TWM570917U - Gas distribution device and processing chamber for providing uniform gas flow - Google Patents

Gas distribution device and processing chamber for providing uniform gas flow

Info

Publication number
TWM570917U
TWM570917U TWM570917U TW M570917 U TWM570917 U TW M570917U TW M570917 U TWM570917 U TW M570917U
Authority
TW
Taiwan
Prior art keywords
gas distribution
slits
gas
channel
delivery channel
Prior art date
Application number
Other languages
Chinese (zh)
Publication date

Links

Abstract

提供了一種具有輸送通道的氣體分配設備,其中輸送通道具有一入口端、一出口端與沿著長度而分隔之複數個縫隙。入口端係可連接至一惰性氣體源,且出口端係可連接於一真空源。同時提供了一種具有螺旋輸送通道、互相纏繞之螺旋輸送通道、分流之輸送通道、匯合之輸送通道、以及成形之輸送通道的氣體分配設備,其中入口端與出口端係配置以使氣體在輸送通道內快速交換。 A gas distribution apparatus having a delivery passage is provided, wherein the delivery passage has an inlet end, an outlet end and a plurality of slits spaced along the length. The inlet end can be connected to an inert gas source and the outlet end can be connected to a vacuum source. At the same time, there is provided a gas distribution device having a spiral conveying passage, a spiral winding conveying passage, a conveying passage for converging, a conveying passage for converging, and a conveying passage formed, wherein the inlet end and the outlet end are arranged to allow gas to flow in the conveying passage Fast exchange within.

Description

用於提供均勻氣流之氣體分配設備與處理腔室 Gas distribution device and processing chamber for providing uniform gas flow

本創作之實施例一般是與用於使氣體流至一處理腔室中的設備與方法有關。更具體而言,本創作之實施例是關於用於將氣流引導至一處理腔室(例如原子層沉積腔室或化學氣相沉積腔室)中的線性流設備。 Embodiments of the present invention are generally associated with apparatus and methods for flowing a gas into a processing chamber. More specifically, embodiments of the present disclosure relate to a linear flow device for directing an airflow into a processing chamber, such as an atomic layer deposition chamber or a chemical vapor deposition chamber.

在半導體處理、平面顯示器處理或其他電子元件處理的領域中,氣相沉積處理已經在於基板上沉積材料中扮演了一項重要的角色。隨著電子元件的幾何尺寸持續在縮減、且元件密度持續在增加,特徵結構的尺寸與深寬比變得更為激進,例如0.07μm之特徵結構以及10或更高的深寬比。因此,材料的保形沉積以形成這些元件即變得更為重要。 In the field of semiconductor processing, flat panel display processing or other electronic component processing, vapor deposition processing has played an important role in depositing materials on substrates. As the geometry of the electronic components continues to decrease and the component density continues to increase, the size and aspect ratio of the features become more aggressive, such as a 0.07 μm feature and an aspect ratio of 10 or higher. Therefore, the conformal deposition of materials to form these components becomes even more important.

在原子層沉積(ALD)處理期間,反應物氣體被注入含有基板的處理腔室中。一般而言,基板的一區域係與基板表面上所吸收之第一反應物接觸。基板係接著接觸第二反應物,該第二反應物係與該第一反應物接觸以 形成沉積材料。在各反應物氣體的輸送之間注入除氣氣體,以確保反應僅在基板表面上發生。 During the atomic layer deposition (ALD) process, reactant gases are injected into the processing chamber containing the substrate. Generally, a region of the substrate is in contact with the first reactant absorbed on the surface of the substrate. The substrate system is then contacted with a second reactant that is in contact with the first reactant A deposition material is formed. A degassing gas is injected between the delivery of each reactant gas to ensure that the reaction occurs only on the surface of the substrate.

氣體分配設備(有時係成形為類似且被稱為噴淋頭)係分配處理氣體至在接近鄰近處之基板(也稱為晶圓)。氣體分配設備(包括噴淋頭)具有大體積而會非常難以於氣體之間清潔或除氣。留在噴淋頭中的任何氣體會與後續的處理氣體反應。對於ALD處理而言,在仰賴交替的氣體脈衝(例如A脈衝、B脈衝、A脈衝、與B脈衝)類型輸送之氣體分配設備(包括噴淋頭)內,氣體的分離是重要的。因此,在本技術領域中正有改善之氣體分配設備(包含噴淋頭)之需要,這些改善之氣體分配設備係易於清潔/除氣,並且對基板提供均勻的氣體供應源。 Gas distribution devices (sometimes shaped like and referred to as showerheads) distribute process gases to substrates (also referred to as wafers) in close proximity. Gas distribution equipment (including sprinklers) have a large volume that can be very difficult to clean or degas between gases. Any gas remaining in the sprinkler will react with subsequent processing gases. For ALD processing, gas separation is important in gas distribution equipment (including sprinklers) that rely on alternating gas pulses (eg, A-pulse, B-pulse, A-pulse, and B-pulse) type delivery. Accordingly, there is a need in the art for improved gas distribution equipment (including sprinklers) that are easy to clean/degasser and provide a uniform source of gas to the substrate.

本創作的一或多個具體實施例是與用於控制進入處理腔室中之氣流的氣體分配設備有關。該設備包含輸送通道,該輸送通道具有入口端、出口端與長度,該輸送通道具有沿著該長度分隔之複數個縫隙。在該輸送通道的該入口端上之入口係可連接至氣體源,其中該氣流可由與該入口相通的氣體閥加以控制。在該輸送通道的該出口端上之出口係可連接至真空源,其中通過該出口的真空壓力可由出口閥門加以控制,以於該出口處提供降低壓力。 控制器係用以藉由在該通道中之氣體輸送與除氣期間開啟與關閉該出口閥門而調節通過該輸送通道與至該處理 腔室中的該氣流,以控制通過沿著該通道之該長度的該等縫隙之該氣流。 One or more specific embodiments of the present work are related to a gas distribution apparatus for controlling the flow of gas into the processing chamber. The apparatus includes a delivery channel having an inlet end, an outlet end and a length, the delivery channel having a plurality of slits spaced along the length. An inlet at the inlet end of the delivery passage can be coupled to a source of gas, wherein the flow can be controlled by a gas valve in communication with the inlet. An outlet at the outlet end of the delivery passage can be coupled to a vacuum source, wherein vacuum pressure through the outlet can be controlled by an outlet valve to provide reduced pressure at the outlet. The controller is configured to adjust through the delivery passage and to the treatment by opening and closing the outlet valve during gas delivery and degassing in the passage The gas flow in the chamber controls the gas flow through the slits along the length of the passage.

在部分具體實施例中,通過該氣體分配設備的氣流在該氣體分配設備的軸向長度上具有比通過無連接至該出口之該真空源的類似氣體分配設備的該氣流更均勻的氣導。在一或多個具體實施例中,當氣體閥關閉時,氣體自輸送通道中清除得會比不含真空源之一類似氣體分配設備更快。 In some embodiments, the gas flow through the gas distribution device has a more uniform air conductance over the axial length of the gas distribution device than the gas flow through a similar gas distribution device that is not connected to the vacuum source of the outlet. In one or more embodiments, when the gas valve is closed, the gas is purged from the delivery channel faster than a gas distribution device that is not a vacuum source.

在部分具體實施例中,該輸送通道是在氣體分配板材的背側中之凹陷通道,且該複數個縫隙延伸通過該氣體分配板材而至該氣體分配板材的前側。 In some embodiments, the delivery channel is a recessed channel in the back side of the gas distribution plate, and the plurality of slits extend through the gas distribution plate to the front side of the gas distribution plate.

在一或多個具體實施例中,該氣體分配板材是圓的,且該輸送通道形成螺旋形,其中該入口端與出口端之其一是位於該氣體分配板材的外週區域,且該入口端與出口端之另一者是位於該氣體分配板材的中央區域。在部分具體實施例中,該入口端是位於該氣體分配板材的該外週區域,而該出口端是位於該氣體分配板材的該中央區域。在一或多個具體實施例中,該出口端是位於該氣體分配板材的該外週區域,而該入口端是位於該氣體分配板材的該中央區域。 In one or more embodiments, the gas distribution plate is round and the conveying passage is formed in a spiral shape, wherein one of the inlet end and the outlet end is located in a peripheral region of the gas distribution plate, and the inlet The other of the end and outlet ends is located in the central region of the gas distribution plate. In some embodiments, the inlet end is located in the peripheral region of the gas distribution plate and the outlet end is located in the central region of the gas distribution plate. In one or more embodiments, the outlet end is located in the peripheral region of the gas distribution plate and the inlet end is located in the central region of the gas distribution plate.

在部分具體實施例中,在該氣體分配板材的該背側中有兩個凹陷之輸送通道。在部分具體實施例中,各該等輸送通道形成螺旋形,其中該入口端與出口端之其一是位於該氣體分配板材的外週區域,且該入口端與出口端 之另一者是位於該氣體分配板材的中央區域。在一或多個具體實施例中,該兩個輸送通道沿著該螺旋形互相纏繞。 在某些具體實施例中,各輸送通道具有位於氣體分配板材的外週區域中之入口端以及位於氣體分配板材的中央區域中之出口端。在部分具體實施例中,各輸送通道具有位於氣體分配板材的外週區域中之出口端以及位於氣體分配板材的中央區域中之入口端。在一或多個具體實施例中,一輸送通道之入口端係位於氣體分配板材的外週區域中,而另一輸送通道的出口端係位於氣體分配板材的外週區域中。 In some embodiments, there are two recessed delivery channels in the back side of the gas distribution plate. In some embodiments, each of the conveying passages is formed in a spiral shape, wherein one of the inlet end and the outlet end is located in a peripheral region of the gas distribution plate, and the inlet end and the outlet end are The other is located in the central region of the gas distribution plate. In one or more embodiments, the two delivery channels are intertwined along the spiral. In some embodiments, each delivery channel has an inlet end located in a peripheral region of the gas distribution plate and an outlet end located in a central region of the gas distribution plate. In some embodiments, each delivery channel has an outlet end located in a peripheral region of the gas distribution plate and an inlet end located in a central region of the gas distribution plate. In one or more embodiments, the inlet end of one of the delivery channels is located in the peripheral region of the gas distribution plate and the outlet end of the other delivery channel is located in the peripheral region of the gas distribution plate.

在部分具體實施例中,氣體分配設備更包含在該氣體分配板材的該背側上之背蓋,該背蓋覆蓋該凹陷通道。在一或多個具體實施例中,該輸送通道是具有實質平坦形態之管狀螺旋。在部分具體實施例中,該氣體分配設備包含複數個輸送通道,各輸送通道係延伸為實質直線且實質平行於相鄰的輸送通道。 In some embodiments, the gas distribution device further includes a back cover on the back side of the gas distribution plate, the back cover covering the recessed channel. In one or more embodiments, the delivery channel is a tubular helix having a substantially flat configuration. In some embodiments, the gas distribution apparatus includes a plurality of delivery channels, each delivery channel extending substantially linearly and substantially parallel to an adjacent delivery channel.

在一或多個具體實施例中,一個以上的輸送通道係連接至該入口,使得流經該入口之氣體流經各該等輸送通道。在部分具體實施例中,連接至該入口的各該等輸送通道係匯合且連接至出口。在部分具體實施例中,連接至該入口的各該等輸送通道具有連接至各別出口閥門之各別出口。在一或多個具體實施例中,該控制器獨立地調整各該等出口閥門,以維持通過各該等輸送通道之實質均 勻氣流。在具體實施例中,該複數個輸送通道是成形為形成一或多個文字或商標。 In one or more embodiments, more than one delivery channel is coupled to the inlet such that gas flowing through the inlet flows through each of the delivery channels. In some embodiments, each of the delivery channels connected to the inlet are joined and connected to an outlet. In some embodiments, each of the delivery channels connected to the inlet has a respective outlet connected to a respective outlet valve. In one or more embodiments, the controller independently adjusts each of the outlet valves to maintain substantial transit through each of the delivery channels Uniform airflow. In a particular embodiment, the plurality of delivery channels are shaped to form one or more characters or trademarks.

在部分具體實施例中,該複數個輸送通道是成形為使得基材所見的孔洞圖案在該氣體分配設備間是均勻的。 In some embodiments, the plurality of delivery channels are shaped such that the pattern of holes seen by the substrate is uniform between the gas distribution devices.

本創作之其他具體實施例係與包含所述氣體分配設備之處理腔室有關。在部分具體實施例中,該氣體分配設備包含管狀螺旋,該管狀螺旋具有實質平坦形態,該氣體分配設備係位於基板支座與氣體分配板材之間。 Other embodiments of the present work are related to a processing chamber containing the gas distribution apparatus. In some embodiments, the gas distribution apparatus comprises a tubular spiral having a substantially flat configuration, the gas distribution device being located between the substrate support and the gas distribution plate.

本創作之其他具體實施例係與氣體分配設備有關,該氣體分配設備包含氣體分配板材、背蓋、入口、出口與控制器。氣體輸送通道係凹陷於氣體分配板材的背側中。該凹陷之氣體輸送通道具有入口端、出口端、一長度以及複數個縫隙,該等縫隙沿著延伸通過該氣體分配板材而至該氣體分配板材的前側之長度而分隔,使得流經該氣體輸送通道的氣體可通過該等縫隙而離開該氣體分配板材。該背蓋係位於該氣體分配板材的該背側上而覆蓋該凹陷通道。該入口可連接至氣體源,其中氣流可由與該入口相通之氣體閥加以控制。出口係通過該背蓋而連接至該氣體輸送通道的該出口端。該出口可連接至真空源,其中通過該出口的真空壓力可由出口閥門加以控制,以於該出口處提供降低壓力。控制器藉由在氣體輸送與除氣期間開啟與關閉該出口閥門而調節通過該輸送通道與至該處理 腔室中的該氣流,以控制通過沿著該通道之該長度的該等縫隙之該氣流。 Other embodiments of the present invention relate to a gas distribution apparatus comprising a gas distribution plate, a back cover, an inlet, an outlet, and a controller. The gas delivery channel is recessed in the back side of the gas distribution plate. The recessed gas delivery passage has an inlet end, an outlet end, a length, and a plurality of slits that are separated along a length extending through the gas distribution plate to a front side of the gas distribution plate such that flow through the gas The gas of the passage can exit the gas distribution plate through the slits. The back cover is located on the back side of the gas distribution plate to cover the recessed passage. The inlet can be connected to a source of gas, wherein the gas stream can be controlled by a gas valve in communication with the inlet. An outlet is connected to the outlet end of the gas delivery passage by the back cover. The outlet can be connected to a vacuum source, wherein the vacuum pressure through the outlet can be controlled by an outlet valve to provide a reduced pressure at the outlet. The controller adjusts through the delivery passage and to the treatment by opening and closing the outlet valve during gas delivery and degassing The gas flow in the chamber controls the gas flow through the slits along the length of the passage.

在部分具體實施例中,該氣體分配板材為圓形且該輸送通道形成螺旋形,其中該入口端與該出口端之其一是位於該氣體分配板材的外週區域中,且該入口端與該出口端之另一者是位於該氣體分配板材的中央區域中。在一或多個具體實施例中,在該氣體分配板材的該背側中有兩個凹陷之輸送通道,該兩個輸送通道沿著該螺旋形互相纏繞。 In some embodiments, the gas distribution plate is circular and the conveying passage is formed in a spiral shape, wherein one of the inlet end and the outlet end is located in a peripheral region of the gas distribution plate, and the inlet end is The other of the outlet ends is located in a central region of the gas distribution plate. In one or more embodiments, there are two recessed delivery channels in the back side of the gas distribution plate, the two delivery channels being intertwined along the spiral.

本創作之其他具體實施例係關於包含複數個長形輸送通道之氣體分配設備。各輸送通道從入口端沿著一長度而延伸至出口端且具有沿著該長度分隔之複數個縫隙。該入口端可連接至氣體源,其中氣流為可藉由與該入口端相通之氣體閥而加以控制。該出口端可連接至真空源,其中通過該出口端之真空壓力係可藉由一出口閥門而加以控制,以於該出口端處提供降低壓力。複數個長形真空通道,各真空通道沿著一長度延伸。控制器藉由在氣體輸送與除氣期間開啟和關閉該出口閥門而調節通過該氣體輸送通道且至處理腔室中之該氣流,以控制通過沿著該通道之該長度的該等縫隙之該氣流。各輸送通道的該複數個縫隙與相鄰輸送通道的該複數個縫隙間係分隔至少一長形真空通道。 Other embodiments of the present work are directed to a gas distribution apparatus comprising a plurality of elongated transport channels. Each delivery channel extends from the inlet end along a length to the outlet end and has a plurality of slits spaced along the length. The inlet end is connectable to a source of gas, wherein the gas stream is controllable by a gas valve in communication with the inlet end. The outlet end can be coupled to a vacuum source, wherein vacuum pressure through the outlet end can be controlled by an outlet valve to provide reduced pressure at the outlet end. A plurality of elongated vacuum channels, each of which extends along a length. The controller adjusts the flow of gas through the gas delivery passage and into the processing chamber by opening and closing the outlet valve during gas delivery and degassing to control the gap through the length along the passage airflow. The plurality of slits of each conveying passage are separated from the plurality of slits of the adjacent conveying passages by at least one elongated vacuum passage.

100‧‧‧氣體分配設備 100‧‧‧ gas distribution equipment

102‧‧‧輸送通道 102‧‧‧Transportation channel

104‧‧‧入口端 104‧‧‧ entrance end

106‧‧‧出口端 106‧‧‧export end

108‧‧‧縫隙 108‧‧‧ gap

110‧‧‧入口 110‧‧‧ entrance

112‧‧‧出口 112‧‧‧Export

114‧‧‧入口閥門 114‧‧‧Inlet valve

116‧‧‧出口閥門 116‧‧‧Export valve

150‧‧‧控制器 150‧‧‧ Controller

302‧‧‧基板支撐支座 302‧‧‧Substrate support bearing

304‧‧‧基板 304‧‧‧Substrate

306‧‧‧氣體分配板材 306‧‧‧Gas distribution plate

400‧‧‧氣體分配設備 400‧‧‧Gas distribution equipment

401‧‧‧背側 401‧‧‧ Back side

402‧‧‧輸送通道 402‧‧‧Transportation channel

403‧‧‧氣體分配板材 403‧‧‧Gas distribution plate

404‧‧‧入口端 404‧‧‧ entrance end

405‧‧‧前側 405‧‧‧ front side

406‧‧‧出口端 406‧‧‧export end

407‧‧‧背蓋 407‧‧‧Back cover

408‧‧‧縫隙 408‧‧‧ gap

410‧‧‧入口 410‧‧‧ entrance

412‧‧‧出口 412‧‧‧Export

414‧‧‧入口閥門 414‧‧‧ inlet valve

416‧‧‧出口閥門 416‧‧‧Export valve

420‧‧‧外週區域 420‧‧‧peripheral area

422‧‧‧中央區域 422‧‧‧Central area

424‧‧‧凸緣 424‧‧‧Flange

830‧‧‧下方部分 830‧‧‧ below

832‧‧‧上方部分 832‧‧‧ upper part

834‧‧‧第一區段 834‧‧‧First section

836‧‧‧第二區段 836‧‧‧Second section

838‧‧‧第三區段 838‧‧‧ third section

840‧‧‧孔洞 840‧‧‧ holes

900‧‧‧氣體分配設備 900‧‧‧Gas distribution equipment

901‧‧‧背側 901‧‧‧ Back side

902a‧‧‧第一輸送通道 902a‧‧‧First delivery channel

902b‧‧‧第二輸送通道 902b‧‧‧Second transport channel

903‧‧‧氣體分配板材 903‧‧‧ gas distribution plate

904a‧‧‧第一入口端 904a‧‧‧ first entrance

904b‧‧‧第二入口端 904b‧‧‧second entrance

905‧‧‧前側 905‧‧‧ front side

906a‧‧‧第一出口端 906a‧‧‧first exit end

906b‧‧‧第二出口端 906b‧‧‧second exit

907‧‧‧背蓋 907‧‧‧Back cover

908a‧‧‧第一縫隙 908a‧‧‧ first gap

908b‧‧‧第二縫隙 908b‧‧‧ second gap

910a‧‧‧第一入口 910a‧‧‧first entrance

910b‧‧‧第二入口 910b‧‧‧second entrance

912a‧‧‧第一出口 912a‧‧ first exit

912b‧‧‧第二出口 912b‧‧‧second exit

914a、914b‧‧‧入口閥門 914a, 914b‧‧‧ inlet valve

916a、916b‧‧‧出口閥門 916a, 916b‧‧‧Export valves

920‧‧‧外週區域 920‧‧‧peripheral area

922‧‧‧中央區域 922‧‧‧Central area

924a、924b‧‧‧凸緣 924a, 924b‧‧‧Flange

925‧‧‧擋塊連接 925‧‧ ‧ block connection

1500‧‧‧氣體分配設備 1500‧‧‧ gas distribution equipment

1502‧‧‧輸送通道 1502‧‧‧Transportation channel

1504‧‧‧入口端 1504‧‧‧ entrance end

1506‧‧‧出口端 1506‧‧‧export end

1508‧‧‧縫隙 1508‧‧‧ gap

1544‧‧‧基板 1544‧‧‧Substrate

1550‧‧‧真空通道 1550‧‧‧vacuum channel

1552‧‧‧輸出通道 1552‧‧‧ Output channel

1554‧‧‧入口通道 1554‧‧‧Entry access

1554a‧‧‧第一入口通道 1554a‧‧‧First entrance passage

1554b‧‧‧第二入口通道 1554b‧‧‧Second entry passage

1558‧‧‧真空縫隙 1558‧‧‧vacuum gap

1558a、1558b‧‧‧真空縫隙 1558a, 1558b‧‧‧vacuum gap

1700‧‧‧氣體分配設備 1700‧‧‧Gas distribution equipment

1702‧‧‧輸送通道 1702‧‧‧Transportation channel

1704‧‧‧入口端 1704‧‧‧ entrance end

1706‧‧‧出口端 1706‧‧‧export end

1710‧‧‧入口 1710‧‧‧ entrance

1712‧‧‧出口 1712‧‧ Export

1714‧‧‧入口閥門 1714‧‧‧ inlet valve

1716‧‧‧出口閥門 1716‧‧‧Export valve

1740‧‧‧中間出口 1740‧‧‧ intermediate exit

1742‧‧‧中間出口 1742‧‧‧ intermediate exit

1744‧‧‧中間出口閥門 1744‧‧‧Intermediate outlet valve

1750‧‧‧控制器 1750‧‧ ‧ controller

1800‧‧‧氣體分配設備 1800‧‧‧ gas distribution equipment

1802‧‧‧輸送通道 1802‧‧‧Transportation channel

1802a、1802b‧‧‧各別輸送通道 1802a, 1802b‧‧‧ separate transport channels

1804‧‧‧入口端 1804‧‧‧ entrance end

1806‧‧‧出口端 1806‧‧‧export end

1808‧‧‧縫隙 1808‧‧‧ gap

1810‧‧‧入口 1810‧‧‧ entrance

1812‧‧‧出口 1812‧‧ Export

1814‧‧‧入口閥門 1814‧‧‧ inlet valve

1816‧‧‧出口閥門 1816‧‧‧Export valve

1900‧‧‧氣體分配設備 1900‧‧‧ gas distribution equipment

1902‧‧‧輸送通道 1902‧‧‧Transportation channel

1902a、1902b‧‧‧各別輸送通道 1902a, 1902b‧‧‧ separate transport channels

1904‧‧‧入口端 1904‧‧‧ entrance end

1908‧‧‧縫隙 1908‧‧‧ gap

1910‧‧‧入口 1910‧‧‧ Entrance

1912a、1912b‧‧‧各別出口 1912a, 1912b‧‧‧ separate exports

1914‧‧‧入口閥門 1914‧‧‧ inlet valve

1916a、1916b‧‧‧出口閥門 1916a, 1916b‧‧‧Export valve

1950‧‧‧控制器 1950‧‧‧ Controller

2000‧‧‧氣體分配設備 2000‧‧‧Gas distribution equipment

2002a~2002e‧‧‧輸送通道 2002a~2002e‧‧‧Transportation channel

2002e‧‧‧第五輸送通道 2002e‧‧‧ fifth transport channel

2014a~2014e‧‧‧入口閥門 2014a~2014e‧‧‧ inlet valve

2016a~2016e‧‧‧出口閥門 2016a~2016e‧‧‧Export valve

2044‧‧‧中間出口閥門 2044‧‧‧Intermediate outlet valve

2060‧‧‧空隙區 2060‧‧‧Void area

2102a‧‧‧第一氣體輸送通道 2102a‧‧‧First gas delivery channel

2102b‧‧‧第二氣體輸送通道 2102b‧‧‧Second gas delivery channel

2102c‧‧‧第三氣體輸送通道 2102c‧‧‧ Third gas delivery channel

2114a~2114c‧‧‧入口閥門 2114a~2114c‧‧‧ inlet valve

2116a~2116d‧‧‧出口閥門 2116a~2116d‧‧‧Export valve

2201‧‧‧背側 2201‧‧‧ Back side

2203‧‧‧氣體分配設備 2203‧‧‧Gas distribution equipment

2205‧‧‧前側 2205‧‧‧ front side

2208‧‧‧孔洞 2208‧‧‧ holes

2202a、2202b‧‧‧氣體通道 2202a, 2202b‧‧‧ gas passage

2208a、2208b‧‧‧孔洞 2208a, 2208b‧‧‧ holes

2214a、2214b‧‧‧入口閥門 2214a, 2214b‧‧‧ inlet valve

2216a、2216b‧‧‧出口閥門 2216a, 2216b‧‧‧Export valve

為能詳細理解可達成本創作之上述特徵的方式,可參閱本創作之具體實施例來進行本創作之更具體說明(已簡述如上),這些具體實施例係說明於如附圖式中。 For a more detailed understanding of the manner in which the above features of the cost-of-availability can be found, a more specific description of the present invention (as briefly described above) can be made with reference to specific embodiments of the present invention, which are illustrated in the accompanying drawings.

然應注意的是,如附圖式僅說明本創作的典型具體實施例,因此不被視為對其範疇的限制,因為本創作也允許其他的等效具體實施例。 It is to be understood that the invention is not to be construed as a limitation

第1圖說明根據本創作之一或多個具體實施例的氣體分配設備之視圖。 Figure 1 illustrates a view of a gas distribution apparatus in accordance with one or more embodiments of the present work.

第2圖說明根據本創作之一或多個具體實施例的氣體分配設備之視圖。 Figure 2 illustrates a view of a gas distribution apparatus in accordance with one or more embodiments of the present work.

第3圖說明處理腔室之視圖,該處理腔室包含根據本創作之一或多個具體實施例的一或多個氣體分配設備。 Figure 3 illustrates a view of a processing chamber containing one or more gas distribution devices in accordance with one or more embodiments of the present teachings.

第4圖說明根據本創作之一或多個具體實施例的氣體分配設備之上視圖。 Figure 4 illustrates a top view of a gas distribution apparatus in accordance with one or more embodiments of the present work.

第5圖說明根據本創作之一或多個具體實施例的氣體分配設備之立體圖的截面。 Figure 5 illustrates a cross section of a perspective view of a gas distribution apparatus in accordance with one or more embodiments of the present disclosure.

第6圖說明根據本創作之一或多個具體實施例的氣體分配設備之立體圖。 Figure 6 illustrates a perspective view of a gas distribution apparatus in accordance with one or more embodiments of the present invention.

第7圖說明根據本創作之一或多個具體實施例的氣體分配設備之下視圖。 Figure 7 illustrates a bottom view of a gas distribution apparatus in accordance with one or more embodiments of the present work.

第8圖說明根據一或多個具體實施例之氣體分配設備的部分截面圖。 Figure 8 illustrates a partial cross-sectional view of a gas distribution apparatus in accordance with one or more embodiments.

第9圖說明根據本創作之一或多個具體實施例的氣體分配設備之上視圖。 Figure 9 illustrates a top view of a gas distribution apparatus in accordance with one or more embodiments of the present work.

第10圖說明根據本創作之一或多個具體實施例的氣體分配設備的部分截面圖。 Figure 10 illustrates a partial cross-sectional view of a gas distribution apparatus in accordance with one or more embodiments of the present work.

第11圖說明根據本創作之一或多個具體實施例的氣體分配設備之分解部分截面圖。 Figure 11 illustrates an exploded partial cross-sectional view of a gas distribution apparatus in accordance with one or more embodiments of the present work.

第12圖說明根據本創作之一或多個具體實施例的氣體分配設備之立體圖的截面。 Figure 12 illustrates a cross-sectional view of a perspective view of a gas distribution apparatus in accordance with one or more embodiments of the present disclosure.

第13圖說明根據本創作之一或多個具體實施例的氣體分配設備之立體圖。 Figure 13 illustrates a perspective view of a gas distribution apparatus in accordance with one or more embodiments of the present invention.

第14圖說明根據本創作之一或多個具體實施例的氣體分配設備之下視圖。 Figure 14 illustrates a bottom view of a gas distribution apparatus in accordance with one or more embodiments of the present work.

第15圖說明根據本創作之一或多個具體實施例的氣體分配設備的立體圖。 Figure 15 illustrates a perspective view of a gas distribution apparatus in accordance with one or more embodiments of the present work.

第16A圖說明根據本創作之一或多個具體實施例的氣體分配設備的部分截面圖。 Figure 16A illustrates a partial cross-sectional view of a gas distribution apparatus in accordance with one or more embodiments of the present teachings.

第16B圖說明根據本創作之一或多個具體實施例的氣體分配設備的部分截面圖。 Figure 16B illustrates a partial cross-sectional view of a gas distribution apparatus in accordance with one or more embodiments of the present work.

第17圖說明根據本創作之一或多個具體實施例的氣體分配設備。 Figure 17 illustrates a gas distribution apparatus in accordance with one or more embodiments of the present invention.

第18圖說明根據本創作之一或多個具體實施例的氣體分配設備。 Figure 18 illustrates a gas distribution apparatus in accordance with one or more embodiments of the present invention.

第19圖說明根據本創作之一或多個具體實施例的氣體分配設備。 Figure 19 illustrates a gas distribution apparatus in accordance with one or more embodiments of the present invention.

第20圖說明根據本創作之一或多個具體實施例的氣體分配設備。 Figure 20 illustrates a gas distribution apparatus in accordance with one or more embodiments of the present invention.

第21圖說明根據本創作之一或多個具體實施例的氣體分配設備。 Figure 21 illustrates a gas distribution apparatus in accordance with one or more embodiments of the present invention.

第22A圖說明根據本創作之一或多個具體實施例的氣體分配設備的背側部分。 Figure 22A illustrates a back side portion of a gas distribution device in accordance with one or more embodiments of the present disclosure.

第22B圖說明第22A圖之氣體分配設備的前側。 Figure 22B illustrates the front side of the gas distribution apparatus of Figure 22A.

本創作之具體實施例是關於用於化學氣相沉積類型處理之氣體分配設備。本創作之一或多個具體實施例是關於包含所述氣體分配設備的原子層沉積處理與設備(也稱為循環沉積)。所述氣體分配設備也稱為噴淋頭或氣體分配板材,但本領域技術人士也將認可該設備並不需要成形為類似噴淋頭或板材。用語「噴淋頭」與「板材」不應被用來限制本創作之範疇。 A specific embodiment of the present invention relates to a gas distribution apparatus for chemical vapor deposition type treatment. One or more specific embodiments of the present invention are directed to atomic layer deposition processes and apparatus (also referred to as cyclic deposition) that include the gas distribution apparatus. The gas distribution device is also referred to as a showerhead or gas distribution plate, but those skilled in the art will also recognize that the device does not need to be formed into a showerhead or sheet. The terms "sprinkler" and "plate" should not be used to limit the scope of this creation.

本創作之第一具體實施例是關於一種具有單一螺旋氣體輸送通道的設備。所有的氣體依序流經相同通道。入口是在螺旋的外徑向邊緣(也稱為外週)上並可裝設至氣體源。真空附件係連接至螺旋內部端。入口與出口係可相反,氣體源也可利用在螺旋外側端處的出口閥門而連接至螺旋內側。該第一具體實施例係使用如表1所示之順序。 A first embodiment of the present invention is directed to an apparatus having a single spiral gas delivery passage. All gases flow through the same channel in sequence. The inlet is on the outer radial edge of the spiral (also referred to as the outer circumference) and can be mounted to the gas source. The vacuum attachment is attached to the inner end of the screw. In contrast to the inlet and outlet, the gas source can also be connected to the inside of the helix using an outlet valve at the outer end of the helix. This first embodiment uses the sequence as shown in Table 1.

第二具體實施例係具有互相纏繞的兩個螺旋通道,每一通道在螺旋外徑向端上具有氣體入口,且在各螺旋的內徑向端上具有出口閥門。入口與出口可相反或混合。不同的通道可用於不同的前驅物。 The second embodiment has two spiral passages intertwined with each other, each passage having a gas inlet at the outer radial end of the spiral and an outlet valve at the inner radial end of each spiral. The inlet and outlet can be opposite or mixed. Different channels can be used for different precursors.

在第三組具體實施例中,通道係線性氣體線路。線性氣體線路可利用任何適當形狀而不只是線性。對於不同的前驅物可有線性氣體線路。部分具體實施例具有依序之所有氣體的多種平行路徑,其中氣體通道的氣導是實質相同的。 In a third specific embodiment, the channels are linear gas lines. Linear gas lines can utilize any suitable shape and not just linearity. Linear gas lines are available for different precursors. Some embodiments have multiple parallel paths of all gases in sequence, wherein the gas guides of the gas passages are substantially identical.

在一或多個具體實施例中,在各別通道中,氣體通過通道與通過縫隙的氣導是藉由調整或改變出口端處的真空壓力而加以控制。輪流改變真空壓力可產生傳統氣體分配設備所無法達到的獨特流體動力。在部分具體實施例中,在各通道的長度上會有更均勻的氣流、且有更均勻的氣流通過在通道長度上分隔之縫隙。根據一或多個具體實施例之均勻氣流代表實質上沒有會抑制氣體流經通道或除氣的死區(dead space)存在。在通道的一端上有或沒有閥門、且在通道的另一端處設有閥門之真空提供係允許不同類型的氣體(例如前驅物或反應物氣體)之間的切換。 In one or more embodiments, in each of the channels, the gas passage through the passage and the air conduction through the gap are controlled by adjusting or changing the vacuum pressure at the outlet end. Changing the vacuum pressure in turn produces unique fluid dynamics that are not possible with conventional gas distribution equipment. In some embodiments, there will be a more uniform airflow over the length of each channel and a more uniform airflow through the gaps that are separated over the length of the channel. A uniform gas flow in accordance with one or more embodiments represents the absence of a dead space that substantially inhibits gas flow through or out of the gas. A vacuum supply system with or without a valve on one end of the passage and a valve at the other end of the passage allows for switching between different types of gases, such as precursors or reactant gases.

在部分具體實施例中,在氣體輸送通道端部處的真空可使通道內快速除氣。除氣氣體源可連接至氣體輸送通道的入口,並與通道出口處的真空共同運作,以更快速移除通道中之反應性氣體。此外,真空埠可沿著氣體輸送通道長度而分隔,而不只是在通道端部處。 In some embodiments, the vacuum at the end of the gas delivery channel allows for rapid degassing within the channel. A source of degassing gas can be connected to the inlet of the gas delivery channel and operate in conjunction with the vacuum at the outlet of the channel to more quickly remove the reactive gases in the channel. In addition, the vacuum crucible can be separated along the length of the gas delivery channel, not just at the end of the channel.

本創作之具體實施例係可增加通過在氣體輸送通道上分隔開的孔洞之氣體的氣導。不受任何特定操作理論所限制,相信控制了通道的出口端處或中段中的真空壓力,即可改變相對於傳統噴淋頭或氣體分配板材之流體動力。 A specific embodiment of the present invention is to increase the air conduction of the gas through the holes separated in the gas delivery passage. Without being bound by any particular theory of operation, it is believed that controlling the vacuum pressure at or at the outlet end of the channel changes the fluid dynamics relative to conventional sprinklers or gas distribution plates.

參閱第1圖與第2圖。一或多個具體實施例是與用以輸送氣體至處理腔室(未示)的氣體分配設備100有關。氣體分配設備100包含具有入口端104與出口端106之輸送通道102。輸送通道102具有沿著輸送通道102的長度而分隔之複數個縫隙108。入口110係連接至輸送通道102的入口端104,並與該入口端104流體相通。出口112係連接至輸送通道102的出口端106,並與該出口端106流體相通。入口110係用以連接至氣體源,並包含可控制進(或出)輸送通道102之氣流、或是完全截斷氣流的入口閥門114。出口112係用以連接至真空源,且包含可控制進(或出)輸送通道102之氣流、或是完全截斷氣流的出口閥門116。出口112可連接至真空源(未示),使得通過出口112的真空壓力可受出口閥門116控制,以於出口112處提供降低壓力。 See Figures 1 and 2. One or more specific embodiments are associated with a gas distribution apparatus 100 for delivering a gas to a processing chamber (not shown). Gas distribution apparatus 100 includes a delivery channel 102 having an inlet end 104 and an outlet end 106. The delivery channel 102 has a plurality of slits 108 that are spaced along the length of the delivery channel 102. The inlet 110 is connected to and in fluid communication with the inlet end 104 of the delivery passage 102. The outlet 112 is coupled to the outlet end 106 of the delivery passage 102 and is in fluid communication with the outlet end 106. The inlet 110 is for connection to a source of gas and includes an inlet valve 114 that controls the flow of air into or out of the delivery passage 102 or completely shuts off the flow. The outlet 112 is for connection to a vacuum source and includes an outlet valve 116 that controls the flow of gas into or out of the delivery channel 102 or completely shuts off the gas flow. The outlet 112 can be connected to a vacuum source (not shown) such that the vacuum pressure through the outlet 112 can be controlled by the outlet valve 116 to provide a reduced pressure at the outlet 112.

控制器150調節通過輸送通道102及進入處理腔室中的氣流。控制器150是藉由在氣體輸送與除氣期間開啟與關閉(或是在完全開啟與完全關閉之間的任一點)出口閥門而進行此調節。這可控制通過通道長度上分隔之縫隙(例如見第4圖所示)的氣流。 Controller 150 regulates airflow through delivery passage 102 and into the processing chamber. The controller 150 performs this adjustment by opening and closing (either at any point between fully open and fully closed) during gas delivery and degassing. This controls the flow through the gaps separated by the length of the channel (see, for example, Figure 4).

輸送通道102的截面形狀可受控制,使得流經輸送通道的氣體可面臨最小的流動阻力。在部分具體實施例中,輸送通道102具有圓形或橢圓形截面形狀。在一或多個具體實施例中,輸送通道102具有的截面形狀係足使彎曲、轉向、扭轉等實質提供無死區。 The cross-sectional shape of the delivery channel 102 can be controlled such that the gas flowing through the delivery channel can face minimal flow resistance. In some embodiments, the delivery channel 102 has a circular or elliptical cross-sectional shape. In one or more embodiments, the delivery channel 102 has a cross-sectional shape sufficient to provide bending, turning, twisting, etc., substantially free of dead zones.

輸送通道102的整體形狀(相對於截面形狀)可依需要而調整。舉例而言,輸送通道102可經成形以匹配特定區域內、或與基板的形狀相符。輸送通道102可為例如直線、圓形、方形、卵形、矩形或橢圓形。此外,輸送通道的整體形狀可由彼此平行、垂直或同心的重複單元構成。在一或多個具體實施例中,輸送通道具有一整體形狀,在其中實質上並無抑制氣流或除氣之死區。在用於本 說明書與如附申請專利範圍中時,用語「實質上無死區」 代表氣流或除氣受抑制程度係低於因死區所致者的約10%、或低於約5%。 The overall shape of the delivery channel 102 (relative to the cross-sectional shape) can be adjusted as needed. For example, the delivery channel 102 can be shaped to match within a particular area or conform to the shape of the substrate. Delivery channel 102 can be, for example, a straight line, a circle, a square, an oval, a rectangle, or an ellipse. Furthermore, the overall shape of the delivery channel may be constituted by repeating units that are parallel, perpendicular or concentric with each other. In one or more embodiments, the delivery channel has an overall shape in which there is substantially no dead zone that inhibits gas flow or degassing. Used in this When the manual and the scope of the patent application are attached, the term "substantially no dead zone" The degree of inhibition of the representative airflow or degassing is less than about 10%, or less than about 5%, due to the dead zone.

在部分具體實施例中,輸送通道102為具有實質平坦型態之管狀螺旋。此特定形狀係由第1圖與第2圖所示之具體實施例予以例示。在用於本說明書與如附申請專利範圍時,用語「實質平坦型態」代表輸送通道102中 的複數個縫隙108係位於幾乎相同平面中。由於縫隙為共平面,因此第1圖與第2圖所示之具體實施例具有實質平坦型態,即使入口端與出口端、以及靠近入口端與出口端之輸送通道部分並不與複數個縫隙共平面。 In some embodiments, the delivery channel 102 is a tubular spiral having a substantially flat configuration. This particular shape is exemplified by the specific embodiments shown in Figures 1 and 2. When used in the specification and the scope of the patent application, the term "substantially flat" refers to the delivery channel 102. The plurality of slits 108 are located in nearly the same plane. Since the slits are coplanar, the specific embodiments shown in Figs. 1 and 2 have a substantially flat configuration, even if the inlet end and the outlet end, and the conveying passage portion near the inlet end and the outlet end do not have a plurality of slits. Coplanar.

輸送通道102可用於電漿處理。舉例而言,輸送通道102可相對於處理腔室的另一部分而極化,以點燃腔室內的電漿。輸送通道102可相對於腔室的一部分而偏離,或是腔室的一部分可相對於輸送通道102而偏離。舉例而言,輸送通道102可相對於支座而極化,或是支座可相對於輸送通道而極化。也可調整電漿的頻率。在一或多個具體實施例中,電漿是處於約13.56MHz之頻率。在某些具體實施例中,電漿之頻率約為40MHz、50MHz、60MHz、70MHz、80MHz、90MHz、100MHz、110MHz或120MHz。 The delivery channel 102 can be used for plasma processing. For example, the delivery channel 102 can be polarized relative to another portion of the processing chamber to ignite the plasma within the chamber. The delivery channel 102 can be offset relative to a portion of the chamber, or a portion of the chamber can be offset relative to the delivery channel 102. For example, the delivery channel 102 can be polarized relative to the support or the support can be polarized relative to the delivery channel. The frequency of the plasma can also be adjusted. In one or more embodiments, the plasma is at a frequency of about 13.56 MHz. In some embodiments, the frequency of the plasma is about 40 MHz, 50 MHz, 60 MHz, 70 MHz, 80 MHz, 90 MHz, 100 MHz, 110 MHz, or 120 MHz.

任何適當的材料都可用於輸送通道、噴淋頭或氣體分配設備。適當的材料包含、但不限於不鏽鋼與惰性材料。在部分具體實施例中,輸送通道、噴淋頭或氣體分配板材是由不鏽鋼所製成。 Any suitable material can be used for the conveying channel, sprinkler or gas distribution equipment. Suitable materials include, but are not limited to, stainless steel and inert materials. In some embodiments, the delivery channel, showerhead or gas distribution plate is made of stainless steel.

第3圖說明了根據一或多個具體實施例之處理腔室的一部分之截面。氣體分配設備100係放置在基板支撐支座302與氣體分配板材306之間。基板支撐支座302係繪示為支撐基板304。基板支撐支座302可為靜止或旋轉,或對部分處理為靜止、且對部分處理為旋轉。基板支撐支座302可藉由使處理腔室間發生的不同氣流圖案降至最低而使基板處理更為均勻。部分具體實施例的基 板支撐支座302包含加熱器或加熱機制。加熱器可為任何適當類型的加熱器,包含電阻式加熱器。 Figure 3 illustrates a cross section of a portion of a processing chamber in accordance with one or more embodiments. The gas distribution device 100 is placed between the substrate support support 302 and the gas distribution plate 306. The substrate support support 302 is illustrated as a support substrate 304. The substrate support support 302 can be stationary or rotating, or the portion is treated as stationary and the portion is processed to rotate. The substrate support pedestal 302 can make the substrate processing more uniform by minimizing the different airflow patterns that occur between the processing chambers. Base of some specific embodiments The plate support support 302 includes a heater or heating mechanism. The heater can be any suitable type of heater, including a resistive heater.

氣體分配設備100係繪示為具有實質平坦型態的管狀螺旋。基板304可以與氣體分配板材306或氣體分配設備100中任一或兩者加以處理。氣體分配設備100可被成形為使其實質上不干涉流出氣體分配板材306的氣體。在用於本說明書與如附申請專利範圍時,用語「實質上干涉」代表氣體分配設備100並不干涉超過氣體分配板材306流出之氣體的30%。舉例而言,氣體分配板材306的前表面308具有複數個縫隙310讓氣體流動通過。氣體分配設備100可經成形以避免阻擋縫隙310。 The gas distribution device 100 is illustrated as a tubular spiral having a substantially flat configuration. The substrate 304 can be processed with either or both of the gas distribution plate 306 or the gas distribution device 100. The gas distribution apparatus 100 can be shaped such that it does not substantially interfere with the gas exiting the gas distribution plate 306. As used in this specification and the scope of the appended claims, the term "substantially interferes" means that the gas distribution apparatus 100 does not interfere with more than 30% of the gas flowing out of the gas distribution plate 306. For example, the front surface 308 of the gas distribution plate 306 has a plurality of slits 310 for gas to flow therethrough. The gas distribution device 100 can be shaped to avoid blocking the gap 310.

以類似於第3圖所示方式而配置的輸送通道也可用於電漿處理。氣體分配設備100可相對於腔室的一部分而極化,或是腔室的一部分可相對於氣體分配設備100而極化。舉例而言,氣體分配設備100可相對於基板支撐支座302而極化,或是基板支撐支座302可相對於氣體分配設備100而極化。在部分具體實施例中,氣體分配設備100是相對於氣體分配板材306而極化。在一或多個具體實施例中,氣體分配板材306是相對於基板支撐支座302而極化,且自氣體分配設備100流出的氣體形成了電漿。也可調整電漿的頻率。在一或多個具體實施例中,電漿的頻率約為13.56MHz。在部分具體實施例中,電漿的頻率約為40MHz、50MHz、60MHz、70MHz、80MHz、90MHz、100MHz、110MHz或120MHz。 A delivery channel configured in a manner similar to that shown in Figure 3 can also be used for plasma processing. The gas distribution device 100 can be polarized relative to a portion of the chamber, or a portion of the chamber can be polarized relative to the gas distribution device 100. For example, the gas distribution device 100 can be polarized relative to the substrate support abutment 302, or the substrate support abutment 302 can be polarized relative to the gas distribution device 100. In some embodiments, the gas distribution device 100 is polarized relative to the gas distribution plate 306. In one or more embodiments, the gas distribution plate 306 is polarized relative to the substrate support support 302 and the gas flowing from the gas distribution device 100 forms a plasma. The frequency of the plasma can also be adjusted. In one or more embodiments, the frequency of the plasma is about 13.56 MHz. In some embodiments, the frequency of the plasma is about 40 MHz, 50 MHz, 60 MHz, 70 MHz, 80 MHz, 90 MHz, 100 MHz, 110 MHz, or 120 MHz.

第4圖至第7圖繪示了氣體分配設備400的另一個具體實施例,其中輸送通道402係在氣體分配板材403的背側401中之凹陷通道。所示之具體實施例具有大的內截面,該內截面係凹陷於氣體分配板材403的背側401中,其中輸送通道402甚至進一步凹陷。這可允許增加背蓋407,該背蓋407係可放置在背側401中的凹陷區域中而覆蓋輸送通道402。當背蓋407被插入至某些具體實施例的凹陷背側401中時,背蓋407係產生氣體分配板材的實質齊平背側表面。該領域技術人士將理解到背蓋407並不需要匹配於氣體分配板材403的背側401的凹陷區域內,但也可直接靠在氣體分配板材403的背側401上。在此種類的具體實施例中,並無帶有進一步凹陷之輸送通道的大凹陷區域。取而代之,輸送通道係直接凹陷至氣體分配板材403的背側401中。 4 through 7 illustrate another embodiment of a gas distribution apparatus 400 in which the delivery channel 402 is a recessed channel in the back side 401 of the gas distribution plate 403. The particular embodiment shown has a large inner section that is recessed in the back side 401 of the gas distribution plate 403, wherein the delivery channel 402 is even further recessed. This may allow for the addition of a back cover 407 that can be placed in a recessed area in the back side 401 to cover the delivery channel 402. When the back cover 407 is inserted into the recessed back side 401 of some embodiments, the back cover 407 creates a substantially flush back side surface of the gas distribution sheet. Those skilled in the art will appreciate that the back cover 407 does not need to fit within the recessed area of the back side 401 of the gas distribution plate 403, but may also rest directly on the back side 401 of the gas distribution plate 403. In a particular embodiment of this type, there is no large recessed area with a further recessed delivery channel. Instead, the delivery channel is recessed directly into the back side 401 of the gas distribution plate 403.

背蓋407可具有開口以供作入口與出口管件之通道,以與輸送通道402流體相通。這可見於第5圖與第6圖中。入口與出口管件可為背蓋407的整合部件,或可為連接至背蓋407以避免或使流體洩漏降至最低的分離部件。複數個縫隙408係延伸通過氣體分配板材403而至氣體分配板材403的前側405。這些縫隙可見於第4圖、第5圖與第7圖。複數個縫隙408可沿著輸送通道的長度均勻分隔,或可沿著通道長度而具有變化間隔。可變化之間隔係可幫助於輸送通道上各點處自輸送通道產生 更均勻的氣流。舉例而言,在具有精細形狀的氣體輸送通道中,縫隙的間隔係可沿著長度而變化。 The back cover 407 can have openings for passage of the inlet and outlet tubes to be in fluid communication with the delivery passage 402. This can be seen in Figures 5 and 6. The inlet and outlet tubes can be integral components of the back cover 407 or can be separate components that are connected to the back cover 407 to avoid or minimize fluid leakage. A plurality of slits 408 extend through the gas distribution plate 403 to the front side 405 of the gas distribution plate 403. These gaps can be seen in Figures 4, 5 and 7. The plurality of slits 408 may be evenly spaced along the length of the delivery channel or may vary along the length of the channel. A variable spacing system can help produce points from the conveying channel at various points on the conveying channel More uniform airflow. For example, in a gas delivery channel having a fine shape, the spacing of the slits may vary along the length.

在第4圖至第7圖所示的具體實施例中,氣體分配板材403為圓形且輸送通道402形成螺旋形。入口端404是表示為在氣體分配板材403的外週區域420之螺旋形外側處,且出口端406是位於氣體分配板材403的中央區域422中的螺旋中心處。該領域技術人士將理解入口端404與出口端406也可相反,即入口端404位於螺旋中心處,而出口端406位於螺旋的外側。在部分具體實施例中,入口端404與出口端406中其一是位於氣體分配板材403的外週區域420中,而入口端404與出口端406中另一則位於氣體分配板材403的中央區域422中。在一或多個具體實施例中,入口端404是位於氣體分配板材403的外週區域420處,且出口端406是位於氣體分配板材403的中央區域422處。在某些具體實施例中,出口端406是位於氣體分配板材403的外週區域420處,而入口端404是位於氣體分配板材403的中央區域422處。 In the particular embodiment illustrated in Figures 4 through 7, the gas distribution plate 403 is circular and the delivery passage 402 is formed in a spiral shape. The inlet end 404 is shown at the spiral outer side of the outer peripheral region 420 of the gas distribution plate 403, and the outlet end 406 is at the spiral center in the central region 422 of the gas distribution plate 403. Those skilled in the art will appreciate that the inlet end 404 and the outlet end 406 can also be reversed, i.e., the inlet end 404 is located at the center of the helix and the outlet end 406 is located outside of the helix. In some embodiments, one of the inlet end 404 and the outlet end 406 is located in the peripheral region 420 of the gas distribution plate 403, and the other of the inlet end 404 and the outlet end 406 is located in the central region 422 of the gas distribution plate 403. in. In one or more embodiments, the inlet end 404 is located at a peripheral region 420 of the gas distribution plate 403 and the outlet end 406 is located at a central region 422 of the gas distribution plate 403. In some embodiments, the outlet end 406 is located at a peripheral region 420 of the gas distribution plate 403 and the inlet end 404 is located at a central region 422 of the gas distribution plate 403.

在第5圖與第6圖中,入口端404與出口端406係說明為自氣體分配板材403的背蓋407延伸之小管件。管件通過入口閥門414而延伸於入口410與背蓋407之間。另一管件可通過出口閥門416而延伸於出口412與背蓋407之間。管件可藉由該領域技術人士所知道的任何適當連接方式連接至背蓋407,且可經密封以避免流動通過管件而至輸送通道402中的流體洩漏。適當的密封裝置 包含、但不限於:位於凸緣424與背蓋407之間的O型環。 凸緣424可與管件一體成形,或是可為使管件固定至背蓋之獨立部件。凸緣424可藉由任何適當機械性連接方式而連接至背蓋407,包含、但不限於螺絲。 In Figures 5 and 6, the inlet end 404 and the outlet end 406 are illustrated as small tubular members extending from the back cover 407 of the gas distribution plate 403. The tubular member extends between the inlet 410 and the back cover 407 through the inlet valve 414. Another tube may extend between the outlet 412 and the back cover 407 through the outlet valve 416. The tubular member can be attached to the back cover 407 by any suitable connection known to those skilled in the art and can be sealed to avoid fluid leakage through the tubular member into the delivery channel 402. Suitable sealing device Including, but not limited to, an O-ring located between the flange 424 and the back cover 407. The flange 424 can be integrally formed with the tubular member or can be a separate component for securing the tubular member to the back cover. The flange 424 can be coupled to the back cover 407 by any suitable mechanical connection, including, but not limited to, a screw.

第8圖繪示了根據本創作之一或多個具體實施例的輸送通道402的一部分與在氣體分配板材403中的縫隙408的截面圖。該領域技術人士將了解到第8圖所描述的輸送通道與縫隙僅為例示之用,而不應被視為本創作範疇之限制。該領域技術人士將了解到有許多方式可產生從輸送通道402而通過氣體分配板材403之流動。第8圖所示之輸送通道402具有兩個部分:上方部分832與下方部分830。這些部分是以分離的區域來繪示,但應了解在上方部分832與下方部分830之間可存在無接縫轉銜。 8 is a cross-sectional view of a portion of the delivery channel 402 and a slit 408 in the gas distribution plate 403 in accordance with one or more embodiments of the present disclosure. Those skilled in the art will appreciate that the transport channels and slits depicted in Figure 8 are for illustrative purposes only and are not to be considered as limiting the scope of the present invention. Those skilled in the art will appreciate that there are many ways to create a flow from the delivery channel 402 through the gas distribution plate 403. The delivery channel 402 shown in Figure 8 has two sections: an upper portion 832 and a lower portion 830. These portions are depicted in separate regions, but it should be understood that there may be a seamless transition between the upper portion 832 and the lower portion 830.

此外,將理解到上方部分832是非必要的,且不需要被包含於輸送通道402中。當沒有上方部分832時,下方部分830即為唯一部分。因此,輸送通道可具有任何適當形狀。在部分具體實施例中,輸送通道的形狀使其不實質干涉通過通道的氣體流動。 Moreover, it will be understood that the upper portion 832 is not necessary and need not be included in the delivery channel 402. When there is no upper portion 832, the lower portion 830 is the only portion. Thus, the delivery channel can have any suitable shape. In some embodiments, the delivery channel is shaped such that it does not substantially interfere with gas flow through the channel.

上方部分832可具有任何適當形狀。在第8圖所示之具體實施例中,上方部分832具有延伸而與氣體分配板材403的背側401的表面正交之壁部。然而,將理解的是上方部分832可具有自直角傾斜至背側401的壁部。此傾斜可於氣體分配板材403的背側401處提供較大開口,而漸縮為較小開口。此外,此傾斜可在背側401處 提供較小開口,而漸增為較大開口。上方部分832的長度可視需要而調整。 The upper portion 832 can have any suitable shape. In the particular embodiment illustrated in Figure 8, the upper portion 832 has a wall portion that extends orthogonal to the surface of the back side 401 of the gas distribution plate 403. However, it will be understood that the upper portion 832 can have a wall that slopes from a right angle to the back side 401. This tilt can provide a larger opening at the back side 401 of the gas distribution plate 403 and taper to a smaller opening. In addition, this tilt can be at the back side 401 Provide a smaller opening and gradually increase to a larger opening. The length of the upper portion 832 can be adjusted as needed.

在部分具體實施例中,上方部分具有實質上垂直於氣體分配板材403的背側401、且於背側401的表面下方延伸一段長度L之側部(長度L的範圍為約0.01吋至約0.3吋)。當使用於本說明書與如附申請專利範圍時,用語「實質上垂直於」是指上方部分的壁部相對於氣體分配板材的背側具有介於約85度至約95度之角度。在部分具體實施例中,上方部分於背側表面下方延伸了介於約0.02吋至約0.2吋之範圍、或介於約0.05吋至約0.15吋之範圍、或介於約0.08吋至約0.12吋之範圍的一段長度L。在一或多個具體實施例中,上方部分係於背側表面下方延伸了約為0.1吋的一段長度。 In some embodiments, the upper portion has a side that is substantially perpendicular to the back side 401 of the gas distribution plate 403 and extends a length L below the surface of the back side 401 (the length L ranges from about 0.01 吋 to about 0.3) Inches). When used in the specification and the scope of the claims, the term "substantially perpendicular to" means that the wall portion of the upper portion has an angle of from about 85 degrees to about 95 degrees with respect to the back side of the gas distribution sheet. In some embodiments, the upper portion extends below the backside surface by a range of from about 0.02 吋 to about 0.2 、, or from about 0.05 吋 to about 0.15 、, or from about 0.08 吋 to about 0.12. A length L of the range of 吋. In one or more embodiments, the upper portion extends a length of about 0.1 下方 below the back side surface.

磨圓的下方部分830可具有任何適當的截面,包含、但不限於半圓形與半橢圓形。磨圓的下方部分之寬度(也稱為磨圓的下方部分之直徑)可視需要而調整。上方部分的寬度可視需要而調整。一般而言,輸送通道的直徑具有螺旋迴圈數的影響。在部分具體實施例中,如第8圖所示,上方部分的寬度大致等於下方部分的直徑。各種具體實施例的輸送通道具有之直徑係介於約0.3吋至約0.45吋的範圍內,或介於約0.325吋至約0.425吋的範圍內,或介於約0.35吋至約0.40吋的範圍內。在一或多個具體實施例中,輸送通道具有約0.375吋之直徑。 The rounded lower portion 830 can have any suitable cross-section including, but not limited to, a semi-circular shape and a semi-elliptical shape. The width of the rounded lower portion (also referred to as the diameter of the lower portion of the rounded) can be adjusted as needed. The width of the upper part can be adjusted as needed. In general, the diameter of the delivery channel has the effect of the number of helical turns. In some embodiments, as shown in Figure 8, the width of the upper portion is substantially equal to the diameter of the lower portion. The delivery channels of various embodiments have a diameter in the range of from about 0.3 吋 to about 0.45 ,, or in the range of from about 0.325 吋 to about 0.425 ,, or in the range of from about 0.35 吋 to about 0.40 吋. Inside. In one or more embodiments, the delivery channel has a diameter of about 0.375 inches.

縫隙408的具體形狀可根據通過縫隙的所需氣流而改變。在第8圖的具體實施例中,縫隙408具有三個分別區段:第一區段834、第二區段836以及第三區段838。同樣的,區段的數量與區段的形狀係僅為例示一具體實施例,且區段的數量與區段的形狀不應被視為對本創作範疇的限制。第一區段834係從輸送通道402的磨圓下方部分830朝向氣體分配板材403的前側405延伸。第一區段834具有第一直徑D1。第二區段836從第一區段834朝向前側405延伸,且具有之直徑係從第一直徑D1漸縮至一般小於第一直徑之第二直徑D2。第三區段838從第二區段836的端部延伸,並終止於氣體分配板材403的前側405處。在第三區段838與前側405的交錯處形成孔洞840。流經輸送通道402的氣體係通過此孔洞840離開氣體分配板材403而進入處理腔室中。孔洞840具有與第二直徑D2大致相同的直徑。在各種具體實施例中,孔洞840的直徑是在介於約0.01吋至約0.25吋的範圍內,或是在介於0.02吋至約0.2吋的範圍內,或是在約0.03吋至約0.15吋的範圍內,或是在約0.04吋至約0.1吋的範圍內。在部分具體實施例中,孔洞840具有小於約0.1吋之直徑,或小於約0.08吋,或小於約0.06吋,或小於約0.04吋,或小於約0.02吋,或小於約0.01吋。 The particular shape of the slit 408 can vary depending on the desired air flow through the slit. In the particular embodiment of FIG. 8, slot 408 has three separate sections: a first section 834, a second section 836, and a third section 838. Similarly, the number of segments and the shape of the segments are merely illustrative of a particular embodiment, and the number of segments and the shape of the segments should not be considered as limiting the scope of the present invention. The first section 834 extends from the rounded lower portion 830 of the delivery passage 402 toward the front side 405 of the gas distribution plate 403. The first section 834 has a first diameter D1. The second section 836 extends from the first section 834 toward the front side 405 and has a diameter that tapers from a first diameter D1 to a second diameter D2 that is generally smaller than the first diameter. The third section 838 extends from the end of the second section 836 and terminates at the front side 405 of the gas distribution plate 403. A hole 840 is formed at the intersection of the third section 838 and the front side 405. The gas system flowing through the delivery channel 402 exits the gas distribution plate 403 through the aperture 840 and enters the processing chamber. The hole 840 has a diameter substantially the same as the second diameter D2. In various embodiments, the diameter of the aperture 840 is in the range of from about 0.01 吋 to about 0.25 ,, or in the range of from 0.02 吋 to about 0.2 ,, or from about 0.03 吋 to about 0.15. Within the range of 吋, or in the range of about 0.04 吋 to about 0.1 。. In some embodiments, the aperture 840 has a diameter of less than about 0.1 ,, or less than about 0.08 吋, or less than about 0.06 吋, or less than about 0.04 吋, or less than about 0.02 吋, or less than about 0.01 吋.

由於輸送通道是從氣體分配板材的外週邊緣向中央區域形成螺旋(或反向亦可),在截面上可觀察到表面上複數個相鄰通道,即使該相鄰通道可能是單一通 道。第5圖繪示這些表面上的複數個通道。通道(或是在螺旋迴圈之間的分隔)係分隔一段距離。在部分具體實施例中,通道(或單一通道的迴圈)之間的距離(從中心量起)是在介於約0.375吋至約0.475吋的範圍內,或是在介於約0.40吋至約0.45吋的範圍內,或是在介於約0.41吋至約0.43吋的範圍內。在一或多個具體實施例中,在相鄰通道的中心之間的平均距離約為0.42吋。 Since the conveying passage is formed from the outer peripheral edge of the gas distribution plate to the central region (or vice versa), a plurality of adjacent passages on the surface can be observed in the cross section, even though the adjacent passage may be a single passage. Road. Figure 5 depicts a plurality of channels on these surfaces. The channels (or the separation between the spiral loops) are separated by a distance. In some embodiments, the distance between the channels (or loops of a single channel) (from the center) is in the range of from about 0.375 吋 to about 0.475 ,, or between about 0.40 吋 to It is in the range of about 0.45 Torr, or in the range of about 0.41 Torr to about 0.43 Torr. In one or more embodiments, the average distance between the centers of adjacent channels is about 0.42 inches.

第4圖至第7圖中所示之氣體通道的長度可根據數個因素而改變,包含、但不限於通道的直徑與相鄰通道之間的距離。在各種具體實施例中,輸送通道具有之長度係在介於140吋至約340吋的範圍內,或在介於180吋至約300吋的範圍內,或在介於200吋至約280吋的範圍內,或在介於220吋至約260吋的範圍內。在一或多個具體實施例中,輸送通道具有約為240吋的長度。 The length of the gas passages shown in Figures 4 through 7 can vary depending on several factors including, but not limited to, the diameter of the passage and the distance between adjacent passages. In various embodiments, the delivery channel has a length ranging from 140 吋 to about 340 ,, or ranging from 180 吋 to about 300 ,, or between 200 吋 to about 280 吋. Within the range, or in the range of 220 吋 to about 260 。. In one or more embodiments, the delivery channel has a length of approximately 240 angstroms.

縫隙的數量也根據數個因素而定,包含、但不限於輸送通道的長度與縫隙的間隔。在具有單螺旋通道的部分具體實施例中,存在有介於大約300個至約900個之範圍內的縫隙,或有介於大約400個至約800個之範圍內的縫隙,或有介於大約500個至約700個之範圍內的縫隙。在各種具體實施例中,在沿著通道的長度上有超過約300、400、500、600、700或800個縫隙。在一或多個具體實施例中,在沿著輸送通道的長度上有大約600個縫隙。 The number of slits is also dependent on a number of factors including, but not limited to, the length of the transport channel and the spacing of the slits. In some embodiments having a single spiral channel, there are gaps in the range of from about 300 to about 900, or gaps in the range of from about 400 to about 800, or A gap in the range of about 500 to about 700. In various embodiments, there are more than about 300, 400, 500, 600, 700 or 800 slits along the length of the channel. In one or more embodiments, there are approximately 600 slits along the length of the delivery channel.

在一具體實施例中,如第4圖所示,氣體輸送板材403在氣體輸送板材403的背側中包含單一輸送通道402。輸送通道402具有位於氣體分配板材403的外週區域420中之入口端404。輸送通道402係依循從入口端404至位於氣體分配板材403的中央區域422中之出口端406之間的向內螺旋路徑。輸送通道402具有一整體長度,定義為入口端404與出口端406之間的距離(約為240吋)。複數個縫隙408在輸送通道402的整體長度上分隔。在沿著輸送通道403的整體長度上,有介於大約500個至約700個之範圍內的縫隙。輸送通道403具有之平均直徑約為0.375吋,且螺旋通道的相鄰部分中央處係分隔約0.42吋。 In one embodiment, as shown in FIG. 4, the gas delivery plate 403 includes a single delivery channel 402 in the back side of the gas delivery plate 403. The delivery channel 402 has an inlet end 404 located in the peripheral region 420 of the gas distribution plate 403. The delivery channel 402 follows an inward spiral path from the inlet end 404 to the outlet end 406 located in the central region 422 of the gas distribution plate 403. The delivery channel 402 has an overall length defined as the distance between the inlet end 404 and the outlet end 406 (approximately 240 吋). A plurality of slits 408 are separated over the entire length of the delivery channel 402. There are gaps in the range of from about 500 to about 700 along the entire length of the delivery channel 403. The delivery channel 403 has an average diameter of about 0.375 吋 and a central portion of the adjacent portion of the spiral channel is separated by about 0.42 吋.

本創作的部分具體實施例包含一個以上的輸送通道402。這些多數通道可視處理系統的需求而互相纏繞或分離。部分通道可凹陷至一氣體分配板材中(如第4圖所示),或可為各別管件(如第1圖所示)。在部分具體實施例中,係有各別管件與凹陷通道之組合。這種種類的一例示具體實施例係繪示於第3圖中,其中氣體分配板材中具有至少一個凹陷之輸送通道,且附加輸送通道係位於氣體分配板材與基板表面之間。 Some embodiments of the present work include more than one delivery channel 402. These multi-channel visual processing systems are intertwined or separated from each other. Some of the channels may be recessed into a gas distribution sheet (as shown in Figure 4) or may be individual tubes (as shown in Figure 1). In some embodiments, a combination of separate tubular members and recessed channels is provided. An exemplary embodiment of this type is illustrated in Figure 3, wherein the gas distribution plate has at least one recessed delivery channel therein and the additional delivery channel is located between the gas distribution plate and the substrate surface.

第9圖至第14圖繪示了本創作的另一具體實施例。一氣體分配設備900包含凹陷於氣體分配板材903的背側901中的兩個輸送通道902a、902b。將可理解輸送通道可不需凹陷至氣體分配板材的背部中,而是可為如 第1圖與第15圖所示之各別管件。第一輸送通道902a具有第一入口端904a與第一出口端906a、以及在沿著第一輸送通道902a的長度上分隔之複數個第一縫隙908a。第二輸送通道902b具有第二入口端904b與第二出口端906b、以及在沿著第二輸送通道902b的長度上分隔之複數個第二縫隙908b。 Figures 9 through 14 illustrate another embodiment of the present work. A gas distribution device 900 includes two delivery channels 902a, 902b recessed in the back side 901 of the gas distribution plate 903. It will be appreciated that the delivery channel may not need to be recessed into the back of the gas distribution sheet, but may be The individual fittings shown in Figures 1 and 15 are shown. The first delivery passage 902a has a first inlet end 904a and a first outlet end 906a, and a plurality of first slits 908a spaced along the length of the first delivery passage 902a. The second delivery passage 902b has a second inlet end 904b and a second outlet end 906b, and a plurality of second slits 908b spaced along the length of the second delivery passage 902b.

第一入口910a係連接至第一輸送通道902a的第一入口端904a。第一入口910a係用以連接至氣體源。第一出口912a係連接至第一輸送通道902a的第一出口端906a。第一出口912a係用以連接至真空源。第二入口910b係連接至第二輸送通道902b的第二入口端904b。第二入口910b係用以連接至氣體源。第二出口912b係連接至第二輸送通道902b的第二出口端906b。 第二出口912b係用以連接至真空源。 The first inlet 910a is connected to the first inlet end 904a of the first delivery channel 902a. The first inlet 910a is for connection to a gas source. The first outlet 912a is coupled to the first outlet end 906a of the first delivery channel 902a. The first outlet 912a is for connection to a vacuum source. The second inlet 910b is connected to the second inlet end 904b of the second delivery channel 902b. The second inlet 910b is for connection to a gas source. The second outlet 912b is connected to the second outlet end 906b of the second delivery passage 902b. The second outlet 912b is for connection to a vacuum source.

在第9圖至第14圖所示的具體實施例中,各輸送通道902a、902b係形成螺旋形。如圖式中所示之一或多個具體實施例具有沿著螺旋形長度互相纏繞的兩個輸送通道902a、902b。熟習該領域技藝之人將了解,這兩個輸送通道902a、902b可具有螺旋以外的形狀,且不需要互相纏繞。在某些具體實施例中,複數個第一縫隙908a與第二縫隙908b係延伸通過氣體分配板材903而至氣體分配板材903的前側905。 In the specific embodiment shown in Figures 9 through 14, each of the delivery channels 902a, 902b is formed in a spiral shape. One or more embodiments shown in the figures have two delivery channels 902a, 902b that are intertwined along a helical length. Those skilled in the art will appreciate that the two delivery channels 902a, 902b can have shapes other than spirals and do not need to be intertwined with each other. In some embodiments, the plurality of first slits 908a and 908b extend through the gas distribution plate 903 to the front side 905 of the gas distribution plate 903.

在部分具體實施例中,各輸送通道902a、902b形成螺旋形,各輸送通道902a、902b之入口端 904a、904b與出口端906a、906b中其一係位於氣體分配板材903的外週區域920中,而入口端904a、904b與出口端906a、906b中另一則位於氣體分配板材903的中央區域922中。在一或多個具體實施例中,兩輸送通道902a、902b的入口端904a、904b係位於外週區域920中,而兩輸送通道902a、902b的出口端906a、906b係位於氣體分配板材903的中央區域922中。在某些具體實施例中,兩輸送通道902a、902b的入口端904a、904b係位於中央區域922中,而兩輸送通道902a、902b的出口端906a、906b則位於氣體分配板材903的外週區域920中。在一或多個具體實施例中,入口端904a、904b的其中一個係位於外週區域920中,另一個入口端904a、904b係位於中央區域922中,而出口端906a、906b係位於各各別輸送通道902a、902b的另一端。 In some embodiments, each of the delivery channels 902a, 902b is formed in a spiral shape, and the inlet ends of the respective delivery channels 902a, 902b One of the 904a, 904b and outlet ends 906a, 906b is located in the peripheral region 920 of the gas distribution plate 903, while the other of the inlet ends 904a, 904b and the outlet ends 906a, 906b are located in the central region 922 of the gas distribution plate 903. . In one or more embodiments, the inlet ends 904a, 904b of the two delivery channels 902a, 902b are located in the peripheral region 920, and the outlet ends 906a, 906b of the two delivery channels 902a, 902b are located in the gas distribution plate 903. Central area 922. In some embodiments, the inlet ends 904a, 904b of the two delivery channels 902a, 902b are located in the central region 922, while the outlet ends 906a, 906b of the two delivery channels 902a, 902b are located in the peripheral region of the gas distribution plate 903. 920. In one or more embodiments, one of the inlet ends 904a, 904b is located in the peripheral region 920, the other inlet end 904a, 904b is located in the central region 922, and the outlet ends 906a, 906b are located in each Do not transport the other end of the channels 902a, 902b.

第11圖說明了如第9圖中所示之氣體分配板材903的背蓋907。在背蓋907中設有四個孔洞(未標號),這些孔洞係大致對齊於輸送通道902a、902b的入口端904a、904b以及出口端906a、906b。孔洞可用以提供一接取點以於入口910a、910b與出口912a、912b中連接至輸送通道902a、902b。在部分具體實施例中,入口910a、910b與出口912a、912b係與背蓋907一體成形。此外,如第12圖與第13圖所示,可有一或多個入口閥門914a、914b與出口閥門916a、916b。 Figure 11 illustrates the back cover 907 of the gas distribution plate 903 as shown in Figure 9. Four holes (not numbered) are provided in the back cover 907 that are generally aligned with the inlet ends 904a, 904b and the outlet ends 906a, 906b of the delivery channels 902a, 902b. The holes may be used to provide an access point for connection to the delivery channels 902a, 902b in the inlets 910a, 910b and the outlets 912a, 912b. In some embodiments, the inlets 910a, 910b and the outlets 912a, 912b are integrally formed with the back cover 907. Further, as shown in Figures 12 and 13, there may be one or more inlet valves 914a, 914b and outlet valves 916a, 916b.

第12圖與第13圖說明根據本創作各種具體實施例之氣體分配設備900的立體圖。入口910a、910b係繪示為以凸緣924a、924b連接至背蓋907。凸緣924a、924b的連接與氣密性密封可藉由熟習該領域技藝之人所知的任何適當機制與技術而完成。出口912a、912b可以凸緣或擋塊連接部925連接至背蓋907。擋塊925可與背蓋907一體成形,或可為獨立部件。擋塊925為出口閥門916a、916b提供額外的支撐與空間,使連接管件自背蓋907以一角度而突出。雖然入口910a、910b與入口閥門914a、914b係繪示為位於氣體分配板材903的外週區域920上,而出口912a、912b與出口閥門916a、916b係繪示為位於氣體分配板材903的中央區域922處,但應理解這些構件也可相反或互相混合,而圖式係僅為一個具體實施例的例示說明。 Figures 12 and 13 illustrate perspective views of a gas distribution apparatus 900 in accordance with various embodiments of the present teachings. The inlets 910a, 910b are shown connected to the back cover 907 with flanges 924a, 924b. The attachment and hermetic sealing of the flanges 924a, 924b can be accomplished by any suitable mechanism and technique known to those skilled in the art. The outlets 912a, 912b may be coupled to the back cover 907 by a flange or stop connection 925. The stop 925 can be integrally formed with the back cover 907 or can be a separate component. The stop 925 provides additional support and space for the outlet valves 916a, 916b such that the connecting tube projects from the back cover 907 at an angle. Although the inlets 910a, 910b and the inlet valves 914a, 914b are shown on the outer peripheral region 920 of the gas distribution plate 903, the outlets 912a, 912b and the outlet valves 916a, 916b are shown in the central region of the gas distribution plate 903. At 922, it should be understood that these components may also be reversed or intermixed, and the drawings are merely illustrative of one particular embodiment.

隨著輸送通道從氣體分配板材的外週邊緣往中央區域形成螺旋(或反向亦可),在截面上可觀察到表面上複數個相鄰通道。由於螺旋互相纏繞,在每一相鄰通道中的氣體係來自另一入口910a、910b。通道與相鄰通道係分隔一段距離。在部分具體實施例中,通道之間的距離(從通道的中心量起)是在介於約0.375吋至約0.475吋的範圍內,或是在介於約0.40吋至約0.45吋的範圍內,或是在介於約0.41吋至約0.43吋的範圍內。在一或多個具體實施例中,在相鄰通道的中心之間的平均距離約為0.42吋。 As the delivery channel forms a helix (or vice versa) from the peripheral edge of the gas distribution plate to the central region, a plurality of adjacent channels on the surface can be observed in cross section. Since the spirals are intertwined, the gas system in each adjacent channel comes from the other inlets 910a, 910b. The channel is separated from the adjacent channel by a distance. In some embodiments, the distance between the channels (from the center of the channel) is in the range of from about 0.375 吋 to about 0.475 ,, or in the range of from about 0.40 吋 to about 0.45 吋. Or in the range of about 0.41 吋 to about 0.43 。. In one or more embodiments, the average distance between the centers of adjacent channels is about 0.42 inches.

第9圖至第14圖中所示之氣體通道的長度可根據數個因素而改變,包含、但不限於通道的直徑與相鄰通道之間的距離。在各種具體實施例中,各輸送通道具有之長度係在介於70吋至約170吋的範圍內,或在介於90吋至約150吋的範圍內,或在介於100吋至約140吋的範圍內,或在介於110吋至約130吋的範圍內。在一或多個具體實施例中,輸送通道具有約為120吋的長度。 The length of the gas passages shown in Figures 9 through 14 may vary depending on several factors including, but not limited to, the diameter of the passage and the distance between adjacent passages. In various embodiments, each delivery channel has a length ranging from 70 吋 to about 170 ,, or ranging from 90 吋 to about 150 ,, or between 100 吋 to about 140 Within the range of 吋, or in the range of 110吋 to about 130吋. In one or more embodiments, the delivery channel has a length of approximately 120 inches.

縫隙的數量也根據數個因素而定,包含、但不限於輸送通道的長度與縫隙的間隔。在具有單螺旋通道的部分具體實施例中,存在有介於大約150個至約450個之範圍內的縫隙,或有介於大約200個至約400個之範圍內的縫隙,或有介於大約250個至約350個之範圍內的縫隙。在各種具體實施例中,在沿著通道的長度上有超過約150、200、250、300、350或400個縫隙。在一或多個具體實施例中,在沿著輸送通道的長度上有大約300個縫隙。 The number of slits is also dependent on a number of factors including, but not limited to, the length of the transport channel and the spacing of the slits. In some embodiments having a single spiral channel, there are gaps in the range of from about 150 to about 450, or gaps in the range of from about 200 to about 400, or A gap of about 250 to about 350. In various embodiments, there are more than about 150, 200, 250, 300, 350 or 400 slits along the length of the channel. In one or more embodiments, there are approximately 300 slits along the length of the delivery channel.

第4圖至第14圖中所示設備可用於電漿處理。舉例而言,輸送通道、氣體分配設備或噴淋頭係可相對於處理腔室的另一部分而極化,以於腔室內點燃電漿。 輸送通道、氣體分配設備或噴淋頭係可相對於腔室的一部分而極化,或是腔室的一部分係可相對於輸送通道、氣體分配設備或噴淋頭而偏離。舉例而言,輸送通道、氣體分配設備或噴淋頭係可相對於支座而極化,或是支座可相對於輸送通道而極化。也可調整電漿的頻率。在一或多個具 體實施例中,電漿是處於約13.56MHz之頻率。在某些具體實施例中,電漿之頻率約為40MHz、50MHz、60MHz、70MHz、80MHz、90MHz、100MHz、110MHz或120MHz。 The apparatus shown in Figures 4 through 14 can be used for plasma processing. For example, the delivery channel, gas distribution device, or showerhead can be polarized relative to another portion of the processing chamber to ignite the plasma within the chamber. The delivery channel, gas distribution device, or showerhead can be polarized relative to a portion of the chamber, or a portion of the chamber can be offset relative to the delivery channel, gas distribution device, or showerhead. For example, the delivery channel, gas distribution device or showerhead can be polarized relative to the support, or the support can be polarized relative to the delivery channel. The frequency of the plasma can also be adjusted. In one or more In the embodiment, the plasma is at a frequency of about 13.56 MHz. In some embodiments, the frequency of the plasma is about 40 MHz, 50 MHz, 60 MHz, 70 MHz, 80 MHz, 90 MHz, 100 MHz, 110 MHz, or 120 MHz.

在第4圖至第14圖所例示的設備的一些具體實施例中,在氣體分配設備的背蓋與主要本體部分(亦即包含氣體輸送通道的部分)之間有一絕緣材料(未示)。 此絕緣材料提供了氣體分配設備的背蓋與主要本體部分之間的電氣隔離,使得背蓋可相對於主要本體部分而極化。這麼做可使電漿在氣體分配設備內、或在輸送通道內被點燃。電漿可流經複數個縫隙而至處理腔室的處理區域中,處理區域為氣體分配設備與支座之間的區域。這種形態稱為遠端電漿,因為電漿是在處理區域的外部形成(例如點燃)。 In some embodiments of the apparatus illustrated in Figures 4 through 14, there is an insulating material (not shown) between the back cover of the gas distribution apparatus and the main body portion (i.e., the portion containing the gas delivery passage). This insulating material provides electrical isolation between the back cover of the gas distribution device and the main body portion such that the back cover can be polarized relative to the main body portion. Doing so allows the plasma to be ignited within the gas distribution device or within the delivery channel. The plasma can flow through a plurality of slits into the processing region of the processing chamber, which is the region between the gas distribution device and the support. This form is called remote plasma because the plasma is formed outside the processing area (eg, ignited).

第15圖、第16A圖與第16B圖說明氣體分配設備1500的另一例示具體實施例。所示之氣體分配設備對於空間上分隔的原子層沉積處理特別有用,其中基板的不同部分係同時暴露至不同沉積氣體,且基板1544係相對於氣體分配設備而移動,使得基板的所有部分都可依序暴露至各沉積氣體。在這些具體實施例中,氣體分配設備1500包含複數個輸送通道1502,各輸送通道1502係實質直線延伸且實質平行於相鄰輸送通道。各輸送通道1502具有入口端1504與出口端1506,入口端1504與出口端1506間具有複數個分隔之縫隙1508。 15, 16A and 16B illustrate another illustrative embodiment of a gas distribution device 1500. The illustrated gas distribution apparatus is particularly useful for spatially separated atomic layer deposition processes in which different portions of the substrate are simultaneously exposed to different deposition gases, and the substrate 1544 is moved relative to the gas distribution device such that all portions of the substrate are Exposure to each deposition gas in sequence. In these particular embodiments, gas distribution apparatus 1500 includes a plurality of delivery channels 1502, each delivery channel 1502 extending substantially linearly and substantially parallel to an adjacent delivery channel. Each delivery channel 1502 has an inlet end 1504 and an outlet end 1506 with a plurality of spaced slits 1508 between the inlet end 1504 and the outlet end 1506.

在第15圖、第16A圖與第16B圖中所示之氣體分配設備具有複數個長形輸送通道1502與複數個長形真空通道1550。各輸送通道1502係於氣體分配設備的前表面處連接至輸出通道1552。各輸送通道1502係用以使一或多種反應性氣體與除氣氣體流動。各輸送通道1502係藉由複數個分隔縫隙1508而連接至輸出通道1552。各真空通道1550係藉由複數個分隔之真空縫隙1558而連接至入口通道1554。各輸送通道1502的複數個縫隙1508係藉由來自真空通道1550的複數個真空縫隙1558的至少其中一個而與各相鄰輸送通道1502的複數個縫隙1508分隔。 The gas distribution apparatus shown in Figs. 15, 16A and 16B has a plurality of elongated conveying passages 1502 and a plurality of elongated vacuum passages 1550. Each delivery channel 1502 is coupled to an output channel 1552 at a front surface of the gas distribution device. Each delivery channel 1502 is configured to flow one or more reactive gases with a degassing gas. Each delivery channel 1502 is coupled to the output channel 1552 by a plurality of separation slits 1508. Each vacuum channel 1550 is connected to the inlet channel 1554 by a plurality of spaced vacuum slits 1558. The plurality of slits 1508 of each of the conveying passages 1502 are separated from the plurality of slits 1508 of the respective adjacent conveying passages 150 by at least one of the plurality of vacuum slits 1558 from the vacuum passages 1550.

在第16A圖所示的具體實施例中,各中央真空通道1550(非端部真空通道)是藉由縫隙151a、151b而連接至兩個入口通道1554。端部真空通道1550僅連接至單一入口通道1554。應理解這僅為例示之用而不應被視為對創作範疇之限制。各入口通道1554可具有專用真空通道1550,或是單一真空通道1550可經由複數個縫隙151a、151b而連接至兩個以上的入口通道1554。 In the particular embodiment illustrated in Figure 16A, each central vacuum channel 1550 (non-end vacuum channel) is connected to the two inlet channels 1554 by slits 151a, 151b. End vacuum channel 1550 is only connected to a single inlet channel 1554. It should be understood that this is for illustrative purposes only and should not be construed as limiting the scope of the invention. Each inlet channel 1554 can have a dedicated vacuum channel 1550, or a single vacuum channel 1550 can be coupled to more than two inlet channels 1554 via a plurality of slots 151a, 151b.

每一個輸送通道看起來是相同的,但流過每一個輸送通道的可為不同氣體。舉例而言,除氣通道(標示為P)具有流經其間之除氣氣體,各第一反應性氣體通道(標示為A)係具有流經其間的第一反應性氣體,而各第二反應性氣體通道(標示為B)係具有流經其間的第二反應性氣體。真空通道(標示為V)係連接至真空源。參閱 第16A圖,從左向右移動的基板1544(或更具體而言,基板上之固定點)會依序歷經真空氣體通道、除氣氣體通道、真空氣體通道、第一反應性氣體通道、真空氣體通道、除氣氣體通道、真空氣體通道、第二反應性氣體通道、真空氣體通道等,端視於氣體分配板材的大小而定。 Each delivery channel appears to be the same, but different flows through each delivery channel. For example, the degassing channel (labeled P) has a degassing gas flowing therethrough, each first reactive gas channel (labeled A) having a first reactive gas flowing therethrough, and each second reaction The gas passage (labeled B) has a second reactive gas flowing therethrough. A vacuum channel (labeled V) is connected to the vacuum source. See In Fig. 16A, the substrate 1544 (or more specifically, the fixed point on the substrate) moving from left to right sequentially passes through the vacuum gas channel, the degassing gas channel, the vacuum gas channel, the first reactive gas channel, and the vacuum. The gas passage, the degassing gas passage, the vacuum gas passage, the second reactive gas passage, the vacuum gas passage, and the like are determined depending on the size of the gas distribution plate.

使用具有入口端與出口端的輸送通道可使氣體在輸送通道內快速交換。舉例而言,在基板(或基板上的固定點)暴露至第二反應性氣體通道(標示為B)之後,輸送通道的出口端可被打開,使通道內的氣體被移除,然後不同的反應性氣體(例如氣體C)可流進輸送通道中。 因此,當基板返回該氣體通道下時,基板將暴露至氣體C而非氣體B。此實例是針對第二反應性氣體而進行,但熟習該領域技藝人士將理解任一氣體輸送通道(第一反應性氣體、第二反應性氣體或除氣氣體)都可被除氣或替換為不同氣體。 The use of a delivery channel having an inlet end and an outlet end allows for rapid exchange of gas within the delivery channel. For example, after the substrate (or a fixed point on the substrate) is exposed to the second reactive gas channel (labeled B), the exit end of the delivery channel can be opened, the gas within the channel is removed, and then different A reactive gas, such as gas C, can flow into the delivery channel. Therefore, when the substrate returns to the gas passage, the substrate will be exposed to the gas C instead of the gas B. This example is directed to a second reactive gas, but those skilled in the art will appreciate that any gas delivery channel (first reactive gas, second reactive gas, or degassed gas) can be degassed or replaced with Different gases.

第15圖、第16A圖與第16B圖的輸送通道也可用於電漿處理。氣體分配設備1500可相對於腔室的另一部分而極化。舉例而言,氣體分配設備1500可相對於支座而極化,或是支座可相對於氣體分配設備而極化。也可調整電漿的頻率。在一或多個具體實施例中,電漿的頻率約為13.56MHz。在部分具體實施例中,電漿的頻率約為40MHz、50MHz、60MHz、70MHz、80MHz、90MHz、100MHz、110MHz或120MHz。 The conveying passages of Figures 15, 16A and 16B can also be used for plasma processing. Gas distribution device 1500 can be polarized relative to another portion of the chamber. For example, the gas distribution device 1500 can be polarized relative to the mount or the mount can be polarized relative to the gas distribution device. The frequency of the plasma can also be adjusted. In one or more embodiments, the frequency of the plasma is about 13.56 MHz. In some embodiments, the frequency of the plasma is about 40 MHz, 50 MHz, 60 MHz, 70 MHz, 80 MHz, 90 MHz, 100 MHz, 110 MHz, or 120 MHz.

第16B圖說明單一輸送通道1502與單一真空通道1550之一具體實施例。輸送通道1502與真空通道1550係各具有自輸送通道1502與真空通道1550延伸的兩組縫隙。在真空通道1550的情形中,一組真空縫隙1558a係連接至第一入口通道1554a,而另一組真空縫隙1558b係連接至第二入口通道1554b。另一方面,輸送通道1502具有延伸至單一輸出通道1552的兩組縫隙1508。 Figure 16B illustrates one embodiment of a single delivery channel 1502 and a single vacuum channel 1550. The delivery channel 1502 and the vacuum channel 1550 each have two sets of slits extending from the delivery channel 1502 and the vacuum channel 1550. In the case of vacuum channel 1550, one set of vacuum slits 1558a are connected to first inlet channel 1554a and another set of vacuum slits 1558b are connected to second inlet channel 1554b. Transport channel 1502, on the other hand, has two sets of slits 1508 that extend to a single output channel 1552.

在一或多個具體實施例中,氣體分配設備包含連接至真空源的一個以上的出口。第17圖說明螺旋形之氣體分配設備1700,氣體分配設備1700與第1圖所示氣體分配設備100類似。氣體分配設備包含具有入口端1704與出口端1706之輸送通道1702。入口1710係連接至輸送通道1702的入口端1704並與輸送通道1702的入口端1704相通。出口1712係連接至輸送通道1702的出口端1706並與輸送通道1702的出口端1706相通。入口1710可連接至氣體源並包含入口閥門1714,入口閥門1714可控制進出輸送通道1702的氣流或完全切斷氣流。出口1712可連接至真空源(未示)並包含出口閥門1716,出口閥門1716可控制進出輸送通道1702的氣流或自輸送通道1702完全切斷真空源。可連接至真空源(未示)之中間出口1742係位於輸送通道1702的長度上。所繪示之中間出口1742是在輸送通道1702的長度的大概中間處連接至輸送通道1702,並經由中間出口1740而耦 接至輸送通道1702。中間出口1742包含中間出口閥門1744,該中間出口閥門1744可控制進出輸送通道1702的氣流或自輸送通道1702完全切斷真空源。入口1710的入口閥門1714、出口1712的出口閥門1716、以及中間出口1740的中間出口閥門1744係連接至控制器1750。控制器可獨立地開啟或關閉任何或所有閥門,以調整流經輸送通道1702的氣體之壓力,或對一既有氣體的輸送通道1702進行除氣。舉例而言,表2說明了可與第17圖所示具體實施例一起使用的處理順序。熟習該領域技藝之人將理解這僅為例示之用且不應被視為對本創作範疇之限制。 In one or more specific embodiments, the gas distribution device includes more than one outlet connected to a vacuum source. Figure 17 illustrates a spiral gas distribution apparatus 1700 that is similar to the gas distribution apparatus 100 of Figure 1. The gas distribution apparatus includes a delivery channel 1702 having an inlet end 1704 and an outlet end 1706. The inlet 1710 is coupled to the inlet end 1704 of the delivery channel 1702 and to the inlet end 1704 of the delivery channel 1702. The outlet 1712 is coupled to the outlet end 1706 of the delivery channel 1702 and is in communication with the outlet end 1706 of the delivery channel 1702. The inlet 1710 can be coupled to a gas source and includes an inlet valve 1714 that can control the flow of gas into and out of the delivery channel 1702 or completely shut off the gas flow. The outlet 1712 can be coupled to a vacuum source (not shown) and includes an outlet valve 1716 that can control the flow of gas into and out of the delivery channel 1702 or completely shut off the vacuum source from the delivery channel 1702. An intermediate outlet 1742 connectable to a vacuum source (not shown) is located over the length of the delivery channel 1702. The illustrated intermediate outlet 1742 is connected to the delivery channel 1702 at approximately the middle of the length of the delivery channel 1702 and is coupled via the intermediate outlet 1740. Connected to the delivery channel 1702. The intermediate outlet 1742 includes an intermediate outlet valve 1744 that controls the flow of gas into and out of the delivery channel 1702 or completely shuts off the vacuum source from the delivery channel 1702. The inlet valve 1714 of the inlet 1710, the outlet valve 1716 of the outlet 1712, and the intermediate outlet valve 1744 of the intermediate outlet 1740 are coupled to the controller 1750. The controller can independently turn any or all of the valves on or off to adjust the pressure of the gas flowing through the delivery channel 1702 or degas the delivery channel 1702 of an existing gas. For example, Table 2 illustrates the processing sequence that can be used with the specific embodiment shown in FIG. Those skilled in the art will understand that this is for illustrative purposes only and should not be construed as limiting the scope of the invention.

在處理期間的任一點處,表2中所示之閥門為開啟、關閉或部分開啟。在步驟3a中,在前驅物A之輸送通道進行除氣之後,中間出口閥門即部分開啟以加速前驅物B流動通過輸送通道,然後在步驟3b中被關閉。這僅為可使用的一種可能順序,不應作為對本創作範疇之限制。 At any point during the process, the valve shown in Table 2 is open, closed or partially open. In step 3a, after the degassing of the delivery path of the precursor A, the intermediate outlet valve is partially opened to accelerate the flow of the precursor B through the delivery channel and then closed in step 3b. This is only one possible order of use and should not be construed as limiting the scope of this creation.

第17圖所示具體實施例可有效地包含兩個出口,其中一個在輸送通道端部處,而另一個在中間處。熟習該領域技藝之人將理解,沿著輸送通道的長度上可設有分隔的任何數量出口,這些出口可在通道長度上之任一位置處;舉例而言,中間出口1740可位於通道長度的1/3處。此外,可有任何數量的出口;舉例而言,輸送通道可具有四個出口,一個在端部處,且在輸送通道長度的1/4、1/2與3/4處係各有一個。在另一實例中,輸送通道包含四個出口,一個在端部處,且在輸送通道長度的1/4、3/4與9/10處係各有一個。在部分具體實施例中,輸送通道包含總共有2、3、4、5、6、7、8、9、10或11個出口(包含在通道出口端之出口)。 The embodiment shown in Fig. 17 can effectively comprise two outlets, one at the end of the delivery channel and the other at the middle. Those skilled in the art will appreciate that any number of outlets may be provided along the length of the delivery channel, which may be anywhere at the length of the channel; for example, the intermediate outlet 1740 may be located at the length of the channel. 1/3. In addition, there may be any number of outlets; for example, the delivery channel may have four outlets, one at the end, and one at each of 1/4, 1/2, and 3/4 of the length of the delivery channel. In another example, the delivery channel includes four outlets, one at the end, and one at each of 1/4, 3/4, and 9/10 of the length of the delivery channel. In some embodiments, the delivery channel comprises a total of 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11 outlets (including the outlet at the outlet end of the channel).

第18圖說明本創作之另一具體實施例,其中氣體分配設備1800包含多重路徑輸送通道1802。在此,氣體分配設備1800包含具有輸入端1804與輸出端1806之輸送通道1802。入口1810係連接至輸送通道1802的入口端1804並與輸送通道1802的入口端1804相通。出口1812係連接至輸送通道1802的出口端1806並與輸送通道1802的出口端1806相通。入口1810可連接至氣體源(未示)且可包含入口閥門1814,入口閥門1814可控制進出輸送通道1802的氣流或完全切斷氣流。出口1812可連接至真空源(未示)並包含出口閥門1816,出口閥門1816可控制進出輸送通道1802的氣流或自輸送通道1802完全切斷真空源。輸送通道1802在靠近入口端 1804處分為三個各別輸送通道1802a、1802b、1802c,並在靠近出口端1806處匯合回單一通道。複數個縫隙1808係沿著各通道之長度而分隔,使得流至入口1810中的單一氣體可沿著多重路徑而被引導,並聯接至單一出口1812。在沿著輸送通道1802長度上縫隙1808係均勻地分隔或不均勻地分隔。 Figure 18 illustrates another embodiment of the present creation in which the gas distribution device 1800 includes a multi-path delivery channel 1802. Here, gas distribution device 1800 includes a delivery channel 1802 having an input 1804 and an output 1806. The inlet 1810 is coupled to the inlet end 1804 of the delivery channel 1802 and to the inlet end 1804 of the delivery channel 1802. The outlet 1812 is coupled to the outlet end 1806 of the delivery channel 1802 and to the outlet end 1806 of the delivery channel 1802. The inlet 1810 can be coupled to a source of gas (not shown) and can include an inlet valve 1814 that can control the flow of gas into and out of the delivery channel 1802 or completely shut off the gas flow. The outlet 1812 can be coupled to a vacuum source (not shown) and includes an outlet valve 1816 that can control the flow of gas into and out of the delivery channel 1802 or completely shut off the vacuum source from the delivery channel 1802. The conveying channel 1802 is near the inlet end 1804 is divided into three separate delivery channels 1802a, 1802b, 1802c and merged back to a single channel near the exit end 1806. A plurality of slits 1808 are separated along the length of each channel such that a single gas flowing into the inlet 1810 can be directed along multiple paths and coupled to a single outlet 1812. The slits 1808 are evenly spaced or unevenly spaced along the length of the delivery channel 1802.

所示之具體實施例係使輸送通道在沿著通道長度上分為三個各別通道。然而,熟習該項技藝之人將可理解這僅為例示且輸送通道可被分為任何數量之通道。在部分具體實施例中,輸送通道係分為2、3、4、5、6、7、8、9或10個各別輸送通道。舉例而言,通道可沿著通道長度而分為兩個,再匯合為一個,然後再分為3個。 The particular embodiment shown divides the delivery channel into three separate channels along the length of the channel. However, those skilled in the art will appreciate that this is merely exemplary and that the delivery channel can be divided into any number of channels. In some embodiments, the delivery channel is divided into 2, 3, 4, 5, 6, 7, 8, 9, or 10 individual delivery channels. For example, a channel can be divided into two along the length of the channel, merged into one, and then divided into three.

通過如第18圖所示之多通道氣體分配設備的氣流可能在三個通道間並不均勻。通道之間的氣流均勻度會受數個因素影響,包含、但不限於氣體壓力、真空壓力、溫度、流量、以及在沿著長度上從靜止壓力之壓力降。第19圖說明氣體分配設備1900的另一具體實施例,其中輸送通道1902細分為三個各別輸送通道1902a、1902b、1902c,各別輸送通道都具有其本身的出口閥門1916a、1916b、1916c。所示氣體分配設備1900包含經由入口閥門1914而連接至入口1910之入口端1904。 輸送通道1902包含複數個縫隙1908,這些縫隙1908沿著每一各別輸送通道1902a、1902b、1902c的長度而分隔。這些縫隙可沿著通道長度而均勻分隔、或不均勻分 隔。各通道具有一各別出口1912a、1912b、1912c,這些出口具有各別出口閥門1916a、1916b、1916c。 各出口閥門1916a、1916b、1916c係連接至控制器1950,該控制器1950可獨立控制各出口閥門1916a、1916b、1916c。在此具體實施例中,控制器1950可設定出口閥門為關閉、完全開啟、或之間的任一點。舉例而言,若通過其中一個通道的氣流比其他小,則控制器1950將開啟該通道的出口閥門以加速流動,或開啟其他通道的出口閥門以加速流動,並使較少氣體經由縫隙而離開通道,以產生更均勻的流動。 The air flow through the multi-channel gas distribution apparatus as shown in Fig. 18 may not be uniform between the three channels. The uniformity of airflow between the channels can be affected by several factors including, but not limited to, gas pressure, vacuum pressure, temperature, flow, and pressure drop from static pressure along the length. Figure 19 illustrates another embodiment of a gas distribution apparatus 1900 in which the delivery channel 1902 is subdivided into three respective delivery channels 1902a, 1902b, 1902c, each having its own outlet valve 1916a, 1916b, 1916c. The illustrated gas distribution device 1900 includes an inlet end 1904 that is coupled to an inlet 1910 via an inlet valve 1914. Delivery channel 1902 includes a plurality of slits 1908 that are separated along the length of each respective delivery channel 1902a, 1902b, 1902c. These gaps can be evenly spaced along the length of the channel, or unevenly divided Separate. Each channel has a respective outlet 1912a, 1912b, 1912c having respective outlet valves 1916a, 1916b, 1916c. Each of the outlet valves 1916a, 1916b, 1916c is coupled to a controller 1950 that can independently control each of the outlet valves 1916a, 1916b, 1916c. In this particular embodiment, controller 1950 can set the outlet valve to be closed, fully open, or any point in between. For example, if the airflow through one of the channels is smaller than the others, the controller 1950 will open the outlet valve of the channel to accelerate the flow, or open the outlet valves of the other channels to accelerate the flow and allow less gas to exit through the gap. Channels to create a more even flow.

也可使用多個各別通道。第20圖說明氣體分配設備2000的具體實施例,氣體分配設備2000具有五個各別氣體輸送通道2002a、2002b、2002c、2002d、2002e。各輸送通道2002a、2002b、2002c、2002d、2002e包含入口閥門2014a、2014b、2014c、2014d、2014e以及出口閥門2016a、2016b、2016c、2016d、2016e。四個螺旋形輸送通道2002a-d係繪示為在四個通道的中央處留下空隙區2060。第五個輸送通道2002e通過螺旋之間並在空隙區2060中震盪以避免氣流中的死區。第五輸送通道2002e係繪示為具有中間出口閥門2044。各輸送通道可配置以輸送相同氣體,或可輸送各別氣體。 Multiple separate channels can also be used. Figure 20 illustrates a specific embodiment of a gas distribution apparatus 2000 having five individual gas delivery channels 2002a, 2002b, 2002c, 2002d, 2002e. Each of the conveying passages 2002a, 2002b, 2002c, 2002d, 2002e includes inlet valves 2014a, 2014b, 2014c, 2014d, 2014e and outlet valves 2016a, 2016b, 2016c, 2016d, 2016e. The four spiral transport channels 2002a-d are depicted leaving a void region 2060 at the center of the four channels. The fifth delivery channel 2002e is oscillated between the spirals and in the void region 2060 to avoid dead zones in the gas flow. The fifth delivery passage 2002e is illustrated as having an intermediate outlet valve 2044. Each delivery channel can be configured to deliver the same gas or can deliver a separate gas.

在一具體實施例中,這五個通道覆蓋單一基板,且各通道係輸送相同的反應性氣體。基板可在輸送通道下方旋轉,或是通道可於基板上方旋轉或震盪。在另一 具體實施例中,替代的輸送通道(例如2002a、2002c)可輸送第一反應性氣體,而其他輸送通道(例如2002b、2002d)可輸送第二反應性氣體。第五輸送通道2002e可配置以輸送惰性氣體,以於各別通道之間形成氣幕(curtain),以分隔氣體並避免氣相反應。使基板在這些通道下方旋轉會使交替的四分之一部分暴露於相同氣體,而後為第二反應性氣體,以沉積薄膜。在此具體實施例中,在空隙區2060中的基板部分不具沉積層。 In one embodiment, the five channels cover a single substrate and each channel carries the same reactive gas. The substrate can be rotated below the delivery channel or the channel can be rotated or oscillated above the substrate. In another In a particular embodiment, an alternate delivery channel (e.g., 2002a, 2002c) can deliver a first reactive gas, while other delivery channels (e.g., 2002b, 2002d) can deliver a second reactive gas. The fifth delivery channel 2002e can be configured to deliver an inert gas to form a curtain between the individual channels to separate the gases and avoid gas phase reactions. Rotating the substrate underneath these channels exposes the alternating quarter portion to the same gas and then to the second reactive gas to deposit the film. In this particular embodiment, the portion of the substrate in void region 2060 has no deposited layer.

在另一具體實施例中,各通道係可輸送相同氣體,但各通道大小係設以使得單一基板可被單一輸送通道覆蓋,可藉由使基板從一輸送通道移動至相鄰通道而進行多個基板的處理。各通道可配置以輸送相同氣體或各別氣體,且第五通道可配置以輸送惰性氣體以形成氣幕,該氣幕係分隔與輸送通道相鄰的反應區域。第五輸送通道以及本文所述之任何其他氣體輸送通道可具有多個入口與單一出口或多個出口。舉例而言,所示之第五輸送通道可在任一端處具有入口以及在中間處之單一出口,以產生較強的氣體氣幕來分隔其他輸送通道。 In another embodiment, each channel can deliver the same gas, but each channel is sized such that a single substrate can be covered by a single delivery channel, which can be performed by moving the substrate from a delivery channel to an adjacent channel. Processing of the substrates. Each channel can be configured to deliver the same gas or individual gases, and the fifth channel can be configured to deliver an inert gas to form a gas curtain that separates the reaction zone adjacent the delivery channel. The fifth delivery channel, as well as any other gas delivery channels described herein, can have multiple inlets and a single outlet or multiple outlets. For example, the fifth delivery channel shown may have an inlet at either end and a single outlet at the middle to create a stronger gas curtain to separate the other delivery channels.

同樣地,出口的形狀與數量係根據所需用途而加以變化。第20圖中所示之螺旋形係僅為例示,且不應被視為對本創作範疇之限制。氣體輸送通道的形狀可基於數種理由而修改。在部分具體實施例中,氣體輸送通道係為拼出文字而成形(例如「Applied Materials」)或形成商標。舉例而言,第21圖說明三個輸送通道2102a、2102b、2102c,三個輸送通道2102a、2102b、2102c 大致形成了加州聖大克勞拉市的應用材料有限公司的商標。第一輸送通道2102a與第二輸送通道2102b各具有單一入口閥門2114a、2114b及單一出口閥門2116a、2116b。第三輸送通道2102c具有單一入口閥門2114c與兩個出口閥門2116c、2116d。在沿著長度上,第三輸送通道2102c分為兩個通道,重新成形為單一通道,然後再次分為兩個通道。在另一具體實施例中,第三輸送通道的入口閥門與出口閥門可相反,因此可存在兩個入口閥門與單一出口閥門。 Similarly, the shape and number of outlets vary depending on the intended use. The spiral shown in Fig. 20 is merely illustrative and should not be construed as limiting the scope of the invention. The shape of the gas delivery channel can be modified for several reasons. In some embodiments, the gas delivery channel is formed by spelling out text (eg, "Applied Materials") or forming a trademark. For example, Figure 21 illustrates three delivery channels 2102a, 2102b, 2102c, three delivery channels 2102a, 2102b, 2102c It is roughly a trademark of Applied Materials Co., Ltd. of Santa Clara, California. The first delivery channel 2102a and the second delivery channel 2102b each have a single inlet valve 2114a, 2114b and a single outlet valve 2116a, 2116b. The third delivery passage 2102c has a single inlet valve 2114c and two outlet valves 2116c, 2116d. The third delivery channel 2102c is divided into two channels along the length, reshaped into a single channel, and then split into two channels again. In another embodiment, the inlet valve of the third delivery passage can be opposite the outlet valve, so there can be two inlet valves and a single outlet valve.

基板所見之來自氣體分配設備表面的氣體流動可為均勻的或條紋狀。舉例而言,通過第9圖所示之雙螺旋氣體分配設備下方的基板會看見交替的氣體環。在部分具體實施例中,複數個輸送通道係成形為使得基板所見的孔洞圖案在整個氣體分配設備間都為均勻。第22A圖與第22B圖說明了氣體輸送設備2203的一部分實施例,其中基板所見之氣流會是均勻的。第22A圖說明氣體分配設備2203的背側2201,該氣體分配設備2203具有複數個交替的氣體通道2202a、2202b。氣體通道2202a、2202b隨氣體通道的長度上分隔之孔洞2208a、2208b而起伏,因此在第22B圖中的前側2205上所見之孔洞2208圖案是均勻的。此外,基板所見之氣流會是均勻的,因為在氣體分配設備前方有均勻分佈於其間的孔洞。見第22B圖,孔洞2208的最上列將於第一氣體與第二氣體之間交替,而下一列則具有相反圖案。因此,在所示的12 個孔洞2208中,第一氣體將流出其中六個孔洞,而第二氣體將流出另外六個孔洞。 The gas flow from the surface of the gas distribution device as seen by the substrate may be uniform or striped. For example, alternating substrates are seen through the substrate below the double helix gas distribution device shown in FIG. In some embodiments, the plurality of delivery channels are shaped such that the pattern of holes seen by the substrate is uniform throughout the gas distribution device. Figures 22A and 22B illustrate a portion of an embodiment of a gas delivery device 2203 in which the gas flow seen by the substrate will be uniform. Figure 22A illustrates the back side 2201 of the gas distribution apparatus 2203 having a plurality of alternating gas passages 2202a, 2202b. The gas passages 2202a, 2202b undulate with the holes 2208a, 2208b spaced apart along the length of the gas passage, so that the pattern of holes 2208 seen on the front side 2205 in Figure 22B is uniform. In addition, the airflow seen by the substrate will be uniform because there are holes evenly distributed in front of the gas distribution device. Referring to Figure 22B, the uppermost column of holes 2208 will alternate between the first gas and the second gas, while the next column will have the opposite pattern. So, at the 12 shown In one of the holes 2208, the first gas will flow out of the six holes and the second gas will flow out of the other six holes.

可有多數個入口閥門2214a、2214b,如第22A圖所示,或可為分成多個通道的單一閥門。此外,可有多數個出口閥門2216a、2216b,如第22B圖所示,或可為接合各通道之單一出口閥門。 There may be a plurality of inlet valves 2214a, 2214b, as shown in Figure 22A, or may be a single valve divided into multiple channels. In addition, there may be a plurality of outlet valves 2216a, 2216b, as shown in Fig. 22B, or may be a single outlet valve that engages each passage.

所述氣體分配設備可用以在電漿增強原子層沉積(PEALD)處理中形成一或多層。在部分處理中,電漿的使用提供了充足的能量來促進物種變成激發態,而使表面反應變得有利和可能。將電漿導入處理中可為連續性或脈衝式。在部分具體實施例中,前驅物(或反應性氣體)的連續脈衝與電漿係用以處理膜層。在部分具體實施例中,反應物可經局部(亦即在處理區域內)或遠端(亦即在處理區域外)離子化。遠端離子化可在沉積腔室的上游發生,使得離子或其他高能或發光物種並不與沉積薄膜直接接觸。在部分PEALD處理中,電漿是在處理腔室的外部產生,例如藉由遠端電漿處理器系統。電漿可經由熟習該項技藝之人所知的任何適當電漿產生程序或技術而產生。舉例而言,可由微波(MW)頻率產生器或射頻(RF)產生器中的一或多個來產生電漿。電漿頻率可根據所使用之具體反應性物種而加以調整。適當的頻率包含、但不限於2MHz、13.56MHz、40MHz、60MHz與100MHz。雖然在本文所揭示的沉積程序中使用電漿,但應注意也可不需要電漿。 The gas distribution apparatus can be used to form one or more layers in a plasma enhanced atomic layer deposition (PEALD) process. In partial processing, the use of plasma provides sufficient energy to promote the species to an excited state, making surface reactions favorable and possible. The plasma can be introduced into the treatment to be continuous or pulsed. In some embodiments, continuous pulses and plasma of the precursor (or reactive gas) are used to treat the film layer. In some embodiments, the reactants may be ionized either locally (i.e., within the treatment zone) or distal (i.e., outside of the treatment zone). Distal ionization can occur upstream of the deposition chamber such that ions or other high energy or luminescent species are not in direct contact with the deposited film. In a partial PEALD process, the plasma is generated external to the processing chamber, such as by a remote plasma processor system. The plasma can be produced by any suitable plasma generating procedure or technique known to those skilled in the art. For example, the plasma can be generated by one or more of a microwave (MW) frequency generator or a radio frequency (RF) generator. The plasma frequency can be adjusted depending on the particular reactive species used. Suitable frequencies include, but are not limited to, 2 MHz, 13.56 MHz, 40 MHz, 60 MHz, and 100 MHz. Although plasma is used in the deposition procedure disclosed herein, care should be taken that plasma is also not required.

根據一或多個具體實施例,氣體分配設備可用以於形成層之前及/或之後處理基板。此處理可在相同腔室、或在一或多個各別處理腔室中進行。在部分具體實施例中,基板係自第一腔室移動至各別第二腔室,以進行進一步處理。基板可直接從第一腔室移動到該各別處理腔室,或是基板可從第一腔室移動至一或多個移送室、然後再移動至所需的各別處理腔室。因此,此處理設備係包含與移送站相通的多個腔室。此種類之設備係稱為「叢集工具」或「叢集式系統」等。 According to one or more embodiments, the gas distribution apparatus can be used to treat the substrate before and/or after forming the layer. This treatment can be performed in the same chamber, or in one or more separate processing chambers. In some embodiments, the substrate is moved from the first chamber to the respective second chamber for further processing. The substrate can be moved directly from the first chamber to the respective processing chamber, or the substrate can be moved from the first chamber to the one or more transfer chambers and then to the respective processing chambers required. Therefore, the processing device includes a plurality of chambers in communication with the transfer station. This type of equipment is called a "cluster tool" or a "cluster system".

一般而言,叢集工具係模組化系統,包含多個腔室,這些腔室執行各種功能,包括找尋基板中心與定向、脫氣、退火、沉積及/或蝕刻。根據一或多個具體實施例,叢集工具包含至少第一腔室及中央移送室。中央移送室係圍繞機器人,機器人可在處理腔室與負載鎖定腔室之間運送基板。移送室一般是保持為真空條件,並為自一腔室至另一腔室及/或至位於叢集工具前端處的負載鎖定腔室之運送基板提供中間階段。可用於本創作的兩種廣為所知之叢集工具為Centura®與Endura®,兩者都由加州聖大克勞拉市的應用材料有限公司所提供。一種這類階段式真空基板處理設備的細節係揭示於Tepman等人在1993年2月16日所獲准之美國專利號5,186,718(專利名稱為「階段式真空晶圓處理設備與方法」)中。然而,腔室的精確排列與組合係可調整以執行本文所述之處理的具體步驟。可使用之其他處理腔室包含、但不限於循環 層沉積(CLD)、原子層沈積(ALD)、化學氣相沉積(CVD)、物理氣相沉積(PVD)、蝕刻、預清潔、化學清潔、熱處理(例如RTP)、電漿氮化、脫氣、取向、氫氧化與其他基板處理。藉由在叢集工具的腔室中實施處理,即可避免大氣雜質對基板的表面污染,不會在沉積後續薄膜之前氧化。 In general, a clustering tool is a modular system that includes a plurality of chambers that perform various functions, including finding substrate centering and orientation, degassing, annealing, depositing, and/or etching. According to one or more embodiments, the cluster tool includes at least a first chamber and a central transfer chamber. The central transfer chamber surrounds the robot, and the robot can transport the substrate between the processing chamber and the load lock chamber. The transfer chamber is typically maintained in a vacuum condition and provides an intermediate stage for transporting substrates from one chamber to another and/or to a load lock chamber at the front end of the cluster tool. Two well-known clustering tools available for this creation are Centura® and Endura®, both supplied by Applied Materials, Inc. of Santa Clara, Calif. A detail of such a staged vacuum substrate processing apparatus is disclosed in U.S. Patent No. 5,186,718, entitled "Stage Vacuum Wafer Processing Apparatus and Method", issued February 16, 1993 by Tepman et al. However, the precise alignment and combination of chambers can be adjusted to perform the specific steps of the processing described herein. Other processing chambers that may be used include, but are not limited to, cycling Layer deposition (CLD), atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), etching, pre-cleaning, chemical cleaning, heat treatment (eg RTP), plasma nitridation, degassing , orientation, hydrogenation and other substrate processing. By performing the treatment in the chamber of the cluster tool, surface contamination of the substrate by atmospheric impurities can be avoided without oxidation prior to deposition of the subsequent film.

根據一或多個具體實施例,在從腔室移動至下一個腔室時,基板係連續在真空或「負載鎖定」條件下,且未暴露於周圍空氣。移送室係因此而處於真空,且在真空壓力下進行「泵回(pumped down)」。在處理腔室或移送室中存在有惰性氣體。在部分具體實施例中,惰性氣體係作為除氣氣體之用,以在基板表面上形成矽層之後移除部分或全部的反應物。根據一或多個具體實施例,除氣氣體係於沈積腔室的出口處注入,以避免反應物從沈積腔室移動到移送室及/或其他處理腔室。因此,惰性氣體的流動係於腔室出口處形成氣幕。 In accordance with one or more embodiments, the substrate is continuously under vacuum or "load lock" conditions and is not exposed to ambient air as it moves from the chamber to the next chamber. The transfer chamber is thus under vacuum and "pumped down" under vacuum pressure. An inert gas is present in the processing chamber or transfer chamber. In some embodiments, the inert gas system acts as a degassing gas to remove some or all of the reactants after forming a layer of tantalum on the surface of the substrate. In accordance with one or more embodiments, a degassing system is injected at the exit of the deposition chamber to avoid movement of reactants from the deposition chamber to the transfer chamber and/or other processing chambers. Therefore, the flow of the inert gas forms a gas curtain at the outlet of the chamber.

可使用例如本文所述之氣體分配設備在單一基板沈積腔室中處理基板。在這類腔室中,係負載、處理、並在另一基板被處理之前卸載單一基板。基板也可以連續方式被處理,例如傳送系統,其中多個基板係可各別地被負載至腔室的第一部件中、移動通過腔室、並且自腔室的第二部件卸載。腔室與相關傳送系統的形狀可形成直線路徑或彎曲路徑。此外,處理腔室可為迴旋系統,其中多個 基板可沿著中心軸而移動並且經由迴旋系統路徑而暴露以進行沉積、蝕刻、退火、清潔等程序。 The substrate can be processed in a single substrate deposition chamber using, for example, a gas distribution device as described herein. In such chambers, the single substrate is loaded, processed, and unloaded before another substrate is processed. The substrate can also be processed in a continuous manner, such as a conveyor system, wherein a plurality of substrates can be individually loaded into the first component of the chamber, moved through the chamber, and unloaded from the second component of the chamber. The shape of the chamber and associated transport system can form a straight path or a curved path. In addition, the processing chamber can be a swirling system in which multiple The substrate can be moved along a central axis and exposed via a swirling system path for deposition, etching, annealing, cleaning, and the like.

在處理期間,基板可被加熱或冷卻。這種加熱或冷卻可藉由任何適當方式完成,包含、但不限於改變基板支座的溫度以及使加熱或冷卻氣體流至基板表面。在部分具體實施例中,基板支座包含加熱器/冷卻器,加熱器/冷卻器可受控制以傳導地改變基板溫度。在一或多個具體實施例中,使用的氣體(反應性氣體或惰性氣體)係經加熱或冷卻以局部改變基板溫度。在部分具體實施例中,加熱器/冷卻器係位於腔室內、鄰近基板表面,以對流地改變基板溫度。 The substrate can be heated or cooled during processing. This heating or cooling can be accomplished by any suitable means including, but not limited to, varying the temperature of the substrate support and flowing heated or cooled gas to the substrate surface. In some embodiments, the substrate holder includes a heater/cooler that can be controlled to conductively change the substrate temperature. In one or more embodiments, the gas (reactive gas or inert gas) used is heated or cooled to locally alter the substrate temperature. In some embodiments, the heater/cooler is located within the chamber adjacent the surface of the substrate to convectively change the substrate temperature.

在處理期間,基板也可為靜止或旋轉。旋轉基板係可連續旋轉、或在不連續的步驟中旋轉。舉例而言,基板可在整個處理間都旋轉,或是基板可在暴露於不同反應性或除氣氣體之間小量旋轉。在處理期間旋轉基板(無論是連續地或步驟式)係可藉由使例如氣流幾何局部變異性達最小化而幫助產生更均勻的沉積或蝕刻。 The substrate can also be stationary or rotating during processing. The rotating substrate can be rotated continuously or in discrete steps. For example, the substrate can be rotated throughout the process, or the substrate can be rotated a small amount between exposure to different reactive or degassed gases. Rotating the substrate (whether continuous or stepped) during processing can help produce more uniform deposition or etching by minimizing, for example, geometrical local variability of the gas flow.

本創作係以參照特定的具體實施例而描述,然應知這些具體實施例僅為例示說明本創作之原理與應用之用。熟習該項技藝之人可在不背離本創作之精神與範疇下對本創作之方法與設備進行各種修飾與變化。因此,本創作意欲包含在如附申請專利範圍中所界定之修飾例與變化例,以及其等效例。 The present invention has been described with reference to the specific embodiments, which are intended to illustrate the principles and applications of the present invention. Those skilled in the art can make various modifications and changes to the method and equipment of the present invention without departing from the spirit and scope of the present invention. Therefore, the present invention is intended to cover modifications and variations as defined in the appended claims.

Claims (28)

一種氣體分配設備,包含:一氣體分配板材,具有一前側表面及一背側表面,其中該背側表面相對於該前側表面;一第一螺旋氣體輸送通道,形成於該氣體分配板材的該背側表面上,其中該第一螺旋氣體輸送通道自該背側表面的一中央區域延伸至該背側表面的一外週區域;一第二螺旋氣體輸送通道,形成於該氣體分配板材的該背側表面上,其中該第二螺旋氣體輸送通道自該背側表面的該中央區域延伸至該背側表面的該外週區域,且該第一螺旋氣體輸送通道及該第二螺旋氣體輸送通道互相纏繞;複數個第一縫隙,沿著該第一螺旋氣體輸送通道的長度分隔,其中該等複數個第一縫隙的每一者自該前側表面延伸至該第一螺旋氣體輸送通道的一表面;以及,複數個第二縫隙,沿著該第二螺旋氣體輸送通道的長度分隔,其中該等複數個第二縫隙的每一者自該前側表面延伸至該第二螺旋氣體輸送通道的一表面。 A gas distribution device comprising: a gas distribution plate having a front side surface and a back side surface, wherein the back side surface is opposite to the front side surface; a first spiral gas delivery passage formed on the back of the gas distribution sheet a side surface, wherein the first spiral gas transport channel extends from a central region of the back side surface to a peripheral region of the back side surface; a second spiral gas transport channel formed on the back of the gas distribution plate a side surface, wherein the second spiral gas delivery channel extends from the central region of the back side surface to the outer peripheral region of the back side surface, and the first spiral gas delivery channel and the second spiral gas delivery channel are mutually Winding; a plurality of first slits spaced along a length of the first spiral gas delivery channel, wherein each of the plurality of first slits extends from the front side surface to a surface of the first spiral gas delivery channel; And a plurality of second slits separated along a length of the second spiral gas delivery channel, wherein each of the plurality of second slits is from the Side surfaces extending to a surface of the second coil of the gas delivery channel. 如請求項1所述的氣體分配設備,其中: 該第一螺旋氣體輸送通道及該第二螺旋氣體輸送通道各更包含設置於一下方部分與該背側表面之間的一上方部分,其中該下方部分的表面具有一磨圓的形狀。 The gas distribution device of claim 1, wherein: The first spiral gas delivery channel and the second spiral gas delivery channel each further comprise an upper portion disposed between a lower portion and the back side surface, wherein the surface of the lower portion has a rounded shape. 如請求項2所述的氣體分配設備,其中:該下方部分的該表面之該磨圓的形狀是一半圓形或半橢圓形。 The gas distribution device according to claim 2, wherein the rounded shape of the surface of the lower portion is a semicircular or semi-elliptical shape. 如請求項2所述的氣體分配設備,其中:該等複數個第一縫隙自該第一螺旋氣體輸送通道的該下方部分的該表面延伸至該前側表面。 The gas distribution device of claim 2, wherein the plurality of first slits extend from the surface of the lower portion of the first spiral gas delivery passage to the front side surface. 如請求項4所述的氣體分配設備,其中:該等複數個第二縫隙自該第二螺旋氣體輸送通道的該下方部分的該表面延伸至該前側表面。 The gas distribution device of claim 4, wherein the plurality of second slits extend from the surface of the lower portion of the second spiral gas delivery passage to the front side surface. 如請求項1所述的氣體分配設備,其中:該等複數個第一縫隙及該等複數個第二縫隙的每一者包含具有一第一直徑的一第一區段、一第二區段、具有一第二直徑的一第三區段,其中該第二區段具有自該第一直徑漸縮至該第二直徑的一形狀。 The gas distribution device of claim 1, wherein: each of the plurality of first slits and the plurality of second slits comprises a first segment and a second segment having a first diameter a third section having a second diameter, wherein the second section has a shape that tapers from the first diameter to the second diameter. 如請求項6所述的氣體分配設備,其中:該第二直徑介於0.03吋(0.762公厘)與0.15吋(3.81公厘)之間。 The gas distribution apparatus of claim 6, wherein the second diameter is between 0.03 吋 (0.762 mm) and 0.15 吋 (3.81 mm). 如請求項1所述的氣體分配設備,其中:該等複數個第一縫隙及該等複數個第二縫隙的每一者具有位於該前側表面且介於0.03吋(0.762公厘)與0.15吋(3.81公厘)之間之一直徑。 The gas distribution device of claim 1, wherein: each of the plurality of first slits and the plurality of second slits has a front side surface and is between 0.03 吋 (0.762 mm) and 0.15 吋. One of the diameters between (3.81 mm). 如請求項1所述的氣體分配設備,其中:該等複數個第一縫隙及該等複數個第二縫隙的每一者具有位於該前側表面且小於0.08吋(2.03公厘)之一直徑。 The gas distribution device of claim 1, wherein: each of the plurality of first slits and the plurality of second slits has a diameter on the front side surface and less than 0.08 吋 (2.03 mm). 如請求項1所述的氣體分配設備,其中:該等複數個第一縫隙及該等複數個第二縫隙的每一者具有位於該第一螺旋氣體輸送通道或該第二螺旋氣體輸送通道的下方部分的該表面且小於0.02吋(0.508公厘)之一直徑。 The gas distribution device of claim 1, wherein: each of the plurality of first slits and the plurality of second slits has a first spiral gas delivery channel or the second spiral gas delivery channel The surface of the lower portion is less than one diameter of 0.02 吋 (0.508 mm). 如請求項1所述的氣體分配設備,其中: 該等複數個第一縫隙包含300至900個縫隙,該等複數個第二縫隙包含300至900個縫隙。 The gas distribution device of claim 1, wherein: The plurality of first slits comprise from 300 to 900 slits, and the plurality of second slits comprise from 300 to 900 slits. 如請求項1所述的氣體分配設備,其中:該第一螺旋氣體輸送通道及該第二螺旋氣體輸送通道各具有介於0.3吋(7.62公厘)與0.425吋(10.8公厘)之間之一寬度。 The gas distribution device according to claim 1, wherein the first spiral gas delivery channel and the second spiral gas delivery channel each have a relationship between 0.3 吋 (7.62 mm) and 0.425 吋 (10.8 mm). a width. 如請求項1所述的氣體分配設備,其中:該第一螺旋氣體輸送通道的一中心及該第二螺旋氣體輸送通道的一中心間隔介於0.375吋(9.52公厘)與0.475吋(12.07公厘)之間之一距離,其中該距離是沿著平行於該背側表面的一方向來加以測量。 The gas distribution device of claim 1, wherein: a center of the first spiral gas delivery channel and a center of the second spiral gas delivery channel are between 0.375 吋 (9.52 mm) and 0.475 吋 (12.07 PCT) One of the distances between PCT), wherein the distance is measured along a direction parallel to the backside surface. 一種氣體分配設備,包含:一氣體分配板材,具有一前側表面及一背側表面;一凹陷區域,形成在該背側表面,其中該凹陷區域的一下表面是一凹陷表面,該凹陷表面設置成與該背側表面間隔一距離,且該凹陷表面相對於該前側表面;一第一螺旋氣體輸送通道,形成於該氣體分配板材 的該凹陷表面上,其中該第一螺旋氣體輸送通道自該凹陷表面的一中央區域延伸至該凹陷表面的一外週區域;一第二螺旋氣體輸送通道,形成於該氣體分配板材的該凹陷表面上,其中該第二螺旋氣體輸送通道自該凹陷表面的該中央區域延伸至該凹陷表面的該外週區域,且該第一螺旋氣體輸送通道及該第二螺旋氣體輸送通道分離且互相纏繞;複數個第一縫隙,沿著該第一螺旋氣體輸送通道的長度分隔,其中該等複數個第一縫隙的每一者自該前側表面延伸至該第一螺旋氣體輸送通道的一表面;以及,複數個第二縫隙,沿著該第二螺旋氣體輸送通道的長度分隔,其中該等複數個第二縫隙的每一者自該前側表面延伸至該第二螺旋氣體輸送通道的一表面。 A gas distribution device comprising: a gas distribution plate having a front side surface and a back side surface; a recessed area formed on the back side surface, wherein the lower surface of the recessed area is a recessed surface, the recessed surface being configured Separating a distance from the back side surface, and the recessed surface is opposite to the front side surface; a first spiral gas transport channel formed on the gas distribution plate The surface of the recess, wherein the first spiral gas transport channel extends from a central region of the recessed surface to a peripheral region of the recessed surface; a second spiral gas transport passage formed in the recess of the gas distribution plate a surface, wherein the second spiral gas transport channel extends from the central region of the recessed surface to the peripheral region of the recessed surface, and the first spiral gas transport channel and the second spiral gas transport channel are separated and intertwined a plurality of first slits spaced along a length of the first spiral gas delivery passage, wherein each of the plurality of first slits extends from the front side surface to a surface of the first spiral gas delivery passage; And a plurality of second slits spaced along a length of the second spiral gas delivery passage, wherein each of the plurality of second slits extends from the front side surface to a surface of the second spiral gas delivery passage. 如請求項14所述的氣體分配設備,其中:該第一螺旋氣體輸送通道及該第二螺旋氣體輸送通道各更包含設置於一下方部分與該背側表面之間的一上方部分,其中該下方部分的表面具有一磨圓的形狀。 The gas distribution device of claim 14, wherein: the first spiral gas delivery channel and the second spiral gas delivery channel each further comprise an upper portion disposed between a lower portion and the back side surface, wherein The surface of the lower portion has a rounded shape. 如請求項15所述的氣體分配設備,其中:該下方部分的該表面之該磨圓的形狀是一半圓形或半橢圓形。 The gas distribution device according to claim 15, wherein the rounded shape of the surface of the lower portion is a semicircular or semi-elliptical shape. 如請求項15所述的氣體分配設備,其中:該等複數個第一縫隙自該第一螺旋氣體輸送通道的該下方部分的該表面延伸至該前側表面。 The gas distribution device of claim 15, wherein: the plurality of first slits extend from the surface of the lower portion of the first spiral gas delivery passage to the front side surface. 如請求項17所述的氣體分配設備,其中:該等複數個第二縫隙自該第二螺旋氣體輸送通道的該下方部分的該表面延伸至該前側表面。 The gas distribution apparatus of claim 17, wherein: the plurality of second slits extend from the surface of the lower portion of the second spiral gas delivery passage to the front side surface. 如請求項14所述的氣體分配設備,其中:該等複數個第一縫隙及該等複數個第二縫隙的每一者包含具有一第一直徑的一第一區段、一第二區段、具有一第二直徑的一第三區段,其中該第二區段具有自該第一直徑漸縮至該第二直徑的一形狀。 The gas distribution device of claim 14, wherein: each of the plurality of first slits and the plurality of second slits comprises a first segment and a second segment having a first diameter a third section having a second diameter, wherein the second section has a shape that tapers from the first diameter to the second diameter. 如請求項14所述的氣體分配設備,其中:該等複數個第一縫隙及該等複數個第二縫隙的每一者包含具有一第一直徑的一第一區段、一第二區段、具有一第二直徑的一第三區段,其中該第二直徑介於 0.03吋(0.762公厘)與0.15吋(3.81公厘)之間。 The gas distribution device of claim 14, wherein: each of the plurality of first slits and the plurality of second slits comprises a first segment and a second segment having a first diameter a third section having a second diameter, wherein the second diameter is between Between 0.03 吋 (0.762 mm) and 0.15 吋 (3.81 mm). 如請求項14所述的氣體分配設備,其中:該等複數個第一縫隙及該等複數個第二縫隙的每一者具有位於該前側表面且介於0.03吋(0.762公厘)與0.15吋(3.81公厘)之間之一直徑。 The gas distribution device of claim 14, wherein: each of the plurality of first slits and the plurality of second slits has a front side surface and is between 0.03 吋 (0.762 mm) and 0.15 吋. One of the diameters between (3.81 mm). 如請求項21所述的氣體分配設備,其中:該第一螺旋氣體輸送通道及該第二螺旋氣體輸送通道各具有介於0.3吋(7.62公厘)與0.425吋(10.8公厘)之間之一寬度。 The gas distribution device according to claim 21, wherein the first spiral gas delivery channel and the second spiral gas delivery channel each have a relationship between 0.3 吋 (7.62 mm) and 0.425 吋 (10.8 mm). a width. 如請求項22所述的氣體分配設備,其中:該等複數個第一縫隙包含300至900個縫隙,該等複數個第二縫隙包含300至900個縫隙。 The gas distribution device of claim 22, wherein: the plurality of first slits comprises 300 to 900 slits, and the plurality of second slits comprise 300 to 900 slits. 如請求項14所述的氣體分配設備,其中:該等複數個第一縫隙及該等複數個第二縫隙的每一者具有位於該前側表面且小於0.08吋(2.03公厘)之一直徑。 The gas distribution apparatus of claim 14, wherein: each of the plurality of first slits and the plurality of second slits has a diameter on the front side surface and less than 0.08 吋 (2.03 mm). 如請求項14所述的氣體分配設備,其中: 該等複數個第一縫隙及該等複數個第二縫隙的每一者具有位於該第一螺旋氣體輸送通道或該第二螺旋氣體輸送通道的下方部分的該表面且小於0.02吋(0.508公厘)之一直徑。 The gas distribution apparatus of claim 14, wherein: Each of the plurality of first slits and the plurality of second slits has the surface located at a lower portion of the first spiral gas delivery passage or the second spiral gas delivery passage and is less than 0.02 吋 (0.508 mm) ) One of the diameters. 如請求項14所述的氣體分配設備,其中:該第一螺旋氣體輸送通道及該第二螺旋氣體輸送通道之間所間隔的距離介於0.375吋(9.52公厘)與0.475吋(12.07公厘)之間,其中該距離是沿著平行於該背側表面的一方向來加以測量。 The gas distribution device according to claim 14, wherein the distance between the first spiral gas delivery channel and the second spiral gas delivery channel is between 0.375 吋 (9.52 mm) and 0.475 吋 (12.07 mm). Between the two, wherein the distance is measured along a direction parallel to the backside surface. 如請求項14所述的氣體分配設備,其中:該凹陷區域配置成承接一背蓋,其中該背蓋的一表面配置成當該背蓋位於該凹陷區域中時實質覆蓋該第一螺旋氣體輸送通道及該第二螺旋氣體輸送通道。 The gas distribution device of claim 14, wherein the recessed area is configured to receive a back cover, wherein a surface of the back cover is configured to substantially cover the first spiral gas transport when the back cover is located in the recessed area a channel and the second spiral gas delivery channel. 如請求項14所述的氣體分配設備,其中:該背蓋配置成當該背蓋位於該凹陷區域中時接觸該凹陷表面。 The gas distribution device of claim 14, wherein the back cover is configured to contact the recessed surface when the back cover is in the recessed region.

Family

ID=

Similar Documents

Publication Publication Date Title
TWI614446B (en) Gas distribution apparatus and processing chamberfor providing uniform flow of gas
CN109075023B (en) Apparatus and method for providing uniform flow of gas
US10400335B2 (en) Dual-direction chemical delivery system for ALD/CVD chambers
TWI848974B (en) Apparatus for multi-flow precursor dosage
US8955547B2 (en) Apparatus and method for providing uniform flow of gas
TWM570917U (en) Gas distribution device and processing chamber for providing uniform gas flow