TWM551477U - An ultrasound diagnostic apparatus suitable for artificial intelligence imaging analysis - Google Patents

An ultrasound diagnostic apparatus suitable for artificial intelligence imaging analysis Download PDF

Info

Publication number
TWM551477U
TWM551477U TW106206461U TW106206461U TWM551477U TW M551477 U TWM551477 U TW M551477U TW 106206461 U TW106206461 U TW 106206461U TW 106206461 U TW106206461 U TW 106206461U TW M551477 U TWM551477 U TW M551477U
Authority
TW
Taiwan
Prior art keywords
image
ultrasonic
dimensional
ultrasound
displacement
Prior art date
Application number
TW106206461U
Other languages
Chinese (zh)
Inventor
李承諺
Original Assignee
李承諺
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李承諺 filed Critical 李承諺
Priority to TW106206461U priority Critical patent/TWM551477U/en
Publication of TWM551477U publication Critical patent/TWM551477U/en

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

An ultrasound diagnostic apparatus is provided. The ultrasound diagnostic apparatus comprises an ultrasound signal transceiver, a plurality of motion and/or rotation detectors (e.g., gyroscope) and a networking system. When the ultrasound signal capture function of this apparatus is enabled, the internal built-in motion and/or rotation detectors (e.g., gyroscope) will provide their own motion and/or rotation information for each captured two-dimension ultrasound image. Afterwards, a networking system will upload these two-dimension ultrasound images with motion and/or rotation information to a cloud computing server. The cloud computing server has an algorithm of artificial intelligence imaging analysis which can put all these two-dimension ultrasound images with motion and/or rotation information into a tree dimension image buffer. Further, the algorithm can deliver brand-new image cross sections with medical diagnostic values based on the guideline of medical ultrasound diagnosis. At last, the delivered images can be used for the clinical medical diagnosis or the artificial intelligence and machine learning.

Description

一種適用於人工智慧影像分析的超音波診斷裝置 Ultrasonic diagnostic device suitable for artificial intelligence image analysis

本新型係為一新型超音波診斷裝置,特別地,是關係於一種藉由影像位移及旋轉角度偵測系統,來將原始接受到的二維超音波影像,透過影像比對、縮放、空間轉換演算法,產生不同於原始二維超音波影像的新二維超音波影像,並提供更多的醫學診斷資訊。 The novel is a new type of ultrasonic diagnostic device, in particular, relates to an image displacement and rotation angle detecting system for comparing original two-dimensional ultrasonic images through image matching, scaling, and spatial conversion. The algorithm produces a new two-dimensional ultrasound image that is different from the original two-dimensional ultrasound image and provides more medical diagnostic information.

醫用超音波診斷裝置由於具有方便,無侵略性、無放射性、易於取得等諸多特性,使得目前超音波診斷廣泛應用在每一個臨床科別(除了精神科之外),而按照各科別超音波醫學會的臨床指引建議,超音波之應用是以二維平面影像來做各個切面的檢查為主,三維影像僅能提供參考用途,無法作為醫師診斷依據,因此,如圖二所繪示之先前裝置(US 2009/0306509 A1),將超音波診斷裝置搭配一影像位移及旋轉角度偵測系統,其目的主要是做為三維影像的成像並不能有效提升臨床診斷價值。 The medical ultrasonic diagnostic device has many characteristics such as convenience, non-aggressive, non-radioactive, easy to obtain, etc., so that the current ultrasonic diagnosis is widely used in every clinical department (except the psychiatric department), and according to each department The clinical guidelines of the Sonic Medical Association suggest that the application of ultrasound is based on two-dimensional planar images for the examination of each aspect. The three-dimensional images can only provide reference purposes and cannot be used as a basis for physician diagnosis. Therefore, as shown in Figure 2 The prior device (US 2009/0306509 A1) combines an ultrasonic diagnostic device with an image displacement and rotation angle detection system, the main purpose of which is that imaging of three-dimensional images does not effectively enhance the clinical diagnostic value.

因此,本新型之主要範疇是將此影像位移及旋轉角度偵測系統應用在於產生新的二維超音波影像剖面,以增加臨床診斷之判斷依據。 Therefore, the main scope of the present invention is to apply this image displacement and rotation angle detection system to generate a new two-dimensional ultrasound image profile to increase the judgment of clinical diagnosis.

此新型所欲解決之問題是目前常見的二維超音波掃描應用在人體臟器的檢查上,往往需要操作者(如醫生,超音波技術員)根據臨床指引建議做十個甚至數十個臟器剖面的觀察才能完成,這過程常常會隨著不同操作者的經驗,或不同病患臟器的差異,而造成檢查結果的不一致性,因此本新型係透過一個影像位移及旋轉角度偵測系統,以及影像比對、縮放、空間轉換的演算法來讓操作者能透過一次簡易的線性掃描後,即可產生各個臨床指引建議中所提及的人體臟器剖面圖,既可有效減少操作者的儀器操作時間,也可消除操作者的人工誤判。 The new problem to be solved is that the current common two-dimensional ultrasonic scanning application is applied to the examination of human organs, and often requires operators (such as doctors, ultrasonic technicians) to make ten or even dozens of organs according to clinical guidelines. The observation of the profile can be completed. This process often leads to inconsistency in the inspection results due to the experience of different operators or the differences of organs in different patients. Therefore, the novel system transmits an image displacement and rotation angle detection system. And algorithms for image matching, scaling, and spatial conversion to allow the operator to generate a profile of the human organ referred to in each clinical guidelines through a simple linear scan, which effectively reduces the operator's The instrument operation time can also eliminate the operator's manual misjudgment.

欲解決超音波診斷裝置操作者的人工誤判,本新型係以一個影像位移及旋轉角度偵測系統,以及影像比對、縮放、空間轉換的演算法來解決此問題,影像位移及旋轉角度偵測系統能準確的得知操作者在進行簡易的線性掃描中所產生各個二維影像彼此間的相對位置,接著本新型裝置會將所搜集到的各個二維影像及其彼此間的相對位置透過聯網裝置傳遞至雲端運算伺服器,雲端運算伺服器會將這些二維影像及其彼此間的相對位置放置於一個三維空間影像儲存區,最後透過影像比對、縮放、空間轉換的演算法來產生各個臨床指引建議中所提及的人體臟器剖面圖。 In order to solve the manual misjudgment of the operator of the ultrasonic diagnostic device, the present invention solves this problem by an image displacement and rotation angle detection system, and an image comparison, scaling, and spatial conversion algorithm, image displacement and rotation angle detection. The system can accurately know the relative position of each two-dimensional image generated by the operator in a simple linear scan, and then the novel device will network the collected two-dimensional images and their relative positions with each other. The device is passed to the cloud computing server, and the cloud computing server places the two-dimensional images and their relative positions in a three-dimensional image storage area, and finally generates images through image matching, scaling, and spatial conversion algorithms. A section of the human organ referred to in the clinical guidelines.

先前的技術雖然也具備有影像位移及旋轉角度偵測系統,但其目的 主要是做為三維影像的成像,然而目前醫學界普遍的認知是三維影像的成像並不能有效提升臨床診斷價值,所以本新型的功效在於能有效減少操作者的儀器操作時間,也可消除操作者因不熟悉儀器操作,或是經驗不足,或是受測者特殊臟器表徵而造成沒有完整的檢查臨床指引建議中所提及的人體臟器剖面圖,所產生的人工誤判。 The previous technology also has an image displacement and rotation angle detection system, but its purpose It is mainly used for imaging 3D images. However, the general recognition in the medical field is that the imaging of 3D images can not effectively improve the value of clinical diagnosis. Therefore, the effect of the novel is to effectively reduce the operator's instrument operation time and eliminate the operator. Due to unfamiliarity with the operation of the instrument, or lack of experience, or the special organ characterization of the subject, there is no complete manual inspection of the human organ profile as mentioned in the clinical guidelines.

1‧‧‧本新型之具體實施例裝置 1‧‧‧Specific embodiment device of the present invention

11,21‧‧‧超音波換能器 11,21‧‧‧Ultrasonic Transducer

12,22‧‧‧超音波訊號收發器 12,22‧‧‧Supersonic Signal Transceiver

13,23‧‧‧二維超音波影像產生器 13,23‧‧‧Two-dimensional ultrasonic image generator

14,24‧‧‧影像位移及旋轉角度偵測系統 14,24‧‧‧Image Displacement and Rotation Angle Detection System

15‧‧‧聯網系統 15‧‧‧Networking system

16‧‧‧雲端運算伺服器 16‧‧‧Cloud computing server

17‧‧‧二維超音波影像剖面圖產生模組 17‧‧‧Two-dimensional ultrasonic image profile generation module

25‧‧‧三維超音波影像產生器 25‧‧‧3D Ultrasonic Image Generator

X‧‧‧前、後張二維影像在影像平面內的水平位移 Horizontal displacement of X.‧‧ front and rear 2D images in the image plane

Z‧‧‧前、後張二維影像在影像平面內的垂直位移 Vertical displacement of Z‧‧‧ front and rear 2D images in the image plane

Y‧‧‧前、後張二維影像彼此間的位移 Y‧‧‧ Displacement of front and rear 2D images

α‧‧‧前、後張二維影像在X+Z軸的旋轉角度 The angle of rotation of the α·‧‧ front and rear 2D images on the X+Z axis

β‧‧‧前、後張二維影像在Y+Z軸的旋轉角度 The angle of rotation of the β·‧‧ front and rear 2D images on the Y+Z axis

r‧‧‧前、後張二維影像在X+Y軸的旋轉角度 R‧‧‧ Rotation angle of the front and rear 2D images on the X+Y axis

51‧‧‧在線性掃描的模式下所取得在Y方向上的二維影像 51‧‧‧Two-dimensional images acquired in the Y direction in linear scanning mode

52‧‧‧三度空間影像儲存區 52‧‧‧Three-dimensional space image storage area

53‧‧‧由二維超音波影像剖面圖產生模組所計算出在X和Y平面上的影像 53‧‧‧Image calculated by the 2D ultrasonic image profile generation module on the X and Y planes

54‧‧‧傳統欲取得X和Y平面上的影像需將超音波換能器擺放的位置 54‧‧‧The position where the ultrasound transducer needs to be placed in the X and Y planes

55‧‧‧由二維超音波影像剖面圖產生模組所計算出以β角度旋轉的影像 55‧‧‧Image rotated by β angle calculated by the 2D ultrasonic image profile generation module

56‧‧‧傳統欲取得β角度旋轉的影像需將超音波換能器擺放的位置 56‧‧‧The position where the ultrasound transducer is required to obtain an image with a β-angle rotation

圖一:係繪示根據本新型之具體實施超音波診斷裝置的示意圖 Figure 1: Schematic diagram showing an ultrasonic diagnostic apparatus according to the specific implementation of the present invention

圖二:係繪示傳統具有影像位移及旋轉角度偵測系統之超音波診斷裝置的示意圖 Figure 2: Schematic diagram showing a conventional ultrasonic diagnostic device with image displacement and rotation angle detection system

圖三:係繪示所有可能之影像位移及旋轉角度 Figure 3: shows all possible image displacements and rotation angles

圖四:係繪示常見手持超音波診斷裝置之掃描方式 Figure 4: shows the scanning method of the common handheld ultrasonic diagnostic device

圖五:係繪示本新型產生之新二維超音波影像剖面示意圖 Figure 5: Schematic diagram showing the new two-dimensional ultrasonic image generated by the new model

根據本新型之具體實施例1為一具有聯網功能的超音波診斷裝置以及雲端運算伺服器,如圖一所示,本新型之具體實施例裝置1包含超音波換能器11、超音波訊號收發器12、二維超音波影像產生器13、影像位移及旋轉角度偵測系統14、聯網系統15、雲端運算伺服器16以及二維超音波影像剖面圖產生模組17。 According to a specific embodiment 1 of the present invention, an ultrasonic diagnostic device having a networking function and a cloud computing server are provided. As shown in FIG. 1 , the device 1 of the specific embodiment of the present invention includes an ultrasonic transducer 11 and a supersonic signal transmitting and receiving device. The device 12, the two-dimensional ultrasonic image generator 13, the image displacement and rotation angle detecting system 14, the networking system 15, the cloud computing server 16, and the two-dimensional ultrasonic image profile generating module 17.

於此實施例中,超音波換能器11結合超音波訊號收發器12以及二維超音波影像產生器13即構成現存常見之超音波診斷裝置,於此不再贅 述,影像位移及旋轉角度偵測系統14可為目前常用於手機裝置內部的陀螺傳感器,可為複數個形式,以提供更準確的位移及旋轉角度偵測,當本新型之具體實施例裝置1的操作者以手持的方式進行掃描人體臟器時,會產生的影像間位移或旋轉角度如圖三所示:前、後張二維影像在影像平面內的水平位移X、前、後張二維影像在影像平面內的垂直位移Z、前、後張二維影像彼此間的位移Y、前、後張二維影像在X+Z軸的旋轉角度α、前、後張二維影像在Y+Z軸的旋轉角度β、前、後張二維影像在X+Y軸的旋轉角度r。至於常見的掃描方式如圖四所示,線性掃描為常用於腹部超音波掃描的方式,其掃描方向為垂直於超音波換能器11的方向,即為圖四所示之前、後張二維影像彼此間的位移Y方向,而前、後張二維影像彼此間的位移即為前、後張二維影像彼此間的位移Y方向上的位移量,扇形掃描不同於線性掃描的地方在於能以較小的擺動幅度觀察到較大範圍的區域,其擺動的幅度可以圖三的前、後張二維影像在Y+Z軸的旋轉角度β表示,代表前、後張二維影像在Y+Z軸的旋轉角度,箭型掃描常用於婦科的超音波診斷,其掃描方式為沿著圖三的前、後張二維影像在X+Y軸的旋轉角度r角度轉動探頭,也代表前、後張二維影像在X+Y軸的旋轉角度。 In this embodiment, the ultrasonic transducer 11 is combined with the ultrasonic signal transceiver 12 and the two-dimensional ultrasonic image generator 13 to constitute a conventional ultrasonic diagnostic device. The image displacement and rotation angle detecting system 14 can be a gyro sensor commonly used in mobile phone devices, and can be in multiple forms to provide more accurate displacement and rotation angle detection. When the operator scans the human organ in a hand-held manner, the displacement or rotation angle between the images will be as shown in Figure 3: the horizontal displacement of the front and back 2D images in the image plane X, the front and back 2D images in the image The vertical displacement Z in the plane, the displacement of the front and back two-dimensional images with each other, the rotation angle α of the front and back two-dimensional images on the X+Z axis, the rotation angle of the front and rear two-dimensional images on the Y+Z axis β, before, The rotation angle r of the rear 2D image on the X+Y axis. As for the common scanning method shown in FIG. 4, the linear scanning is a method commonly used for abdominal ultrasound scanning, and the scanning direction is perpendicular to the direction of the ultrasonic transducer 11, that is, the front and rear two-dimensional images shown in FIG. The displacement between the front and back two-dimensional images is the displacement of the front and back two-dimensional images in the displacement Y direction. The difference between the sector scanning and the linear scanning is that the amplitude can be smaller. A large range of areas is observed, and the amplitude of the swing can be represented by the rotation angle β of the front and back two-dimensional images of FIG. 3 in the Y+Z axis, representing the rotation angle of the front and back two-dimensional images in the Y+Z axis, and the arrow type scanning. It is often used for gynecological ultrasound diagnosis. The scanning method is to rotate the probe at the angle of rotation r of the X+Y axis along the front and back 2D images of Figure 3. It also represents the rotation angle of the front and back 2D images in the X+Y axis. .

在實際應用中,以最常見在圖四中的線性掃描為例,當操作者沿著前、後張二維影像彼此間的位移Y方向移動時,有可能因為受測者的呼吸震動,或是操作者本身手持裝置造成的抖動,而有可能產生如圖三所示除了前、後張二維影像彼此間的位移Y方向外的前、後張二維影像在影像平面內的水平位移X、前、後張二維影像在影像平面內的垂直位移Z、前、後張二維影像在X+Z軸的旋轉角度α、前、後張二維影像在Y+Z軸的旋轉角度β以及前、 後張二維影像在X+Y軸的旋轉角度r等不預期的影像平面內的位移或是影像平面間的旋轉角度,因此前、後張二維影像的相對位置關係需要一影像位移及旋轉角度偵測系統來加以呈現這些位移或角度,有了這些位移和角度資訊後,每一張所擷取到的二維超音波影像即能正確地一張接著一張放置於三度空間影像儲存區52。 In practical applications, taking the linear scan most commonly in Figure 4 as an example, when the operator moves along the displacement Y direction of the front and back two-dimensional images, it may be due to the patient's respiratory vibration or operation. The jitter caused by the handheld device itself may cause the horizontal displacement X, the front and back two-dimensional images of the front and back two-dimensional images in the image plane except the displacement of the front and rear two-dimensional images. The vertical displacement Z in the image plane, the rotation angle α of the front and back 2D images in the X+Z axis, the rotation angle β of the front and back 2D images in the Y+Z axis, and The displacement of the 2D image in the undesired image plane such as the rotation angle r of the X+Y axis or the rotation angle between the image planes, so the relative positional relationship between the front and back 2D images requires an image displacement and rotation angle detection system. These displacements or angles are presented. With these displacement and angle information, each of the captured two-dimensional ultrasonic images can be correctly placed one after another in the three-dimensional image storage area 52.

舉例來說,在三度空間影像儲存區52中,如圖五所示,存放在線性掃描的模式下所取得在Y方向上的二維影像51,但假設在超音波醫學會的臨床指引上還需要觀察在X和Y平面上的影像,傳統上需將超音波換能器11放置於傳統欲取得X和Y平面上的影像需將超音波換能器擺放的位置54才能得到所想觀察的影像,然本新型可以透過在三度空間影像儲存區52裡的影像資料,將屬於X和Y平面上的影像擷取出來,並透過適當的影像縮放、內插等演算法呈現等同於將超音波換能器11放置於傳統欲取得X和Y平面上的影像需將超音波換能器擺放的位置54才能得到的影像,此影像即為圖五由二維超音波影像剖面圖產生模組所計算出在X和Y平面上的影像53,同樣的如果操作者想觀察的是經過β角度旋轉後的影像,傳統上需將超音波換能器11放置於傳統欲取得β角度旋轉的影像需將超音波換能器擺放的位置56才能得到所想觀察的影像,然本新型可以透過在三度空間影像儲存區52裡的影像資料,將屬於β角度旋轉後的影像擷取出來,此影像即為圖五由二維超音波影像剖面圖產生模組所計算出以β角度旋轉的影像55,因此,經過本新型所開發的影像處理演算法能在一次線性掃描後,即能產生所有臨床指引建議中所提及的人體臟器剖面圖,相較於傳統的方式,能大幅減少操作者的裝置操作時間,讓操作者能夠服務更多的病患, 並可減少受測者的超音波曝露量,同時也能減少因不同操作者而漏看的某些人體臟器剖面圖,此外,本新型所提及的雲端運算伺服器,可隨著所搜集的影像資料量愈多,更能做影像的交叉比對,也就是透過人工智慧機器學習的方式,將醫師如何判定『有問題的影像剖面圖』或是『正常影像剖面圖』的方法輸入機器,讓機器透過這樣的學習方式能慢慢具有如醫師的判斷能力,藉此提供如健康警訊或是輔助醫師判斷等功能。 For example, in the three-dimensional image storage area 52, as shown in FIG. 5, the two-dimensional image 51 in the Y direction is stored in the linear scanning mode, but it is assumed to be in the clinical guidelines of the Ultrasonic Medical Association. It is also necessary to observe the images on the X and Y planes. It is conventionally necessary to place the ultrasonic transducer 11 on the image in which the X and Y planes are conventionally required to be placed at the position 54 of the ultrasonic transducer. The observed image, however, can be extracted from the image on the X and Y planes through the image data in the three-dimensional image storage area 52, and rendered equivalent by appropriate image scaling, interpolation, and the like. The ultrasonic transducer 11 is placed on a conventional image in which the image on the X and Y planes needs to be placed at the position 54 of the ultrasonic transducer. This image is a cross-sectional view of the two-dimensional ultrasonic image. The image 53 calculated on the X and Y planes is generated by the module. Similarly, if the operator wants to observe the image rotated by the β angle, it is conventional to place the ultrasonic transducer 11 in the conventional angle to obtain the β angle. Rotating images require supersonic The position 56 of the transducer can be obtained to obtain the image to be observed, but the image can be extracted from the image rotated by the β angle through the image data in the three-dimensional image storage area 52. Figure 5 is an image 55 rotated by a two-dimensional ultrasonic image profile generation module. The image processing algorithm developed by the present invention can generate all clinical guidelines after a linear scan. The human organ profile diagram mentioned in the above can greatly reduce the operator's device operation time and enable the operator to serve more patients than the conventional method. It can reduce the amount of ultrasonic exposure of the subject, and also reduce the profile of some human organs that are missed by different operators. In addition, the cloud computing server mentioned in the present invention can be collected along with The more the amount of image data, the more the image can be cross-matched, that is, through the artificial intelligence machine learning method, how to determine the doctor's method of "problem image profile" or "normal image profile" into the machine In this way, the machine can gradually have the ability of the doctor to judge, such as providing health warnings or assisting physicians.

最後關於聯網裝置的部份,傳統的超音波診斷裝置由於軟硬體的能力有所限制,所以並無法長時間的做運算處理,而且儲存影像的容量也有限制,所以本新型採用一聯網裝置來解決上述問題,但假以時日如果超音波診斷裝置的軟硬體能力有所突破,以及儲存影像的容量有大幅提高,則有機會在超音波診斷裝置即可完成本新型所提及原本在雲端運算伺服器上所具有的功能,則此聯網裝置可被省略。 Finally, with regard to the part of the networked device, the traditional ultrasonic diagnostic device has a limited ability of hardware and software, so it cannot be processed for a long time, and the capacity for storing images is also limited. Therefore, the present invention uses a networked device. To solve the above problems, but if the software and hardware capabilities of the ultrasonic diagnostic device are broken and the capacity of the stored image is greatly improved, there is an opportunity to complete the original computing in the cloud in the ultrasonic diagnostic device. The networked device can be omitted from the functions on the device.

藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本新型之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本新型之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本新型所欲申請之專利範圍的範疇內。 The features and spirit of the present invention are intended to be more apparent from the detailed description of the preferred embodiments. On the contrary, the intention is to cover various modifications and equivalent arrangements within the scope of the claimed invention.

11‧‧‧超音波換能器 11‧‧‧Ultrasonic Transducer

12‧‧‧超音波訊號收發器 12‧‧‧Supersonic Signal Transceiver

13‧‧‧二維超音波影像產生器 13‧‧‧Two-dimensional ultrasonic image generator

14‧‧‧影像位移及旋轉角度偵測系統 14‧‧‧Image Displacement and Rotation Angle Detection System

15‧‧‧聯網系統 15‧‧‧Networking system

16‧‧‧雲端運算伺服器 16‧‧‧Cloud computing server

17‧‧‧二維超音波影像剖面圖產生模組 17‧‧‧Two-dimensional ultrasonic image profile generation module

Claims (3)

一種適用於人工智慧影像分析的超音波診斷裝置,包含超音波換能器、超音波訊號收發器、二維超音波影像產生器、影像位移及旋轉角度偵測系統、聯網系統、雲端運算伺服器以及二維超音波影像剖面圖產生模組,二維超音波影像產生器能將超音波訊號經由超音波換能器以及超音波訊號收發器產生出二維超音波影像,之後,影像位移及旋轉角度偵測系統能將每一張二維超音波影像賦予其相對應的影像位移及旋轉角度資訊,最後,透過聯網系統將影像資料和位移及旋轉角度的資料傳遞至雲端運算伺服器;該雲端運算伺服器具有二維超音波影像剖面圖產生模組,能透過影像比對、縮放、空間轉換的演算法來產生各個臨床指引建議中所提及的人體臟器剖面圖。 Ultrasonic diagnostic device suitable for artificial intelligence image analysis, including ultrasonic transducer, ultrasonic signal transceiver, two-dimensional ultrasonic image generator, image displacement and rotation angle detection system, networked system, cloud computing server And a two-dimensional ultrasonic image profile generation module, the two-dimensional ultrasonic image generator can generate a two-dimensional ultrasonic image through the ultrasonic transducer and the ultrasonic signal transceiver, and then the image displacement and rotation The angle detection system can assign each two-dimensional ultrasonic image to its corresponding image displacement and rotation angle information. Finally, the image data and the displacement and rotation angle data are transmitted to the cloud computing server through the networked system; the cloud computing servo The device has a two-dimensional ultrasonic image profile generation module, which can generate the human organ profile mentioned in each clinical guidance suggestion through image comparison, scaling, and spatial conversion algorithms. 如申請專利範圍第1項所述之超音波診斷裝置,其中聯網系統可為有線或無線的可聯結網路系統。 The ultrasonic diagnostic apparatus of claim 1, wherein the networked system is a wired or wireless connectable network system. 如申請專利範圍第1項所述之超音波診斷裝置,其中雲端運算伺服器為一具有運算能力的系統,能負責影像處理相關之演算法。 The ultrasonic diagnostic apparatus according to claim 1, wherein the cloud computing server is a computing system capable of being responsible for image processing related algorithms.
TW106206461U 2017-05-08 2017-05-08 An ultrasound diagnostic apparatus suitable for artificial intelligence imaging analysis TWM551477U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106206461U TWM551477U (en) 2017-05-08 2017-05-08 An ultrasound diagnostic apparatus suitable for artificial intelligence imaging analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106206461U TWM551477U (en) 2017-05-08 2017-05-08 An ultrasound diagnostic apparatus suitable for artificial intelligence imaging analysis

Publications (1)

Publication Number Publication Date
TWM551477U true TWM551477U (en) 2017-11-11

Family

ID=61014397

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106206461U TWM551477U (en) 2017-05-08 2017-05-08 An ultrasound diagnostic apparatus suitable for artificial intelligence imaging analysis

Country Status (1)

Country Link
TW (1) TWM551477U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113116386A (en) * 2019-12-31 2021-07-16 无锡祥生医疗科技股份有限公司 Ultrasound imaging guidance method, ultrasound apparatus, and storage medium
US11763428B2 (en) 2021-06-22 2023-09-19 Saudi Arabian Oil Company System and method for de-noising an ultrasonic scan image using a convolutional neural network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113116386A (en) * 2019-12-31 2021-07-16 无锡祥生医疗科技股份有限公司 Ultrasound imaging guidance method, ultrasound apparatus, and storage medium
US11763428B2 (en) 2021-06-22 2023-09-19 Saudi Arabian Oil Company System and method for de-noising an ultrasonic scan image using a convolutional neural network

Similar Documents

Publication Publication Date Title
CN107157512B (en) Ultrasonic diagnostic apparatus and ultrasonic diagnosis support apparatus
JP5400466B2 (en) Diagnostic imaging apparatus and diagnostic imaging method
JP4470187B2 (en) Ultrasonic device, ultrasonic imaging program, and ultrasonic imaging method
JP5027922B2 (en) Ultrasonic diagnostic equipment
US9554772B2 (en) Non-invasive imager for medical applications
JP6873647B2 (en) Ultrasonic diagnostic equipment and ultrasonic diagnostic support program
JP2021510107A (en) Three-dimensional imaging and modeling of ultrasound image data
JP6974354B2 (en) Synchronized surface and internal tumor detection
JP2012213558A (en) Image processing apparatus, image processing method, and program
JP6833533B2 (en) Ultrasonic diagnostic equipment and ultrasonic diagnostic support program
US9990725B2 (en) Medical image processing apparatus and medical image registration method using virtual reference point for registering images
JP6720001B2 (en) Ultrasonic diagnostic device and medical image processing device
JP2018079070A (en) Ultrasonic diagnosis apparatus and scanning support program
JP7497424B2 (en) Ultrasound Guidance Dynamic Mode Switching
BR112020014733A2 (en) COMPUTER IMPLEMENTED METHOD FOR OBTAINING ANATOMICAL MEASUREMENTS ON AN ULTRASOUND IMAGE, COMPUTER PROGRAM MEDIA, IMAGE ANALYSIS DEVICE AND ULTRASOUND IMAGING METHOD
JP6888041B2 (en) How to get a medical sagittal image, how to train a neural network to get a medical sagittal image, and a computer device
KR101562569B1 (en) Medical device and its method for merging volume images in 3D ultrasound scanning
JPH1147133A (en) Ultrasonograph
TWM551477U (en) An ultrasound diagnostic apparatus suitable for artificial intelligence imaging analysis
JP5677399B2 (en) Information processing apparatus, information processing system, information processing method, and program
JP6206155B2 (en) Ultrasonic diagnostic equipment
JP6355788B2 (en) Information processing apparatus, information processing method, information processing system, and program
JP2019048211A (en) Ultrasonic image diagnostic system, and control method of the same
JP6338510B2 (en) Information processing apparatus, information processing method, information processing system, and program
EP3752984A1 (en) An imaging system and method with stitching of multiple images

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees