TP1+IN12) / TP2 </td><td> (TP4+IN34) / TP3 </td><td> TP1 / TP2 </td><td> TP3 / TP4 </td><td> IN23/(TP2+IN23+TP3) </td></tr><tr><td> 1.86168 </td><td> 0.59088 </td><td> 1.23615 </td><td> 1.98009 </td><td> 0.08604 </td></tr><tr><td> │InRS41│/TP4 </td><td> │InRS42│/TP4 </td><td> HVT42/ HOI </td><td> HVT42/ HOS </td><td> </td><td> </td></tr><tr><td> 0.4211 </td><td> 0.0269 </td><td> 0.5199 </td><td> 0.3253 </td><td> </td><td> </td></tr><tr><td> PhiA </td><td> PhiC </td><td> PhiD </td><td> TH1 </td><td> TH2 </td><td> HOI </td></tr><tr><td> 1.596 mm </td><td> 1.996 mm </td><td> 2.396 mm </td><td> 0.2 mm </td><td> 0.2 mm </td><td> 1.028 mm </td></tr><tr><td> PhiA / PhiD </td><td> TH1+TH2 </td><td> (TH1+TH2) / HOI </td><td> (TH1+TH2) /HOS </td><td> 2(TH1+TH2) / PhiA </td><td> </td></tr><tr><td> 0.7996 </td><td> 0.4 mm </td><td> 0.3891 </td><td> 0.2434 </td><td> 0.5013 </td><td> </td></tr><tr><td> PSTA </td><td> PLTA </td><td> NSTA </td><td> NLTA </td><td> SSTA </td><td> SLTA </td></tr><tr><td> -0.029 mm </td><td> -0.023 mm </td><td> -0.011 mm </td><td> -0.024 mm </td><td> 0.010 mm </td><td> 0.011 mm </td></tr></TBODY></TABLE>According to Table 9 and Table 10, the following conditional expressions can be obtained:         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Fifth optical embodiment (using the main reference wavelength of 555 nm) </ td> </ tr> <tr> <td> InRS41 </ td> <td> InRS42 </ td> <td> HVT41 </ td> <td> HVT42 </ td> <td> ODT% </ td> <td> TDT% < / td> </ tr> <tr> <td> -0.07431 </ td> <td> 0.00475 </ td> <td> 0.00000 </ td> <td> 0.53450 </ td> <td> 2.09403 </ td > <td> 0.84704 </ td> </ tr> <tr> <td> ∣f / f1│ </ td> <td> ∣f / f2│ </ td> <td> ∣f / f3│ </ td> <td> ∣f / f4│ </ td> <td> ∣f1 / f2│ </ td> <td> ∣f2 / f3│ </ td> </ tr> <tr> <td> 0.65616 < / td> <td> 0.07145 </ td> <td> 2.04129 </ td> <td> 1.83056 </ td> <td> 0.10890 </ td> <td> 28.56826 </ td> </ tr> <tr> <td> ΣPPR </ td> <td> ΣNPR </ td> <td> ΣPPR / │NPR∣ </ td> <td> ΣPP </ td> <td> ΣNP </ td> <td> f1 / ΣPP </ td> </ tr> <tr> <td> 2.11274 </ td> <td> 2.48672 </ td> <td> 0.84961 </ td> <td> -14.05932 </ td> <td> 1.01785 </ td> td> <td> 1.03627 </ td> </ tr> <tr> <td> f4 / ΣNP </ td> <td> IN12 / f </ td> <td> IN23 / f </ td> <td> IN34 / f </ td> <td> TP3 / f </ td> <td> TP4 / f </ td> </ tr> <tr> <td> 1.55872 </ td> <td> 0.10 215 </ td> <td> 0.04697 </ td> <td> 0.02882 </ td> <td> 0.33567 </ td> <td> 0.16952 </ td> </ tr> <tr> <td> InTL </ td> <td> HOS </ td> <td> HOS / HOI </ td> <td> InS / HOS </ td> <td> InTL / HOS </ td> <td> ΣTP / InTL </ td> </ tr> <tr> <td> 1.09131 </ td> <td> 1.64329 </ td> <td> 1.59853 </ td> <td> 0.98783 </ td> <td> 0.66410 </ td> <td> 0.83025 </ td> </ tr> <tr> <td> (TP1 + IN12) / TP2 </ td> <td> (TP4 + IN34) / TP3 </ td> <td> TP1 / TP2 </ td> <td> TP3 / TP4 </ td> <td> IN23 / (TP2 + IN23 + TP3) </ td> </ tr> <tr> <td> 1.86168 </ td> <td> 0.59088 </ td> < td> 1.23615 </ td> <td> 1.98009 </ td> <td> 0.08604 </ td> </ tr> <tr> <td> │InRS41│ / TP4 </ td> <td> │InRS42│ / TP4 </ td> <td> HVT42 / HOI </ td> <td> HVT42 / HOS </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 0.4211 < / td> <td> 0.0269 </ td> <td> 0.5199 </ td> <td> 0.3253 </ td> <td> </ td> <td> </ td> </ tr> <tr> <td > PhiA </ td> <td> PhiC </ td> <td> PhiD </ td> <td> TH1 </ td> <td> TH2 </ td> <td> HOI </ td> </ tr> <tr> <td> 1.596 mm </ td> <td> 1.996 mm </ td> <td> 2.396 mm </ td> <td> 0.2 mm </ td> <td> 0.2 mm </ td> <td > 1.028 mm </ td> </ tr> <tr> <td> PhiA / PhiD </ td> <td> TH1 + TH2 </ td> <td> (TH1 + TH2) / HOI </ td> <td> (TH1 + TH2) / HOS </ td > <td> 2 (TH1 + TH2) / PhiA </ td> <td> </ td> </ tr> <tr> <td> 0.7996 </ td> <td> 0.4 mm </ td> <td> 0.3891 </ td> <td> 0.2434 </ td> <td> 0.5013 </ td> <td> </ td> </ tr> <tr> <td> PSTA </ td> <td> PLTA </ td > <td> NSTA </ td> <td> NLTA </ td> <td> SSTA </ td> <td> SLTA </ td> </ tr> <tr> <td> -0.029 mm </ td> <td> -0.023 mm </ td> <td> -0.011 mm </ td> <td> -0.024 mm </ td> <td> 0.010 mm </ td> <td> 0.011 mm </ td> </ tr> </ TBODY> </ TABLE>

依據表九及表十可得到下列條件式數値: <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第五光學實施例反曲點相關數值 (使用主要參考波長 555 nm) </td></tr><tr><td> HIF111 </td><td> 0.28454 </td><td> HIF111/HOI </td><td> 0.27679 </td><td> SGI111 </td><td> 0.04361 </td><td> │SGI111∣/(│SGI111∣+TP1) </td><td> 0.17184 </td></tr><tr><td> HIF211 </td><td> 0.04198 </td><td> HIF211/HOI </td><td> 0.04083 </td><td> SGI211 </td><td> 0.00007 </td><td> │SGI211∣/(│SGI211∣+TP2) </td><td> 0.00040 </td></tr><tr><td> HIF212 </td><td> 0.37903 </td><td> HIF212/HOI </td><td> 0.36871 </td><td> SGI212 </td><td> -0.03682 </td><td> │SGI212∣/(│SGI212∣+TP2) </td><td> 0.17801 </td></tr><tr><td> HIF221 </td><td> 0.25058 </td><td> HIF221/HOI </td><td> 0.24376 </td><td> SGI221 </td><td> 0.00695 </td><td> ∣SGI221│/(∣SGI221│+TP2) </td><td> 0.03927 </td></tr><tr><td> HIF311 </td><td> 0.14881 </td><td> HIF311/HOI </td><td> 0.14476 </td><td> SGI311 </td><td> -0.00854 </td><td> │SGI311∣/(│SGI311∣+TP3) </td><td> 0.02386 </td></tr><tr><td> HIF312 </td><td> 0.31992 </td><td> HIF312/HOI </td><td> 0.31120 </td><td> SGI312 </td><td> -0.01783 </td><td> │SGI312∣/(│SGI312∣+TP3) </td><td> 0.04855 </td></tr><tr><td> HIF313 </td><td> 0.32956 </td><td> HIF313/HOI </td><td> 0.32058 </td><td> SGI313 </td><td> -0.01801 </td><td> │SGI313∣/(│SGI313∣+TP3) </td><td> 0.04902 </td></tr><tr><td> HIF321 </td><td> 0.36943 </td><td> HIF321/HOI </td><td> 0.35937 </td><td> SGI321 </td><td> -0.14878 </td><td> ∣SGI321│/(∣SGI321│+TP3) </td><td> 0.29862 </td></tr><tr><td> HIF411 </td><td> 0.01147 </td><td> HIF411/HOI </td><td> 0.01116 </td><td> SGI411 </td><td> -0.00000 </td><td> │SGI411∣/(│SGI411∣+TP4) </td><td> 0.00001 </td></tr><tr><td> HIF412 </td><td> 0.22405 </td><td> HIF412/HOI </td><td> 0.21795 </td><td> SGI412 </td><td> 0.01598 </td><td> │SGI412∣/(│SGI412∣+TP4) </td><td> 0.08304 </td></tr><tr><td> HIF421 </td><td> 0.24105 </td><td> HIF421/HOI </td><td> 0.23448 </td><td> SGI421 </td><td> 0.05924 </td><td> ∣SGI421│/(∣SGI421│+TP4) </td><td> 0.25131 </td></tr></TBODY></TABLE>According to Table 9 and Table 10, the following conditional expressions can be obtained:         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> The value of the inflection point of the fifth optical embodiment (using the main reference wavelength of 555 nm) </ td > </ tr> <tr> <td> HIF111 </ td> <td> 0.28454 </ td> <td> HIF111 / HOI </ td> <td> 0.27679 </ td> <td> SGI111 </ td> <td> 0.04361 </ td> <td> │SGI111∣ / (│SGI111∣ + TP1) </ td> <td> 0.17184 </ td> </ tr> <tr> <td> HIF211 </ td> < td> 0.04198 </ td> <td> HIF211 / HOI </ td> <td> 0.04083 </ td> <td> SGI211 </ td> <td> 0.00007 </ td> <td> │SGI211∣ / (│ SGI211∣ + TP2) </ td> <td> 0.00040 </ td> </ tr> <tr> <td> HIF212 </ td> <td> 0.37903 </ td> <td> HIF212 / HOI </ td> <td> 0.36871 </ td> <td> SGI212 </ td> <td> -0.03682 </ td> <td> │SGI212∣ / (│SGI212∣ + TP2) </ td> <td> 0.17801 </ td > </ tr> <tr> <td> HIF221 </ td> <td> 0.25058 </ td> <td> HIF221 / HOI </ td> <td> 0.24376 </ td> <td> SGI221 </ td> <td> 0.00695 </ td> <td> ∣SGI221│ / (∣SGI221│ + TP2) </ td> <td> 0.03927 </ td> </ tr> <tr> <td> HIF311 </ td> < td> 0.14881 </ td> <td> HIF311 / HOI </ td> <td> 0.14476 </ td> <td> SGI311 </ td> <td> -0.00854 </ td> <td> │SGI311∣ / (│SGI311∣ + TP3) </ td> <td> 0.02386 </ td> </ tr> <tr> <td> HIF312 </ td> <td> 0.31992 </ td> <td> HIF312 / HOI </ td> <td> 0.31120 </ td> <td> SGI312 </ td> <td> -0.01783 </ td> <td> │SGI312∣ / (│SGI312∣ + TP3) </ td> <td> 0.04855 < / td> </ tr> <tr> <td> HIF313 </ td> <td> 0.32956 </ td> <td> HIF313 / HOI </ td> <td> 0.32058 </ td> <td> SGI313 </ td> <td> -0.01801 </ td> <td> │SGI313∣ / (│SGI313∣ + TP3) </ td> <td> 0.04902 </ td> </ tr> <tr> <td> HIF321 </ td> <td> 0.36943 </ td> <td> HIF321 / HOI </ td> <td> 0.35937 </ td> <td> SGI321 </ td> <td> -0.14878 </ td> <td> ∣SGI321 │ / (∣SGI321│ + TP3) </ td> <td> 0.29862 </ td> </ tr> <tr> <td> HIF411 </ td> <td> 0.01147 </ td> <td> HIF411 / HOI </ td> <td> 0.01116 </ td> <td> SGI411 </ td> <td> -0.00000 </ td> <td> │SGI411∣ / (│SGI411∣ + TP4) </ td> <td> 0.00001 </ td> </ tr> <tr> <td> HIF412 </ td> <td> 0.22405 </ td> <td> HIF412 / HOI </ td> <td> 0.21795 </ td> <td> SGI412 </ td> <td> 0.01598 </ td> <td> │SGI412∣ / (│SGI412∣ + TP4) </ td> <td> 0.08304 </ td> </ tr> <tr> <td> HIF421 < / td> <td> 0.24105 </ td> <td> HIF421 / HOI </ td > <td> 0.23448 </ td> <td> SGI421 </ td> <td> 0.05924 </ td> <td> ∣SGI421│ / (∣SGI421│ + TP4) </ td> <td> 0.25131 </ td > </ tr> </ TBODY> </ TABLE>

依據表九及表十可得到輪廓曲線長度相關之數値: <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第五光學實施例 (使用主要參考波長 555 nm) </td></tr><tr><td> ARE </td><td> 1/2(HEP) </td><td> ARE value </td><td> ARE-1/2(HEP) </td><td> 2(ARE/HEP) % </td><td> TP </td><td> ARE /TP (%) </td></tr><tr><td> 11 </td><td> 0.368 </td><td> 0.374 </td><td> 0.00578 </td><td> 101.57% </td><td> 0.210 </td><td> 178.10% </td></tr><tr><td> 12 </td><td> 0.366 </td><td> 0.368 </td><td> 0.00240 </td><td> 100.66% </td><td> 0.210 </td><td> 175.11% </td></tr><tr><td> 21 </td><td> 0.372 </td><td> 0.375 </td><td> 0.00267 </td><td> 100.72% </td><td> 0.170 </td><td> 220.31% </td></tr><tr><td> 22 </td><td> 0.372 </td><td> 0.371 </td><td> -0.00060 </td><td> 99.84% </td><td> 0.170 </td><td> 218.39% </td></tr><tr><td> 31 </td><td> 0.372 </td><td> 0.372 </td><td> -0.00023 </td><td> 99.94% </td><td> 0.349 </td><td> 106.35% </td></tr><tr><td> 32 </td><td> 0.372 </td><td> 0.404 </td><td> 0.03219 </td><td> 108.66% </td><td> 0.349 </td><td> 115.63% </td></tr><tr><td> 41 </td><td> 0.372 </td><td> 0.373 </td><td> 0.00112 </td><td> 100.30% </td><td> 0.176 </td><td> 211.35% </td></tr><tr><td> 42 </td><td> 0.372 </td><td> 0.387 </td><td> 0.01533 </td><td> 104.12% </td><td> 0.176 </td><td> 219.40% </td></tr><tr><td> ARS </td><td> EHD </td><td> ARS value </td><td> ARS-EHD </td><td> (ARS/EHD)% </td><td> TP </td><td> ARS / TP (%) </td></tr><tr><td> 11 </td><td> 0.368 </td><td> 0.374 </td><td> 0.00578 </td><td> 101.57% </td><td> 0.210 </td><td> 178.10% </td></tr><tr><td> 12 </td><td> 0.366 </td><td> 0.368 </td><td> 0.00240 </td><td> 100.66% </td><td> 0.210 </td><td> 175.11% </td></tr><tr><td> 21 </td><td> 0.387 </td><td> 0.391 </td><td> 0.00383 </td><td> 100.99% </td><td> 0.170 </td><td> 229.73% </td></tr><tr><td> 22 </td><td> 0.458 </td><td> 0.460 </td><td> 0.00202 </td><td> 100.44% </td><td> 0.170 </td><td> 270.73% </td></tr><tr><td> 31 </td><td> 0.476 </td><td> 0.478 </td><td> 0.00161 </td><td> 100.34% </td><td> 0.349 </td><td> 136.76% </td></tr><tr><td> 32 </td><td> 0.494 </td><td> 0.538 </td><td> 0.04435 </td><td> 108.98% </td><td> 0.349 </td><td> 154.02% </td></tr><tr><td> 41 </td><td> 0.585 </td><td> 0.624 </td><td> 0.03890 </td><td> 106.65% </td><td> 0.176 </td><td> 353.34% </td></tr><tr><td> 42 </td><td> 0.798 </td><td> 0.866 </td><td> 0.06775 </td><td> 108.49% </td><td> 0.176 </td><td> 490.68% </td></tr></TBODY></TABLE>According to Table 9 and Table 10, we can get the correlation between the length of the contour curve 値:         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Fifth optical embodiment (using the main reference wavelength of 555 nm) </ td> </ tr> <tr> <td> ARE </ td> <td> 1/2 (HEP) </ td> <td> ARE value </ td> <td> ARE-1 / 2 (HEP) </ td> <td > 2 (ARE / HEP)% </ td> <td> TP </ td> <td> ARE / TP (%) </ td> </ tr> <tr> <td> 11 </ td> <td > 0.368 </ td> <td> 0.374 </ td> <td> 0.00578 </ td> <td> 101.57% </ td> <td> 0.210 </ td> <td> 178.10% </ td> </ tr> <tr> <td> 12 </ td> <td> 0.366 </ td> <td> 0.368 </ td> <td> 0.00240 </ td> <td> 100.66% </ td> <td> 0.210 </ td> <td> 175.11% </ td> </ tr> <tr> <td> 21 </ td> <td> 0.372 </ td> <td> 0.375 </ td> <td> 0.00267 </ td> <td> 100.72% </ td> <td> 0.170 </ td> <td> 220.31% </ td> </ tr> <tr> <td> 22 </ td> <td> 0.372 </ td > <td> 0.371 </ td> <td> -0.00060 </ td> <td> 99.84% </ td> <td> 0.170 </ td> <td> 218.39% </ td> </ tr> <tr > <td> 31 </ td> <td> 0.372 </ td> <td> 0.372 </ td> <td> -0.00023 </ td> <td> 99.94% </ td> <td> 0.349 </ td > <td> 106.35% </ td> </ tr> <tr> <td> 32 </ td> <td> 0.372 </ td> <td> 0.404 </ td> <td> 0.03219 </ td> < td> 108.66% </ td> <td> 0.349 </ td> <t d> 115.63% </ td> </ tr> <tr> <td> 41 </ td> <td> 0.372 </ td> <td> 0.373 </ td> <td> 0.00112 </ td> <td> 100.30% </ td> <td> 0.176 </ td> <td> 211.35% </ td> </ tr> <tr> <td> 42 </ td> <td> 0.372 </ td> <td> 0.387 </ td> <td> 0.01533 </ td> <td> 104.12% </ td> <td> 0.176 </ td> <td> 219.40% </ td> </ tr> <tr> <td> ARS < / td> <td> EHD </ td> <td> ARS value </ td> <td> ARS-EHD </ td> <td> (ARS / EHD)% </ td> <td> TP </ td > <td> ARS / TP (%) </ td> </ tr> <tr> <td> 11 </ td> <td> 0.368 </ td> <td> 0.374 </ td> <td> 0.00578 < / td> <td> 101.57% </ td> <td> 0.210 </ td> <td> 178.10% </ td> </ tr> <tr> <td> 12 </ td> <td> 0.366 </ td> <td> 0.368 </ td> <td> 0.00240 </ td> <td> 100.66% </ td> <td> 0.210 </ td> <td> 175.11% </ td> </ tr> <tr > <td> 21 </ td> <td> 0.387 </ td> <td> 0.391 </ td> <td> 0.00383 </ td> <td> 100.99% </ td> <td> 0.170 </ td> <td> 229.73% </ td> </ tr> <tr> <td> 22 </ td> <td> 0.458 </ td> <td> 0.460 </ td> <td> 0.00202 </ td> <td > 100.44% </ td> <td> 0.170 </ td> <td> 270.73% </ td> </ tr> <tr> <td> 31 </ td> <td> 0.476 </ td> <td> 0.478 </ td> <td> 0.00161 </ td> <td> 100.34% </ td> <td> 0.349 </ td> <t d> 136.76% </ td> </ tr> <tr> <td> 32 </ td> <td> 0.494 </ td> <td> 0.538 </ td> <td> 0.04435 </ td> <td> 108.98% </ td> <td> 0.349 </ td> <td> 154.02% </ td> </ tr> <tr> <td> 41 </ td> <td> 0.585 </ td> <td> 0.624 </ td> <td> 0.03890 </ td> <td> 106.65% </ td> <td> 0.176 </ td> <td> 353.34% </ td> </ tr> <tr> <td> 42 < / td> <td> 0.798 </ td> <td> 0.866 </ td> <td> 0.06775 </ td> <td> 108.49% </ td> <td> 0.176 </ td> <td> 490.68% < / td> </ tr> </ TBODY> </ TABLE>

第六光學實施例 請參照第7A圖及第7B圖,其中第7A圖繪示依照本創作第六光學實施例的一種光學成像模組的透鏡組示意圖,第7B圖由左至右依序為第六光學實施例的光學成像模組的球差、像散及光學畸變曲線圖。由第7A圖可知,光學成像模組由物側至像側依序包含第一透鏡610、光圈600、第二透鏡620、第三透鏡630、紅外線濾光片670、成像面680以及影像感測元件690。For the sixth optical embodiment, please refer to FIG. 7A and FIG. 7B. FIG. 7A shows a schematic diagram of a lens group of an optical imaging module according to the sixth optical embodiment of the present invention. Spherical aberration, astigmatism and optical distortion curves of the optical imaging module of the sixth optical embodiment. It can be seen from FIG. 7A that the optical imaging module includes a first lens 610, an aperture 600, a second lens 620, a third lens 630, an infrared filter 670, an imaging surface 680, and image sensing in order from the object side to the image side. Element 690.

第一透鏡610具有正屈折力,且為塑膠材質,其物側面612為凸面,其像側面614為凹面,並皆為非球面。The first lens 610 has a positive refractive power and is made of plastic. The object side 612 is convex, the image side 614 is concave, and both are aspheric.

第二透鏡620具有負屈折力,且為塑膠材質,其物側面622為凹面,其像側面624為凸面,並皆為非球面,其像側面624具有一反曲點。The second lens 620 has a negative refractive power and is made of plastic. Its object side 622 is concave, its image side 624 is convex, and both are aspheric. Its image side 624 has a point of inflection.

第三透鏡630具有正屈折力,且為塑膠材質,其物側面632為凸面,其像側面634為凸面,並皆為非球面,且其物側面632具有二反曲點以及像側面634具有一反曲點。The third lens 630 has a positive refractive power and is made of plastic. Its object side 632 is convex, its image side 634 is convex and both are aspheric, and its object side 632 has two inflection points and the image side 634 has a Inflection point.

紅外線濾光片670為玻璃材質,其設置於第三透鏡630及成像面680間且不影響光學成像模組的焦距。The infrared filter 670 is made of glass and is disposed between the third lens 630 and the imaging surface 680 without affecting the focal length of the optical imaging module.

請配合參照下列表十一以及表十二。 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表十一 第 六 光 學 實 施 例 透 鏡 數 據 </td><td> </td></tr><tr><td> f(焦距)= 2.41135 mm ; f/HEP =2.22 ; HAF(半視角)= 36 deg </td><td> </td></tr><tr><td> 表面 </td><td> 曲率半徑 </td><td> 厚度 (mm) </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td><td> </td></tr><tr><td> 0 </td><td> 被攝物 </td><td> 1E+18 </td><td> 600 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> 第一透鏡 </td><td> 0.840352226 </td><td> 0.468 </td><td> 塑膠 </td><td> 1.535 </td><td> 56.27 </td><td> 2.232 </td><td> </td></tr><tr><td> 2 </td><td> </td><td> 2.271975602 </td><td> 0.148 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 光圈 </td><td> 1E+18 </td><td> 0.277 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 4 </td><td> 第二透鏡 </td><td> -1.157324239 </td><td> 0.349 </td><td> 塑膠 </td><td> 1.642 </td><td> 22.46 </td><td> -5.221 </td><td> </td></tr><tr><td> 5 </td><td> </td><td> -1.968404008 </td><td> 0.221 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 6 </td><td> 第三透鏡 </td><td> 1.151874235 </td><td> 0.559 </td><td> 塑膠 </td><td> 1.544 </td><td> 56.09 </td><td> 7.360 </td><td> </td></tr><tr><td> 7 </td><td> </td><td> 1.338105159 </td><td> 0.123 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 8 </td><td> 紅外線 濾光片 </td><td> 1E+18 </td><td> 0.210 </td><td> BK7 </td><td> 1.517 </td><td> 64.13 </td><td> </td><td> </td></tr><tr><td> 9 </td><td> </td><td> 1E+18 </td><td> 0.547 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 10 </td><td> 成像面 </td><td> 1E+18 </td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 參考波長為555 nm; 擋光位置: 第1面其通光半徑0.640 mm </td><td> </td><td> 0.025423 </td></tr></TBODY></TABLE>表十二、第六光學實施例之非球面係數 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表十二 非球面係數 </td></tr><tr><td> 表面 </td><td> 1 </td><td> 2 </td><td> 4 </td><td> 5 </td><td> 6 </td><td> 7 </td></tr><tr><td> k = </td><td> -2.019203E-01 </td><td> 1.528275E+01 </td><td> 3.743939E+00 </td><td> -1.207814E+01 </td><td> -1.276860E+01 </td><td> -3.034004E+00 </td></tr><tr><td> A4 = </td><td> 3.944883E-02 </td><td> -1.670490E-01 </td><td> -4.266331E-01 </td><td> -1.696843E+00 </td><td> -7.396546E-01 </td><td> -5.308488E-01 </td></tr><tr><td> A6= </td><td> 4.774062E-01 </td><td> 3.857435E+00 </td><td> -1.423859E+00 </td><td> 5.164775E+00 </td><td> 4.449101E-01 </td><td> 4.374142E-01 </td></tr><tr><td> A8 = </td><td> -1.528780E+00 </td><td> -7.091408E+01 </td><td> 4.119587E+01 </td><td> -1.445541E+01 </td><td> 2.622372E-01 </td><td> -3.111192E-01 </td></tr><tr><td> A10= </td><td> 5.133947E+00 </td><td> 6.365801E+02 </td><td> -3.456462E+02 </td><td> 2.876958E+01 </td><td> -2.510946E-01 </td><td> 1.354257E-01 </td></tr><tr><td> A12 = </td><td> -6.250496E+00 </td><td> -3.141002E+03 </td><td> 1.495452E+03 </td><td> -2.662400E+01 </td><td> -1.048030E-01 </td><td> -2.652902E-02 </td></tr><tr><td> A14= </td><td> 1.068803E+00 </td><td> 7.962834E+03 </td><td> -2.747802E+03 </td><td> 1.661634E+01 </td><td> 1.462137E-01 </td><td> -1.203306E-03 </td></tr><tr><td> A16 = </td><td> 7.995491E+00 </td><td> -8.268637E+03 </td><td> 1.443133E+03 </td><td> -1.327827E+01 </td><td> -3.676651E-02 </td><td> 7.805611E-04 </td></tr></TBODY></TABLE>Please refer to Table 11 and Table 12 below.         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Table 11 Lens data of the sixth optical embodiment </ td> <td> </ td> </ tr> <tr> <td> f (focal length) = 2.41135 mm; f / HEP = 2.22; HAF (half angle of view) = 36 deg </ td> <td> </ td> </ tr> <tr> <td> surface </ td> <td> curvature radius </ td> <td> thickness (mm) </ td> <td> material </ td> <td> refractive index </ td> <td> dispersion coefficient </ td> <td> Focal length </ td> <td> </ td> </ tr> <tr> <td> 0 </ td> <td> Subject </ td> <td> 1E + 18 </ td> <td> 600 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr > <tr> <td> 1 </ td> <td> First lens </ td> <td> 0.840352226 </ td> <td> 0.468 </ td> <td> Plastic </ td> <td> 1.535 </ td> <td> 56.27 </ td> <td> 2.232 </ td> <td> </ td> </ tr> <tr> <td> 2 </ td> <td> </ td> < td> 2.271975602 </ td> <td> 0.148 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 3 </ td> <td> Aperture </ td> <td> 1E + 18 </ td> <td> 0.277 </ td> <td> </ td> <td > </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 4 </ td> <td> Second lens </ td > <td> -1.157324 239 </ td> <td> 0.349 </ td> <td> Plastic </ td> <td> 1.642 </ td> <td> 22.46 </ td> <td> -5.221 </ td> <td> < / td> </ tr> <tr> <td> 5 </ td> <td> </ td> <td> -1.968404008 </ td> <td> 0.221 </ td> <td> </ td> < td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 6 </ td> <td> Third lens </ td> <td> 1.151874235 </ td> <td> 0.559 </ td> <td> Plastic </ td> <td> 1.544 </ td> <td> 56.09 </ td> <td> 7.360 </ td> <td> </ td> </ tr> <tr> <td> 7 </ td> <td> </ td> <td> 1.338105159 </ td> <td> 0.123 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 8 </ td> <td> Infrared filter Light sheet </ td> <td> 1E + 18 </ td> <td> 0.210 </ td> <td> BK7 </ td> <td> 1.517 </ td> <td> 64.13 </ td> <td > </ td> <td> </ td> </ tr> <tr> <td> 9 </ td> <td> </ td> <td> 1E + 18 </ td> <td> 0.547 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> 10 </ td> <td> imaging surface </ td> <td> 1E + 18 </ td> <td> 0.000 </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> <td> </ td> </ tr> <tr> <td> Reference wavelength is 555 nm; Light blocking position: The first surface has a clear radius of 0.64 0 mm </ td> <td> </ td> <td> 0.025423 </ td> </ tr> </ TBODY> </ TABLE> Table 12: Aspheric coefficients of the sixth optical embodiment         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Table twelve aspheric coefficients </ td> </ tr> <tr> <td> Surface </ td> <td> 1 </ td> <td> 2 </ td> <td> 4 </ td> <td> 5 </ td> <td> 6 </ td> <td> 7 </ td> </ tr> <tr> <td> k = </ td> <td> -2.019203E-01 </ td> <td> 1.528275E + 01 </ td> <td> 3.743939E + 00 </ td> <td> -1.207814E + 01 </ td> <td> -1.276860E + 01 </ td> <td> -3.034004E + 00 </ td> </ tr> <tr> <td> A4 = </ td> <td> 3.944883E-02 </ td> <td> -1.670490E-01 </ td> <td> -4.266331E-01 </ td> <td> -1.696843E + 00 </ td > <td> -7.396546E-01 </ td> <td> -5.308488E-01 </ td> </ tr> <tr> <td> A6 = </ td> <td> 4.774062E-01 </ td> td> <td> 3.857435E + 00 </ td> <td> -1.423859E + 00 </ td> <td> 5.164775E + 00 </ td> <td> 4.449101E-01 </ td> <td> 4.374142E-01 </ td> </ tr> <tr> <td> A8 = </ td> <td> -1.528780E + 00 </ td> <td> -7.091408E + 01 </ td> <td > 4.119587E + 01 </ td> <td> -1.445541E + 01 </ td> <td> 2.622372E-01 </ td> <td> -3.111192E-01 </ td> </ tr> <tr > <td> A10 = </ td> <td> 5.133947E + 00 </ td> <td> 6.365801E + 02 </ td> <td> -3.456462E + 02 </ td> <td> 2.876958E + 01 </ td> <td> -2.510946E-01 </ td> <t d> 1.354257E-01 </ td> </ tr> <tr> <td> A12 = </ td> <td> -6.250496E + 00 </ td> <td> -3.141002E + 03 </ td> <td> 1.495452E + 03 </ td> <td> -2.662400E + 01 </ td> <td> -1.048030E-01 </ td> <td> -2.652902E-02 </ td> </ tr > <tr> <td> A14 = </ td> <td> 1.068803E + 00 </ td> <td> 7.962834E + 03 </ td> <td> -2.747802E + 03 </ td> <td> 1.661634E + 01 </ td> <td> 1.462137E-01 </ td> <td> -1.203306E-03 </ td> </ tr> <tr> <td> A16 = </ td> <td> 7.995491E + 00 </ td> <td> -8.268637E + 03 </ td> <td> 1.443133E + 03 </ td> <td> -1.327827E + 01 </ td> <td> -3.676651E- 02 </ td> <td> 7.805611E-04 </ td> </ tr> </ TBODY> </ TABLE>

第六光學實施例中,非球面的曲線方程式表示如第一光學實施例的形式。此外,下表參數的定義皆與第一光學實施例相同,在此不加以贅述。In the sixth optical embodiment, the curve equation of the aspherical surface is expressed as the first optical embodiment. In addition, the definitions of the parameters in the following table are the same as those of the first optical embodiment, and will not be repeated here.

依據表十一及表十二可得到下列條件式數値: <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第六光學實施例 (使用主要參考波長 555 nm) </td></tr><tr><td> ∣f/f1│ </td><td> ∣f/f2│ </td><td> ∣f/f3│ </td><td> ∣f1/f2│ </td><td> ∣f2/f3│ </td><td> TP1 / TP2 </td></tr><tr><td> 1.08042 </td><td> 0.46186 </td><td> 0.32763 </td><td> 2.33928 </td><td> 1.40968 </td><td> 1.33921 </td></tr><tr><td> ΣPPR </td><td> ΣNPR </td><td> ΣPPR /│ΣNPR∣ </td><td> IN12 / f </td><td> IN23 / f </td><td> TP2 / TP3 </td></tr><tr><td> 1.40805 </td><td> 0.46186 </td><td> 3.04866 </td><td> 0.17636 </td><td> 0.09155 </td><td> 0.62498 </td></tr><tr><td> TP2 / (IN12+TP2+IN23) </td><td> (TP1+IN12)/ TP2 </td><td> (TP3+IN23)/ TP2 </td></tr><tr><td> 0.35102 </td><td> 2.23183 </td><td> 2.23183 </td></tr><tr><td> HOS </td><td> InTL </td><td> HOS / HOI </td><td> InS/ HOS </td><td> │ODT│% </td><td> │TDT│% </td></tr><tr><td> 2.90175 </td><td> 2.02243 </td><td> 1.61928 </td><td> 0.78770 </td><td> 1.50000 </td><td> 0.71008 </td></tr><tr><td> HVT21 </td><td> HVT22 </td><td> HVT31 </td><td> HVT32 </td><td> HVT32/ HOI </td><td> HVT32/ HOS </td></tr><tr><td> 0.00000 </td><td> 0.00000 </td><td> 0.46887 </td><td> 0.67544 </td><td> 0.37692 </td><td> 0.23277 </td></tr><tr><td> PhiA </td><td> PhiC </td><td> PhiD </td><td> TH1 </td><td> TH2 </td><td> HOI </td></tr><tr><td> 2.716 mm </td><td> 3.116 mm </td><td> 3.616 mm </td><td> 0.25 mm </td><td> 0.2 mm </td><td> 1.792 mm </td></tr><tr><td> PhiA / PhiD </td><td> TH1+TH2 </td><td> (TH1+TH2) / HOI </td><td> (TH1+TH2) /HOS </td><td> 2(TH1+TH2) / PhiA </td><td> </td></tr><tr><td> 0.7511 </td><td> 0.45 mm </td><td> 0.2511 </td><td> 0.1551 </td><td> 0.3314 </td><td> </td></tr><tr><td> PLTA </td><td> PSTA </td><td> NLTA </td><td> NSTA </td><td> SLTA </td><td> SSTA </td></tr><tr><td> -0.002 mm </td><td> 0.008 mm </td><td> 0.006 mm </td><td> -0.008 mm </td><td> -0.007 mm </td><td> 0.006 mm </td></tr></TBODY></TABLE>According to Table 11 and Table 12, the following conditional expressions can be obtained:         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Sixth optical embodiment (using the main reference wavelength of 555 nm) </ td> </ tr> <tr> <td> ∣f / f1│ </ td> <td> ∣f / f2│ </ td> <td> ∣f / f3│ </ td> <td> ∣f1 / f2│ </ td > <td> ∣f2 / f3│ </ td> <td> TP1 / TP2 </ td> </ tr> <tr> <td> 1.08042 </ td> <td> 0.46186 </ td> <td> 0.32763 </ td> <td> 2.33928 </ td> <td> 1.40968 </ td> <td> 1.33921 </ td> </ tr> <tr> <td> ΣPPR </ td> <td> ΣNPR </ td > <td> ΣPPR / │ΣNPR∣ </ td> <td> IN12 / f </ td> <td> IN23 / f </ td> <td> TP2 / TP3 </ td> </ tr> <tr> <td> 1.40805 </ td> <td> 0.46186 </ td> <td> 3.04866 </ td> <td> 0.17636 </ td> <td> 0.09155 </ td> <td> 0.62498 </ td> </ tr> <tr> <td> TP2 / (IN12 + TP2 + IN23) </ td> <td> (TP1 + IN12) / TP2 </ td> <td> (TP3 + IN23) / TP2 </ td> < / tr> <tr> <td> 0.35102 </ td> <td> 2.23183 </ td> <td> 2.23183 </ td> </ tr> <tr> <td> HOS </ td> <td> InTL < / td> <td> HOS / HOI </ td> <td> InS / HOS </ td> <td> │ODT│% </ td> <td> │TDT│% </ td> </ tr> < tr> <td> 2.90175 </ td> <td> 2.02243 </ td> <td> 1.61928 </ td> <td> 0.78770 </ td> <td> 1.50000 </ td > <td> 0.71008 </ td> </ tr> <tr> <td> HVT21 </ td> <td> HVT22 </ td> <td> HVT31 </ td> <td> HVT32 </ td> <td > HVT32 / HOI </ td> <td> HVT32 / HOS </ td> </ tr> <tr> <td> 0.00000 </ td> <td> 0.00000 </ td> <td> 0.46887 </ td> < td> 0.67544 </ td> <td> 0.37692 </ td> <td> 0.23277 </ td> </ tr> <tr> <td> PhiA </ td> <td> PhiC </ td> <td> PhiD </ td> <td> TH1 </ td> <td> TH2 </ td> <td> HOI </ td> </ tr> <tr> <td> 2.716 mm </ td> <td> 3.116 mm < / td> <td> 3.616 mm </ td> <td> 0.25 mm </ td> <td> 0.2 mm </ td> <td> 1.792 mm </ td> </ tr> <tr> <td> PhiA / PhiD </ td> <td> TH1 + TH2 </ td> <td> (TH1 + TH2) / HOI </ td> <td> (TH1 + TH2) / HOS </ td> <td> 2 (TH1 + TH2) / PhiA </ td> <td> </ td> </ tr> <tr> <td> 0.7511 </ td> <td> 0.45 mm </ td> <td> 0.2511 </ td> <td > 0.1551 </ td> <td> 0.3314 </ td> <td> </ td> </ tr> <tr> <td> PLTA </ td> <td> PSTA </ td> <td> NLTA </ td> <td> NSTA </ td> <td> SLTA </ td> <td> SSTA </ td> </ tr> <tr> <td> -0.002 mm </ td> <td> 0.008 mm </ td> <td> 0.006 mm </ td> <td> -0.008 mm </ td> <td> -0.007 mm </ td> <td> 0.006 mm </ td> </ tr> </ TBODY> </ TABLE>

依據表十一及表十二可得到下列條件式數値: <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第六光學實施例反曲點相關數值 (使用主要參考波長 555 nm) </td></tr><tr><td> HIF221 </td><td> 0.5599 </td><td> HIF221/HOI </td><td> 0.3125 </td><td> SGI221 </td><td> -0.1487 </td><td> ∣SGI221│/(∣SGI221│+TP2) </td><td> 0.2412 </td></tr><tr><td> HIF311 </td><td> 0.2405 </td><td> HIF311/HOI </td><td> 0.1342 </td><td> SGI311 </td><td> 0.0201 </td><td> │SGI311∣/(│SGI311∣+TP3) </td><td> 0.0413 </td></tr><tr><td> HIF312 </td><td> 0.8255 </td><td> HIF312/HOI </td><td> 0.4607 </td><td> SGI312 </td><td> -0.0234 </td><td> │SGI312∣/(│SGI312∣+TP3) </td><td> 0.0476 </td></tr><tr><td> HIF321 </td><td> 0.3505 </td><td> HIF321/HOI </td><td> 0.1956 </td><td> SGI321 </td><td> 0.0371 </td><td> ∣SGI321│/(∣SGI321│+TP3) </td><td> 0.0735 </td></tr></TBODY></TABLE>According to Table 11 and Table 12, the following conditional expressions can be obtained:         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> The value of the inflection point of the sixth optical embodiment (using the main reference wavelength of 555 nm) </ td > </ tr> <tr> <td> HIF221 </ td> <td> 0.5599 </ td> <td> HIF221 / HOI </ td> <td> 0.3125 </ td> <td> SGI221 </ td> <td> -0.1487 </ td> <td> ∣SGI221│ / (∣SGI221│ + TP2) </ td> <td> 0.2412 </ td> </ tr> <tr> <td> HIF311 </ td> <td> 0.2405 </ td> <td> HIF311 / HOI </ td> <td> 0.1342 </ td> <td> SGI311 </ td> <td> 0.0201 </ td> <td> │SGI311∣ / ( │SGI311∣ + TP3) </ td> <td> 0.0413 </ td> </ tr> <tr> <td> HIF312 </ td> <td> 0.8255 </ td> <td> HIF312 / HOI </ td > <td> 0.4607 </ td> <td> SGI312 </ td> <td> -0.0234 </ td> <td> │SGI312∣ / (│SGI312∣ + TP3) </ td> <td> 0.0476 </ td> </ tr> <tr> <td> HIF321 </ td> <td> 0.3505 </ td> <td> HIF321 / HOI </ td> <td> 0.1956 </ td> <td> SGI321 </ td > <td> 0.0371 </ td> <td> ∣SGI321│ / (∣SGI321│ + TP3) </ td> <td> 0.0735 </ td> </ tr> </ TBODY> </ TABLE>

依據表十一及表十二可得到輪廓曲線長度相關之數値: <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第六光學實施例 (使用主要參考波長 555 nm) </td></tr><tr><td> ARE </td><td> 1/2(HEP) </td><td> ARE value </td><td> ARE-1/2(HEP) </td><td> 2(ARE/HEP) % </td><td> TP </td><td> ARE /TP (%) </td></tr><tr><td> 11 </td><td> 0.546 </td><td> 0.598 </td><td> 0.052 </td><td> 109.49% </td><td> 0.468 </td><td> 127.80% </td></tr><tr><td> 12 </td><td> 0.500 </td><td> 0.506 </td><td> 0.005 </td><td> 101.06% </td><td> 0.468 </td><td> 108.03% </td></tr><tr><td> 21 </td><td> 0.492 </td><td> 0.528 </td><td> 0.036 </td><td> 107.37% </td><td> 0.349 </td><td> 151.10% </td></tr><tr><td> 22 </td><td> 0.546 </td><td> 0.572 </td><td> 0.026 </td><td> 104.78% </td><td> 0.349 </td><td> 163.78% </td></tr><tr><td> 31 </td><td> 0.546 </td><td> 0.548 </td><td> 0.002 </td><td> 100.36% </td><td> 0.559 </td><td> 98.04% </td></tr><tr><td> 32 </td><td> 0.546 </td><td> 0.550 </td><td> 0.004 </td><td> 100.80% </td><td> 0.559 </td><td> 98.47% </td></tr><tr><td> ARS </td><td> EHD </td><td> ARS value </td><td> ARS-EHD </td><td> (ARS/EHD)% </td><td> TP </td><td> ARS / TP (%) </td></tr><tr><td> 11 </td><td> 0.640 </td><td> 0.739 </td><td> 0.099 </td><td> 115.54% </td><td> 0.468 </td><td> 158.03% </td></tr><tr><td> 12 </td><td> 0.500 </td><td> 0.506 </td><td> 0.005 </td><td> 101.06% </td><td> 0.468 </td><td> 108.03% </td></tr><tr><td> 21 </td><td> 0.492 </td><td> 0.528 </td><td> 0.036 </td><td> 107.37% </td><td> 0.349 </td><td> 151.10% </td></tr><tr><td> 22 </td><td> 0.706 </td><td> 0.750 </td><td> 0.044 </td><td> 106.28% </td><td> 0.349 </td><td> 214.72% </td></tr><tr><td> 31 </td><td> 1.118 </td><td> 1.135 </td><td> 0.017 </td><td> 101.49% </td><td> 0.559 </td><td> 203.04% </td></tr><tr><td> 32 </td><td> 1.358 </td><td> 1.489 </td><td> 0.131 </td><td> 109.69% </td><td> 0.559 </td><td> 266.34% </td></tr></TBODY></TABLE>According to Table 11 and Table 12, the number of contour curve lengths can be obtained:         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Sixth optical embodiment (using the main reference wavelength of 555 nm) </ td> </ tr> <tr> <td> ARE </ td> <td> 1/2 (HEP) </ td> <td> ARE value </ td> <td> ARE-1 / 2 (HEP) </ td> <td > 2 (ARE / HEP)% </ td> <td> TP </ td> <td> ARE / TP (%) </ td> </ tr> <tr> <td> 11 </ td> <td > 0.546 </ td> <td> 0.598 </ td> <td> 0.052 </ td> <td> 109.49% </ td> <td> 0.468 </ td> <td> 127.80% </ td> </ tr> <tr> <td> 12 </ td> <td> 0.500 </ td> <td> 0.506 </ td> <td> 0.005 </ td> <td> 101.06% </ td> <td> 0.468 </ td> <td> 108.03% </ td> </ tr> <tr> <td> 21 </ td> <td> 0.492 </ td> <td> 0.528 </ td> <td> 0.036 </ td> <td> 107.37% </ td> <td> 0.349 </ td> <td> 151.10% </ td> </ tr> <tr> <td> 22 </ td> <td> 0.546 </ td > <td> 0.572 </ td> <td> 0.026 </ td> <td> 104.78% </ td> <td> 0.349 </ td> <td> 163.78% </ td> </ tr> <tr> <td> 31 </ td> <td> 0.546 </ td> <td> 0.548 </ td> <td> 0.002 </ td> <td> 100.36% </ td> <td> 0.559 </ td> < td> 98.04% </ td> </ tr> <tr> <td> 32 </ td> <td> 0.546 </ td> <td> 0.550 </ td> <td> 0.004 </ td> <td> 100.80% </ td> <td> 0.559 </ td> <td> 98.47% </ t d> </ tr> <tr> <td> ARS </ td> <td> EHD </ td> <td> ARS value </ td> <td> ARS-EHD </ td> <td> (ARS / EHD)% </ td> <td> TP </ td> <td> ARS / TP (%) </ td> </ tr> <tr> <td> 11 </ td> <td> 0.640 </ td > <td> 0.739 </ td> <td> 0.099 </ td> <td> 115.54% </ td> <td> 0.468 </ td> <td> 158.03% </ td> </ tr> <tr> <td> 12 </ td> <td> 0.500 </ td> <td> 0.506 </ td> <td> 0.005 </ td> <td> 101.06% </ td> <td> 0.468 </ td> < td> 108.03% </ td> </ tr> <tr> <td> 21 </ td> <td> 0.492 </ td> <td> 0.528 </ td> <td> 0.036 </ td> <td> 107.37% </ td> <td> 0.349 </ td> <td> 151.10% </ td> </ tr> <tr> <td> 22 </ td> <td> 0.706 </ td> <td> 0.750 </ td> <td> 0.044 </ td> <td> 106.28% </ td> <td> 0.349 </ td> <td> 214.72% </ td> </ tr> <tr> <td> 31 < / td> <td> 1.118 </ td> <td> 1.135 </ td> <td> 0.017 </ td> <td> 101.49% </ td> <td> 0.559 </ td> <td> 203.04% < / td> </ tr> <tr> <td> 32 </ td> <td> 1.358 </ td> <td> 1.489 </ td> <td> 0.131 </ td> <td> 109.69% </ td > <td> 0.559 </ td> <td> 266.34% </ td> </ tr> </ TBODY> </ TABLE>

本創作之光學成像模組可為電子可攜式裝置、電子穿戴式裝置、電子監視裝置、電子資訊裝置、電子通訊裝置、機器視覺裝置以及車用電子裝置所構成群組之一,並且視需求可藉由不同片數之透鏡組達到降低所需機構空間以及提高螢幕可視區域。The optical imaging module of this creation can be one of the groups consisting of electronic portable devices, electronic wearable devices, electronic surveillance devices, electronic information devices, electronic communication devices, machine vision devices, and automotive electronic devices, and as required It can reduce the required mechanism space and increase the screen visible area by using different lens groups.

請參照圖8A,其係為本創作之光學成像模組712以及光學成像模組714 (前置鏡頭)使用於行動通訊裝置71 (Smart Phone),圖8B則係為本創作之光學成像模組722使用於行動資訊裝置72 (Notebook),圖8C則係為本創作之光學成像模組732使用於智慧型手錶73 (Smart Watch),圖8D則係為本創作之光學成像模組742使用於智慧型頭戴裝置74 (Smart Hat),圖8E則係為本創作之光學成像模組752使用於安全監控裝置75 (IP Cam),圖8F則係為本創作之光學成像模組762使用於車用影像裝置76,圖8G則係為本創作之光學成像模組772使用於無人飛機裝置77,圖8H則係為本創作之光學成像模組782使用於極限運動影像裝置78。Please refer to FIG. 8A, which is an optical imaging module 712 and an optical imaging module 714 (front lens) used in this creation for mobile communication device 71 (Smart Phone), and FIG. 8B is an optical imaging module for this creation 722 is used in mobile information device 72 (Notebook), FIG. 8C is used for the optical imaging module 732 created for this smart watch 73 (Smart Watch), and FIG. 8D is used for the optical imaging module 742 created for this author Smart head device 74 (Smart Hat), Figure 8E is the optical imaging module 752 used for the security monitoring device 75 (IP Cam), and Figure 8F is the optical imaging module 762 used for the creation. The vehicle imaging device 76, FIG. 8G is the optical imaging module 772 used for the drone device 77, and FIG. 8H is the optical imaging module 782 used for the extreme sports image device 78.

雖然本創作已以實施方式揭露如上,然其並非用以限定本創作,任何熟習此技藝者,在不脫離本創作的精神和範圍內,當可作各種的更動與潤飾,因此本創作的保護範圍當視後附的申請專利範圍所界定者為準。Although this creation has been disclosed as above in implementation, it is not intended to limit this creation. Any person skilled in this art can make various modifications and retouches without departing from the spirit and scope of this creation, so the protection of this creation The scope shall be determined by the scope of the attached patent application.

雖然本創作已參照其例示性實施例而特別地顯示及描述,將為所屬技術領域具通常知識者所理解的是,於不脫離以下申請專利範圍及其等效物所定義之本創作之精神與範疇下可對其進行形式與細節上之各種變更。Although this creation has been particularly shown and described with reference to its illustrative embodiments, it will be understood by those having ordinary knowledge in the technical field that the spirit of this creation as defined by the scope of the following patent applications and their equivalents will be understood Various changes in form and detail can be made under the categories.

10、20、30、40、50、60、712、722、732、742、752、762‧‧‧光學成像模組10, 20, 30, 40, 50, 60, 712, 722, 732, 742, 752, 762‧‧‧ optical imaging module

100、200、300、400、500、600‧‧‧光圈 100, 200, 300, 400, 500, 600‧‧‧ aperture

110、210、310、410、510、610‧‧‧第一透鏡 110, 210, 310, 410, 510, 610‧‧‧ first lens

112、212、312、412、512、612‧‧‧物側面 112, 212, 312, 412, 512, 612

114、214、314、414、514、614‧‧‧像側面 114, 214, 314, 414, 514, 614‧‧‧ like side

120、220、320、420、520、620‧‧‧第二透鏡 120, 220, 320, 420, 520, 620‧‧‧ second lens

122、222、322、422、522、622‧‧‧物側面 122, 222, 322, 422, 522, 622

124、224、324、424、524、624‧‧‧像側面 124, 224, 324, 424, 524, 624‧‧‧ like side

130、230、330、430、530、630‧‧‧第三透鏡 130, 230, 330, 430, 530, 630‧‧‧ third lens

132、232、332、432、532、632‧‧‧物側面 132, 232, 332, 432, 532, 632

134、234、334、434、534、634‧‧‧像側面 134, 234, 334, 434, 534, 634 ‧ ‧ like side

140、240、340、440、540‧‧‧第四透鏡 140, 240, 340, 440, 540‧‧‧ Fourth lens

142、242、342、442、542‧‧‧物側面 142, 242, 342, 442, 542

144、244、344、444、544‧‧‧像側面 144, 244, 344, 444, 544‧‧‧ like side

150、250、350、450‧‧‧第五透鏡 150, 250, 350, 450‧‧‧ fifth lens

152、252、352、452‧‧‧物側面 152, 252, 352, 452‧‧‧

154、254、354、454‧‧‧像側面 154, 254, 354, 454‧‧‧ like side

160、260、360‧‧‧第六透鏡 160, 260, 360‧‧‧ Sixth lens

162、262、362‧‧‧物側面 162, 262, 362‧‧‧ side

164、264、364‧‧‧像側面 164, 264, 364‧‧‧ like side

270‧‧‧第七透鏡 270‧‧‧Seventh lens

272‧‧‧物側面 272‧‧‧side

274‧‧‧像側面 274‧‧‧Side profile

180、280、380、480、580、680‧‧‧紅外線濾光片 180, 280, 380, 480, 580, 680‧‧‧ infrared filter

S、192、292、392、492、590、690‧‧‧影像感測元件 S, 192, 292, 392, 492, 590, 690‧‧‧ image sensor

EB‧‧‧電路基板 EB‧‧‧Circuit Board

EP‧‧‧電路接點 EP‧‧‧Circuit Contact

S1‧‧‧第一表面 S1‧‧‧First surface

S2‧‧‧第二表面 S2‧‧‧Second surface

IP‧‧‧影像接點 IP‧‧‧Video contact

SC1‧‧‧訊號傳導元件 SC1‧‧‧Signal conducting element

L‧‧‧透鏡組 L‧‧‧ lens group

LB1、LB3‧‧‧透鏡基座 LB1, LB3‧‧‧ lens base

LH1、LH2、LH4、LH5‧‧‧透鏡支架 LH1, LH2, LH4, LH5‧‧‧ lens holder

B1、B2、B4、B5‧‧‧鏡筒 B1, B2, B4, B5‧‧‧ lens barrels

DH1、DH2、DH4、DH5‧‧‧下通孔 DH1, DH2, DH4, DH5

UH1、UH4‧‧‧上通孔 UH1, UH4‧‧‧Upper through hole

OT2、OT5‧‧‧外螺紋 OT2, OT5‧‧‧ external thread

IT2、IT5‧‧‧內螺紋 IT2, IT5‧‧‧ internal thread

IRH4‧‧‧濾光片支架 IRH4‧‧‧ Filter Holder

IH‧‧‧濾光片通孔 IH‧‧‧ Filter Through Hole

IR1、IR2、IR4‧‧‧紅外線濾光片 IR1, IR2, IR4‧‧‧IR Filter

本創作上述及其他特徵將藉由參照附圖詳細說明。 第1A圖係繪示本創作第一結構實施例的示意圖; 第1B圖係繪示本創作第二結構實施例的示意圖; 第1C圖係繪示本創作第三結構實施例的示意圖; 第1D圖係繪示本創作第四結構實施例的示意圖; 第1E圖係繪示本創作第五結構實施例的示意圖; 第2A圖係繪示本創作第一光學實施例的示意圖; 第2B圖由左至右依序繪示本創作第一光學實施例的球差、像散以及光學畸變之曲線圖; 第3A圖係繪示本創作第二光學實施例的示意圖; 第3B圖由左至右依序繪示本創作第二光學實施例的球差、像散以及光學畸變之曲線圖; 第4A圖係繪示本創作第三光學實施例的示意圖; 第4B圖由左至右依序繪示本創作第三光學實施例的球差、像散以及光學畸變之曲線圖; 第5A圖係繪示本創作第四光學實施例的示意圖; 第5B圖由左至右依序繪示本創作第四光學實施例的球差、像散以及光學畸變之曲線圖; 第6A圖係繪示本創作第五光學實施例的示意圖; 第6B圖由左至右依序繪示本創作第五光學實施例的球差、像散以及光學畸變之曲線圖; 第7A圖係繪示本創作第六光學實施例的示意圖; 第7B圖由左至右依序繪示本創作第六光學實施例的球差、像散以及光學畸變之曲線圖; 第8A圖係本創作之光學成像模組使用於行動通訊裝置的示意圖; 第8B圖係為本創作之光學成像模組使用於行動資訊裝置的示意圖; 第8C圖係為本創作之光學成像模組使用於智慧型手錶的示意圖; 第8D圖係為本創作之光學成像模組使用於智慧型頭戴裝置的示意圖; 第8E圖係為本創作之光學成像模組使用於安全監控裝置的示意圖; 第8F圖係為本創作之光學成像模組使用於車用影像裝置的示意圖。 第8G圖係為本創作之光學成像模組使用於無人飛機裝置的示意圖; 第8H圖係為本創作之光學成像模組使用於極限運動影像裝置的示意圖。The above and other features of this creation will be explained in detail by referring to the drawings. Figure 1A is a schematic diagram of a first structural embodiment of the present invention; Figure 1B is a schematic diagram of a second structural embodiment of the present invention; Figure 1C is a schematic diagram of a third structural embodiment of the present invention; Figure 1 is a schematic diagram of the fourth structural embodiment of the creative; Figure 1E is a schematic diagram of the fifth structural embodiment of the creative; Figure 2A is a schematic diagram of the first optical embodiment of the creative; Figure 2B is by From left to right, the graphs of spherical aberration, astigmatism, and optical distortion of the first optical embodiment of this creation are shown in sequence; FIG. 3A is a schematic diagram of the second optical embodiment of this creation; FIG. 3B is from left to right Spherical aberration, astigmatism, and optical distortion curves of the second optical embodiment of this creation are drawn in sequence; Figure 4A is a schematic diagram of the third optical embodiment of this creation; Figure 4B is sequentially drawn from left to right The curve diagram of spherical aberration, astigmatism and optical distortion of the third optical embodiment of this creation; FIG. 5A is a schematic diagram showing the fourth optical embodiment of this creation; FIG. 5B shows this creation in order from left to right Spherical aberration, astigmatism, and light of the fourth optical embodiment Distortion curve diagram; Figure 6A is a schematic diagram showing the fifth optical embodiment of this creation; Figure 6B shows the spherical aberration, astigmatism and optical distortion curves of the fifth optical embodiment in this order from left to right. Figure 7A is a schematic diagram showing the sixth optical embodiment of the present invention; Figure 7B is a diagram showing the spherical aberration, astigmatism, and optical distortion of the sixth optical embodiment of the present invention in order from left to right; Figure 8A is a schematic diagram of the optical imaging module used in the mobile communication device; Figure 8B is a schematic diagram of the optical imaging module used in the mobile information device; Figure 8C is an optical imaging module of the creative Schematic diagram used in smart watches; Figure 8D is a schematic diagram of the optical imaging module used in the smart head-mounted device; Figure 8E is a schematic diagram of the optical imaging module used in the security monitoring device; Figure 8F is a schematic diagram of the optical imaging module used in the automotive imaging device. Figure 8G is a schematic diagram of the optical imaging module used in unmanned aircraft installations; Figure 8H is a schematic diagram of the optical imaging module used in extreme sports imaging devices.

Claims (25)

一種光學成像模組,包含: 一電路組件,包含有一電路基板及一影像感測元件;該電路基板上具有複數電路接點;該影像感測元件具有一第一表面與一第二表面,該第一表面朝向該電路基板並具有複數影像接點,且該些影像接點上分別設有一訊號傳導元件,而該等訊號傳導元件分別與該電路基板上之該等電路接點連接,使該等影像接點透過設置於其上之訊號傳導元件電性連接對應之電路接點;該第二表面上具有一感測面; 一透鏡組件,包含有一透鏡基座及一透鏡組;該透鏡基座以不透光材質製成,且具有一容置孔貫穿該透鏡基座兩端而使該透鏡基座呈中空;另外,該透鏡基座係設置於該電路基板上而使該影像感測元件位於該容置孔中;該透鏡組包含有至少二片具有屈光力之透鏡,且設置於該透鏡基座上並位於該容置孔中;另外,該透鏡組之成像面位於該感測面,且該透鏡組之光軸與該感測面的中心法線重疊,使光線可通過該容置孔中之該透鏡組並投射至該感測面; 此外,該光學成像模組更滿足下列條件: 1.0≦f/HEP≦10.0; 0 deg<HAF≦150 deg; 0 mm< PhiD≦18 mm; 0 < PhiA/PhiD≦0.99;及 0.9≦2(ARE/HEP)≦2.0 其中,f為該透鏡組的焦距;HEP為該透鏡組之入射瞳直徑;HAF為該透鏡組之最大可視角度的一半;PhiD為該透鏡基座之外周緣且垂直於該透鏡組之光軸的平面上的最小邊長的最大值;PhiA為該透鏡組最接近該成像面之透鏡表面的最大有效直徑;ARE係以該透鏡組中任一透鏡之任一透鏡表面與光軸的交點為起點,並以距離光軸1/2入射瞳直徑之垂直高度處的位置為終點,延著該透鏡表面的輪廓所得之輪廓曲線長度。An optical imaging module includes: a circuit component including a circuit substrate and an image sensing element; the circuit substrate has a plurality of circuit contacts; the image sensing element has a first surface and a second surface; The first surface faces the circuit substrate and has a plurality of image contacts, and each of the image contacts is provided with a signal conducting element, and the signal conducting elements are respectively connected with the circuit contacts on the circuit substrate so that the The image contacts are electrically connected to the corresponding circuit contacts through the signal conducting element provided thereon; the second surface has a sensing surface; a lens assembly including a lens base and a lens group; the lens base The base is made of opaque material and has a receiving hole penetrating both ends of the lens base to make the lens base hollow; in addition, the lens base is disposed on the circuit substrate to make the image sensing The element is located in the accommodation hole; the lens group includes at least two lenses having refractive power, and is arranged on the lens base and located in the accommodation hole; in addition, the imaging of the lens group Located on the sensing surface, and the optical axis of the lens group overlaps with the center normal of the sensing surface, so that light can pass through the lens group in the accommodation hole and project to the sensing surface; further, the optical imaging The module more satisfies the following conditions: 1.0 ≦ f / HEP ≦ 10.0; 0 deg <HAF ≦ 150 deg; 0 mm <PhiD ≦ 18 mm; 0 <PhiA / PhiD ≦ 0.99; and 0.9 ≦ 2 (ARE / HEP) ≦ 2.0 Among them, f is the focal length of the lens group; HEP is the entrance pupil diameter of the lens group; HAF is half of the maximum viewing angle of the lens group; PhiD is the outer periphery of the lens base and is perpendicular to the optical axis of the lens group The maximum value of the minimum side length in the plane of P; PhiA is the maximum effective diameter of the lens surface of the lens group closest to the imaging surface; ARE is based on the intersection of any lens surface of any lens in the lens group with the optical axis as The length of the contour curve obtained from the starting point and the position at the vertical height of 1/2 of the entrance pupil diameter from the optical axis as the end point, extending along the contour of the lens surface. 如請求項1所述之光學成像模組,更滿足下列條件: 0.9≦ARS/EHD≦2.0;其中,ARS係以該透鏡組中任一透鏡之任一透鏡表面與光軸的交點為起點,並以該透鏡表面之最大有效半徑處為終點,延著該透鏡表面的輪廓所得之輪廓曲線長度;EHD為該透鏡組中任一透鏡之任一表面的最大有效半徑。The optical imaging module according to claim 1, further meets the following conditions: 0.9 ≦ ARS / EHD ≦ 2.0; wherein the ARS starts from the intersection of any lens surface of any lens in the lens group with the optical axis, The length of the contour curve obtained by extending the contour of the lens surface at the end of the maximum effective radius of the lens surface; EHD is the maximum effective radius of any surface of any lens in the lens group. 如請求項1所述之光學成像模組,更滿足下列條件: PLTA≦100 µm;PSTA≦100 µm;NLTA≦100 µm; NSTA≦100 µm;SLTA≦100 µm;SSTA≦100 µm; 以及│TDT│< 250 %; 其中,先定義HOI為該成像面上垂直於光軸之最大成像高度;PLTA為該光學成像模組的正向子午面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差;PSTA為該光學成像模組的正向子午面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差;NLTA為該光學成像模組的負向子午面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差;NSTA為該光學成像模組的負向子午面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差;SLTA為該光學成像模組的弧矢面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差;SSTA為該光學成像模組的弧矢面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差;TDT為該光學成像模組於結像時之TV畸變。According to the optical imaging module described in claim 1, the following conditions are more satisfied: PLTA ≦ 100 μm; PSTA ≦ 100 μm; NLTA ≦ 100 μm; NSTA ≦ 100 μm; SLTA ≦ 100 μm; SSTA ≦ 100 μm; and │TDT │ <250%; Among them, first define HOI as the maximum imaging height perpendicular to the optical axis on the imaging surface; PLTA is the longest working wavelength of the visible light of the positive meridional fan of the optical imaging module passes through the edge of the entrance pupil and is incident Transverse aberration at 0.7HOI on the imaging plane; PSTA is the shortest working wavelength of the visible light of the positive meridional fan of the optical imaging module passing through the edge of the entrance pupil and incident on the imaging plane at 0.7HOI NLTA is the lateral aberration of the longest visible wavelength of the visible light of the negative meridional fan of the optical imaging module passing through the edge of the entrance pupil and incident on the imaging surface at 0.7HOI; NSTA is the negative of the optical imaging module The shortest working wavelength of the visible light of the meridional fan passes through the edge of the entrance pupil and is incident on the imaging plane with a lateral aberration of 0.7HOI; SLTA is the longest working wavelength of the visible light of the sagittal fan of the optical imaging module. The lateral aberration of the entrance pupil edge and incident on the imaging plane at 0.7HOI; SSTA is the shortest working wavelength of the visible light of the sagittal plane fan of the optical imaging module and passes through the entrance pupil edge and incident on the imaging plane at 0.7HOI TDT is the TV distortion of the optical imaging module at the time of image formation. 如請求項1所述之光學成像模組,其中,該透鏡組包含四片具有屈折力之透鏡,由物側至像側依序為一第一透鏡、一第二透鏡、一第三透鏡以及一第四透鏡,且該透鏡組滿足下列條件: 0.1≦InTL/HOS≦0.95; 其中,HOS為該第一透鏡之物側面至該成像面於光軸上之距離;InTL為該第一透鏡之物側面至該第四透鏡之像側面於光軸上之距離。The optical imaging module according to claim 1, wherein the lens group includes four lenses having refractive power, and a first lens, a second lens, a third lens, and A fourth lens, and the lens group satisfies the following conditions: 0.1 ≦ InTL / HOS ≦ 0.95; wherein HOS is the distance from the object side of the first lens to the imaging surface on the optical axis; InTL is the distance of the first lens The distance from the object side to the image side of the fourth lens on the optical axis. 如請求項1所述之光學成像模組,其中,該透鏡組包含五片具有屈折力之透鏡,由物側至像側依序為一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡以及一第五透鏡,且該透鏡組滿足下列條件: 0.1≦InTL/HOS≦0.95; 其中,HOS為該該第一透鏡之物側面至該成像面於光軸上之距離;InTL為該第一透鏡之物側面至該第五透鏡之像側面於光軸上之距離。The optical imaging module according to claim 1, wherein the lens group includes five lenses having refractive power, from the object side to the image side, a first lens, a second lens, a third lens, A fourth lens and a fifth lens, and the lens group satisfies the following conditions: 0.1 ≦ InTL / HOS ≦ 0.95; wherein HOS is the distance from the object side of the first lens to the imaging surface on the optical axis; InTL The distance from the object side of the first lens to the image side of the fifth lens on the optical axis. 如請求項1所述之光學成像模組,其中,該透鏡組包含六片具有屈折力之透鏡,由物側至像側依序為一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡以及一第六透鏡,且該透鏡組滿足下列條件: 0.1≦InTL/HOS≦0.95; 其中,HOS為該該第一透鏡之物側面至該成像面於光軸上之距離;InTL為該第一透鏡之物側面至該第六透鏡之像側面於光軸上之距離。The optical imaging module according to claim 1, wherein the lens group includes six lenses having refractive power, and sequentially from the object side to the image side are a first lens, a second lens, a third lens, A fourth lens, a fifth lens, and a sixth lens, and the lens group satisfies the following conditions: 0.1 ≦ InTL / HOS ≦ 0.95; wherein HOS is the object side of the first lens to the imaging surface on the optical axis Distance; InTL is the distance from the object side of the first lens to the image side of the sixth lens on the optical axis. 如請求項1所述之光學成像模組,其中,該透鏡組包含七片具有屈折力之透鏡,由物側至像側依序為一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡、一第六透鏡以及一第七透鏡,且該透鏡組滿足下列條件: 0.1≦InTL/HOS≦0.95; 其中,HOS為該該第一透鏡之物側面至該成像面於光軸上之距離;InTL為該第一透鏡之物側面至該第七透鏡之像側面於光軸上之距離。The optical imaging module according to claim 1, wherein the lens group includes seven lenses having refractive power, and a first lens, a second lens, a third lens, A fourth lens, a fifth lens, a sixth lens, and a seventh lens, and the lens group satisfies the following conditions: 0.1 ≦ InTL / HOS ≦ 0.95; wherein HOS is the object side of the first lens to the The distance of the imaging surface on the optical axis; InTL is the distance of the object side of the first lens to the image side of the seventh lens on the optical axis. 請求項1所述之光學成像模組,更滿足下列條件: MTFQ0≧0.2;MTFQ3≧0.01;以及MTFQ7≧0.01; 其中,先定義HOI為該成像面上垂直於光軸之最大成像高度;MTFQ0為可見光在該成像面上之光軸處於空間頻率110 cycles/mm時之調制轉換對比轉移率;MTFQ3為可見光在該成像面上之0.3HOI處於空間頻率110 cycles/mm時之調制轉換對比轉移率;MTFQ7為可見光在該成像面上之0.7HOI處於空間頻率110 cycles/mm時之調制轉換對比轉移率。The optical imaging module described in claim 1 further satisfies the following conditions: MTFQ0 ≧ 0.2; MTFQ3 ≧ 0.01; and MTFQ7 ≧ 0.01; Among them, HOI is first defined as the maximum imaging height perpendicular to the optical axis on the imaging surface; MTFQ0 is Modulation conversion contrast transfer rate when the optical axis of visible light on the imaging plane is at a spatial frequency of 110 cycles / mm; MTFQ3 is the modulation conversion contrast transfer rate when 0.3HOI of visible light on the imaging plane is at a spatial frequency of 110 cycles / mm; MTFQ7 is the modulation conversion contrast transfer rate of 0.7HOI of visible light on the imaging surface at a spatial frequency of 110 cycles / mm. 如請求項1所述之光學成像模組,更包括一光圈,且該光圈滿足下列公式:0.2≦InS/HOS≦1.1;其中,InS為該光圈至該成像面於光軸上之距離;HOS為該透鏡組最遠離該成像面之透鏡表面至該成像面於光軸上之距離。The optical imaging module according to claim 1, further comprising an aperture, and the aperture satisfies the following formula: 0.2 ≦ InS / HOS ≦ 1.1; where InS is the distance from the aperture to the imaging surface on the optical axis; HOS The distance from the lens surface of the lens group farthest from the imaging plane to the imaging plane on the optical axis. 如請求項1所述之光學成像模組,其中,該透鏡基座包含有一鏡筒以及一透鏡支架;該透鏡支架係固定於該電路基板上且具有一貫穿該透鏡支架兩端之下通孔,使該影像感測元件位於該下通孔中,該鏡筒係設置於該透鏡支架中且位於該下通孔內,該鏡筒具有一貫穿該鏡筒兩端之上通孔,使該上通孔與該下通孔連通而共同構成該容置孔;,且該鏡筒之上通孔係正對該影像感測元件之感測面;另外,該透鏡組設置於該鏡筒中而位於該上通孔內,且PhiD係指該透鏡支架之外周緣且垂直於該透鏡組之光軸的平面上的最小邊長的最大值。The optical imaging module according to claim 1, wherein the lens base includes a lens barrel and a lens holder; the lens holder is fixed on the circuit substrate and has a through hole penetrating below both ends of the lens holder So that the image sensing element is located in the lower through hole, the lens barrel is arranged in the lens holder and is located in the lower through hole, and the lens barrel has a through hole penetrating above both ends of the lens barrel, so that the The upper through-hole communicates with the lower through-hole to form the accommodation hole together; and the through-hole above the lens barrel is directly facing the sensing surface of the image sensing element; in addition, the lens group is disposed in the lens barrel and It is located in the upper through hole, and PhiD refers to the maximum value of the minimum side length on the plane of the outer periphery of the lens holder and perpendicular to the optical axis of the lens group. 如請求項10所述之光學成像模組,更滿足下列條件:0 mm<TH1+TH2≦1.5mm;其中,TH1為該透鏡支架之最大厚度;TH2為該鏡筒之最小厚度。The optical imaging module described in claim 10, further meets the following conditions: 0 mm <TH1 + TH2 ≦ 1.5mm; where TH1 is the maximum thickness of the lens holder; TH2 is the minimum thickness of the lens barrel. 如請求項10所述之光學成像模組,更滿足下列條件:0 < (TH1+TH2)/HOI≦0.95;其中,TH1為該透鏡支架之最大厚度;TH2為該鏡筒之最小厚度;HOI為該成像面上垂直於光軸的最大成像高度。The optical imaging module described in claim 10, further meets the following conditions: 0 <(TH1 + TH2) /HOI≦0.95; where TH1 is the maximum thickness of the lens holder; TH2 is the minimum thickness of the lens barrel; HOI Is the maximum imaging height perpendicular to the optical axis on the imaging plane. 如請求項10所述之光學成像模組,其中,該鏡筒之外周壁上具有外螺紋,而該透鏡支架於該下通孔之孔壁上具有內螺紋與該外螺紋螺合,使該鏡筒設置於該透鏡支架中且固定於該下通孔內。The optical imaging module according to claim 10, wherein the outer peripheral wall of the lens barrel has external threads, and the lens holder has internal threads on the hole wall of the lower through hole to be screwed with the external threads, so that The lens barrel is disposed in the lens holder and fixed in the lower through hole. 如請求項10所述之光學成像模組,其中,該鏡筒與該透鏡支架之間設有黏膠並以黏膠膠合相固定,使該鏡筒設置於該透鏡支架中且固定於該下通孔內。The optical imaging module according to claim 10, wherein an adhesive is provided between the lens barrel and the lens holder and is fixed with an adhesive phase, so that the lens barrel is disposed in the lens holder and fixed to the lens holder. Inside the through hole. 如請求項1所述之光學成像模組,其中,該透鏡基座係以一體成型方式製成。The optical imaging module according to claim 1, wherein the lens base is made by a one-piece molding method. 如請求項15所述之光學成像模組,更包含有一紅外線濾光片,且該紅外線濾光片係設置於該透鏡基座中並位於該容置孔內而處於該影像感測元件上方。The optical imaging module according to claim 15, further comprising an infrared filter, and the infrared filter is disposed in the lens base and located in the accommodation hole and above the image sensing element. 如請求項10所述之光學成像模組,更包含有一紅外線濾光片,係設置於該鏡筒或該透鏡支架中且位於該影像感測元件上方。The optical imaging module according to claim 10 further includes an infrared filter, which is disposed in the lens barrel or the lens holder and is located above the image sensing element. 如請求項1所述之光學成像模組,更包含有一紅外線濾光片,且該透鏡基座包含有一濾光片支架,該濾光片支架具有一貫穿該濾光片支架兩端之濾光片通孔,且該紅外線濾光片係設置於該濾光片支架中並位於該濾光片通孔內,且該濾光片支架係設置於該電路基板上,而使該紅外線濾光片位於該影像感測元件上方。The optical imaging module according to claim 1, further comprising an infrared filter, and the lens base includes a filter holder, and the filter holder has a filter passing through both ends of the filter holder. Through holes, and the infrared filter is set in the filter holder and is located in the filter through hole, and the filter holder is set on the circuit substrate, so that the infrared filter Located above the image sensing element. 如請求項18所述之光學成像模組,其中,該透鏡基座包含有一鏡筒以及一透鏡支架;該透鏡支架係固定於該濾光片支架上且具有一貫穿該透鏡支架兩端之下通孔;該鏡筒係設置於該透鏡支架中且位於該下通孔內,該鏡筒具有一貫穿該鏡筒兩端之上通孔,使該上通孔與該下通孔及該濾光片通孔連通而共同構成該容置孔,且該鏡筒之上通孔係正對該影像感測元件之感測面;另外,該透鏡組設置於該鏡筒中而位於該上通孔內,且PhiD係指該透鏡支架之外周緣且垂直於該透鏡組之光軸的平面上的最小邊長的最大值。The optical imaging module according to claim 18, wherein the lens base includes a lens barrel and a lens holder; the lens holder is fixed on the filter holder and has a penetrating end under the lens holder. A through-hole; the lens barrel is disposed in the lens holder and is located in the lower through-hole, and the lens barrel has a through-hole passing through both ends of the lens barrel, so that the upper through-hole and the lower through-hole and the filter The through holes of the light sheet communicate with each other to form the containing hole, and the through hole on the lens barrel is directly facing the sensing surface of the image sensing element; in addition, the lens group is disposed in the lens barrel and is located on the upper through hole. And PhiD refers to the maximum value of the minimum side length on the outer periphery of the lens holder and on a plane perpendicular to the optical axis of the lens group. 如請求項19所述之光學成像模組,更滿足下列條件:0 mm<TH1+TH2≦1.5mm;其中,TH1為該透鏡支架之最大厚度;TH2為該鏡筒之最小厚度。According to the optical imaging module described in claim 19, the following conditions are more satisfied: 0 mm <TH1 + TH2 ≦ 1.5mm; wherein TH1 is the maximum thickness of the lens holder; TH2 is the minimum thickness of the lens barrel. 如請求項19所述之光學成像模組,更滿足下列條件:0 < (TH1+TH2)/HOI≦0.95;其中,TH1為該透鏡支架之最大厚度;TH2為該鏡筒之最小厚度;HOI為該成像面上垂直於光軸的最大成像高度。According to the optical imaging module described in claim 19, the following conditions are more satisfied: 0 <(TH1 + TH2) /HOI≦0.95; where TH1 is the maximum thickness of the lens holder; TH2 is the minimum thickness of the lens barrel; HOI Is the maximum imaging height perpendicular to the optical axis on the imaging plane. 如請求項19所述之光學成像模組,其中,該鏡筒之外周壁上具有外螺紋,而該透鏡支架於該下通孔之孔壁上具有內螺紋與該外螺紋螺合,使該鏡筒設置於該透鏡支架中且位於該下通孔內;另外,該透鏡支架與濾光片支架之間設有黏膠並以黏膠膠合相固定,而使該透鏡支架固定於該濾光片支架上。The optical imaging module according to claim 19, wherein the outer peripheral wall of the lens barrel has external threads, and the lens holder has an internal thread on the hole wall of the lower through hole to be screwed with the external thread so that the A lens barrel is disposed in the lens holder and located in the lower through hole; in addition, an adhesive is provided between the lens holder and the filter holder and fixed with an adhesive bonding phase, so that the lens holder is fixed to the filter Tablet holder. 如請求項19所述之光學成像模組,其中,該鏡筒與該透鏡支架之間設有黏膠並以黏膠膠合相固定,使該鏡筒設置於該透鏡支架中且位於該下通孔內;另外,該透鏡支架與濾光片支架之間設有黏膠並以黏膠膠合相固定,而使該透鏡支架固定於該濾光片支架上。The optical imaging module according to claim 19, wherein an adhesive is provided between the lens barrel and the lens holder and fixed with an adhesive bonding phase, so that the lens barrel is disposed in the lens holder and located in the lower channel. In addition, an adhesive is provided between the lens holder and the filter holder, and the lens holder and the filter holder are fixed with an adhesive phase, so that the lens holder is fixed on the filter holder. 如請求項1所述之光學成像模組,其中,該些訊號傳導元件係選自錫球、凸塊、接腳或其所構成群組所製成。The optical imaging module according to claim 1, wherein the signal conducting elements are made of solder balls, bumps, pins, or groups thereof. 如請求項1所述之光學成像模組,係應用於電子可攜式裝置、電子穿戴式裝置、電子監視裝置、電子資訊裝置、電子通訊裝置、機器視覺裝置、車用電子裝置以及所構成群組之一。The optical imaging module according to claim 1 is applied to electronic portable devices, electronic wearable devices, electronic monitoring devices, electronic information devices, electronic communication devices, machine vision devices, automotive electronic devices, and formed groups Group one.
TW107212960U 2018-09-21 2018-09-21 Optical imaging module TWM575120U (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107212960U TWM575120U (en) 2018-09-21 2018-09-21 Optical imaging module
CN201821704762.XU CN209327647U (en) 2018-09-21 2018-10-19 Optical imaging module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107212960U TWM575120U (en) 2018-09-21 2018-09-21 Optical imaging module

Publications (1)

Publication Number Publication Date
TWM575120U true TWM575120U (en) 2019-03-01

Family

ID=66591571

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107212960U TWM575120U (en) 2018-09-21 2018-09-21 Optical imaging module

Country Status (2)

Country Link
CN (1) CN209327647U (en)
TW (1) TWM575120U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI766103B (en) * 2018-09-21 2022-06-01 先進光電科技股份有限公司 Optical imaging module

Also Published As

Publication number Publication date
CN209327647U (en) 2019-08-30

Similar Documents

Publication Publication Date Title
TWM553425U (en) Optical image capturing system with thin mounting components
TW202009556A (en) Optical image capturing module、system and manufacturing method thereof
TWI763909B (en) Optical imaging module
TW202009587A (en) Optical image capturing module、system and manufacturing method thereof
TW201843486A (en) Optical image capturing system
TWM574246U (en) Optical imaging module and imaging system thereof
TWI769318B (en) Optical imaging module
TWI774823B (en) Optical imaging module
TWI774845B (en) Optical imaging module
TWI763908B (en) Optical imaging module
TWI760549B (en) Optical imaging module
TWI760550B (en) Optical imaging module
TWM575121U (en) Optical imaging module
TWM575543U (en) Optical imaging module
TWM573437U (en) Optical imaging module
TWM575129U (en) Optical imaging module
TWM573455U (en) Optical imaging module and imaging system thereof
TWM575120U (en) Optical imaging module
TWI766103B (en) Optical imaging module
TWI769317B (en) Optical imaging module
TWM574247U (en) Optical imaging module
TWM573451U (en) Optical imaging module
TWM575544U (en) Optical imaging module
TWM575542U (en) Optical imaging module
TWI773831B (en) Optical imaging module