TWM573493U - System for predicting conversion probability by visitors' browsing paths - Google Patents
System for predicting conversion probability by visitors' browsing paths Download PDFInfo
- Publication number
- TWM573493U TWM573493U TW107214960U TW107214960U TWM573493U TW M573493 U TWM573493 U TW M573493U TW 107214960 U TW107214960 U TW 107214960U TW 107214960 U TW107214960 U TW 107214960U TW M573493 U TWM573493 U TW M573493U
- Authority
- TW
- Taiwan
- Prior art keywords
- page order
- neural network
- vector
- path
- page
- Prior art date
Links
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本創作係有關於一種預測系統,特別是指一種藉由訪客瀏覽路徑以預測轉換機率之系統。 This creation is about a prediction system, especially a system that uses a visitor browsing path to predict conversion probability.
既有的廣告投放是透過學習使用者瀏覽路徑,包括間接或直接連結的網頁,藉由收集瀏覽頁面的內容,分析瀏覽頁面的內容,將網頁內容依據詞彙庫找出有意義的詞彙,並依據詞彙出現的頻率給予權重。 The existing advertisement is to learn the user browsing path, including the indirect or directly linked webpage, to collect the content of the browsing page, analyze the content of the browsing page, and find the meaningful vocabulary according to the vocabulary according to the vocabulary, and according to the vocabulary The frequency of occurrence gives weight.
同時,依據先前的瀏覽頁面以及權重,決定搜尋廣告的條件,且廣告搜尋的條件也可依據使用者所點選的頻道、文章標題、連結的網站名稱、輸入的關鍵字等等,進而選出符合條件的廣告,並將廣告放置於瀏覽頁面的明顯位置。 At the same time, according to the previous browsing page and weight, the conditions for searching for the advertisement are determined, and the conditions for the advertisement search can also be selected according to the channel selected by the user, the title of the article, the name of the linked website, the keyword input, and the like. Conditional ads and place the ad in a prominent position on the page.
然而,既有的網頁廣告都是來自使用者點閱廣告的行為資訊,並藉由瀏覽網頁的關鍵字作為權重提供使用者近似內容的其他廣告,但卻未能真正分析使用者行為以及瀏覽頁面的模式,未能真正貼切使用者的需求以及創造使用者需求,更遑論可以預測使用者的行為模式。 However, existing webpage advertisements are information about behaviors of users clicking through advertisements, and by using keywords of webpages as weights to provide other advertisements for users to approximate content, but failing to truly analyze user behavior and browsing pages. The model does not really align the user's needs and create user needs, let alone predict the user's behavior patterns.
因此,現有的投放廣告技術均有不足之處,亟待加以改良。 Therefore, the existing advertising technology has its shortcomings and needs to be improved.
為達前述目的,本創作係提供一種藉由訪客瀏覽路徑預測轉換機率之系統,包括:擷取單元,係用以收集多個訪客的訪問身份以及該多個訪客的訪問路徑;路徑資料庫,係連接該擷取單元,以紀錄該多個訪客的訪問身份及紀錄各該訪客的該訪問路徑所組成的頁面次序;標記單元,係連接該路徑資料庫,以將該路徑資料庫所紀錄的該頁面次序中經過轉換的頁面次序予以標記;處理器,係包含有記憶體及演算法模組,用以接收來自該路徑資料庫所紀錄的該訪客身份以及其所對應之該頁面次序並載入於該記憶體中,以透過該演算法模組將該頁面次序運算為對應的向量;訓練模組,係接收該演算法模組所運算的該向量,並將預設比例數量的該向量輸入遞迴式類神經網絡以建立遞迴式類神經網絡模型,且令該遞迴式類神經網絡模型學習經過標記的頁面次序的向量模式;以及預測模組,係將該擷取單元所收集且經過該路徑資料庫紀錄的更新訪問路徑的頁面次序,透過該演算法模組運算為對應向量,以輸入該遞迴式類神經網絡模型得出預測轉換頁面次序,該預測轉換頁面次序的對應向量係趨近該經過標記的頁面次序的向量模式。 For the foregoing purposes, the present invention provides a system for predicting conversion probability by a visitor browsing path, including: a retrieval unit for collecting access identities of multiple visitors and access paths of the plurality of visitors; a path database, Connecting the capturing unit to record the access status of the plurality of visitors and recording the page order formed by the access paths of each of the visitors; the marking unit is connected to the path database to record the path database The converted page order is marked in the page order; the processor includes a memory and an algorithm module for receiving the visitor identity recorded from the path database and the page order corresponding thereto Entering in the memory, the page order is calculated as a corresponding vector through the algorithm module; the training module receives the vector calculated by the algorithm module, and presets the number of the vector Entering a recursive neural network to establish a recursive neural network model, and let the recursive neural network model learn the marked page order And a prediction module, wherein the page order of the update access path collected by the capture unit and recorded by the path database is calculated as a corresponding vector through the algorithm module to input the regressive neural network The network model derives a predictive conversion page order that corresponds to the vector pattern of the marked page order.
前述的訪客瀏覽路徑預測轉換機率之系統,更包括:評估模組,係將該演算法模組的該預設比例數量的該向量 以外的其餘向量輸入至該遞迴式類神經網絡模型以評估預測轉換的準確性。 The foregoing system for predicting a conversion probability of a visitor path includes: an evaluation module, the preset proportional number of the vector of the algorithm module The remaining vectors other than the vector are input to the recursive neural network model to evaluate the accuracy of the prediction transformation.
前述的訪客瀏覽路徑預測轉換機率之系統,其中,該標記單元所標記的經過轉換的頁面次序係在該訪問路徑中出現消費行為而標記為數值1,且該標記單元係將該路徑資料庫所紀錄的該頁面次序中未出現轉換的頁面次序標記為數值0。 The foregoing guest browsing path predicts a conversion probability system, wherein the converted page order marked by the marking unit is marked as a value 1 in a consumption behavior in the access path, and the marking unit is the path database The page order in which the conversion does not appear in the page order of the record is marked as a value of zero.
前述的訪客瀏覽路徑預測轉換機率之系統,其中,該訓練模組是隨機選擇百分之八十的比例數量的該向量輸入該遞迴式類神經網絡以建立遞迴式類神經網絡模型。 The foregoing guest browsing path predicts a conversion probability system, wherein the training module randomly selects a percentage of the vector of the 80% input to the recursive neural network to establish a recursive neural network model.
前述的訪客瀏覽路徑預測轉換機率之系統,其中,該遞迴式類神經網絡係包括輸入層及輸出層,該輸入層係將上一筆輸出層的輸出值乘上第一權重值加上由該演算法模組提供的目前向量以作為輸入值,該輸出層係將將該輸入層的該輸入值乘上第二權重值加上偏移值以作為該輸入值。 The foregoing system for predicting a conversion probability of a visitor path, wherein the recursive neural network system comprises an input layer and an output layer, wherein the input layer multiplies an output value of the previous output layer by a first weight value plus The current vector provided by the algorithm module is used as an input value, and the output layer multiplies the input value of the input layer by a second weight value plus an offset value as the input value.
前述的訪客瀏覽路徑預測轉換機率之系統,其中,該遞迴式類神經網絡更包括歸一化指數層,其將該輸出層的該輸出值換算為0至1之間的數值範圍內,以作為預測轉換的機率。 The foregoing method for predicting conversion probability of a visitor browsing path, wherein the recursive neural network further comprises a normalized index layer, which converts the output value of the output layer into a numerical range between 0 and 1, As a chance to predict conversion.
前述的訪客瀏覽路徑預測轉換機率之系統,其中,該演算法模組係使用word2vec演算法。 The aforementioned guest browsing path predicts a conversion probability system, wherein the algorithm module uses a word2vec algorithm.
前述的訪客瀏覽路徑預測轉換機率之系統,其中,該路徑資料庫依照時間順序紀錄各該訪客的該訪問路徑所組 成的頁面次序。 The foregoing system for predicting a conversion probability of a visitor path, wherein the path database records the access path group of each visitor in chronological order The order of the pages.
前述的訪客瀏覽路徑預測轉換機率之系統,其中,該路徑資料庫係將該擷取單元所收集的該更新訪問路徑增加在相同訪客身份基礎上的既有訪問路徑之後,以更新頁面次序。 The foregoing system for predicting a conversion probability of a visitor path, wherein the path database is to update the page access order by adding the update access path collected by the capture unit to an existing access path based on the same guest identity.
10‧‧‧系統 10‧‧‧System
11‧‧‧擷取單元 11‧‧‧Capture unit
12‧‧‧路徑資料庫 12‧‧‧Path database
13‧‧‧標記單元 13‧‧‧Marking unit
14‧‧‧處理器 14‧‧‧ Processor
141‧‧‧記憶體 141‧‧‧ memory
142‧‧‧演算法模組 142‧‧‧ algorithm module
15‧‧‧訓練模組 15‧‧‧ training module
16‧‧‧遞迴式類神經網絡 16‧‧‧Return-type neural network
161‧‧‧輸入層 161‧‧‧Input layer
162‧‧‧輸出層 162‧‧‧Output layer
163‧‧‧歸一化指數層 163‧‧‧ normalized index layer
17‧‧‧評估模組 17‧‧‧Evaluation module
18‧‧‧預測模組 18‧‧‧ Forecasting Module
第1圖係本創作之藉由訪客瀏覽路徑預測轉換機率之系統的系統架構圖。 Figure 1 is a system architecture diagram of the system for predicting conversion probability by the guest browsing path.
第2圖係本創作之藉由訪客瀏覽路徑預測轉換機率之系統的遞迴式類神經網路架構示意圖。 Figure 2 is a schematic diagram of the recursive neural network architecture of the system for predicting conversion probability by the guest browsing path.
以下藉由特定的具體實施形態說明本創作之實施方式,熟悉此技術之人士可由本說明書所揭示之內容輕易地了解本創作之其他優點與功效,亦可藉由其他不同的具體實施形態加以施行或應用。 The embodiments of the present invention are described in the following specific embodiments, and those skilled in the art can easily understand other advantages and functions of the present invention by the contents disclosed in the present specification, and can also be implemented by other different embodiments. Or application.
請參閱第1圖,本創作係提供一種藉由訪客瀏覽路徑預測轉換機率之系統10,其包括:擷取單元11、路徑資料庫12、標記單元13、處理器14、訓練模組15、遞迴式類神經網絡16、評估模組17、及預測模組18。 Referring to FIG. 1, the present invention provides a system 10 for predicting conversion probability by a visitor browsing path, which includes: a retrieval unit 11, a path database 12, a marking unit 13, a processor 14, a training module 15, and a delivery The back-type neural network 16, the evaluation module 17, and the prediction module 18.
該擷取單元11係可為收集引擎以進行例如Google Analytics、伺服器日誌檔案、用戶註冊表單、或網路廣告所產生的cookies、多個訪客的訪問身份(例如IP位置、機器碼、訪客使用的瀏覽器、或註冊帳戶)、以及該多個訪客瀏覽頁面的訪問路徑(例如IP位址)等數據的收集。 The retrieval unit 11 can be a collection engine for performing cookies generated by, for example, Google Analytics, server log files, user registration forms, or online advertisements, and multiple visitor identifications (eg, IP location, machine code, visitor use). The browser, or the registered account), and the collection of data such as the access path (eg, IP address) of the plurality of guest browsing pages.
該擷取單元11將所收集的數據存入該路徑資料庫12,該路徑資料庫12主要紀錄該多個訪客的訪問身份(例如IP位置、機器碼、訪客使用的瀏覽器、或註冊帳戶)、及各個訪客瀏覽頁面的訪問路徑所組成的頁面次序,該路徑資料庫12依照時間順序排序以將訪客瀏覽頁面的多個訪問路徑紀錄為該頁面次序,相關訪客身份及訪問路徑的頁面次序可參照下列的表1所示。 The retrieval unit 11 stores the collected data in the path database 12, and the path database 12 mainly records the access status of the plurality of visitors (for example, IP location, machine code, browser used by the visitor, or registered account). And the page order formed by the access paths of the respective guest browsing pages, the path database 12 is sorted in chronological order to record the plurality of access paths of the guest browsing page as the page order, and the page order of the related guest identity and the access path may be Refer to Table 1 below.
表1中的轉換係訪客在瀏覽的過程中出現消費行 為,消費行為可為將商品放入購物車、訂購、結帳、信用卡付款、或其他線上付費的行為,可由是否進入特定網頁判定或作出特定指令來判定,該標記單元13係將該路徑資料庫12所紀錄的該頁面次序當中出現經過轉換的該頁面次序予以標記,在本實施例中,標記為1代表有消費行為,反之,未出現消費行為則標記為0。 The conversion in Table 1 shows the consumer in the browsing process. The behavior that the consumer behavior can be used to place the item into the shopping cart, order, checkout, credit card payment, or other online payment can be determined by whether to enter a particular web page or to make a specific instruction. The marking unit 13 is the path information. In the order of the pages recorded by the library 12, the converted page order is marked. In the present embodiment, the flag 1 indicates that there is a consumer behavior, and conversely, the consumer behavior is marked as 0.
處理器14,其係包括記憶體141及演算法模組142,該處理器14接收來自該路徑資料庫12所紀錄的該訪客身份及對應於訪客身份的該頁面次序(包括標記的該頁面次序)並暫存於記憶體141,以經演算法模組142將暫存於記憶體141的該頁面次序運算為對應的向量,其中,該演算法模組142係使用word2vec演算法,word2vec演算法一般是用於處理自然語言,在本創作中,處理器14透過演算法模組142使用word2vec演算法將瀏覽頁面次序運算為向量,例如,運算成為具有八個維度的向量。 The processor 14 includes a memory 141 and an algorithm module 142. The processor 14 receives the visitor identity recorded from the path repository 12 and the page order corresponding to the visitor identity (including the page order of the markup) And temporarily stored in the memory 141 to calculate the page order temporarily stored in the memory 141 by the algorithm module 142 as a corresponding vector, wherein the algorithm module 142 uses the word2vec algorithm, the word2vec algorithm Generally, it is used to process natural language. In the present creation, the processor 14 uses the word2vec algorithm to calculate the page order as a vector through the algorithm module 142, for example, to operate into a vector having eight dimensions.
訓練模組15係接收該演算法模組142所運算的該向量且將預設比例數量的該向量輸入遞迴式類神經網絡16(Recurrent Neural Network,RNN)以訓練建立遞迴式類神經網絡模型,其中該預設比例數量的向量係由該訓練模組15隨機選擇現有向量數據的百分之八十的比例的向量,作為訓練用而輸入至該遞迴式類神經網絡16,該遞迴式類神經網絡模型藉由學習記憶功能,可以由前述的經過標記的該頁面次序學習得知具有近似頁面次序的向量模式。 The training module 15 receives the vector calculated by the algorithm module 142 and inputs a preset proportion of the vector into the Recurrent Neural Network (RNN) to train the recurrent neural network. a model, wherein the preset proportional number of vectors is randomly selected by the training module 15 by a vector of 80% of the existing vector data, and is input to the regressive neural network 16 for training purposes. Back-type neural network model By learning the memory function, vector patterns with approximate page order can be learned from the aforementioned marked page order.
另請同時參閱第2圖,該遞迴式類神經網絡16係包括 輸入層161及輸出層162,該輸入層161係將上一筆輸出層162的輸出值乘上第一權重值加上由演算法模組142所提供的目前向量作為輸入值,該輸出層162係將輸入層161的輸入值乘上第二權重值加上偏移值作為輸出值,其中,該遞迴式類神經網絡16係更包括歸一化指數層(或稱為softmax層)163,其將該輸出層162的輸出值換算為0至1之間的數值範圍內以作為預測轉換的機率。 Please also refer to Figure 2, the recursive neural network 16 series includes The input layer 161 and the output layer 162 multiply the output value of the previous output layer 162 by the first weight value plus the current vector provided by the algorithm module 142 as an input value, and the output layer 162 is The input value of the input layer 161 is multiplied by the second weight value plus the offset value as an output value, wherein the recursive neural network 16 further includes a normalized index layer (or softmax layer) 163, which The output value of the output layer 162 is scaled to a value range between 0 and 1 as a probability of predictive conversion.
評估模組17,其將該演算法模組142的該預設比例數量的該向量之外的剩餘向量輸入至該遞迴式類神經網絡模型,以驗證及評估該遞迴式類神經網絡模型預測轉換的準確性,在本實施例中,評估模組17是將前述現有向量數據的剩餘百分之二十比例的向量作為驗證及評估該遞迴式類神經網絡模型的準確性,若驗證得知該經過訓練的遞迴式類神經網絡模型並未能夠正確預測出其該頁面次序將會轉換,則重新檢討擷取單元11的數據來源是否有誤、或更換數據來源,再重新運算為向量並輸入至遞迴式類神經網絡16中建立新的遞迴式類神經網絡模型;或新增更多訪客的頁面次序,以在大量資料的訓練之下,使遞迴式類神經網絡模型漸趨準確;又或,重新調整遞迴式類神經網絡的節點數及層數以重新建立遞迴式類神經網絡模型。 The evaluation module 17 inputs the preset vector of the predetermined proportion of the vector of the algorithm module 142 to the recursive neural network model to verify and evaluate the recursive neural network model. In the present embodiment, the evaluation module 17 uses the remaining twenty percent of the vector of the existing vector data as the verification and evaluation of the accuracy of the recursive neural network model. If it is known that the trained recursive neural network model cannot correctly predict that the page order will be converted, then the data source of the retrieval unit 11 is re-examined, or the data source is replaced, and then recalculated as The vector is input into the recursive neural network 16 to establish a new recursive neural network model; or more visitors are added to the page order to make the recursive neural network model under the training of a large amount of data. Gradually accurate; or, re-adjust the number of nodes and layers of the recursive neural network to re-establish the recursive neural network model.
預測模組18將擷取單元11所收集更新訪問路徑,經過該路徑資料庫12組成頁面次序且透過演算法模組152運算為對應向量後,輸入該遞迴式類神經網絡模型得出預測轉換的頁面次序;以前述的表1為例,由於該遞迴式類 神經網絡16所產生的遞迴式類神經網絡模型經過學習得知訪客路徑的頁面次序中的“頁面A→頁面C→頁面D”出現轉換而標記為1,當該擷取單元11收集多個近似於“頁面A→頁面C→頁面D”的頁面次序,且該遞迴式類神經網絡模型將在計算得出訪客在瀏覽包含有“頁面A→頁面C→頁面D”的預測轉換的頁面次序時,透過該歸一化指數層163計算得出該訪客具有趨近於1的數值的機率(極高的機率)進行消費行為;進一步,本創作之系統10可設定為,當該遞迴式類神經網絡模型計算得出訪客已瀏覽包含有“頁面A→頁面C→頁面D”的頁面次序時,系統10自動投放與頁面D同類型的產品廣告,或是經過該遞迴式類神經網絡模型所預測轉換的頁面次序,統計出這些具有高機率轉換的頁面次序給產品供應商,以作為調整商品頁面、商品排序、或頁面層次的參考。 The prediction module 18 collects the update access path collected by the capture unit 11, and forms a page order through the path database 12 and operates as a corresponding vector through the algorithm module 152, and then inputs the recursive neural network model to obtain a predictive conversion. Page order; take the above Table 1 as an example, due to the recursive class The recursive neural network model generated by the neural network 16 is learned to learn that the "page A→page C→page D" in the page order of the visitor path is converted and marked as 1, when the capture unit 11 collects multiple Approximating the page order of "Page A → Page C → Page D", and the recursive neural network model will calculate that the visitor is browsing the page containing the predicted conversion of "Page A → Page C → Page D" In the order, the normalized index layer 163 calculates the probability that the visitor has a value close to 1 (very high probability) to perform the consumption behavior; further, the system 10 of the present creation can be set to, when the recursion The system-like neural network model calculates that when the visitor has browsed the page order including "page A→page C→page D", the system 10 automatically delivers the same type of product advertisement as the page D, or passes through the recursive nerve. The page order predicted by the network model is calculated, and these page order with high probability conversion is counted to the product supplier as a reference for adjusting the product page, item sorting, or page level.
另外,該擷取單元11所收集的訪問路徑會隨著時間演變,而隨時可能新增新的訪問路徑,故該擷取單元11至少每日收集更新的訪問路徑存入該路徑資料庫12,並可將相同訪客身份的新增瀏覽的頁面增加於既有訪問路徑之後組成更新的頁面次序,並將更新的頁面次序經過該演算法模組142運算為對應的向量後,輸入遞迴式類神經網絡模型以預測轉換機率。 In addition, the access path collected by the capturing unit 11 may evolve over time, and a new access path may be added at any time. Therefore, the capturing unit 11 collects the updated access path at least daily and stores it in the path database 12. The newly browsed page of the same guest identity may be added to the updated page order after the existing access path, and the updated page order is calculated into the corresponding vector by the algorithm module 142, and the recursive class is input. Neural network models to predict conversion probabilities.
上列詳細說明係針對本創作之一可行實施例之具體說明,惟該實施例並非用以限制本新型之專利範圍,凡未脫離本創作技藝精神所為之等效實施或變更,均應包含於 本創作之申請專利範圍中。 The detailed description above is a detailed description of one of the possible embodiments of the present invention, and is not intended to limit the scope of the present invention, and equivalent implementations or modifications that are not departing from the spirit of the present invention should be included in The scope of the patent application for this creation.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107214960U TWM573493U (en) | 2018-11-02 | 2018-11-02 | System for predicting conversion probability by visitors' browsing paths |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107214960U TWM573493U (en) | 2018-11-02 | 2018-11-02 | System for predicting conversion probability by visitors' browsing paths |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM573493U true TWM573493U (en) | 2019-01-21 |
Family
ID=65804966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107214960U TWM573493U (en) | 2018-11-02 | 2018-11-02 | System for predicting conversion probability by visitors' browsing paths |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM573493U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112785069A (en) * | 2021-01-29 | 2021-05-11 | 北京明略昭辉科技有限公司 | Prediction method and device for terminal equipment changing machine, storage medium and electronic equipment |
CN115131079A (en) * | 2022-08-25 | 2022-09-30 | 道有道科技集团股份公司 | Data processing-based advertisement putting effect prediction method and device |
-
2018
- 2018-11-02 TW TW107214960U patent/TWM573493U/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112785069A (en) * | 2021-01-29 | 2021-05-11 | 北京明略昭辉科技有限公司 | Prediction method and device for terminal equipment changing machine, storage medium and electronic equipment |
CN115131079A (en) * | 2022-08-25 | 2022-09-30 | 道有道科技集团股份公司 | Data processing-based advertisement putting effect prediction method and device |
CN115131079B (en) * | 2022-08-25 | 2022-12-09 | 道有道科技集团股份公司 | Data processing-based advertisement putting effect prediction method and device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108154401B (en) | User portrait depicting method, device, medium and computing equipment | |
US7594189B1 (en) | Systems and methods for statistically selecting content items to be used in a dynamically-generated display | |
US20210042767A1 (en) | Digital content prioritization to accelerate hyper-targeting | |
WO2017190610A1 (en) | Target user orientation method and device, and computer storage medium | |
CN112632405B (en) | Recommendation method, recommendation device, recommendation equipment and storage medium | |
US20110119267A1 (en) | Method and system for processing web activity data | |
JP5615857B2 (en) | Analysis apparatus, analysis method, and analysis program | |
CN106251174A (en) | Information recommendation method and device | |
CN105488697A (en) | Potential customer mining method based on customer behavior characteristics | |
CN109389442A (en) | Method of Commodity Recommendation and device, storage medium and electric terminal | |
CN115002200B (en) | Message pushing method, device, equipment and storage medium based on user portrait | |
CN111400613A (en) | Article recommendation method, device, medium and computer equipment | |
US20190080352A1 (en) | Segment Extension Based on Lookalike Selection | |
CN113157752A (en) | Scientific and technological resource recommendation method and system based on user portrait and situation | |
CN111429161B (en) | Feature extraction method, feature extraction device, storage medium and electronic equipment | |
CN108932625A (en) | Analysis method, device, medium and the electronic equipment of user behavior data | |
CN108572984A (en) | A kind of active user interest recognition methods and device | |
CN117455621A (en) | Personalized recommendation method and device, storage medium and computer equipment | |
CN114595323B (en) | Portrait construction, recommendation, model training method, apparatus, device and storage medium | |
TWM573493U (en) | System for predicting conversion probability by visitors' browsing paths | |
Diwandari et al. | Comparison of classification performance based on dynamic mining of user interest navigation pattern in e-commerce websites | |
CN114969486B (en) | Corpus recommendation method, apparatus, device and storage medium | |
Wu et al. | [Retracted] Using the Mathematical Model on Precision Marketing with Online Transaction Data Computing | |
CN111460300B (en) | Network content pushing method, device and storage medium | |
Ehsani et al. | Customer purchase prediction in electronic markets from clickstream data using the Oracle meta-classifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4K | Annulment or lapse of a utility model due to non-payment of fees |