TWM574357U - Reluctance motor structure - Google Patents

Reluctance motor structure Download PDF

Info

Publication number
TWM574357U
TWM574357U TW107213038U TW107213038U TWM574357U TW M574357 U TWM574357 U TW M574357U TW 107213038 U TW107213038 U TW 107213038U TW 107213038 U TW107213038 U TW 107213038U TW M574357 U TWM574357 U TW M574357U
Authority
TW
Taiwan
Prior art keywords
magnet
reluctance motor
thickness
assembly
stator assembly
Prior art date
Application number
TW107213038U
Other languages
Chinese (zh)
Inventor
楊家祥
施建仲
陳翔竣
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW107213038U priority Critical patent/TWM574357U/en
Publication of TWM574357U publication Critical patent/TWM574357U/en

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

A reluctance motor structure is provided, including a stator assembly and a rotor assembly disposed in the stator assembly. The rotor assembly has a main body and a first magnet embedded in the main body. The main body has an outer surface facing the stator assembly, wherein an air gap is formed between the outer surface and the stator assembly, and the shortest distance between the first magnet and the outer surface is 4~6 times of width of the air gap.

Description

磁阻馬達結構Reluctance motor structure

本創作是有關於一種馬達結構,特別是有關於一種磁阻馬達結構。The present invention relates to a motor structure, and more particularly to a reluctance motor structure.

同步磁阻馬達(synchronous reluctance motor, SynRM)或磁阻馬達(reluctance motor, RM)不僅具有結構簡單、易維護、低成本、高效率等諸多優點,且能符合國家節能環保的發展方向,故已被廣泛地被應用於各領域中。一般而言,影響同步磁阻馬達輸出特性的主要因素在於轉子(rotor)的設計,其中轉子的凸極比(saliency ratio),意即直軸(Direct axis)與交軸(Quadrature axis)電感的比值Ld/Lq往往決定了同步磁阻馬達性能,例如其所能提供的輸出轉矩大小。Synchronous reluctance motor (SRM) or reluctance motor (RM) not only has the advantages of simple structure, easy maintenance, low cost, high efficiency, etc., but also meets the development direction of national energy conservation and environmental protection. It is widely used in various fields. In general, the main factor affecting the output characteristics of a synchronous reluctance motor is the design of the rotor, in which the saliency ratio of the rotor, that is, the direct axis and the quadrature axis inductance. The ratio Ld/Lq often determines the performance of the synchronous reluctance motor, such as the amount of output torque it can provide.

然而,當同步磁阻馬達中的機構尺寸設計不良時,將容易造成輸出轉矩不平順而產生較大的轉矩漣波(Torque Ripple),如此一來馬達在運轉時會產生震動與噪音。有鑑於此,如何改良傳統同步磁阻馬達之結構設計,以提升其輸出轉矩並抑制轉矩漣波產生始成為一重要之課題。However, when the size of the mechanism in the synchronous reluctance motor is poorly designed, it will easily cause the output torque to be uneven and generate a large torque ripple (Torque Ripple), so that the motor generates vibration and noise when it is running. In view of this, how to improve the structural design of the conventional synchronous reluctance motor to increase its output torque and suppress the generation of torque ripple has become an important issue.

有鑑於前述習知問題點,本創作之一實施例提供一種磁阻馬達結構,包括一定子組件以及一轉子組件,前述轉子組件設置於前述定子組件內,並可相對於前述定子組件旋轉,其中前述轉子組件具有一本體以及嵌設於前述本體內之一第一磁鐵,且前述本體形成有朝向前述定子組件之一外周面,其中前述外周面與前述定子組件之間形成有一氣隙,且前述第一磁鐵與前述外周面之間的最短距離為前述氣隙之寬度的4~6倍。In view of the foregoing problems, an embodiment of the present invention provides a reluctance motor structure including a certain sub-assembly and a rotor assembly. The rotor assembly is disposed in the stator assembly and rotatable relative to the stator assembly. The rotor assembly has a body and a first magnet embedded in the body, and the body is formed with an outer circumferential surface facing the stator assembly, wherein an air gap is formed between the outer circumferential surface and the stator assembly, and the foregoing The shortest distance between the first magnet and the outer peripheral surface is 4 to 6 times the width of the air gap.

於一實施例中,前述最短距離為前述氣隙之寬度的5倍。In one embodiment, the shortest distance is five times the width of the air gap.

於一實施例中,前述定子組件形成有複數個齒部以及複數個槽部,前述齒部以及前述槽部間隔設置並環繞前述轉子組件。In one embodiment, the stator assembly is formed with a plurality of teeth and a plurality of grooves, and the teeth and the groove are spaced apart from each other and surround the rotor assembly.

於一實施例中,前述轉子組件更具有嵌設於前述本體內之一第二磁鐵,且前述第一磁鐵較前述第二磁鐵更靠近前述定子組件。In one embodiment, the rotor assembly further has a second magnet embedded in the body, and the first magnet is closer to the stator assembly than the second magnet.

於一實施例中,前述第一磁鐵於前述轉子組件之一徑向方向上具有一第一厚度,且前述第二磁鐵於前述轉子組件之前述徑向方向上具有一第二厚度,其中前述第二厚度大於或等於前述第一厚度。In one embodiment, the first magnet has a first thickness in a radial direction of one of the rotor assemblies, and the second magnet has a second thickness in the radial direction of the rotor assembly, wherein the first The thickness is greater than or equal to the aforementioned first thickness.

本創作之一實施例更提供一種磁阻馬達結構,包括一定子組件以及一轉子組件,其中前述轉子組件設置於前述定子組件內,並可相對於前述定子組件旋轉,其中前述轉子組件具有一本體以及嵌設於前述本體內之一第一磁鐵和一第二磁鐵,且前述第一磁鐵較前述第二磁鐵更靠近前述定子組件,其中前述第一磁鐵於前述轉子組件之一徑向方向上具有一第一厚度,前述第一磁鐵與前述第二磁鐵之間於前述轉子組件之前述徑向方向上形成有一間距,且前述間距為前述第一厚度的0.75~1.5倍。其中,前述本體形成有朝向前述定子組件之一外周面,前述外周面與前述定子組件之間形成有一氣隙,且前述第一磁鐵與前述外周面之間的最短距離為前述氣隙之寬度的4~6倍。An embodiment of the present invention further provides a reluctance motor structure including a certain subassembly and a rotor assembly, wherein the rotor assembly is disposed in the stator assembly and rotatable relative to the stator assembly, wherein the rotor assembly has a body And a first magnet and a second magnet embedded in the body, wherein the first magnet is closer to the stator assembly than the second magnet, wherein the first magnet has a radial direction in one of the rotor assemblies a first thickness, a gap is formed between the first magnet and the second magnet in the radial direction of the rotor assembly, and the pitch is 0.75 to 1.5 times the first thickness. The main body is formed with an outer circumferential surface facing the stator assembly, an air gap is formed between the outer circumferential surface and the stator assembly, and a shortest distance between the first magnet and the outer circumferential surface is a width of the air gap. 4 to 6 times.

於一實施例中,前述間距等於前述第一厚度。In an embodiment, the aforementioned spacing is equal to the aforementioned first thickness.

於一實施例中,前述最短距離為前述氣隙之寬度的5倍。In one embodiment, the shortest distance is five times the width of the air gap.

於一實施例中,前述定子組件形成有複數個齒部以及複數個槽部,前述齒部以及前述槽部間隔設置並環繞前述轉子組件。In one embodiment, the stator assembly is formed with a plurality of teeth and a plurality of grooves, and the teeth and the groove are spaced apart from each other and surround the rotor assembly.

於一實施例中,前述第二磁鐵於前述轉子組件之前述徑向方向上具有一第二厚度,其中前述第二厚度大於或等於前述第一厚度。In one embodiment, the second magnet has a second thickness in the radial direction of the rotor assembly, wherein the second thickness is greater than or equal to the first thickness.

於一實施例中,前述第一磁鐵以及前述第二磁鐵係分別設置於前述本體之一第一凹槽以及一第二凹槽內。In one embodiment, the first magnet and the second magnet are respectively disposed in one of the first recess and the second recess of the body.

於一實施例中,前述第一磁鐵以及前述第二磁鐵係相互平行排列。In one embodiment, the first magnet and the second magnet are arranged in parallel with each other.

以下說明本創作實施例之磁阻馬達結構。然而,可輕易了解本創作實施例提供許多合適的創作概念而可實施於廣泛的各種特定背景。所揭示的特定實施例僅僅用於說明以特定方法使用本創作,並非用以侷限本創作的範圍。The reluctance motor structure of the present embodiment will be described below. However, it will be readily appreciated that the present creative embodiment provides many suitable creative concepts and can be implemented in a wide variety of specific contexts. The specific embodiments disclosed are merely illustrative of the use of the present invention in a particular way, and are not intended to limit the scope of the present invention.

除非另外定義,在此使用的全部用語(包括技術及科學用語)具有與此篇揭露所屬之一般技藝者所通常理解的相同涵義。能理解的是這些用語,例如在通常使用的字典中定義的用語,應被解讀成具有一與相關技術及本揭露的背景或上下文一致的意思,而不應以一理想化或過度正式的方式解讀,除非在此特別定義。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning meaning It will be understood that these terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning consistent with the relevant art and the context or context of the present disclosure, and should not be in an idealized or overly formal manner. Interpretation, unless specifically defined herein.

有關本創作之前述及其他技術內容、特點與功效,在以下配合參考圖式之一較佳實施例的詳細說明中,將可清楚的呈現。以下各實施例中所提到的方向用語,例如:上、下、左、右、前或後等,僅是參考附加圖式的方向。因此,實施方式中所使用的方向用語是用來說明並非用來限制本創作。The above and other technical contents, features and effects of the present invention will be apparent from the following detailed description of the preferred embodiments. The directional terms mentioned in the following embodiments, for example, up, down, left, right, front or back, etc., are only directions referring to the additional drawings. Therefore, the directional terms used in the embodiments are intended to illustrate that they are not intended to limit the present invention.

首先請一併參閱第1、2圖,其中第1圖表示本創作一實施例之磁阻馬達結構示意圖,第2圖則表示第1圖中之磁阻馬達結構右上側部分的局部放大示意圖。First, please refer to FIGS. 1 and 2 together. FIG. 1 is a schematic view showing the structure of a reluctance motor according to an embodiment of the present invention, and FIG. 2 is a partially enlarged schematic view showing the upper right side portion of the reluctance motor structure in FIG. 1.

如第1、2圖所示,本實施例之磁阻馬達結構為一同步磁阻馬達(synchronous reluctance motor, SynRM),其主要包括一定子組件S以及設置於定子組件S內部且可相對於定子組件S旋轉之一轉子組件R;需特別說明的是,前述定子組件S以及轉子組件R分別形成一對稱結構,其中轉子組件R包含一本體R0、至少一第一磁鐵M1以及至少一第二磁鐵M2,前述第一磁鐵M1以及第二磁鐵M2係分別嵌設於本體R0中的第一凹槽H1以及第二凹槽H2內。As shown in the first and second figures, the reluctance motor structure of the embodiment is a synchronous reluctance motor (SRM), which mainly includes a certain sub-assembly S and is disposed inside the stator assembly S and is opposite to the stator. The assembly S rotates one of the rotor assemblies R; the stator assembly S and the rotor assembly R respectively form a symmetrical structure, wherein the rotor assembly R includes a body R0, at least one first magnet M1 and at least one second magnet M2, the first magnet M1 and the second magnet M2 are respectively embedded in the first groove H1 and the second groove H2 in the body R0.

另一方面,從第1、2圖中可以看出,前述定子組件S的內側形成有間隔排列的複數個齒部S1以及複數個槽部S2,且前述齒部S1以及槽部S2係圍繞轉子組件R。具體而言,本實施例之磁阻馬達結構主要係將四組成對之第一磁鐵M1以及第二磁鐵M2分別設置於轉子組件R之本體R0中的四個不同象限內對應的第一凹槽H1以及第二凹槽H2內,且每一對中的第一磁鐵M1以及第二磁鐵M2係具有矩形結構且相互平行。On the other hand, as can be seen from the first and second figures, the inner side of the stator assembly S is formed with a plurality of teeth S1 and a plurality of groove portions S2 arranged at intervals, and the tooth portion S1 and the groove portion S2 surround the rotor. Component R. Specifically, the reluctance motor structure of the present embodiment mainly comprises four first pairs of first magnets M1 and second magnets M2 respectively disposed in corresponding first grooves in four different quadrants of the body R0 of the rotor assembly R. The H1 and the second groove H2, and the first magnet M1 and the second magnet M2 in each pair have a rectangular structure and are parallel to each other.

應了解的是,當前述轉子組件R的直軸d(Direct axis)電感相對於交軸q(Quadrature axis)電感的比值Ld/Lq越大時,意即凸極比(saliency ratio)越大時,則磁阻馬達可提供較大的輸出轉矩。It should be understood that when the ratio Ld/Lq of the direct axis d of the rotor component R to the quadrature axis inductance is larger, that is, the larger the salinity ratio is. , the reluctance motor can provide a large output torque.

如第2圖所示,前述定子組件S形成有一內周面S’,前述轉子組件R之本體R0則形成有一外周面R0’,其中前述外周面R0’係朝向定子組件S之內周面S’,且在轉子組件R之本體R0的外周面R0’和定子組件S的內周面S’之間形成有一氣隙g。As shown in Fig. 2, the stator assembly S is formed with an inner peripheral surface S', and the body R0 of the rotor assembly R is formed with an outer peripheral surface R0', wherein the outer peripheral surface R0' faces the inner peripheral surface S of the stator assembly S. ', and an air gap g is formed between the outer peripheral surface R0' of the body R0 of the rotor assembly R and the inner peripheral surface S' of the stator assembly S.

在本實施例中,前述外周面R0’的直徑為72mm,第一磁鐵M1於轉子組件R之一徑向方向(交軸q方向)上具有第一厚度T1,第二磁鐵M2於前述徑向方向(交軸q方向)上則具有一第二厚度T2,其中前述第二厚度T2可大於或等於第一厚度T1,而本實施例中之前述第一、第二厚度T1、T2均為4mm,且第一、第二磁鐵M1、M2在垂直於交軸q之方向上的長度均為25mm。In the present embodiment, the outer peripheral surface R0' has a diameter of 72 mm, and the first magnet M1 has a first thickness T1 in one radial direction (the orthogonal direction q direction) of the rotor assembly R, and the second magnet M2 is in the aforementioned radial direction. The direction (the direction of the axis q) has a second thickness T2, wherein the second thickness T2 can be greater than or equal to the first thickness T1, and the first and second thicknesses T1 and T2 in the embodiment are both 4 mm. And the lengths of the first and second magnets M1, M2 in the direction perpendicular to the intersection axis q are both 25 mm.

請繼續參閱第2圖,需特別說明的是,前述第一、第二磁鐵M1、M2間於前述徑向方向(交軸q方向)上形成有一間距D1,且前述第一磁鐵M1與前述轉子組件R之本體R0的外周面R0’間則此相隔有一最短距離D2。Referring to FIG. 2, it should be particularly noted that a gap D1 is formed between the first and second magnets M1 and M2 in the radial direction (the direction of the intersecting axis q), and the first magnet M1 and the rotor are The outer peripheral surface R0' of the body R0 of the component R is separated by a shortest distance D2.

接著請參閱第3圖,其中第3圖表示當第2圖中之第一磁鐵M1與外周面R0’間之最短距離D2分別為前述外周面R0’和定子組件S間之氣隙g之寬度的3、5、7、9倍時,第一磁鐵M1與第二磁鐵M2之一間距D1與第一厚度T1在不同比值下的轉矩漣波比較示意圖,相關數據則請參閱下方表1。 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> D2/g </td><td> D1/T1 </td><td> 轉矩漣波(%) </td><td> 平均輸出轉矩(N-m) </td></tr><tr><td> 3.0 </td><td> 0.25 </td><td> 9% </td><td> 3.57 </td></tr><tr><td> 0.50 </td><td> 13% </td><td> 3.89 </td></tr><tr><td> 0.75 </td><td> 17% </td><td> 4.10 </td></tr><tr><td> 1.00 </td><td> 18% </td><td> 4.14 </td></tr><tr><td> 1.25 </td><td> 18% </td><td> 4.14 </td></tr><tr><td> 1.50 </td><td> 18% </td><td> 4.14 </td></tr><tr><td> 1.75 </td><td> 19% </td><td> 4.12 </td></tr><tr><td> 2.00 </td><td> 22% </td><td> 4.02 </td></tr><tr><td> 5.0 </td><td> 0.25 </td><td> 11% </td><td> 3.69 </td></tr><tr><td> 0.50 </td><td> 11% </td><td> 3.95 </td></tr><tr><td> 0.75 </td><td> 13% </td><td> 4.09 </td></tr><tr><td> 1.00 </td><td> 13% </td><td> 4.11 </td></tr><tr><td> 1.25 </td><td> 13% </td><td> 4.10 </td></tr><tr><td> 1.50 </td><td> 14% </td><td> 4.08 </td></tr><tr><td> 1.75 </td><td> 22% </td><td> 3.98 </td></tr><tr><td> 7.0 </td><td> 0.25 </td><td> 15% </td><td> 3.77 </td></tr><tr><td> 0.50 </td><td> 16% </td><td> 3.98 </td></tr><tr><td> 0.75 </td><td> 17% </td><td> 4.07 </td></tr><tr><td> 1.00 </td><td> 17% </td><td> 4.08 </td></tr><tr><td> 1.25 </td><td> 17% </td><td> 4.07 </td></tr><tr><td> 1.50 </td><td> 24% </td><td> 3.97 </td></tr><tr><td> 9.0 </td><td> 0.25 </td><td> 16% </td><td> 3.78 </td></tr><tr><td> 0.50 </td><td> 17% </td><td> 3.96 </td></tr><tr><td> 0.75 </td><td> 17% </td><td> 4.04 </td></tr><tr><td> 1.00 </td><td> 18% </td><td> 4.04 </td></tr><tr><td> 1.25 </td><td> 23% </td><td> 3.94 </td></tr></TBODY></TABLE>表1 Next, referring to FIG. 3, FIG. 3 shows that the shortest distance D2 between the first magnet M1 and the outer peripheral surface R0' in FIG. 2 is the width of the air gap g between the outer peripheral surface R0' and the stator assembly S, respectively. 3, 5, 7, and 9 times, the torque chopping comparison of the distance between the first magnet M1 and the second magnet M2 and the first thickness T1 at different ratios, please refer to Table 1 below for related data.  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> D2/g </td><td> D1/T1 </td><td> Moment Chopping (%) </td><td> Average Output Torque (Nm) </td></tr><tr><td> 3.0 </td><td> 0.25 </td><td> 9% </td><td> 3.57 </td></tr><tr><td> 0.50 </td><td> 13% </td><td> 3.89 </td></tr> <tr><td> 0.75 </td><td> 17% </td><td> 4.10 </td></tr><tr><td> 1.00 </td><td> 18% </ Td><td> 4.14 </td></tr><tr><td> 1.25 </td><td> 18% </td><td> 4.14 </td></tr><tr>< Td> 1.50 </td><td> 18% </td><td> 4.14 </td></tr><tr><td> 1.75 </td><td> 19% </td><td > 4.12 </td></tr><tr><td> 2.00 </td><td> 22% </td><td> 4.02 </td></tr><tr><td> 5.0 < /td><td> 0.25 </td><td> 11% </td><td> 3.69 </td></tr><tr><td> 0.50 </td><td> 11% </ Td><td> 3.95 </td></tr><tr><td> 0.75 </td><td> 13% </td><td> 4.09 </td></tr><tr>< Td> 1.00 </td><td> 13% </td><td> 4.11 </td></tr><tr><td> 1.25 </td><td> 13% </td><td > 4.10 </td></tr><tr><td> 1.50 </td><td> 14% </td><td> 4.08 </td></tr><tr><td> 1.75 < /td><td> 22% </td><td> 3.98 </td></tr><tr><td> 7.0 </td>< Td> 0.25 </td><td> 15% </td><td> 3.77 </td></tr><tr><td> 0.50 </td><td> 16% </td><td > 3.98 </td></tr><tr><td> 0.75 </td><td> 17% </td><td> 4.07 </td></tr><tr><td> 1.00 < /td><td> 17% </td><td> 4.08 </td></tr><tr><td> 1.25 </td><td> 17% </td><td> 4.07 </ Td></tr><tr><td> 1.50 </td><td> 24% </td><td> 3.97 </td></tr><tr><td> 9.0 </td>< Td> 0.25 </td><td> 16% </td><td> 3.78 </td></tr><tr><td> 0.50 </td><td> 17% </td><td > 3.96 </td></tr><tr><td> 0.75 </td><td> 17% </td><td> 4.04 </td></tr><tr><td> 1.00 < /td><td> 18% </td><td> 4.04 </td></tr><tr><td> 1.25 </td><td> 23% </td><td> 3.94 </ Td></tr></TBODY></TABLE> Table 1  

如前述表1以及第3圖所示,為了分析前述第一磁鐵M1與前述外周面R0’間之最短距離D2和氣隙g寬度的比值(D2/g),以及前述間距D1和第一厚度T1之比值(D1/T1)對於磁阻馬達輸出性能之影響,經反覆分析模擬及實驗後發現:當前述最短距離D2為前述氣隙g寬度的4~6倍時(4≦D2/g≦6),可使磁阻馬達具有較佳之性能,亦即可使磁阻馬達同時具有較高之輸出轉矩以及較低之轉矩漣波。惟需特別說明的是,在前述表1以及第3圖的模擬分析中,第一磁鐵M1之第一厚度T1以及氣隙g寬度值乃保持不變,而僅以第一磁鐵M1與外周面R0’間的最短距離D2和第一、第二磁鐵M1、M2之間距D1作為自變項(independent variable)以觀察其對於磁阻馬達輸出性能之影響。As shown in the above Table 1 and FIG. 3, in order to analyze the ratio (D2/g) of the shortest distance D2 between the first magnet M1 and the outer peripheral surface R0' and the air gap g width, and the aforementioned pitch D1 and the first thickness T1 The ratio of the ratio (D1/T1) to the output performance of the reluctance motor, after repeated analysis and simulation, found that when the shortest distance D2 is 4-6 times the width of the air gap g (4≦D2/g≦6) ), the reluctance motor can be better in performance, and the reluctance motor can have both higher output torque and lower torque ripple. However, it should be particularly noted that in the simulation analysis of Tables 1 and 3 described above, the first thickness T1 and the air gap g width value of the first magnet M1 remain unchanged, and only the first magnet M1 and the outer peripheral surface are used. The shortest distance D2 between R0' and the distance D1 between the first and second magnets M1, M2 are taken as independent variables to observe their influence on the output performance of the reluctance motor.

從前述表1以及第3圖中可看出,當前述最短距離D2相對於前述氣隙g寬度之比值小於4時(例如D2/g=3時),磁阻馬達會產生較大的轉矩漣波,且當前述最短距離D2相對於前述氣隙g寬度的比值大於6時(例如D2/g=7或D2/g=9時),磁阻馬達同樣會產生較大的轉矩漣波。根據前述模擬分析結果可以推知:在第一磁鐵M1與前述轉子組件R之本體R0的外周面R0’間的最短距離D2介於前述氣隙g之寬度的4~6倍時(例如D2/g=5時),磁阻馬達可具有較低之轉矩漣波,藉此以避免馬達運轉時產生明顯的震動與噪音。As can be seen from the foregoing Table 1 and FIG. 3, when the ratio of the aforementioned shortest distance D2 to the aforementioned air gap g width is less than 4 (for example, when D2/g=3), the reluctance motor generates a large torque. Chopping, and when the ratio of the aforementioned shortest distance D2 to the aforementioned air gap g width is greater than 6 (for example, when D2/g=7 or D2/g=9), the reluctance motor also generates a large torque ripple. . According to the results of the above simulation analysis, it can be inferred that the shortest distance D2 between the first magnet M1 and the outer peripheral surface R0' of the body R0 of the rotor assembly R is 4 to 6 times the width of the air gap g (for example, D2/g). At 5 o'clock, the reluctance motor can have a lower torque ripple to avoid significant vibration and noise when the motor is running.

接著再請參閱第4圖,其中第4圖表示當以第2圖中之間距D1/第一厚度T1=0.25作為比較基準(100%)時,不同之間距D1/第一厚度T1的比值(D1/T1)對於磁阻馬達的平均轉矩增加比例之示意圖,其中D2/g=5保持不變,相關數據請參閱下方表2。 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> D2/g </td><td> D1/T1 </td><td> 平均輸出轉矩(N-m) </td><td> 平均輸出轉矩增加比率(%) </td></tr><tr><td> 5.0 </td><td> 0.25 </td><td> 3.69 </td><td> 100% </td></tr><tr><td> 0.50 </td><td> 3.95 </td><td> 107% </td></tr><tr><td> 0.75 </td><td> 4.09 </td><td> 111% </td></tr><tr><td> 1.00 </td><td> 4.11 </td><td> 111% </td></tr><tr><td> 1.25 </td><td> 4.10 </td><td> 111% </td></tr><tr><td> 1.50 </td><td> 4.08 </td><td> 111% </td></tr><tr><td> 1.75 </td><td> 3.98 </td><td> 108% </td></tr></TBODY></TABLE>表2 Next, please refer to FIG. 4, wherein FIG. 4 shows the ratio of the difference D1/the first thickness T1 when the distance D1/the first thickness T1=0.25 is used as a comparison reference (100%) in FIG. 2 ( D1/T1) Schematic diagram of the average torque increase ratio of the reluctance motor, where D2/g=5 remains unchanged. For related data, please refer to Table 2 below.  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> D2/g </td><td> D1/T1 </td><td> Average Output Torque (Nm) </td><td> Average Output Torque Increase Ratio (%) </td></tr><tr><td> 5.0 </td><td> 0.25 </td>< Td> 3.69 </td><td> 100% </td></tr><tr><td> 0.50 </td><td> 3.95 </td><td> 107% </td></ Tr><tr><td> 0.75 </td><td> 4.09 </td><td> 111% </td></tr><tr><td> 1.00 </td><td> 4.11 < /td><td> 111% </td></tr><tr><td> 1.25 </td><td> 4.10 </td><td> 111% </td></tr><tr ><td> 1.50 </td><td> 4.08 </td><td> 111% </td></tr><tr><td> 1.75 </td><td> 3.98 </td>< Td> 108% </td></tr></TBODY></TABLE> Table 2  

從第3圖的區域A以及第4圖中可以看出,當第一磁鐵M1與前述外周面R0’間之最短距離D2相對於氣隙g寬度為5倍(D2/g=5),且第一、第二磁鐵M1、M2的間距D1介於前述第一厚度T1的0.75~1.5倍時(0.75≦D1/T1≦1.5),不僅磁阻馬達的輸出轉矩可大幅地往上提升(較D1/T1=0.25時提高至110%的水準以上),同時也能抑制轉矩漣波的產生(轉矩漣波低於15%,如第3圖中的區域A所示),藉此可有效地改善磁阻馬達的性能與穩定性。As can be seen from the area A and the fourth drawing of FIG. 3, the shortest distance D2 between the first magnet M1 and the outer peripheral surface R0' is 5 times the width of the air gap g (D2/g=5), and When the pitch D1 between the first and second magnets M1 and M2 is between 0.75 and 1.5 times the first thickness T1 (0.75 ≦ D1/T1 ≦ 1.5), not only the output torque of the reluctance motor can be greatly increased ( It can increase the torque ripple more than D1/T1=0.25, and also suppress the generation of torque ripple (torque chopping is less than 15%, as shown in area A in Figure 3). It can effectively improve the performance and stability of the reluctance motor.

綜上所述,本創作主要係揭露一種磁阻馬達結構,其中藉由使第一磁鐵與轉子組件的外周面間之最短距離介於氣隙寬度的4~6倍(例如約5倍),可有效降低轉矩漣波的產生;此外,當第一、第二磁鐵間於轉子組件之徑向方向的間距介於第一磁鐵沿該徑向方向之厚度的0.75~1.5倍時(例如約1倍),可大幅提升磁阻馬達的輸出轉矩同時具有較低的轉矩漣波,從而能有效改善磁阻馬達的性能與穩定性。In summary, the present invention mainly discloses a reluctance motor structure in which the shortest distance between the outer circumference of the first magnet and the rotor assembly is 4 to 6 times (for example, about 5 times) the width of the air gap. The torque chopping can be effectively reduced; in addition, when the distance between the first and second magnets in the radial direction of the rotor assembly is between 0.75 and 1.5 times the thickness of the first magnet in the radial direction (for example, 1 times), the output torque of the reluctance motor can be greatly improved and the torque ripple is low, so that the performance and stability of the reluctance motor can be effectively improved.

雖然本創作的實施例及其優點已揭露如上,但應該瞭解的是,任何所屬技術領域中具有通常知識者,在不脫離本創作之精神和範圍內,當可作更動、替代與潤飾。此外,本創作之保護範圍並未侷限於說明書內所述特定實施例中的製程、機器、製造、物質組成、裝置、方法及步驟,任何所屬技術領域中具有通常知識者可從本創作揭示內容中理解現行或未來所發展出的製程、機器、製造、物質組成、裝置、方法及步驟,只要可以在此處所述實施例中實施大抵相同功能或獲得大抵相同結果皆可根據本創作使用。因此,本創作之保護範圍包括上述製程、機器、製造、物質組成、裝置、方法及步驟。另外,每一申請專利範圍構成個別的實施例,且本創作之保護範圍也包括各個申請專利範圍及實施例的組合。Although the embodiments of the present invention and its advantages have been disclosed as above, it should be understood that those skilled in the art can make changes, substitutions and refinements without departing from the spirit and scope of the present invention. In addition, the scope of protection of the present invention is not limited to the processes, machines, manufacturing, material compositions, devices, methods, and steps in the specific embodiments described in the specification, and any one of ordinary skill in the art may disclose the present disclosure. It is understood that the processes, machines, manufactures, compositions, devices, methods, and steps that are presently or in the future can be used in accordance with the present invention as long as they can perform substantially the same function or achieve substantially the same results in the embodiments described herein. Therefore, the scope of protection of the present invention includes the above processes, machines, manufacturing, material compositions, devices, methods and steps. In addition, each patent application scope constitutes an individual embodiment, and the scope of protection of the present invention also includes the combination of each patent application scope and embodiment.

雖然本創作已以較佳實施例揭露於上,然其並非用以限定本創作,任何熟習此項工藝者,在不脫離本創作之精神和範圍內,當可作些許之更動與潤飾,因此本創作之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the preferred embodiments, it is not intended to limit the present invention. Anyone skilled in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of protection of this creation is subject to the definition of the scope of the patent application attached.

A‧‧‧區域A‧‧‧ area

d‧‧‧直軸 D‧‧‧straight axis

D1‧‧‧間距 D1‧‧‧ spacing

D2‧‧‧最短距離 D2‧‧‧ shortest distance

g‧‧‧氣隙 g‧‧‧Air gap

H1‧‧‧第一凹槽 H1‧‧‧first groove

H2‧‧‧第二凹槽 H2‧‧‧second groove

M1‧‧‧第一磁鐵 M1‧‧‧first magnet

M2‧‧‧第二磁鐵 M2‧‧‧second magnet

q‧‧‧交軸 Q‧‧‧cross axis

R‧‧‧轉子組件 R‧‧‧Rotor assembly

R0‧‧‧本體 R0‧‧‧ Ontology

R0’‧‧‧外周面 R0’‧‧‧ outer perimeter

S‧‧‧定子組件 S‧‧‧STAR assembly

S’‧‧‧內周面 S’‧‧‧ inner circumference

S1‧‧‧齒部 S1‧‧‧ teeth

S2‧‧‧槽部 S2‧‧‧ slot department

T1‧‧‧第一厚度 T1‧‧‧first thickness

T2‧‧‧第二厚度 T2‧‧‧second thickness

第1圖表示本創作一實施例之磁阻馬達結構示意圖。 第2圖係表示第1圖所示之磁阻馬達結構右上側部分的局部放大示意圖。 第3圖表示當第2圖中之第一磁鐵M1與外周面R0’間之最短距離D2分別為前述外周面R0’和定子組件S間之氣隙g之寬度的3、5、7、9倍時,第一磁鐵M1與第二磁鐵M2之一間距D1與第一厚度T1在不同比值下的轉矩漣波比較示意圖。 第4圖係表示當以第2圖中之間距D1/第一厚度T1=0.25作為比較基準(100%)時,不同之間距D1/第一厚度T1的比值對於磁阻馬達的平均轉矩增加比例之示意圖。Fig. 1 is a view showing the structure of a reluctance motor according to an embodiment of the present invention. Fig. 2 is a partially enlarged schematic view showing the upper right side portion of the reluctance motor structure shown in Fig. 1. Fig. 3 shows that the shortest distance D2 between the first magnet M1 and the outer peripheral surface R0' in Fig. 2 is 3, 5, 7, and 9 of the width of the air gap g between the outer peripheral surface R0' and the stator assembly S, respectively. In the case of multiple times, a torque chopping comparison of the distance D1 between the first magnet M1 and the second magnet M2 and the first thickness T1 at different ratios is shown. Fig. 4 is a view showing an increase in the average torque of the reluctance motor for the ratio of the difference D1 to the first thickness T1 when the distance D1/the first thickness T1 = 0.25 in the second drawing is used as a comparison reference (100%). Schematic diagram of the ratio.

Claims (10)

一種磁阻馬達結構,包括: 一定子組件;以及 一轉子組件,設置於該定子組件內,並可相對於該定子組件旋轉,其中該轉子組件具有一本體以及嵌設於該本體內之一第一磁鐵,且該本體形成有朝向該定子組件之一外周面; 其中,該外周面與該定子組件之間形成有一氣隙,且該第一磁鐵與該外周面間具有一最短距離,其中該最短距離為該氣隙之寬度的4~6倍。A reluctance motor structure comprising: a certain sub-assembly; and a rotor assembly disposed in the stator assembly and rotatable relative to the stator assembly, wherein the rotor assembly has a body and is embedded in the body a magnet, and the body is formed with an outer circumferential surface facing the stator assembly; wherein an air gap is formed between the outer circumferential surface and the stator assembly, and a shortest distance between the first magnet and the outer circumferential surface, wherein the magnet The shortest distance is 4 to 6 times the width of the air gap. 如申請專利範圍第1項所述之磁阻馬達結構,其中該最短距離為該氣隙之寬度的5倍。The reluctance motor structure of claim 1, wherein the shortest distance is five times the width of the air gap. 如申請專利範圍第1項所述之磁阻馬達結構,其中該定子組件形成有複數個齒部以及複數個槽部,該些齒部以及該些槽部間隔設置並環繞該轉子組件。The reluctance motor structure of claim 1, wherein the stator assembly is formed with a plurality of teeth and a plurality of grooves, and the teeth and the grooves are spaced apart and surround the rotor assembly. 如申請專利範圍第1項所述之磁阻馬達結構,其中該轉子組件更具有嵌設於該本體內之一第二磁鐵,且該第一磁鐵較該第二磁鐵更靠近該定子組件。The reluctance motor structure of claim 1, wherein the rotor assembly further has a second magnet embedded in the body, and the first magnet is closer to the stator assembly than the second magnet. 如申請專利範圍第4項所述之磁阻馬達結構,其中該第一磁鐵於該轉子組件之一徑向方向上具有一第一厚度,且該第二磁鐵於該轉子組件之該徑向方向上具有一第二厚度,其中該第二厚度大於或等於該第一厚度。The reluctance motor structure of claim 4, wherein the first magnet has a first thickness in a radial direction of one of the rotor assemblies, and the second magnet is in the radial direction of the rotor assembly There is a second thickness, wherein the second thickness is greater than or equal to the first thickness. 一種磁阻馬達結構,包括: 一定子組件;以及 一轉子組件,設置於該定子組件內,並可相對於該定子組件旋轉,其中該轉子組件具有一本體以及嵌設於該本體內之一第一磁鐵和一第二磁鐵,且該第一磁鐵較該第二磁鐵更靠近該定子組件,其中該第一磁鐵於該轉子組件之一徑向方向上具有一第一厚度,該第一磁鐵與該第二磁鐵之間於該轉子組件之該徑向方向上形成有一間距,且該間距為該第一厚度的0.75~1.5倍; 其中,該本體形成有朝向該定子組件之一外周面,該外周面與該定子組件之間形成有一氣隙,且該第一磁鐵與該外周面間具有一最短距離,且該最短距離為該氣隙之寬度的4~6倍。A reluctance motor structure comprising: a certain sub-assembly; and a rotor assembly disposed in the stator assembly and rotatable relative to the stator assembly, wherein the rotor assembly has a body and is embedded in the body a magnet and a second magnet, and the first magnet is closer to the stator assembly than the second magnet, wherein the first magnet has a first thickness in a radial direction of one of the rotor assemblies, the first magnet Forming a spacing between the second magnets in the radial direction of the rotor assembly, and the spacing is 0.75 to 1.5 times the first thickness; wherein the body is formed with an outer circumferential surface facing the stator assembly, An air gap is formed between the outer peripheral surface and the stator assembly, and a shortest distance between the first magnet and the outer peripheral surface, and the shortest distance is 4-6 times the width of the air gap. 如申請專利範圍第6項所述之磁阻馬達結構,其中該間距等於該第一厚度。The reluctance motor structure of claim 6, wherein the spacing is equal to the first thickness. 如申請專利範圍第6項所述之磁阻馬達結構,其中該最短距離為該氣隙之寬度的5倍。The reluctance motor structure of claim 6, wherein the shortest distance is five times the width of the air gap. 如申請專利範圍第6項所述之磁阻馬達結構,其中該定子組件形成有複數個齒部以及複數個槽部,該些齒部以及該些槽部間隔設置並環繞該轉子組件。The reluctance motor structure of claim 6, wherein the stator assembly is formed with a plurality of teeth and a plurality of grooves, and the teeth and the grooves are spaced apart and surround the rotor assembly. 如申請專利範圍第6項所述之磁阻馬達結構,其中該第二磁鐵於該轉子組件之該徑向方向上具有一第二厚度,其中該第二厚度大於或等於該第一厚度。The reluctance motor structure of claim 6, wherein the second magnet has a second thickness in the radial direction of the rotor assembly, wherein the second thickness is greater than or equal to the first thickness.
TW107213038U 2018-09-26 2018-09-26 Reluctance motor structure TWM574357U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107213038U TWM574357U (en) 2018-09-26 2018-09-26 Reluctance motor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107213038U TWM574357U (en) 2018-09-26 2018-09-26 Reluctance motor structure

Publications (1)

Publication Number Publication Date
TWM574357U true TWM574357U (en) 2019-02-11

Family

ID=66214411

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107213038U TWM574357U (en) 2018-09-26 2018-09-26 Reluctance motor structure

Country Status (1)

Country Link
TW (1) TWM574357U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118074387A (en) * 2024-04-17 2024-05-24 卧龙电气驱动集团股份有限公司 Ferrite-assisted synchronous reluctance motor rotor structure and permanent magnet synchronous motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118074387A (en) * 2024-04-17 2024-05-24 卧龙电气驱动集团股份有限公司 Ferrite-assisted synchronous reluctance motor rotor structure and permanent magnet synchronous motor
CN118074387B (en) * 2024-04-17 2024-07-26 卧龙电气驱动集团股份有限公司 Ferrite-assisted synchronous reluctance motor rotor structure and permanent magnet synchronous motor

Similar Documents

Publication Publication Date Title
US9634530B2 (en) Interior permanent magnet motor with shifted rotor laminations
JP6379462B2 (en) Permanent magnet embedded rotary electric machine
WO2017099002A1 (en) Rotating electrical machine
JP2010166810A (en) Stator of rotating electrical machine
US11581765B2 (en) Inferior permanent magnet electric motor and rotor included therein
US9293974B2 (en) Electric motor having stator core for reducing cogging torque
JP2010124686A (en) Electric motor
JP2014003758A (en) Embedded magnet type rotor having continuous skew structure
JP2017212867A (en) Magnet-embedded motor and compressor using the same
TWM574357U (en) Reluctance motor structure
JP2011067090A (en) Permanent magnet motor and permanent magnet linear motor
US11245293B2 (en) Motor stator with dovetail or rectangular mount structure and stator teeth airgap width ratio
JP2015233368A (en) Permanent magnet type motor
Jagasics et al. Cogging torque reduction by magnet pole pairing technique
US20200395796A1 (en) Rotor for Motor for Reducing Amount of Usage of Permanent Magnets
WO2018159339A1 (en) Rotor, motor including rotor, and power unit including motor
JP2014225935A (en) Permanent magnet type rotary electric machine
US10418869B2 (en) Rotor structure of synchronous reluctance motor
TWM625905U (en) Rotating machine
CN208939796U (en) Magnetic resistance motor structure
JP2012115142A (en) Magnet for generator
KR102590333B1 (en) Rotor Skew Structure for Reducing Cogging Torque and Rotor Skew Method for Reducing Cogging Torque
TWI825519B (en) Rotor structure of rotating motor
TWI702776B (en) Electrical rotation machine and rotor assembly thereof
US20130229083A1 (en) Structure for Brushless Motors