TWM564431U - Non-contact heartbeat rate measurement apparatus - Google Patents

Non-contact heartbeat rate measurement apparatus Download PDF

Info

Publication number
TWM564431U
TWM564431U TW107205406U TW107205406U TWM564431U TW M564431 U TWM564431 U TW M564431U TW 107205406 U TW107205406 U TW 107205406U TW 107205406 U TW107205406 U TW 107205406U TW M564431 U TWM564431 U TW M564431U
Authority
TW
Taiwan
Prior art keywords
heartbeat
frequency
spectrum
signal
module
Prior art date
Application number
TW107205406U
Other languages
Chinese (zh)
Inventor
吳炳飛
鐘孟良
鄒宗陽
朱允維
黃柏維
Original Assignee
國立交通大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立交通大學 filed Critical 國立交通大學
Priority to TW107205406U priority Critical patent/TWM564431U/en
Publication of TWM564431U publication Critical patent/TWM564431U/en

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

A non-contact heartbeat rate measurement apparatus includes an image sensor and a computing module. The image sensor is configured to capture a plurality of facial images continuously. The computing module is coupled to the image sensor. The computing module is configured to select target areas from the facial images, obtain a heartbeat signal according to color variances of pixels in the target areas, and perform spectrum analysis on the heartbeat signal to obtain a heartbeat spectrum. The heartbeat spectrum includes heartbeat signal strength values under different frequencies. The computing module is configured to calculate a signal-noise ratio of the heartbeat spectrum, calculate a face-moving frequency according to the facial images, and select a frequency from the heartbeat spectrum as an output heartbeat frequency according to the signal-noise ratio and the face-moving frequency.

Description

非接觸式心跳量測裝置 Non-contact heart rate measuring device

本揭示文件係關於一種量測系統及量測方法,尤指一種非接觸式心跳量測系統及非接觸式心跳量測方法。 The present disclosure relates to a measurement system and measurement method, and more particularly to a non-contact heart rate measurement system and a non-contact heart rate measurement method.

透過量測心跳可以獲得許多人體重要的健康資訊。一般來說,習知的心跳量測方式都是採用接觸式心跳量測方式,也就是將直接在受測者身上黏貼感應貼片,藉以量得受測者的心跳訊號。然而,習知的接觸式心跳量測方式總是會讓受測者感到不方便與不舒適。 A lot of important health information can be obtained by measuring heartbeat. In general, the conventional heartbeat measurement method uses a contact type heartbeat measurement method, that is, a sensor patch is directly attached to the subject to measure the heartbeat signal of the subject. However, the conventional contact type heartbeat measurement method always makes the subject feel inconvenient and uncomfortable.

本揭示文件的一種非接觸式心跳量測系統包含影像感測器、目標區域選擇模組、心跳訊號計算模組、頻譜分析模組、晃動偵測模組以及心跳峰值選擇模組。影像感測器用以連續擷取複數個臉部影像。目標區域選擇模組用以自臉部影像中各自選擇目標區域。心跳訊號計算模組用以計算先後擷取的臉部影像其中的目標區域中各像素點的色彩差異量得到心跳訊號。頻譜分析模組用以對心跳訊號進行頻譜分析,並得 到心跳頻譜,心跳頻譜包含在複數個頻率下的複數個心跳訊號強度值,並計算心跳頻譜之訊號雜訊比以及熵。晃動偵測模組用以根據該些臉部影像偵測一臉部晃動頻率。當心跳峰值選擇模組判斷比較出訊號雜訊比以及熵高於門檻值且心跳頻譜中具有全域最高訊號強度值之第一峰值頻率相似於臉部晃動頻率時,心跳峰值選擇模組由心跳頻譜之局部頻帶中選擇具有局部最高訊號強度值的第二峰值頻率作為輸出心跳頻率。 A non-contact heartbeat measurement system of the present disclosure includes an image sensor, a target area selection module, a heartbeat signal calculation module, a spectrum analysis module, a shake detection module, and a heartbeat peak selection module. The image sensor is used to continuously capture a plurality of facial images. The target area selection module is used to select a target area from each of the face images. The heartbeat signal calculation module is configured to calculate a color difference amount of each pixel in the target area of the successively captured facial images to obtain a heartbeat signal. The spectrum analysis module is used for spectrum analysis of the heartbeat signal, and To the heartbeat spectrum, the heartbeat spectrum includes a plurality of heartbeat signal strength values at a plurality of frequencies, and calculates a signal-to-noise ratio and entropy of the heartbeat spectrum. The shaking detection module is configured to detect a facial shaking frequency according to the facial images. When the heartbeat peak selection module determines that the signal noise ratio is compared and the entropy is higher than the threshold value and the first peak frequency having the highest signal intensity value in the heartbeat spectrum is similar to the face shaking frequency, the heartbeat peak selection module is composed of the heartbeat spectrum. A second peak frequency having a local highest signal strength value is selected as the output heartbeat frequency in the local frequency band.

本揭示文件的一種非接觸式心跳量測方法包含自複數個臉部影像中各自選擇目標區域。依據先後擷取的臉部影像其中的目標區域中各像素點的色彩差異量得到心跳訊號。對心跳訊號進行頻譜分析,並得到心跳頻譜,心跳頻譜包含在複數個頻率下的複數個心跳訊號強度值,並計算心跳頻譜之訊號雜訊比以及熵。根據臉部影像計算臉部晃動頻率。當雜訊比以及熵高於門檻值且心跳頻率中具有全域最高訊號強度值之第一峰值頻率相似於臉部晃動頻率時,由心跳頻率之局部頻帶中選擇具有局部最高訊號強度值的第二峰值頻率作為輸出心跳頻率。 A non-contact heartbeat measurement method of the present disclosure includes selecting a target region from each of a plurality of facial images. The heartbeat signal is obtained according to the color difference amount of each pixel in the target area in the face image captured successively. Perform spectrum analysis on the heartbeat signal and obtain a heartbeat spectrum. The heartbeat spectrum includes a plurality of heartbeat signal strength values at a plurality of frequencies, and calculates a signal-to-noise ratio and entropy of the heartbeat spectrum. The face shaking frequency is calculated from the face image. When the noise ratio and the entropy are higher than the threshold value and the first peak frequency having the highest signal intensity value of the whole domain in the heartbeat frequency is similar to the face shaking frequency, the second local frequency band having the highest signal strength value is selected from the local frequency band of the heartbeat frequency. The peak frequency is used as the output heartbeat frequency.

本揭示文件更提出一種非接觸式心跳量測裝置,其包含影像感測器以及運算模組。影像感測器用以連續地擷取複數個臉部影像。運算模組與影像感測器耦接,該運算模組用以自該些臉部影像中各自選擇一目標區域,依據先後擷取的該些臉部影像其中的該目標區域中各像素點的色彩差異量得到一心跳訊號,對該心跳訊號進行頻譜分析,並得到一心跳頻譜,該心跳頻譜包含在複數個頻率下的複數個心跳訊號強度 值,並計算該心跳頻譜之一訊號雜訊比,根據該些臉部影像計算一臉部晃動頻率,根據該訊號雜訊比與該臉部晃動頻率以選擇出該心跳頻譜的該複數個頻率中的一頻率作為一輸出心跳頻率。 The present disclosure further provides a non-contact heartbeat measuring device that includes an image sensor and an arithmetic module. The image sensor is used to continuously capture a plurality of facial images. The computing module is coupled to the image sensor, and the computing module is configured to select a target area from each of the facial images, and according to the successively captured facial images, the pixels in the target area The color difference quantity obtains a heartbeat signal, performs spectrum analysis on the heartbeat signal, and obtains a heartbeat spectrum, and the heartbeat spectrum includes a plurality of heartbeat signal strengths at a plurality of frequencies. And calculating a signal noise ratio of the heartbeat spectrum, calculating a facial shaking frequency according to the facial images, and selecting the plurality of frequencies of the heartbeat spectrum according to the signal noise ratio and the facial shaking frequency One of the frequencies acts as an output heartbeat frequency.

100‧‧‧非接觸式心跳量測系統 100‧‧‧ Non-contact heartbeat measurement system

110,310‧‧‧影像感測器 110,310‧‧‧Image sensor

121‧‧‧目標區域選擇模組 121‧‧‧Target area selection module

121a‧‧‧特徵點座標偵測單元 121a‧‧‧Feature point coordinate detection unit

121b‧‧‧目標區域框選單元 121b‧‧‧Target area selection unit

122‧‧‧心跳訊號計算模組 122‧‧‧ heartbeat signal calculation module

123‧‧‧頻譜分析模組 123‧‧‧Spectrum Analysis Module

124‧‧‧晃動偵測模組 124‧‧‧Shake detection module

125‧‧‧心跳峰值選擇模組 125‧‧‧ Heartbeat Peak Selection Module

126‧‧‧心跳變化保護模組 126‧‧‧Heartbeat Change Protection Module

127‧‧‧適應性濾波器 127‧‧‧Adaptive filter

130、330‧‧‧輸出介面 130, 330‧‧‧ Output interface

300‧‧‧非接觸式心跳量測裝置 300‧‧‧ Non-contact heart rate measuring device

320‧‧‧運算模組 320‧‧‧ Computing Module

340‧‧‧電源供應模組 340‧‧‧Power supply module

341‧‧‧電池模組 341‧‧‧ battery module

342‧‧‧電源開關按鈕 342‧‧‧Power switch button

343‧‧‧充電孔 343‧‧‧Charging hole

350‧‧‧固定模組 350‧‧‧Fixed modules

AI‧‧‧整體影像 AI‧‧‧ overall image

EFP‧‧‧眼睛特徵點座標 EFP‧‧‧ Eye feature point coordinates

FHR‧‧‧濾波後心跳訊號 FHR‧‧‧Filtered heartbeat signal

FI‧‧‧臉部影像 FI‧‧‧Face image

FVF‧‧‧臉部晃動頻率 FVF‧‧‧Face shaking frequency

GFB‧‧‧全域頻帶 GFB‧‧‧ global frequency band

HR‧‧‧心跳訊號 HR‧‧‧ heartbeat signal

HS‧‧‧心跳頻譜 HS‧‧‧ heartbeat spectrum

MFP‧‧‧嘴巴特徵點座標 MFP‧‧‧ mouth feature point coordinates

OHR‧‧‧輸出心跳頻率 OHR‧‧‧Output heartbeat frequency

OHR1‧‧‧第一輸出心跳頻率 OHR1‧‧‧ first output heart rate

OHR2‧‧‧第二輸出心跳頻率 OHR2‧‧‧second output heartbeat frequency

OHR3‧‧‧第三輸出心跳頻率 OHR3‧‧‧ third output heart rate

PF1‧‧‧第一峰值頻率 PF1‧‧‧ first peak frequency

PF2‧‧‧第二峰值頻率 PF2‧‧‧second peak frequency

PF3‧‧‧第三峰值頻率 PF3‧‧‧ third peak frequency

PFB‧‧‧局部頻帶 PFB‧‧‧local band

SNR‧‧‧訊號雜訊比 SNR‧‧‧ signal noise ratio

TR‧‧‧目標區域 TR‧‧‧Target area

M100‧‧‧非接觸式心跳量測方法 M100‧‧‧ Non-contact heartbeat measurement method

S101~S110‧‧‧步驟 S101~S110‧‧‧Steps

為讓本揭示內容之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1圖為根據本揭示文件之一實施例所示之非接觸式心跳量測系統的功能方塊圖。 The above and other objects, features, advantages and embodiments of the present disclosure will become more apparent and understood. The description of the drawings is as follows: FIG. 1 is a non-contact heartbeat according to an embodiment of the present disclosure. A functional block diagram of the measurement system.

第2圖為根據本揭示文件之一實施例所示之非接觸式心跳量測方法的流程圖。 2 is a flow chart of a non-contact heartbeat measurement method according to an embodiment of the present disclosure.

第3圖為根據本揭示文件之一實施例所示之非接觸式心跳量測系統的目標區域選擇模組的進一步功能方塊圖。 3 is a further functional block diagram of a target area selection module of a contactless heartbeat measurement system in accordance with an embodiment of the present disclosure.

第4圖為根據本揭示文件之一實施例所示之非接觸式心跳量測方法的步驟S120的進一步流程圖。 FIG. 4 is a further flow chart of step S120 of the non-contact heartbeat measurement method according to an embodiment of the present disclosure.

第5A圖為根據本揭示文件之一實施例所示之臉部影像的示意圖。 Figure 5A is a schematic illustration of a facial image shown in accordance with one embodiment of the present disclosure.

第5B圖為在第5A圖所示之臉部影像中偵測嘴巴特徵點座標以及眼睛特徵點座標的示意圖。 Fig. 5B is a schematic diagram of detecting the feature point coordinates of the mouth and the coordinates of the eye feature points in the facial image shown in Fig. 5A.

第5C圖為自第5B圖所示之標示有嘴巴特徵點座標以及眼睛特徵點座標的臉部影像中框選目標區域的示意圖。 FIG. 5C is a schematic diagram of the target area selected from the face image of the mouth feature point coordinates and the eye feature point coordinates shown in FIG. 5B.

第6A圖為根據本揭示文件之一實施例所示之心跳訊號的示意圖。 Figure 6A is a schematic illustration of a heartbeat signal shown in accordance with one embodiment of the present disclosure.

第6B圖為將第6A圖所示之心跳訊號經過帶通濾波器濾波後的濾波後心跳訊號的示意圖。 FIG. 6B is a schematic diagram of the filtered heartbeat signal after the heartbeat signal shown in FIG. 6A is filtered by a band pass filter.

第6C圖為對第6B圖所示之濾波後心跳訊號頻譜分析得到的心跳頻譜的示意圖。 Figure 6C is a schematic diagram of the heartbeat spectrum obtained by analyzing the filtered heartbeat signal spectrum shown in Fig. 6B.

第7A圖為根據本揭示文件之一實施例所示之以第一峰值頻率作為輸出心跳頻率的示意圖。 FIG. 7A is a diagram showing the first peak frequency as the output heartbeat frequency, according to an embodiment of the present disclosure.

第7B圖為根據本揭示文件之一實施例所示之以第二峰值頻率作為輸出心跳頻率的示意圖。 FIG. 7B is a schematic diagram showing the second peak frequency as the output heartbeat frequency according to an embodiment of the present disclosure.

第7C圖為根據本揭示文件之一實施例所示之以第三峰值頻率作為輸出心跳頻率的示意圖。 Figure 7C is a schematic diagram showing the third peak frequency as the output heartbeat frequency, according to an embodiment of the present disclosure.

第8圖為根據本揭示文件之另一實施例所示之非接觸式心跳量測系統的功能方塊圖。 Figure 8 is a functional block diagram of a non-contact heartbeat measurement system in accordance with another embodiment of the present disclosure.

第9A圖繪示根據本揭示文件之一實施例中一種非接觸式心跳量測裝置的正面示意圖。 FIG. 9A is a front elevational view of a non-contact heartbeat measuring device according to an embodiment of the present disclosure.

第9B圖繪示第9A圖中的非接觸式心跳量測裝置的側視圖。 Fig. 9B is a side view showing the non-contact type heartbeat measuring device in Fig. 9A.

下文係舉實施例配合所附圖式作詳細說明,以更好地理解本案的態樣,但所供給之實施例並非用以限制本案所涵蓋的範圍,而結構操作之描述非用以限制其執行之順序,任何由元件重新組合之結構,所產生具有均等功效的裝置,皆為本案所涵蓋的範圍。 The embodiments are described in detail below to better understand the present invention, but the embodiments provided are not intended to limit the scope of the present disclosure, and the description of structural operations is not intended to limit the scope thereof. The order of execution, any structure that is recombined by components, produces equal devices, and is covered by this case.

請參照第1圖及第2圖。第1圖為根據本揭示文 件之一實施例所示之非接觸式心跳量測系統100功能方塊圖。第2圖為根據本揭示文件之一實施例所示之非接觸式心跳量測方法M100的流程圖。 Please refer to Figure 1 and Figure 2. Figure 1 is based on the present disclosure A functional block diagram of the non-contact heartbeat measurement system 100 shown in one embodiment. 2 is a flow chart of a non-contact heartbeat measurement method M100 according to an embodiment of the present disclosure.

於本實施例中,非接觸式心跳量測系統100可用以執行非接觸式心跳量測方法M100以進行非接觸式心跳量測,其中非接觸式心跳量測系統100包含影像感測器110、目標區域選擇模組121、心跳訊號計算模組122、頻譜分析模組123、晃動偵測模組124、心跳峰值選擇模組125以及輸出介面130,非接觸式心跳量測方法M100包含步驟S101至步驟S110。影像感測器110可以是光學感測元件或是相機單元。 In the present embodiment, the non-contact heartbeat measurement system 100 can be used to perform a non-contact heartbeat measurement method M100 for performing non-contact heartbeat measurement, wherein the non-contact heartbeat measurement system 100 includes an image sensor 110, The target area selection module 121, the heartbeat signal calculation module 122, the spectrum analysis module 123, the shake detection module 124, the heartbeat peak selection module 125, and the output interface 130, the non-contact heartbeat measurement method M100 includes steps S101 to Step S110. Image sensor 110 can be an optical sensing element or a camera unit.

在步驟S101中,影像感測器110可連續擷取複數個臉部影像FI。具體來說,請一併參照第5A圖,其為根據本揭示文件之一實施例所示之臉部影像FI的示意圖。影像感測器110係先擷取使用者的整體影像AI,並利用臉部擷取技術擷取整體影像AI中的臉部影像FI,其中臉部擷取技術可為多級卷積神經網路(convolutional neural network,CNN),然並不以此為限。 In step S101, the image sensor 110 can continuously capture a plurality of facial images FI. Specifically, please refer to FIG. 5A, which is a schematic diagram of a facial image FI according to an embodiment of the present disclosure. The image sensor 110 first captures the user's overall image AI, and uses the face capture technology to capture the facial image FI in the overall image AI, wherein the face extraction technique can be a multi-level convolutional neural network. (convolutional neural network, CNN), but not limited to this.

於一實施例中,影像感測器110可為相機、攝影機或錄影機等。 In an embodiment, the image sensor 110 can be a camera, a video camera, a video recorder, or the like.

在步驟S102中,目標區域選擇模組121自臉部影像FI中選擇目標區域TR。 In step S102, the target area selection module 121 selects the target area TR from the face image FI.

進一步地,請一併參照第3圖、第4圖、第5B圖及第5C圖,第3圖為根據本揭示文件之一實施例所示之非接 觸式心跳量測系統100的目標區域選擇模組121的進一步功能方塊圖,第4圖為根據本揭示文件之一實施例所示之非接觸式心跳量測方法M100的步驟S120的進一步流程圖,第5B圖為在第5A圖所示之臉部影像FI中偵測嘴巴特徵點座標MFP以及眼睛特徵點座標EFP的示意圖。第5C圖為自第5B圖所示之標示有嘴巴特徵點座標MFP以及眼睛特徵點座標EFP的臉部影像FI中框選目標區域TR的示意圖。 Further, please refer to FIG. 3, FIG. 4, FIG. 5B and FIG. 5C together. FIG. 3 is a non-connection according to an embodiment of the present disclosure. A further functional block diagram of the target area selection module 121 of the touch heartbeat measurement system 100, and FIG. 4 is a further flow chart of the step S120 of the non-contact heart rate measurement method M100 according to an embodiment of the present disclosure. FIG. 5B is a schematic diagram of detecting the mouth feature point coordinates MFP and the eye feature point coordinates EFP in the face image FI shown in FIG. 5A. FIG. 5C is a schematic diagram of the frame selection target region TR in the face image FI indicated by the mouth feature point coordinate MFP and the eye feature point coordinate EFP shown in FIG. 5B.

如第3圖所示,目標區域選擇模組121進一步包含特徵點座標偵測單元121a以及目標區域框選單元121b。如第4圖所示,步驟S102進一步包含步驟S102a及步驟S102b。 As shown in FIG. 3, the target area selection module 121 further includes a feature point coordinate detecting unit 121a and a target area frame selecting unit 121b. As shown in FIG. 4, step S102 further includes step S102a and step S102b.

特徵點座標偵測單元121a依據步驟S102a,在臉部影像FI偵測嘴巴特徵點座標MFP以及眼睛特徵點座標EFP(如第5B圖所示)。具體來說,特徵點座標偵測單元121a可在臉部影像FI中依據嘴巴以及眼睛的圖形特徵(例如特定形狀或特定顏色)而將嘴巴以及眼睛標示出來,並分別定義嘴巴以及眼睛的座標。藉此,即可界定出嘴巴特徵點座標MFP以及眼睛特徵點座標EFP。 The feature point coordinate detecting unit 121a detects the mouth feature point coordinate MFP and the eye feature point coordinate EFP (shown in FIG. 5B) on the face image FI in accordance with step S102a. Specifically, the feature point coordinate detecting unit 121a can mark the mouth and the eye in the face image FI according to the mouth and the graphic features of the eye (for example, a specific shape or a specific color), and define the mouth and the coordinates of the eye, respectively. Thereby, the mouth feature point coordinate MFP and the eye feature point coordinate EFP can be defined.

目標區域框選單元121b依據步驟S102b,基於嘴巴特徵點座標MFP以及眼睛特徵點座標EFP框選目標區域TR。具體來說,在嘴巴特徵點座標MFP以及眼睛特徵點座標EFP被界定出來之後,目標區域框選單元121b即可在嘴巴特徵點座標MFP以及眼睛特徵點座標EFP之間的區域框選出目標區域TR,例如以兩端嘴角的嘴巴特徵點座標MFP的中點為第一中點,兩眼睛特徵點座 標EFP的中點為第二中點,將第一中點與第二中點之間的中點框選一個長方形的目標區域TR,如第5C圖所示。進一步地,為避免嘴巴特徵點座標MFP以及眼睛特徵點座標EFP飄動幅度過大,會加入低通濾波器,藉以使得目標區域TR能被正確框顯出來。 The target area frame selection unit 121b selects the target area TR based on the mouth feature point coordinates MFP and the eye feature point coordinates EFP in accordance with step S102b. Specifically, after the mouth feature point coordinate MFP and the eye feature point coordinate EFP are defined, the target area frame selection unit 121b can select the target area TR in the area between the mouth feature point coordinate MFP and the eye feature point coordinate EFP. For example, the midpoint of the MFP with the mouth feature points at both ends of the mouth is the first midpoint, and the two eye feature points The midpoint of the standard EFP is the second midpoint, and a midpoint between the first midpoint and the second midpoint is selected as a rectangular target area TR, as shown in FIG. 5C. Further, in order to avoid excessive amplitude of the mouth feature point coordinate MFP and the eye feature point coordinate EFP, a low-pass filter is added, so that the target area TR can be correctly displayed.

在步驟S103中,心跳訊號計算模組122依據先後擷取的臉部影像FI其中的目標區域TR中各像素點的色彩差異量得到心跳訊號HR。具體來說,請一併參照第6A圖,其為根據本揭示文件之一實施例所示之心跳訊號HR的示意圖,其中心跳訊號HR為在時域上的表現,也就是說橫軸為時間(s),縱軸為強度(dB)。 In step S103, the heartbeat signal calculation module 122 obtains the heartbeat signal HR according to the color difference amount of each pixel in the target area TR of the face image FI captured successively. Specifically, please refer to FIG. 6A, which is a schematic diagram of a heartbeat signal HR according to an embodiment of the present disclosure, wherein the center skip signal HR is expressed in the time domain, that is, the horizontal axis is time. (s), the vertical axis is the intensity (dB).

心跳訊號計算模組122對前一刻與後一刻的目標區域TR進行光流法計算,以求得各像素點在下一刻的位置。詳言之,將前一刻與後一刻的目標區域TR中的相對應像素點的紅色、綠色及藍色訊號分別相減,而可以得到紅色、綠色及藍色的對應差值,分別是紅色差值dR、綠色差值dG以及藍色差值dB;接著,將紅色差值dR、綠色差值dG以及藍色差值dB做色素值進行線性組合,例如將紅色差值dR、綠色差值dG以及藍色差值dB分別乘上特定權重後再相加,進而得到兩組特徵訊號X以及Y;最後,對每個像素點的各種顏色的差值取平均進而得到心跳訊號HR。於一實施例中,心跳訊號HR用以表示上述差值在不同時間的高低變化量。本質上來說此訊號應用之物理意義如同光體積變化掃描圖(Photoplethysmography,PPG),傳統應用方式需穿著穿戴式設備如心跳胸帶及手環等,同時打入特定光源,由 於反射訊號強弱跟血液流量高度相關,因此將反射訊號之強弱變化視作心跳訊號。本系統使用遠距離非接觸式影像感測器,從皮膚色彩對於環境光源之反射訊號之唯小變化中取出心跳訊號。一般來說,當人體的心跳在收縮與舒張時,會使微血管有不同的血液壓力,而臉部區域是微血管分布密集的區域,臉部區域的色彩或隨著心跳在收縮與舒張而有微小變化,本案的非接觸式心率量測模組122利用臉部區域的色彩變化來偵測心跳訊號HR。 The heartbeat signal calculation module 122 performs optical flow calculation on the target area TR of the previous moment and the latter moment to obtain the position of each pixel point at the next moment. In detail, the red, green and blue signals of the corresponding pixel points in the target area TR of the previous moment and the last moment are respectively subtracted, and the corresponding differences of red, green and blue can be obtained, respectively, which are red differences. The value dR, the green difference dG, and the blue difference dB; then, the red difference dR, the green difference dG, and the blue difference dB are linearly combined, for example, the red difference dR, the green difference dG And the blue difference dB is multiplied by a specific weight and then added, thereby obtaining two sets of characteristic signals X and Y; finally, the difference of each color of each pixel is averaged to obtain a heartbeat signal HR. In an embodiment, the heartbeat signal HR is used to indicate the amount of change in the difference at different times. In essence, the physical meaning of this signal application is like Photoplethysmography (PPG). The traditional application method requires wearing wearable devices such as heartbeat chest straps and bracelets, and simultaneously enters a specific light source. The intensity of the reflected signal is highly correlated with the blood flow, so the change in the strength of the reflected signal is regarded as a heartbeat signal. The system uses a long-distance non-contact image sensor to extract the heartbeat signal from the small change in the color of the skin to the reflected signal of the ambient light source. In general, when the heartbeat of the human body is contracted and dilated, the microvessels have different blood pressures, and the facial area is a region where the microvessels are densely distributed. The color of the facial region may be minute with the contraction and relaxation of the heartbeat. The non-contact heart rate measurement module 122 of the present invention uses the color change of the face region to detect the heartbeat signal HR.

在步驟S104中,頻譜分析模組123對心跳訊號HR進行頻譜分析,並得到心跳頻譜HS,心跳頻譜HS包含在複數個頻率下的複數個心跳訊號強度值,並計算心跳頻譜HS之訊號雜訊比SNR(signal-to-noise ratio,SNR)以及熵(Entropy)。具體來說,請一併參照第6B圖及第6C圖,第6B為將第6A圖所示之心跳訊號HR經過帶通濾波器濾波後的濾波後心跳訊號FHR的示意圖,第6C為對第6B圖所示之濾波後心跳訊號FHR頻譜分析得到的心跳頻譜HS的示意圖。 In step S104, the spectrum analysis module 123 performs spectrum analysis on the heartbeat signal HR, and obtains a heartbeat spectrum HS. The heartbeat spectrum HS includes a plurality of heartbeat signal intensity values at a plurality of frequencies, and calculates a signal noise of the heartbeat spectrum HS. Ratio SNR (signal-to-noise ratio, SNR) and entropy (Entropy). Specifically, please refer to FIG. 6B and FIG. 6C together. FIG. 6B is a schematic diagram of the filtered heartbeat signal FHR after the heartbeat signal HR shown in FIG. 6A is filtered by a band pass filter, and the sixth C is a pair. A schematic diagram of the heartbeat spectrum HS obtained by spectral analysis of the filtered heartbeat signal FHR shown in FIG. 6B.

詳言之,頻譜分析模組123將如第6A圖所示之心跳訊號HR每半秒(約15幀)經過帶通濾波器的濾波,並產生如第6B圖所示之濾波後心跳訊號FHR。接著,頻譜分析模組123再將濾波後心跳訊號FHR進行快速傅立葉轉換(fast Fourier transform,FFT),進而得到如第6C圖所示之心跳頻譜HS,其中心跳頻譜HS為在頻域上的表現,也就是說橫軸為頻率(Hz),縱軸為強度(dB),且心跳頻譜HS包含在複數個頻率下的複數個心跳訊號強度值。接下來,頻譜分析模組123計算心跳頻譜HS之訊號 雜訊比SNR以及熵,訊號雜訊比SNR為心跳頻譜HS之訊號功率(Power of Signal)與雜訊功率(Power of Noise)的比。而熵是一個描述系統狀態的函數,常被用於計算一個系統中的失序現象及混亂程度。 In detail, the spectrum analysis module 123 filters the heartbeat signal HR as shown in FIG. 6A every half second (about 15 frames) through a band pass filter, and generates a filtered heartbeat signal FHR as shown in FIG. 6B. . Then, the spectrum analysis module 123 performs a fast Fourier transform (FFT) on the filtered heartbeat signal FHR to obtain a heartbeat spectrum HS as shown in FIG. 6C, and the center hop spectrum HS is expressed in the frequency domain. That is, the horizontal axis is the frequency (Hz), the vertical axis is the intensity (dB), and the heartbeat spectrum HS includes a plurality of heartbeat signal intensity values at a plurality of frequencies. Next, the spectrum analysis module 123 calculates the signal of the heartbeat spectrum HS. The noise ratio SNR and entropy, the signal noise ratio SNR is the ratio of the power of signal and the power of noise of the heartbeat spectrum HS. Entropy, a function that describes the state of a system, is often used to calculate the degree of disorder and confusion in a system.

在步驟S105中,晃動偵測模組124根據臉部影像FI偵測臉部晃動頻率FVF。具體來說,晃動偵測模組124可依據臉部影像FI的嘴巴特徵點座標MFP以及眼睛特徵點座標EFP在前一刻與後一刻的位移量來計算出臉部晃動頻率FVF,並搭配上速度補償的技術,藉以降低臉部晃動頻率FVF。 In step S105, the shake detection module 124 detects the face shake frequency FVF based on the face image FI. Specifically, the sway detection module 124 can calculate the sway frequency FVF according to the displacement of the mouth feature point coordinate MFP of the face image FI and the eye feature point coordinate EFP at the previous moment and the subsequent moment, and match the speed. The technique of compensation to reduce the facial sloshing frequency FVF.

在步驟S106中,心跳峰值選擇模組125將判斷心跳頻譜HS之訊號雜訊比SNR或熵是否高於門檻值,其中門檻值可依據實際情況進行設定,例如SNR門檻值可設定為0.8而熵門檻值可設為4.5。 In step S106, the heartbeat peak selection module 125 determines whether the signal noise ratio SNR or entropy of the heartbeat spectrum HS is higher than a threshold value, wherein the threshold value can be set according to actual conditions, for example, the SNR threshold can be set to 0.8 and entropy. The threshold can be set to 4.5.

當心跳頻譜HS之訊號雜訊比SNR高於門檻值且熵低於門檻值時,例如心跳頻譜HS之訊號雜訊比SNR為0.9且熵為2,表示心跳頻譜HS受到臉部晃動頻率FVF的影響極小而不影響心跳頻譜HS,此時將進入到步驟S107中。 When the signal-to-noise ratio SNR of the heartbeat spectrum HS is higher than the threshold and the entropy is lower than the threshold, for example, the signal-to-noise ratio SNR of the heartbeat spectrum HS is 0.9 and the entropy is 2, indicating that the heartbeat spectrum HS is subjected to the face shaking frequency FVF. The influence is extremely small without affecting the heartbeat spectrum HS, at which point it proceeds to step S107.

在步驟S107中,心跳峰值選擇模組125將判斷心跳頻譜HS中具有全域最高訊號強度之第一峰值頻率PF1是否相似於臉部晃動頻率FVF。 In step S107, the heartbeat peak selection module 125 determines whether the first peak frequency PF1 having the highest signal strength of the whole region in the heartbeat spectrum HS is similar to the facial sway frequency FVF.

當心跳頻譜HS中具有全域最高訊號強度之第一峰值頻率PF1相異於臉部晃動頻率FVF時,表示具有全域最高訊號強度之第一峰值頻率PF1主要確實係由心跳所產生,而非臉部晃動頻率FVF所產生,此時將進入到步驟S108。 When the first peak frequency PF1 of the heart rate spectrum HS having the highest signal intensity of the whole region is different from the face sloshing frequency FVF, it indicates that the first peak frequency PF1 having the highest signal strength of the whole region is mainly generated by the heartbeat, instead of the face. The shaking frequency FVF is generated, and at this time, it proceeds to step S108.

在步驟S108中,請一併參照第7A圖,其為根據本揭示文件之一實施例所示之以第一峰值頻率PF1作為輸出心跳頻率OHR的示意圖。也就是說,第7A圖所示之心跳頻譜HS為符合心跳頻譜HS之訊號雜訊比SNR高於門檻值以及心跳頻譜HS中具有全域最高訊號強度之第一峰值頻率PF1相異於臉部晃動頻率FVF之條件的心跳頻譜。 In step S108, reference is made to FIG. 7A, which is a schematic diagram showing the first peak frequency PF1 as the output heartbeat frequency OHR according to an embodiment of the present disclosure. That is to say, the heartbeat spectrum HS shown in FIG. 7A is that the signal noise ratio SNR according to the heartbeat spectrum HS is higher than the threshold value and the first peak frequency PF1 having the highest signal strength in the heartbeat spectrum HS is different from the face shaking. The heartbeat spectrum of the condition of the frequency FVF.

進一步地,由第7A圖可以觀察到在全域頻帶GFB中,心跳頻譜HS包含複數個頻率下的複數個心跳訊號強度值,且具有全域最高訊號強度之第一峰值頻率PF1將可作為輸出心跳頻率OHR,並透過輸出介面130輸出,例如投影機或顯示器。 Further, it can be observed from FIG. 7A that in the global frequency band GFB, the heartbeat spectrum HS includes a plurality of heartbeat signal strength values at a plurality of frequencies, and the first peak frequency PF1 having the highest frequency signal strength of the whole region can be used as the output heartbeat frequency. OHR is output through output interface 130, such as a projector or display.

於另一實施例中,當心跳頻譜HS中具有全域最高訊號強度之第一峰值頻率PF1相似於臉部晃動頻率FVF時,表示具有全域最高訊號強度之第一峰值頻率PF1主要係由臉部晃動頻率FVF所產生,此時將進入到步驟S109。 In another embodiment, when the first peak frequency PF1 having the highest signal strength of the whole region in the heartbeat spectrum HS is similar to the facial sway frequency FVF, the first peak frequency PF1 having the highest signal strength of the whole region is mainly caused by the shaking of the face. The frequency FVF is generated, and at this time, it proceeds to step S109.

在步驟S109中,請一併參照第7B圖,其為根據本揭示文件之一實施例所示之以第二峰值頻率PF2作為輸出心跳頻率OHR的示意圖。也就是說,第7B圖所示之心跳頻譜HS為符合心跳頻譜HS之訊號雜訊比SNR高於門檻值以及心跳頻譜HS中具有全域最高訊號強度之第一峰值頻率PF1相似於臉部晃動頻率FVF之條件的心跳頻譜。 In step S109, reference is made to FIG. 7B, which is a schematic diagram showing the second peak frequency PF2 as the output heartbeat frequency OHR according to an embodiment of the present disclosure. That is to say, the heartbeat spectrum HS shown in FIG. 7B is that the signal noise ratio SNR according to the heartbeat spectrum HS is higher than the threshold value and the first peak frequency PF1 having the highest signal strength in the heartbeat spectrum HS is similar to the face shaking frequency. The heartbeat spectrum of the condition of FVF.

進一步地,由第7B圖可以觀察到在全域頻帶GFB中,心跳頻譜HS包含複數個頻率下的複數個心跳訊號強度值,且心跳頻譜HS亦包含具有全域最高訊號強度之臉部晃動頻率FVF。為避免直接將具有全域最高訊號強度之臉部晃動頻率FVF 誤作為輸出心跳頻率OHR,可透過在全域頻帶GFB中設定局部頻帶PFB,其中局部頻帶PFB的範圍為符合一般心跳的頻率範圍,即1(Hz)~4(Hz)。藉此,在局部頻帶PFB中具有最高訊號強度之第二峰值頻率PF2將可作為輸出心跳頻率OHR,並透過輸出介面130輸出,例如投影機或顯示器。 Further, it can be observed from FIG. 7B that in the global frequency band GFB, the heartbeat spectrum HS includes a plurality of heartbeat signal strength values at a plurality of frequencies, and the heartbeat spectrum HS also includes a facial sway frequency FVF having a global maximum signal strength. To avoid directly swaying the face with the highest signal strength in the world, FVF As the output heartbeat frequency OHR, the local frequency band PFB can be set in the global frequency band GFB, wherein the range of the local frequency band PFB is a frequency range conforming to the general heartbeat, that is, 1 (Hz) to 4 (Hz). Thereby, the second peak frequency PF2 having the highest signal strength in the local frequency band PFB can be used as the output heartbeat frequency OHR and output through the output interface 130, such as a projector or a display.

於又一實施例中,當心跳頻譜HS之訊號雜訊比SNR低於門檻值且熵高於門檻值時,例如心跳頻譜HS之訊號雜訊比SNR為0.1,表示心跳頻譜HS受到臉部晃動頻率FVF的影響極大而影響心跳頻譜HS,此時將進入到步驟S110中。 In another embodiment, when the signal-to-noise ratio SNR of the heartbeat spectrum HS is lower than the threshold and the entropy is higher than the threshold, for example, the signal-to-noise ratio SNR of the heartbeat spectrum HS is 0.1, indicating that the heartbeat spectrum HS is subjected to facial shaking. The influence of the frequency FVF is extremely large and affects the heartbeat spectrum HS, at which point it proceeds to step S110.

在步驟S110中,請一併參照第7C圖,其為根據本揭示文件之一實施例所示之以第三峰值頻率PF3作為輸出心跳頻率OHR的示意圖。也就是說,第7C圖所示之心跳頻譜HS為符合心跳頻譜HS之訊號雜訊比SNR低於門檻值之條件的心跳頻譜。 In step S110, reference is made to FIG. 7C, which is a schematic diagram showing the third peak frequency PF3 as the output heartbeat frequency OHR according to an embodiment of the present disclosure. That is to say, the heartbeat spectrum HS shown in FIG. 7C is a heartbeat spectrum that satisfies the condition that the signal-to-noise ratio SNR of the heartbeat spectrum HS is lower than the threshold value.

進一步地,由第7C圖可以觀察到在全域頻帶GFB中,心跳頻譜HS包含複數個頻率下的複數個心跳訊號強度值,且心跳頻譜HS亦包含具有全域最高訊號強度之臉部晃動頻率FVF。為避免直接將具有全域最高訊號強度之臉部晃動頻率FVF誤作為輸出心跳頻率OHR,可透過在全域頻帶GFB中設定局部頻帶PFB,其中局部頻帶PFB的範圍為符合一般心跳的頻率範圍,即1(Hz)~5(Hz)。藉此,在局部頻帶PFB中具有最高訊號強度之第三峰值頻率PF3將可作為輸出心跳頻率OHR,並透過輸出介面130輸出,例如投影機或顯示器。 Further, it can be observed from FIG. 7C that in the global frequency band GFB, the heartbeat spectrum HS includes a plurality of heartbeat signal strength values at a plurality of frequencies, and the heartbeat spectrum HS also includes a facial sway frequency FVF having a global maximum signal strength. In order to avoid directly erroneously detecting the face sloshing frequency FVF having the highest signal strength of the whole region as the output heartbeat frequency OHR, the local frequency band PFB can be set in the global frequency band GFB, wherein the range of the local frequency band PFB is a frequency range conforming to the general heartbeat, that is, 1 (Hz) ~ 5 (Hz). Thereby, the third peak frequency PF3 having the highest signal strength in the local frequency band PFB will be available as the output heartbeat frequency OHR and output through the output interface 130, such as a projector or a display.

應注意的是,非接觸式心跳量測系統100的目標區 域選擇模組121、特徵點座標偵測單元121a、目標區域框選單元121b、心跳訊號計算模組122、頻譜分析模組123、晃動偵測模組124以及心跳峰值選擇模組125可用硬體、軟體、韌體或其組合來體現。 It should be noted that the target area of the non-contact heartbeat measurement system 100 The domain selection module 121, the feature point coordinate detecting unit 121a, the target area frame selection unit 121b, the heartbeat signal calculation module 122, the spectrum analysis module 123, the shake detection module 124, and the heartbeat peak selection module 125 are available in hardware. , software, firmware or a combination thereof.

再請參照第8圖,其為根據本揭示文件之另一實施例所示之非接觸式心跳量測系統200的功能方塊圖。 Referring again to FIG. 8, a functional block diagram of a non-contact heartbeat measurement system 200 in accordance with another embodiment of the present disclosure.

第8圖所示之非接觸式心跳量測系統200係與第1圖所示之非接觸式心跳量測系統100大致相同,差異之處在於第8圖所示之非接觸式心跳量測系統200更包含心跳變化保護模組126以及適應性濾波器127。為凸顯差異之處,相同之處不另贅述。 The non-contact type heartbeat measuring system 200 shown in FIG. 8 is substantially the same as the non-contact type heartbeat measuring system 100 shown in FIG. 1, and the difference is the non-contact type heartbeat measuring system shown in FIG. The 200 further includes a heartbeat change protection module 126 and an adaptive filter 127. In order to highlight the differences, the similarities are not repeated.

心跳變化保護模組126用以計算心跳峰值選擇模組125每一次輸出的第一輸出心跳頻率OHR1之平均值與標準差,並將平均值與標準差進行加與減的計算以形成界線值。若第一輸出心跳頻率OHR1超過該界線值則輸出界線值以成為第二輸出心跳頻率OHR2,若第一輸出心跳頻率OHR1未超過界線值則輸出第一輸出心跳頻率OHR1以成為第二輸出心跳頻率OHR2。 The heartbeat change protection module 126 is configured to calculate an average value and a standard deviation of the first output heartbeat frequency OHR1 output by the heartbeat peak selection module 125, and add and subtract the average value and the standard deviation to form a boundary value. If the first output heartbeat frequency OHR1 exceeds the boundary value, the boundary value is output to become the second output heartbeat frequency OHR2, and if the first output heartbeat frequency OHR1 does not exceed the boundary value, the first output heartbeat frequency OHR1 is output to become the second output heartbeat frequency. OHR2.

適應性濾波器127用以消除自心跳變化保護模組126輸出的第二輸出心跳頻率OHR2的高斯雜訊以及量測誤差,以輸出第三輸出心跳頻率OHR3。於本實施例中,適應性濾波器127為卡曼濾波器,但並不以此為限。 The adaptive filter 127 is configured to eliminate Gaussian noise and measurement error of the second output heartbeat frequency OHR2 outputted from the heartbeat change protection module 126 to output a third output heartbeat frequency OHR3. In the embodiment, the adaptive filter 127 is a Kalman filter, but is not limited thereto.

應注意的是,非接觸式心跳量測系統200的目標區域選擇模組121、特徵點座標偵測單元121a、目標區域框選單元121b、心跳訊號計算模組122、頻譜分析模組123、晃 動偵測模組124以及心跳峰值選擇模組125、心跳變化保護模組126以及適應性濾波器127可用硬體、軟體、韌體或其組合來體現。 It should be noted that the target area selection module 121, the feature point coordinate detection unit 121a, the target area frame selection unit 121b, the heartbeat signal calculation module 122, the spectrum analysis module 123, and the target of the contactless heartbeat measurement system 200 The motion detection module 124 and the heartbeat peak selection module 125, the heartbeat change protection module 126, and the adaptive filter 127 can be embodied by hardware, software, firmware, or a combination thereof.

綜上所述,心跳峰值選擇模組可藉由判斷訊號雜訊比是否高於門檻值以及具有全域最高訊號強度值之第一峰值頻率是否相似於臉部晃動頻率之兩個條件,並透過對應地選擇第一峰值頻率、第二峰值頻率或第三峰值頻率輸出心跳頻率OHR,進而達到抗晃動的心跳量測之目的;再者,再透過心跳變化保護模組以及適應性濾波器,進而使得輸出的心跳訊號更為平穩。 In summary, the heartbeat peak selection module can determine whether the signal noise ratio is higher than the threshold value and whether the first peak frequency having the highest signal intensity value of the whole region is similar to the condition of the face shaking frequency, and correspondingly Selecting the first peak frequency, the second peak frequency or the third peak frequency output heartbeat frequency OHR, thereby achieving the purpose of anti-sloshing heartbeat measurement; furthermore, passing through the heartbeat change protection module and the adaptive filter, thereby The output heartbeat signal is more stable.

請一併參閱第9A圖以及第9B圖,第9A圖繪示根據本揭示文件之一實施例中一種非接觸式心跳量測裝置300的正面示意圖。第9B圖繪示第9A圖中的非接觸式心跳量測裝置300的側視圖。 Please refer to FIG. 9A and FIG. 9B together. FIG. 9A is a front elevational view of a non-contact heartbeat measuring device 300 according to an embodiment of the present disclosure. FIG. 9B is a side view showing the non-contact type heartbeat measuring device 300 in FIG. 9A.

如第9A圖所示,非接觸式心跳量測裝置300包含影像感測器310以及運算模組320。影像感測器310可以是光學感測元件或是相機單元。運算模組320可以是嵌入式生理訊號運算模組、處理器、特殊應用積體電路或其他具相等性的運算電路。於一實施例中,運算模組320透過軟體、韌體或硬體方式實現先前實施例中所述的目標區域選擇模組121、心跳訊號計算模組122、頻譜分析模組123、晃動偵測模組124、心跳峰值選擇模組125、心跳變化保護模組126以及適應性濾波器127(請參閱第1圖及第8圖)。 As shown in FIG. 9A, the non-contact heartbeat measuring device 300 includes an image sensor 310 and an arithmetic module 320. The image sensor 310 can be an optical sensing element or a camera unit. The computing module 320 can be an embedded physiological signal computing module, a processor, a special application integrated circuit, or other equivalent computing circuits. In an embodiment, the computing module 320 implements the target area selection module 121, the heartbeat signal calculation module 122, the spectrum analysis module 123, and the shaking detection described in the previous embodiment through a software, a firmware, or a hardware. The module 124, the heartbeat peak selection module 125, the heartbeat change protection module 126, and the adaptive filter 127 (see FIGS. 1 and 8).

影像感測器310用以連續地擷取複數個臉部影像(請參閱第5A圖至第5C圖中的臉部影像FI)。運算模組 320與影像感測器310耦接。於一實施例中,運算模組320可以用以執行先前實施例中所述的非接觸式心跳量測方法M100(請參閱第2圖及先前相關實施例),運算模組320自該些臉部影像中各自選擇一目標區域,依據先後擷取的該些臉部影像其中的該目標區域中各像素點的色彩差異量得到一心跳訊號,對該心跳訊號進行頻譜分析,並得到一心跳頻譜,該心跳頻譜包含在複數個頻率下的複數個心跳訊號強度值,並計算該心跳頻譜之一訊號雜訊比,根據該些臉部影像計算一臉部晃動頻率,根據該訊號雜訊比與該臉部晃動頻率以選擇出該心跳頻譜的該複數個頻率中的一頻率作為一輸出心跳頻率。於一實施例中,當訊號雜訊比高於門檻值且心跳頻譜中具有全域最高訊號強度值之第一峰值頻率相似於該臉部晃動頻率時,運算模組320由該心跳頻譜之局部頻帶中選擇具有局部最高訊號強度值的第二峰值頻率作為輸出心跳頻率。 The image sensor 310 is configured to continuously capture a plurality of facial images (please refer to the facial images FI in FIGS. 5A to 5C). Computing module 320 is coupled to image sensor 310. In an embodiment, the operation module 320 can be used to perform the non-contact heartbeat measurement method M100 described in the previous embodiment (refer to FIG. 2 and the related embodiments), and the operation module 320 is from the faces. Each of the image images selects a target region, and obtains a heartbeat signal according to the color difference of each pixel in the target region, and performs spectrum analysis on the heartbeat signal to obtain a heartbeat spectrum. The heartbeat spectrum includes a plurality of heartbeat signal strength values at a plurality of frequencies, and calculates a signal noise ratio of the heartbeat spectrum, and calculates a facial shaking frequency according to the facial images, according to the signal noise ratio and The face shaking frequency selects one of the plurality of frequencies of the heartbeat spectrum as an output heartbeat frequency. In one embodiment, when the signal to noise ratio is higher than the threshold and the first peak frequency having the highest signal strength value in the heartbeat spectrum is similar to the facial shaking frequency, the operation module 320 is configured by the local frequency band of the heartbeat spectrum. The second peak frequency having the local highest signal strength value is selected as the output heartbeat frequency.

運算模組320的上述處理流程與技術細節,已在先前實施例的步驟S101~S109(請參見第2圖)中有詳細說明,在此不另贅述。 The above-mentioned processing flow and technical details of the operation module 320 have been described in detail in steps S101 to S109 (see FIG. 2) of the previous embodiment, and are not described herein.

如第9A圖所示,非接觸式心跳量測裝置300更包含輸出介面330,輸出介面330與運算模組320及影像感測器310耦接,輸出介面330可以用來顯示輸出心跳頻率以及該些臉部影像。 As shown in FIG. 9A, the non-contact heartbeat measuring device 300 further includes an output interface 330. The output interface 330 is coupled to the computing module 320 and the image sensor 310. The output interface 330 can be used to display the output heartbeat frequency and the These facial images.

如第9A圖及第9B圖所示,非接觸式心跳量測裝置300更包含電源供應模組340、電池模組341、電源開關按鈕342 以及充電孔343。電源供應模組340及電池模組341設置在非接觸式心跳量測裝置300當中。於第9A圖及第9B圖之實施例中,電源開關按鈕342以及充電孔343設置在非接觸式心跳量測裝置300的側表面上。電源開關按鈕342用以切換非接觸式心跳量測裝置300之開關狀態。充電孔343用以與相匹配的電源輸入(例如變壓器、電源轉換器等,圖中未示)搭接。電源供應模組340電性連接電池模組341、電源開關按鈕342、影像感測器310以及運算模組320,用以根據該開關狀態選擇性供電給該影像擷取模組以及該運算模組。 As shown in FIG. 9A and FIG. 9B , the non-contact heartbeat measuring device 300 further includes a power supply module 340 , a battery module 341 , and a power switch button 342 . And a charging hole 343. The power supply module 340 and the battery module 341 are disposed in the non-contact heartbeat measuring device 300. In the embodiment of FIGS. 9A and 9B, the power switch button 342 and the charging hole 343 are provided on the side surface of the non-contact type heartbeat measuring device 300. The power switch button 342 is used to switch the switching state of the non-contact heartbeat measuring device 300. The charging hole 343 is used to overlap with a matched power input (for example, a transformer, a power converter, etc., not shown). The power supply module 340 is electrically connected to the battery module 341, the power switch button 342, the image sensor 310, and the computing module 320 for selectively supplying power to the image capturing module and the computing module according to the switch state. .

如第9A圖及第9B圖所示,非接觸式心跳量測裝置300更包含固定模組350,用以將非接觸式心跳量測裝置300固定於外部物件(例如牆面、桌面、門框、柱子或其他物件,圖中未示)上。如第9A圖及第9B圖所示之固定模組350為具有螺旋鎖固結構的固定夾,但本揭示文件並不以為限,實際應用中,固定模組350也可是具有彈片結構的固定夾、卡扣固定結構、固定綁帶結構、彈性套環或是其他各種可以提供固定效果的機械結構。 As shown in FIG. 9A and FIG. 9B , the non-contact heartbeat measuring device 300 further includes a fixing module 350 for fixing the non-contact heartbeat measuring device 300 to an external object (eg, a wall surface, a desktop, a door frame, Columns or other objects, not shown in the figure). The fixing module 350 shown in FIG. 9A and FIG. 9B is a fixing clip having a screw locking structure, but the disclosure is not limited thereto. In practical applications, the fixing module 350 may also be a fixing clip having a spring structure. , snap-fit structure, fixed strap structure, elastic collar or any other mechanical structure that can provide a fixed effect.

雖然本案已以實施例揭露如上,然其並非用以限定本案,任何所屬技術領域中具有通常知識者,在不脫離本案之精神和範圍內,當可作些許之更動與潤飾,故本案之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone having ordinary knowledge in the technical field can protect the case without any deviation and refinement within the spirit and scope of the present case. The scope is subject to the definition of the scope of the patent application attached.

Claims (5)

一種非接觸式心跳量測裝置,包含:一影像感測器,用以連續地擷取複數個臉部影像;以及一運算模組,與該影像感測器耦接,該運算模組用以自該些臉部影像中各自選擇一目標區域,依據先後擷取的該些臉部影像其中的該目標區域中各像素點的色彩差異量得到一心跳訊號,對該心跳訊號進行頻譜分析,並得到一心跳頻譜,該心跳頻譜包含在複數個頻率下的複數個心跳訊號強度值,並計算該心跳頻譜之一訊號雜訊比,根據該些臉部影像計算一臉部晃動頻率,根據該訊號雜訊比與該臉部晃動頻率以選擇出該心跳頻譜的該複數個頻率中的一頻率作為一輸出心跳頻率。 A non-contact type heartbeat measuring device includes: an image sensor for continuously capturing a plurality of facial images; and an operation module coupled to the image sensor, the operation module is used for Selecting a target area from each of the facial images, and obtaining a heartbeat signal according to the color difference of each pixel in the target image, and performing spectrum analysis on the heartbeat signal, and Obtaining a heartbeat spectrum, the heartbeat spectrum includes a plurality of heartbeat signal intensity values at a plurality of frequencies, and calculating a signal noise ratio of the heartbeat spectrum, and calculating a facial shaking frequency according to the facial images, according to the signal The noise ratio and the facial shaking frequency are used to select one of the plurality of frequencies of the heartbeat spectrum as an output heartbeat frequency. 如請求項1所述之非接觸式心跳量測裝置,其中當該訊號雜訊比高於一門檻值且該心跳頻譜中具有一全域最高訊號強度值之一第一峰值頻率相似於該臉部晃動頻率時,該運算模組由該心跳頻譜之一局部頻帶中選擇具有一局部最高訊號強度值的一第二峰值頻率作為該輸出心跳頻率。 The contactless heartbeat measuring device of claim 1, wherein the signal to noise ratio is higher than a threshold and the first peak frequency of the global highest signal strength value in the heartbeat spectrum is similar to the face When the frequency is shaken, the computing module selects a second peak frequency having a local highest signal strength value from a local frequency band of the heartbeat spectrum as the output heartbeat frequency. 如請求項1所述之非接觸式心跳量測裝置,更包含:一輸出介面,與該運算模組及該影像感測器耦接,用以顯示該輸出心跳頻率以及該些臉部影像。 The contactless heartbeat measuring device of claim 1, further comprising: an output interface coupled to the computing module and the image sensor for displaying the output heartbeat frequency and the facial images. 如請求項1所述之非接觸式心跳量測裝置,更包含:一電池模組;一充電孔;一電源開關按鈕,用以切換該非接觸式心跳量測裝置之一開關狀態;以及一電源供應模組,電性連接該電池模組、該電源開關按鈕、該影像感測器以及該運算模組,用以根據該開關狀態選擇性供電給該影像擷取模組以及該運算模組。 The non-contact type heartbeat measuring device of claim 1, further comprising: a battery module; a charging hole; a power switch button for switching a switching state of the non-contact type heartbeat measuring device; and a power source The power module is electrically connected to the battery module, the power switch button, the image sensor, and the computing module for selectively supplying power to the image capturing module and the computing module according to the switch state. 如請求項1所述之非接觸式心跳量測裝置,更包含:一固定模組,用以將該非接觸式心跳量測裝置固定於一外部物件上。 The contactless heartbeat measuring device of claim 1, further comprising: a fixing module for fixing the non-contact type heartbeat measuring device to an external object.
TW107205406U 2018-04-25 2018-04-25 Non-contact heartbeat rate measurement apparatus TWM564431U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107205406U TWM564431U (en) 2018-04-25 2018-04-25 Non-contact heartbeat rate measurement apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107205406U TWM564431U (en) 2018-04-25 2018-04-25 Non-contact heartbeat rate measurement apparatus

Publications (1)

Publication Number Publication Date
TWM564431U true TWM564431U (en) 2018-08-01

Family

ID=63960752

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107205406U TWM564431U (en) 2018-04-25 2018-04-25 Non-contact heartbeat rate measurement apparatus

Country Status (1)

Country Link
TW (1) TWM564431U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI658815B (en) * 2018-04-25 2019-05-11 國立交通大學 Non-contact heartbeat rate measurement system, non-contact heartbeat rate measurement method and non-contact heartbeat rate measurement apparatus
TWI715958B (en) * 2019-04-08 2021-01-11 國立交通大學 Assessing method for a driver's fatigue score

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI658815B (en) * 2018-04-25 2019-05-11 國立交通大學 Non-contact heartbeat rate measurement system, non-contact heartbeat rate measurement method and non-contact heartbeat rate measurement apparatus
US10835135B2 (en) 2018-04-25 2020-11-17 National Chiao Tung University Non-contact heartbeat rate measurement system, method and apparatus thereof
TWI715958B (en) * 2019-04-08 2021-01-11 國立交通大學 Assessing method for a driver's fatigue score

Similar Documents

Publication Publication Date Title
TWI658815B (en) Non-contact heartbeat rate measurement system, non-contact heartbeat rate measurement method and non-contact heartbeat rate measurement apparatus
US9854976B2 (en) Pulse wave velocity measurement method
US10292602B2 (en) Blood flow index calculating method, blood flow index calculating apparatus, and recording medium
Grimaldi et al. Photoplethysmography detection by smartphone's videocamera
WO2016006027A1 (en) Pulse wave detection method, pulse wave detection program, and pulse wave detection device
JP6167614B2 (en) Blood flow index calculation program, blood flow index calculation device, and blood flow index calculation method
EP3057486B1 (en) Automatic camera adjustment for remote photoplethysmography
JP6098257B2 (en) Signal processing apparatus, signal processing method, and signal processing program
CN111556727B (en) Blood pressure measuring device and blood pressure measuring method
JP6142664B2 (en) Pulse wave detection device, pulse wave detection program, pulse wave detection method, and content evaluation system
JP6115263B2 (en) Pulse wave detection device, pulse wave detection method, and pulse wave detection program
JP7373298B2 (en) Biological information detection device, biological information detection method, and biological information detection program
TWI492737B (en) Physiological information measurement system and method thereof
TWM564431U (en) Non-contact heartbeat rate measurement apparatus
JP6135255B2 (en) Heart rate measuring program, heart rate measuring method and heart rate measuring apparatus
Po et al. Frame adaptive ROI for photoplethysmography signal extraction from fingertip video captured by smartphone
JP6488722B2 (en) Pulse wave detection device, pulse wave detection method, and pulse wave detection program
KR20180042673A (en) Respiration rate estimating method using image
JP6167615B2 (en) Blood flow index calculation program, terminal device, and blood flow index calculation method
JP2015198789A (en) Information processing device, pulse wave measurement program and pulse wave measurement method
Rahman et al. A filter-based method to calculate heart rate from near infrared video
Qiu et al. Low-cost gaze and pulse analysis using realsense
TW201438674A (en) Image type exercise amount evaluation and measurement system and method thereof