TWM568442U - Cash flow grouping system - Google Patents
Cash flow grouping system Download PDFInfo
- Publication number
- TWM568442U TWM568442U TW107206315U TW107206315U TWM568442U TW M568442 U TWM568442 U TW M568442U TW 107206315 U TW107206315 U TW 107206315U TW 107206315 U TW107206315 U TW 107206315U TW M568442 U TWM568442 U TW M568442U
- Authority
- TW
- Taiwan
- Prior art keywords
- enterprise
- information
- flow
- golden
- gold
- Prior art date
Links
Landscapes
- Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
Abstract
一種金流分群系統包含一儲存模組及一處理模組,該儲存模組儲存有多筆分別相關於多個企業群體之金流狀態的企業金流資訊,每一筆企業金流資訊包含至少一筆分別對應至少一個預存企業的企業資料,每一企業資料包括多筆匯款資訊,每一匯款資訊具有一所對應的預存企業匯出或匯入的匯款企業及一匯款金額;該處理模組電連接該儲存模組,對於每一企業金流資訊,處理模組根據該企業金流資訊獲得一金流總額及一總匯款次數,並根據每一企業金流資訊所對應之作為多個分群屬性的該金流總額及該總匯款次數,將該等企業金流資訊分成多個群集。A gold flow grouping system comprises a storage module and a processing module, wherein the storage module stores a plurality of enterprise financial information related to the status of the gold flow of the plurality of enterprise groups, and each enterprise gold flow information includes at least one Corresponding to the enterprise data of at least one pre-existing enterprise, each enterprise data includes multiple remittance information, each remittance information has a corresponding remittance enterprise remitted or remitted by the pre-existing enterprise and a remittance amount; the processing module is electrically connected The storage module, for each enterprise gold flow information, the processing module obtains a total amount of gold flow and a total number of remittances according to the enterprise gold flow information, and according to each enterprise gold flow information, as a plurality of group attributes The total amount of the gold flow and the total number of remittances divide the enterprise financial flow information into multiple clusters.
Description
本新型是有關一種自動地將多筆金流資訊分類為多個群集的系統,特別是指一種金流分群系統。 The present invention relates to a system for automatically classifying multiple gold flow information into multiple clusters, and in particular to a golden flow grouping system.
金融業面對企業客戶作授信業務時,必須即時地了解客戶的金流資訊,但現有的金流資訊分析,皆是透過人工的方式,定義出多個分類條件後,例如:一年內的匯款金額、次數...等等,再將龐大的客戶資料根據分類條件分成多個群集,但人工的分類方法所耗費的人力及時間成本過多,對銀行業亦是一大負擔。 When facing the credit business of corporate customers, the financial industry must immediately understand the customer's financial information. However, the existing information analysis of the golden stream is based on manual methods to define multiple classification conditions, for example, within one year. Remittance amount, number of times, etc., and then divide the huge customer data into multiple clusters according to the classification conditions, but the labor and time cost of the manual classification method is too much, which is also a big burden for the banking industry.
有鑑於此,如何提供一種人工智慧方式自動地分析出分類條件,將客戶資料分類成多個各自具有相同分類條件的群集,進而針對具有相同分類條件的客戶群制定相對應的策略,即為本創作所欲解決之首要課題。 In view of this, how to provide an artificial intelligence method to automatically analyze the classification conditions, classify the customer data into a plurality of clusters each having the same classification condition, and then formulate a corresponding strategy for the customer group having the same classification condition, that is, The primary topic of creation is to solve.
因此,本新型之目的,即在提供一種自動地將多筆金流 資訊分類為多個群集的分群系統。 Therefore, the purpose of the present invention is to provide an automatic multi-flow of gold Information is classified into clustered systems of multiple clusters.
於是,本新型一種金流分群系統包含一儲存模組,以及一電連接該儲存模組的處理模組。 Therefore, the novel gold flow grouping system comprises a storage module and a processing module electrically connected to the storage module.
該儲存模組儲存有多筆分別相關於多個企業群體之金流狀態的企業金流資訊,每一筆企業金流資訊包含至少一筆分別對應至少一個預存企業的企業資料,每一企業資料包括多筆匯款資訊,每一匯款資訊具有一所對應的預存企業匯出或匯入的匯款企業及一匯款金額。 The storage module stores a plurality of enterprise financial information related to the status of the golden flow of the plurality of enterprise groups, and each enterprise financial flow information includes at least one enterprise data corresponding to at least one pre-stored enterprise, and each enterprise information includes more Remittance information, each remittance information has a corresponding remittance enterprise remitted or remitted by the pre-existing enterprise and a remittance amount.
對於每一企業金流資訊,該處理模組根據該企業金流資訊獲得一金流總額及一總匯款次數,並根據每一企業金流資訊所對應之作為多個分群屬性的該金流總額及該總匯款次數,將該等企業金流資訊分成多個群集。 For each enterprise financial flow information, the processing module obtains a total amount of gold flow and a total number of remittances according to the enterprise financial flow information, and the total amount of the golden flow corresponding to each grouping attribute corresponding to each enterprise gold flow information. And the total number of remittances, the company's financial flow information is divided into multiple clusters.
本新型之功效在於:藉由該等企業金流資訊所獲得之該等金流總額及該等總匯款次數,該處理模組自動地將該等企業金流資訊分類成該等群集,使得分析人員可針對該等群集規劃出相對應的策略。 The effect of the novel is that the processing module automatically classifies the enterprise financial information into the clusters by using the total amount of the golden flows obtained by the enterprise financial information and the total number of the remittances, so that the analysis Personnel can plan a corresponding strategy for these clusters.
100‧‧‧金流分群系統 100‧‧‧Goldstream Cluster System
1‧‧‧儲存模組 1‧‧‧ storage module
2‧‧‧處理模組 2‧‧‧Processing module
51~56‧‧‧步驟 51~56‧‧‧Steps
561’~563’‧‧‧子步驟 561’~563’‧‧‧ substeps
61~67‧‧‧步驟 61~67‧‧‧Steps
621~622‧‧‧子步驟 621~622‧‧‧ substeps
641~642‧‧‧子步驟 641~642‧‧‧Substeps
本新型之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一方塊圖,說明執行本新型金流分群系統之一實施例;圖2是一流程圖,說明該實施例執行一金流分群方法中的一分群屬性獲得程序;圖3是一示意圖,說明該實施例執行該金流分群方法的一金流關係圖;圖4是一示意圖,說明該實施例執行該金流分群方法之一由該金流關係圖轉換的無向圖;圖5是一示意圖,說明該實施例執行該金流分群方法的另一金流關係圖;圖6是一流程圖,說明該實施例執行該分群屬性獲得程序如何獲得另一金流傳遞程度;圖7是一流程圖,說明該實施例執行該金流分群方法中的一分群群集獲得程序;圖8是一流程圖,說明該實施例執行該分群群集獲得程序如何分類每一非初始中心企業資訊的細部流程;及圖9是一流程圖,說明該實施例執行該分群群集獲得程序如何分類每一企業資訊的細部流程。 Other features and effects of the present invention will be apparent from the following description of the drawings, in which: 1 is a block diagram showing an embodiment of the implementation of the present novel golden stream grouping system; FIG. 2 is a flow chart illustrating the execution of a clustering attribute obtaining program in the gold flow grouping method of the embodiment; FIG. FIG. 4 is a schematic diagram showing an undirected graph in which one of the golden stream grouping methods is converted by the gold flow grouping method in the embodiment; FIG. Is a schematic diagram illustrating another golden flow relationship diagram of the method for performing the golden flow grouping method; FIG. 6 is a flowchart illustrating how the cluster execution attribute obtaining program obtains another golden stream transfer degree; FIG. Is a flow chart illustrating that the embodiment performs a clustering cluster obtaining procedure in the golden stream grouping method; FIG. 8 is a flowchart illustrating how the clustering obtaining the non-initial center enterprise information is performed by the embodiment. The detailed flow; and FIG. 9 is a flow chart illustrating the detailed flow of how the clustering acquisition program of the embodiment classifies each enterprise information.
參閱圖1,本新型金流分群系統100的一實施例,包含一 儲存模組1,以及一電連接該儲存模組1的處理模組2。 Referring to FIG. 1, an embodiment of the novel gold flow grouping system 100 includes a The storage module 1 and a processing module 2 electrically connected to the storage module 1.
該儲存模組1儲存有多筆分別相關於多個企業群體之金流狀態的企業金流資訊,每一筆企業金流資訊包含至少一筆分別對應至少一個預存企業的企業資料,每一企業資料包括多筆匯款資訊,每一匯款資訊具有一所對應的預存企業匯出或匯入的匯款企業、一匯款金額,及該匯款金額所對應的一匯款時間點。 The storage module 1 stores a plurality of enterprise financial information related to the status of the golden flow of the plurality of enterprise groups, and each enterprise financial flow information includes at least one enterprise data corresponding to at least one pre-stored enterprise, and each enterprise information includes A plurality of remittance information, each remittance information has a corresponding remittance enterprise remitted or remitted by the pre-existing enterprise, a remittance amount, and a remittance time point corresponding to the remittance amount.
該儲存模組1所儲存的每一企業金流資訊皆可被表示為一金流關係圖,每一金流關係圖包括多個節點及多個相關於該等節點間之連結的有向邊,每一節點對應該至少一預存企業及該至少一匯款企業之一者,且以該等有向邊之至少一者與所匯出或所匯入的該至少一預存企業及該至少一匯款企業之另至少一者對應的節點連結,其中每一有向邊指示出任兩節點間之連結為匯出或匯入。 Each enterprise gold flow information stored in the storage module 1 can be represented as a golden flow relationship diagram, and each golden flow relationship diagram includes a plurality of nodes and a plurality of directed edges related to the links between the nodes Each node corresponds to at least one pre-stored enterprise and one of the at least one remittance enterprise, and the at least one pre-existing enterprise and the at least one remittance remitted or remitted by at least one of the directed edges At least one of the other nodes of the enterprise is connected, wherein each directed edge indicates that the connection between the two nodes is a remittance or remittance.
在該實施例中,該金流分群系統100之實施態樣例如為一個人電腦、一伺服器,但不以此為限。 In this embodiment, the embodiment of the golden current grouping system 100 is, for example, a personal computer and a server, but is not limited thereto.
以下將藉由本新型金流分群系統100之該實施例執行一金流分群方法來說明該金流分群系統100之該儲存模組1,以及該處理模組2各元件的運作細節,該金流分群方法包含一分群屬性獲得程序,以及一分群群集獲得程序。 The following is a description of the operation of the storage module 1 of the golden flow grouping system 100 and the operation details of the components of the processing module 2 by performing a golden flow grouping method in the embodiment of the present golden flow grouping system 100. The clustering method includes a clustering attribute acquisition program and a clustering cluster acquisition procedure.
參閱圖2,該分群屬性獲得程序係用於獲得多個不同的分群屬性,該分群屬性獲得程序包含一步驟51、一步驟52、一步驟 53、一步驟54、一步驟55,以及一步驟56(或一步驟56’)。 Referring to FIG. 2, the group attribute obtaining program is used to obtain a plurality of different grouping attributes, and the group attribute obtaining program includes a step 51, a step 52, and a step. 53. A step 54, a step 55, and a step 56 (or a step 56').
在步驟51中,對於每一企業金流資訊,該處理模組2計算該企業金流資訊中所有匯款資訊之匯款金額的總和,獲得一對應該企業金流資訊,且作為多個分群屬性之其中一者的金流總額。 In step 51, for each enterprise financial information, the processing module 2 calculates the sum of the remittance amounts of all the remittance information in the enterprise financial information, obtains a pair of enterprise financial information, and serves as a plurality of sub-group attributes. One of the total amount of gold flow.
在步驟52中,對於每一企業金流資訊,該處理模組2計算該企業金流資訊中所有匯款資訊的數量,獲得一對應該企業金流資訊,且作為該等分群屬性之其中一者的總匯款次數。 In step 52, for each enterprise financial flow information, the processing module 2 calculates the quantity of all the remittance information in the enterprise golden flow information, obtains a pair of corporate financial information, and serves as one of the sub-group attributes. The total number of remittances.
在步驟53中,對於每一企業金流資訊,該處理模組2將該金流總額除以該總匯款次數,獲得一對應該企業金流資訊,且作為該等分群屬性之其中一者的平均匯款金額。 In step 53, for each enterprise financial information, the processing module 2 divides the total amount of the golden stream by the total number of remittances, and obtains a pair of corporate financial information, and is one of the attributes of the group. Average remittance amount.
在步驟54中,對於每一企業金流資訊,該處理模組2根據該等匯款資訊,利用Ljung-Box Q test演算法,獲得一對應該企業金流資訊,並指示出該企業的隨機性,且作為該等分群屬性之其中一者的自我相關檢定值。 In step 54, for each enterprise financial information, the processing module 2 uses the Ljung-Box Q test algorithm to obtain a pair of corporate financial information according to the remittance information, and indicates the randomness of the enterprise. And as a self-correlation check value of one of the grouping attributes.
在步驟55中,對於每一企業金流資訊所對應的金流關係圖,該處理模組2利用下列夏農熵計算公式(如下公式(1)),獲得一對應該企業金流資訊(對應該金流關係圖),且作為該等分群屬性之其中一者的集中程度。 In step 55, for each gold flow relationship map corresponding to the enterprise gold flow information, the processing module 2 uses the following summer nutrient entropy calculation formula (the following formula (1)) to obtain a pair of enterprise financial information (for It should be a golden relationship diagram, and as a concentration of one of these sub-group attributes.
於夏農熵計算公式(如上公式(1))中,H(X)為一指示出該集中程度的熵值、a為該金流關係圖中之其中一節點、b為該金流關係圖中之另一節點、C為一由該金流關係圖轉換出的金流關係無向圖中之所有無向邊的數量,而Xab為a、b兩節點之所有匯款金額的總和。 In the Xia Nong entropy calculation formula (formula (1) above), H(X) is an entropy value indicating the degree of concentration, a is one of the nodes in the gold flow relationship diagram, and b is the gold flow relationship diagram. The other node in the middle, C is the number of all undirected edges in the unbalanced graph of the golden flow relationship converted from the golden flow diagram, and X ab is the sum of all the remittance amounts of the two nodes a and b.
參閱圖3、4,舉例來說,假設一企業金流資訊所對應的金流關係圖為圖3所示的金流關係圖,則圖4為由圖3所示的金流關係圖所轉換出之金流關係無向圖,則圖4所示金流關係無向圖中之所有無向邊的數量C為3。 Referring to FIG. 3 and FIG. 4, for example, if the gold flow relationship diagram corresponding to an enterprise gold flow information is the golden flow relationship diagram shown in FIG. 3, FIG. 4 is converted by the golden flow relationship diagram shown in FIG. In the gold flow relationship undirected graph, the number C of all undirected edges in the gold flow relationship undirected graph shown in Fig. 4 is 3.
在步驟56中,對於每一企業金流資訊所對應的金流關係圖,該處理模組2將該金流關係圖中所有不同的路徑(Path)之路徑長度的總和,除以該金流關係圖之所有路徑的數量,以獲得一對應該企業金流資訊(對應該金流關係圖),且作為該等分群屬性之其中一者的金流傳遞程度。其中,該金流關係圖之所有路徑不包含任一迴路(Cycle)。 In step 56, for each gold flow relationship map corresponding to each enterprise gold flow information, the processing module 2 divides the sum of the path lengths of all the different paths in the golden flow relationship diagram by the golden flow. The number of all the paths of the relationship map to obtain a pair of business flow information (corresponding to the gold flow relationship diagram), and the degree of gold flow transmission as one of the group attributes. Wherein, all paths of the golden flow relationship diagram do not include any loop (Cycle).
參閱圖5,舉例來說,假設一企業金流資訊所對應的金流關係圖(如圖5),則可獲得的所有路徑分別為,A->B、A->B->C、A->B->D、B->D、B->C、B->C->A、C->A、C->A->B,及C->A->B->D,共9條路徑,而A->B->C->A、B->C->A->B、B->C->A->B->D,及C->A->B->C皆為迴路,故不屬於該金流關 係圖之所有路徑。其中,路徑A->B之路徑長度為1,路徑C->A->B->D之路徑長度為3,因此,該金流關係圖(如圖5)之該金流傳遞程度為(1+2+2+1+1+2+1+2+3)/9=1.67。 Referring to FIG. 5, for example, assuming a golden flow relationship diagram corresponding to an enterprise golden flow information (as shown in FIG. 5), all available paths are respectively, A->B, A->B->C, A. ->B->D, B->D, B->C, B->C->A, C->A, C->A->B, and C->A->B->D, A total of 9 paths, and A->B->C->A, B->C->A->B, B->C->A->B->D, and C->A->B ->C is a loop, so it does not belong to the gold flow off All paths to the system. The path length of the path A->B is 1, and the path length of the path C->A->B->D is 3. Therefore, the golden flow relationship of the golden flow relationship diagram (as shown in FIG. 5) is ( 1+2+2+1+1+2+1+2+3)/9=1.67.
值得特別說明的是,在本實施例中,係藉由執行步驟56來獲得該金流傳遞程度,然而在其他實施方式中,可經由一步驟56’來獲得不同於步驟56中所獲得之金流傳遞程度的另一金流傳遞程度,並以步驟56’所獲得的該另一金流傳遞程度來取代步驟56所獲得的該金流傳遞程度,以作為該等分群屬性之其中一者。 It should be particularly noted that in the present embodiment, the degree of gold flow transmission is obtained by performing step 56, but in other embodiments, the gold obtained in step 56 may be obtained via a step 56'. Another degree of golden flow transfer of the degree of flow transfer, and the degree of transfer of the other gold flow obtained in step 56', replaces the degree of transfer of the golden flow obtained in step 56 as one of the attributes of the group.
在步驟56’中,對於每一企業金流資訊,該處理模組2根據該企業金流資訊之所有匯款時間點,產生另一金流關係圖,並獲得對應該另一金流關係圖的該另一金流傳遞程度。 In step 56', for each enterprise gold flow information, the processing module 2 generates another gold flow relationship map according to all the remittance time points of the enterprise golden flow information, and obtains a corresponding golden flow relationship diagram. The other gold flow is transmitted.
參閱圖6,值得特別說明的是,步驟56’還進一步包含一子步驟561’、一子步驟562’,以及一子步驟563’。 Referring to Figure 6, it is particularly noted that step 56' further includes a sub-step 561', a sub-step 562', and a sub-step 563'.
在子步驟561’中,對於每一企業金流資訊,該處理模組2將對應有匯款時間點不位於一時間區間內的匯款資訊去除。 In sub-step 561', for each enterprise gold flow information, the processing module 2 removes the remittance information corresponding to the remittance time point not within a time interval.
在子步驟562’中,對於每一經步驟561’之處理後的企業金流資訊,該處理模組2將經步驟561’之處理後的該企業金流資訊表示為另一金流關係圖,該另一金流關係圖包括多個節點及多個相關於該等節點間之連結的有向邊,每一節點對應該至少一預存企業及該至少一匯款企業之一者,且以該等有向邊之至少一者與所匯出 或所匯入的該至少一預存企業及該至少一匯款企業之另至少一者對應的節點連結,其中每一有向邊指示出任兩節點間之連結為匯出或匯入。 In sub-step 562 ′, for each enterprise flow information processed after step 561 ′, the processing module 2 represents the enterprise golden stream information processed by step 561 ′ as another golden flow relationship diagram. The other golden flow relationship diagram includes a plurality of nodes and a plurality of directed edges related to the links between the nodes, each node corresponding to at least one pre-stored enterprise and one of the at least one remittance enterprise, and the same At least one of the directed sides and the remitted Or a node connection corresponding to the at least one pre-stored enterprise and the at least one other at least one remittance enterprise, wherein each directed edge indicates that the connection between the two nodes is a remittance or remittance.
在子步驟563’中,對於每一另一金流關係圖,該處理模組2將該另一金流關係圖中所有不同的路徑之路徑長度的總和,除以該另一金流關係圖之所有路徑的數量,獲得對應經步驟561’之處理後的該企業金流資訊(對應該另一金流關係圖)的該另一金流傳遞程度。其中,該另一金流關係圖之所有路徑不包含任一迴路。 In sub-step 563', for each of the other gold flow relationship diagrams, the processing module 2 divides the sum of the path lengths of all the different paths in the other gold flow relationship diagram by the other gold flow relationship diagram. The number of all the paths is obtained, and the other golden stream transmission degree corresponding to the enterprise gold flow information (corresponding to another gold flow relationship diagram) processed in step 561' is obtained. Wherein, all paths of the other gold flow relationship diagram do not include any loop.
參閱圖7,該分群群集獲得程序係用於獲得多個不同的分群群集,該分群群集獲得程序包含一步驟61、一步驟62、一步驟63、一步驟64、一步驟65、一步驟66,以及一步驟67。 Referring to FIG. 7, the clustering cluster obtaining program is used to obtain a plurality of different clustering clusters. The clustering cluster obtaining program includes a step 61, a step 62, a step 63, a step 64, a step 65, and a step 66. And a step 67.
在步驟61中,該處理模組2隨機地自該等企業金流資訊中,選取多筆分別作為該等群集之初始中心的企業金流資訊。 In step 61, the processing module 2 randomly selects, from the enterprise financial information, a plurality of enterprise financial information respectively as the initial centers of the clusters.
在步驟62中,對於該等企業金流資訊中之每一不作為初始中心的非初始中心企業金流資訊,該處理模組2根據該非初始中心企業金流資訊所對應的該等分群屬性及每一初始中心所對應的該等分群屬性,將該非初始中心企業金流資訊分類至該等群集之其中一者。 In step 62, for each of the enterprise financial information, the non-initial central enterprise financial information that is not the initial center, the processing module 2 according to the non-initial central enterprise financial information corresponding to the group attribute and each The non-initial central enterprise financial flow information is classified into one of the clusters by the initial grouping corresponding to the initial group.
參閱圖8,值得特別說明的是,在該實施例中,步驟62還進一步包含一子步驟621,以及一子步驟622。 Referring to FIG. 8, it is particularly noted that in this embodiment, step 62 further includes a sub-step 621, and a sub-step 622.
在子步驟621中,對於每一非初始中心企業金流資訊,該處理模組2根據該非初始中心企業金流資訊所對應的該等分群屬性及每一初始中心所對應的該等分群屬性,計算該非初始中心企業金流資訊與每一初始中心間的一相似度。 In the sub-step 621, for each non-initial central enterprise financial information, the processing module 2 is configured according to the grouping attributes corresponding to the non-initial central enterprise gold stream information and the grouping attributes corresponding to each initial center. Calculate a similarity between the non-initial central enterprise financial flow information and each initial center.
值得特別說明的是,在該實施例中,在子步驟621中的該相似度,可以利用歐氏距離(如下公式(2))獲得,但不以此為限。 It should be particularly noted that in this embodiment, the similarity in sub-step 621 can be obtained by using the Euclidean distance (formula (2) below), but not limited thereto.
其中,Xi為該非初始中心企業金流資訊所對應的該等分群屬性之其中一者,Yi為該等初始中心之其中一者所對應的該等分群屬性中與該非初始中心企業金流資訊所對應的該等分群屬性之該者相同屬性的分群屬性,i≧1,d(X,Y)即為該非初始中心企業金流資訊與該等初始中心之該者的相似度。 Where Xi is one of the group attributes corresponding to the non-initial center enterprise gold flow information, and Yi is one of the initial centers corresponding to the group attribute and the non-initial center enterprise information flow information center The grouping attribute of the same attribute of the corresponding group attribute, i≧1, d(X, Y) is the similarity between the non-initial center enterprise gold stream information and the one of the initial centers.
在子步驟622中,對於每一非初始中心企業金流資訊,該處理模組2根據該非初始中心企業金流資訊與每一初始中心間的相似度,自該等初始中心中,獲得一與該非初始中心企業金流資訊對應有最高相似度的目標初始中心,並將該非初始中心企業金流資訊分類至該目標初始中心所對應的群集中。 In sub-step 622, for each non-initial central enterprise financial information, the processing module 2 obtains a comparison from the initial centers according to the similarity between the non-initial central enterprise financial information and each initial center. The non-initial central enterprise financial flow information corresponds to the target initial center with the highest similarity, and the non-initial central enterprise financial flow information is classified into the cluster corresponding to the target initial center.
在步驟63中,對於每一初始中心所對應的群集,該處理 模組2根據被分類至該群集的每一企業金流資訊(包含所有初始中心)所對應的該等分群屬性,重新獲得該群集的中心及其對應的多個基準分群屬性。值得特別說明的是,在該實施例中,對於該群集之每一基準分群屬性,該基準分群屬性可以是該群集中與該基準分群屬性之相同屬性的所有分群屬性之平均,但不以此為限。 In step 63, for each cluster corresponding to the initial center, the process The module 2 re-acquires the center of the cluster and its corresponding plurality of reference cluster attributes according to the group attributes corresponding to each enterprise gold stream information (including all initial centers) classified into the cluster. It should be particularly noted that in this embodiment, for each reference group attribute of the cluster, the reference group attribute may be an average of all group attributes of the same attribute of the cluster in the cluster, but not Limited.
在步驟64中,對於每一企業金流資訊,該處理模組2根據該企業金流資訊所對應的該等分群屬性及每一中心所對應的該等基準分群屬性,將該企業金流資訊分類至該等群集之其中一者。 In step 64, for each enterprise gold flow information, the processing module 2 according to the grouping attribute corresponding to the enterprise gold stream information and the benchmark group attributes corresponding to each center, the enterprise gold flow information Classified to one of these clusters.
參閱圖9,值得特別說明的是,在該實施例中,步驟64還進一步包含一子步驟641,以及一子步驟642。 Referring to FIG. 9, it is particularly noted that in this embodiment, step 64 further includes a sub-step 641 and a sub-step 642.
在子步驟641中,對於每一企業金流資訊,該處理模組2根據該企業金流資訊所對應的該等分群屬性及每一中心所對應的該等基準分群屬性,計算該企業金流資訊與每一中心間的一相似度。 In sub-step 641, for each enterprise financial information, the processing module 2 calculates the enterprise financial flow according to the grouping attributes corresponding to the enterprise golden stream information and the reference grouping attributes corresponding to each center. A similarity between information and each center.
值得特別說明的是,在該實施例中,在子步驟641中的該相似度之獲得方式,與子步驟621中之相似度獲得方式相同(亦即可以透過上述公式(2)獲得),但不以此為限。 It should be particularly noted that, in this embodiment, the similarity obtained in sub-step 641 is obtained in the same manner as the similarity in sub-step 621 (that is, can be obtained by the above formula (2)), but Not limited to this.
其中,Xi為該企業金流資訊所對應的該等分群屬性之其中一者,Yi為該等中心之其中一者所對應的該等基準分群屬性中與該企業金流資訊所對應的該等分群屬性之該者相同屬性的基準分 群屬性,i≧1,d(X,Y)即為該企業金流資訊與該等中心之該者的相似度。 Where Xi is one of the grouping attributes corresponding to the enterprise information, and Yi is one of the benchmark group attributes corresponding to one of the centers corresponding to the enterprise information The base of the same attribute of the group attribute The group attribute, i≧1, d(X, Y) is the similarity between the enterprise financial information and the one of the centers.
在子步驟642中,對於每一企業金流資訊,該處理模組2根據該企業金流資訊與每一中心間的相似度,自該等中心,獲得一與該企業金流資訊對應有最高相似度的目標中心,並將該企業金流資訊分類至該目標中心所對應的群集中。 In sub-step 642, for each enterprise financial information, the processing module 2 obtains the highest corresponding to the enterprise golden flow information from the centers according to the similarity between the enterprise golden flow information and each center. The target center of similarity, and classify the enterprise financial flow information into the cluster corresponding to the target center.
在步驟65中,對於每一中心所對應的群集,該處理模組2判定被分類至該中心所對應之群集的每一企業金流資訊是否與被分類至該初始中心所對應之群集的每一企業金流資訊完全相同。當該處理模組2判定被分類至該中心所對應之群集的每一企業金流資訊與被分類至該初始中心所對應之群集的每一企業金流資訊不完全相同時,進行流程步驟66;當該處理模組2判定被分類至該中心所對應之群集的每一企業金流資訊與被分類至該初始中心所對應之群集的每一企業金流資訊完全相同時,進行流程步驟67。 In step 65, for each cluster corresponding to the center, the processing module 2 determines whether each enterprise gold flow information classified into the cluster corresponding to the center is associated with each cluster corresponding to the initial center. The information of a company's gold flow is exactly the same. When the processing module 2 determines that each enterprise gold stream information classified into the cluster corresponding to the center is not exactly the same as each enterprise gold stream information classified into the cluster corresponding to the initial center, the process step 66 is performed. When the processing module 2 determines that each enterprise gold stream information classified into the cluster corresponding to the center is identical to each enterprise gold stream information classified into the cluster corresponding to the initial center, proceed to process step 67. .
在步驟66中,該處理模組2將該中心作為該初始中心,並重新執行步驟63、步驟64,及步驟65。 In step 66, the processing module 2 takes the center as the initial center, and performs step 63, step 64, and step 65 again.
在步驟67中,該處理模組2獲得每一中心所對應的群集。 In step 67, the processing module 2 obtains a cluster corresponding to each center.
值得特別說明的是,在該實施例中,該分群群集獲得程序只需要步驟51所獲得之該金流總額,及步驟52所獲得之該總匯款次數作為該等分群屬性便可完整執行,而不需要由步驟53至步驟 56所獲得之其他分群屬性。 It should be particularly noted that, in this embodiment, the clustering cluster obtaining program only needs the total amount of the gold stream obtained in step 51, and the total number of remittances obtained in step 52 can be completely executed as the group attribute. No need to go from step 53 to step 56 other group attributes obtained.
值得一提的是,實施上,在獲得每一中心所對應的群集後,分析人員便可根據每一群集各自的共通特徵,找出潛在授信客戶、潛在供應鏈中心廠客戶,又或是,掌握企業群集之金流狀況、還款財源狀況。此外,由於被分類至同一群集的企業金流資訊具有相似的分群屬性,通常同一群集中的各企業金流資訊對應的產業類別也會相同,此外,藉由分析每一筆企業金流資訊之如,匯款次數及匯款金額的金流狀況即可歸類出該企業金流資訊所對應的產業類別,例如對應有金流次數活絡但每次金額小之金流狀況的群集成員應為觀光旅遊業,藉此,即可歸納出每一群集所屬之產業類別,以針對每一群集規劃出不同的對應策略。 It is worth mentioning that, in implementation, after obtaining the cluster corresponding to each center, the analysts can find out the potential credit customers, potential supply chain center factory customers according to the common characteristics of each cluster, or Master the status of the corporate stream and the status of repayments. In addition, since the enterprise gold flow information classified into the same cluster has similar clustering attributes, the industrial categories corresponding to each enterprise gold flow information in the same cluster will be the same, and by analyzing each enterprise financial flow information, The cash flow status of the number of remittances and the amount of remittances can be classified into the industry categories corresponding to the enterprise's financial information. For example, the members of the cluster corresponding to the flow of gold flows, but each time the amount of money is small, should be tourism tourism. In this way, the industry categories to which each cluster belongs can be summarized to plan different corresponding strategies for each cluster.
綜上所述,本新型金流分群系統,藉由執行該分群屬性獲得程序獲得屬於該等分群屬性之該金流總額、該總匯款次數、該平均匯款金額、該自我相關檢定值、該集中程度,及該金流傳遞程度或該另一金流傳遞程度,接著,以人工智慧的方式透過分群群集獲得程序,根據該等分群屬性,獲得每一中心所對應的群集,分析人員可針對該等群集規劃出相對應的策略。因此,確實能達成本新型之目的。 In summary, the novel golden flow grouping system obtains the total amount of the gold flow belonging to the group attribute, the total number of remittances, the average remittance amount, the self-correlation verification value, and the concentration by executing the group attribute obtaining program. Degree, and the degree of the golden flow transmission or the degree of the other golden flow transmission, and then, by means of artificial intelligence, the program is obtained through the clustering cluster, and according to the clustering attributes, the cluster corresponding to each center is obtained, and the analyst can The cluster plans a corresponding strategy. Therefore, it is indeed possible to achieve the purpose of the present invention.
惟以上所述者,僅為本新型之實施例而已,當不能以此限定本新型實施之範圍,凡是依本新型申請專利範圍及專利說明書 內容所作之簡單的等效變化與修飾,皆仍屬本新型專利涵蓋之範圍內。 However, the above is only an embodiment of the present invention, and the scope of the present invention cannot be limited thereto, and the patent scope and patent specification are applicable according to the present invention. The simple equivalent changes and modifications made by the content are still within the scope of this new patent.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107206315U TWM568442U (en) | 2018-05-15 | 2018-05-15 | Cash flow grouping system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107206315U TWM568442U (en) | 2018-05-15 | 2018-05-15 | Cash flow grouping system |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM568442U true TWM568442U (en) | 2018-10-11 |
Family
ID=64871447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107206315U TWM568442U (en) | 2018-05-15 | 2018-05-15 | Cash flow grouping system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM568442U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI678671B (en) * | 2018-05-15 | 2019-12-01 | 第一商業銀行股份有限公司 | Gold flow grouping method and system |
-
2018
- 2018-05-15 TW TW107206315U patent/TWM568442U/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI678671B (en) * | 2018-05-15 | 2019-12-01 | 第一商業銀行股份有限公司 | Gold flow grouping method and system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021052031A1 (en) | Statistical interquartile range-based commodity inventory risk early warning method and system, and computer readable storage medium | |
WO2019100967A1 (en) | Method and device for identifying social group having abnormal transaction activity | |
CN108960833B (en) | Abnormal transaction identification method, equipment and storage medium based on heterogeneous financial characteristics | |
CN110348441A (en) | VAT invoice recognition methods, device, computer equipment and storage medium | |
CN108629413A (en) | Neural network model training, trading activity Risk Identification Method and device | |
CN105528447B (en) | The layer-by-layer method summarized when rejecting of a kind of pair of specific data | |
CN111242793B (en) | Medical insurance data abnormality detection method and device | |
CN110533116A (en) | Based on the adaptive set of Euclidean distance at unbalanced data classification method | |
CN110310114A (en) | Object classification method, device, server and storage medium | |
WO2022143431A1 (en) | Method and apparatus for training anti-money laundering model | |
US20210357772A1 (en) | System and method for time series pattern recognition | |
CN111382181A (en) | Designated enterprise family affiliation analysis method and system based on stock right penetration | |
WO2020259391A1 (en) | Database script performance testing method and device | |
CN112819353A (en) | Risk analysis method based on enterprise graph and computer equipment | |
TW202133089A (en) | Method for optimally promoting decisions and computer program product thereof | |
CN117829994A (en) | Money laundering risk analysis method based on graph calculation | |
CN109977131A (en) | A kind of house type matching system | |
Dong | Application of Big Data Mining Technology in Blockchain Computing | |
WO2024145289A1 (en) | Systems and methods for xbrl tag outlier detection | |
Khoshgoftaar et al. | Predicting fault-prone software modules in embedded systems with classification trees | |
TWM568442U (en) | Cash flow grouping system | |
CN112329862A (en) | Decision tree-based anti-money laundering method and system | |
WO2023035526A1 (en) | Object sorting method, related device, and medium | |
CN113987186B (en) | Method and device for generating marketing scheme based on knowledge graph | |
TWI678671B (en) | Gold flow grouping method and system |