TWM550465U - Semiconductor wafer analyzing system - Google Patents

Semiconductor wafer analyzing system Download PDF

Info

Publication number
TWM550465U
TWM550465U TW106209683U TW106209683U TWM550465U TW M550465 U TWM550465 U TW M550465U TW 106209683 U TW106209683 U TW 106209683U TW 106209683 U TW106209683 U TW 106209683U TW M550465 U TWM550465 U TW M550465U
Authority
TW
Taiwan
Prior art keywords
wafer
image
classification
semiconductor wafer
inspection system
Prior art date
Application number
TW106209683U
Other languages
Chinese (zh)
Inventor
駱樂
Original Assignee
中華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中華大學 filed Critical 中華大學
Priority to TW106209683U priority Critical patent/TWM550465U/en
Publication of TWM550465U publication Critical patent/TWM550465U/en

Links

Abstract

The present creation provides a wafer analyzing system, comprising: a conveyor device and a defect analyzing device, wherein the defect analyzing device comprises: an image capturing module and a processing module electrically connected with the image capturing module. The conveyor device delivers a wafer to the defect analyzing device and then the image capturing module captures an original image of the wafer. The processing module processes a defect analysis according to the original image, wherein the defect analysis comprises: performing a de-background and localization process; performing a partition and parameterization process to a parameter matrix; comparing the parameter matrix with a standard matrix to get a parameter difference; classifying the parameter difference with a classification database; and outputting an analysis result of the wafer.

Description

半導體晶圓檢測系統 Semiconductor wafer inspection system

本新型是有關一種半導體晶圓檢測系統,尤其是關於一種能提高半導體晶圓檢測效率與準確度的檢測系統。The present invention relates to a semiconductor wafer inspection system, and more particularly to a detection system capable of improving the efficiency and accuracy of semiconductor wafer inspection.

半導體晶圓製造過程可概分為:形成單晶矽晶圓棒(Ingot)、矽晶圓棒區塊切斷分離、外圍研磨、區塊切離、研磨晶圓等幾個步驟。而矽晶圓為構成各種半導體元件的基本,因此唯有良好及穩定的晶圓處理製程才能使後續的半導體元件生產穩定。另外,更重要的是近年來隨著技術高度的發展而且半導體元件最小特徵尺寸不斷縮小但是晶圓的尺寸卻持續增大,其所代表的意義為所投入及耗費的資金及技術更是日趨龐大及複雜,因此,半導體晶圓製程中的檢測技術更顯得漸趨重要。The semiconductor wafer manufacturing process can be broadly divided into several steps of forming a single crystal germanium wafer rod (Ingot), a tantalum wafer rod block cutting separation, a peripheral polishing, a block cutting, and a wafer polishing. While germanium wafers are fundamental to the formation of various semiconductor components, only a good and stable wafer processing process can stabilize subsequent semiconductor component production. In addition, more importantly, in recent years, with the development of technology and the smallest feature size of semiconductor components, the size of wafers has continued to increase, which means that the capital and technology invested and consumed are becoming increasingly large. And complex, therefore, the detection technology in the semiconductor wafer process is becoming more and more important.

傳統半導體相關製程的標準瑕疵檢測大多仰賴作業人員以各種角度目測方式觀察晶圓表面執行檢測。其中,以肉眼可以觀察到的瑕疵類型通常為晶格紋路異常、晶體顏色深淺有明顯差異等狀況居多,但是其更困難複雜是即使在不同半導體晶圓上的同種瑕疵類型也會呈現不同特性,故較難掌握其相對應之特性。由於如前述之傳統標準檢測需仰賴人力執行,故因此也面臨許多問題:(1)人員檢測速度直接影響生產速度,(2)新進人員訓練時間長(需對瑕疵有相關知識),(3)人員長時間工作出現疲勞問題(視線模糊、精神渙散等)以致工作速度下降、誤判及意外的發生率增加,(4)人工成本高等。The standard flaw detection of traditional semiconductor-related processes mostly relies on the operator to observe the wafer surface by various angles to perform inspection. Among them, the type of ruthenium that can be observed by the naked eye is usually characterized by abnormal lattice pattern and obvious difference in crystal color depth, but its more difficult and complicated is that even the same type of 瑕疵 on different semiconductor wafers will have different characteristics. Therefore, it is difficult to grasp the corresponding characteristics. Since the traditional standard test as mentioned above relies on manpower execution, it also faces many problems: (1) the speed of personnel detection directly affects the production speed, and (2) the training time of new recruits is long (requires relevant knowledge), (3) Fatigue problems (inclination of sight, confusion, etc.) caused by long-term work of staff, resulting in decreased work speed, misjudgment and accidental incidence, (4) high labor costs.

因此,本新型之目的在於使半導體晶圓的瑕疵檢測過程變成自動化程序而不再需仰賴人力以提供有效之改善程序與系統使半導體晶圓製造良率再提升。Therefore, the purpose of the present invention is to turn the defect detection process of a semiconductor wafer into an automated process without relying on manpower to provide an effective improvement program and system to increase the semiconductor wafer fabrication yield.

本新型提供一種半導體晶圓檢測系統,其包含:輸送裝置及瑕疵辨識裝置,而瑕疵辨識裝置還包含影像擷取模組與處理模組,並且彼此電性連接。其中,輸送裝置將待測晶圓移動至瑕疵辨識裝置後,影像擷取模組擷取待測晶圓位於輸送裝置上之原始影像,則處理模組依據原始影像進行瑕疵辨識。而瑕疵辨識包含:對原始影像進行去背景與定位程序並產生晶圓影像,再將晶圓影像進行區塊化程序,以將晶圓影像分割成複數個區塊,之後對任一區塊進行參數化程序,以產生能描述每個晶圓特性的特性矩陣對應上述區塊。比對特性矩陣與標準矩陣後得到參數差值,之後依據分類資料庫(包含智慧型分類演算法則,如資料庫、人工智慧技術)來分類參數差值,匯出瑕疵辨識結果。The invention provides a semiconductor wafer inspection system, comprising: a conveying device and a 瑕疵 identification device, wherein the 瑕疵 recognition device further comprises an image capturing module and a processing module, and is electrically connected to each other. After the transport device moves the wafer to be tested to the 瑕疵 identification device, the image capture module captures the original image of the wafer to be tested on the transport device, and the processing module performs 瑕疵 recognition according to the original image. The identification includes: de-background and positioning the original image and generating a wafer image, and then dicing the wafer image to divide the wafer image into a plurality of blocks, and then performing the block on any block. The parameterization program is programmed to produce a property matrix that describes the characteristics of each wafer corresponding to the above blocks. After comparing the characteristic matrix with the standard matrix, the parameter difference is obtained, and then the parameter difference is classified according to the classification database (including the intelligent classification algorithm, such as database, artificial intelligence technology), and the identification result is extracted.

在本新型的較佳實施例中,影像擷取模組為電荷耦合攝影機(CCD)或是互補式金屬氧化物(CMOS)半導體影像感測器,但不以此為限。In the preferred embodiment of the present invention, the image capturing module is a charge coupled camera (CCD) or a complementary metal oxide (CMOS) semiconductor image sensor, but is not limited thereto.

在本新型的較佳實施例中,處理模組為中央處理單元(CPU),例如可以包含於個人電腦、嵌入式系統或任意形式的硬體計算平台。In a preferred embodiment of the present invention, the processing module is a central processing unit (CPU), which may be included, for example, in a personal computer, an embedded system, or any form of hardware computing platform.

在本新型的較佳實施例中,分類資料庫儲存於記錄媒體中,並且記錄媒體與瑕疵辨識裝置電性連接。In a preferred embodiment of the present invention, the classification database is stored in the recording medium, and the recording medium is electrically connected to the identification device.

在本新型的較佳實施例中,參數差值依據智慧型分類法進行分類,而其智慧型分類法包含:人工智慧、類神經、深度計算、大數據分析、資料探勘以及決策樹(CART)分類法中之任一或多個。In a preferred embodiment of the present invention, the parameter differences are classified according to a smart classification, and the intelligent classification includes: artificial intelligence, neural like, depth calculation, big data analysis, data mining, and decision tree (CART). Any or more of the taxonomies.

在本新型的較佳實施例中,輸送裝置將待測晶圓移動至瑕疵辨識裝置之影像擷取模組下方,而影像擷取模組由待測晶圓上方的適當角度之位置向下擷取原始影像。In a preferred embodiment of the present invention, the transport device moves the wafer to be tested under the image capture module of the identification device, and the image capture module is positioned downward from the appropriate angle above the wafer to be tested. Take the original image.

在本新型的較佳實施例中,去背景與定位程序是利用創新的指定範圍型Otsu演算法對原始影像進行去背景後,計算出待測晶圓的重心後,依據重心位置定位待測晶圓,以產生定位後的待測晶圓影像。In the preferred embodiment of the present invention, the background and positioning procedure is to use the innovative specified range Otsu algorithm to de-background the original image, calculate the center of gravity of the wafer to be tested, and locate the crystal to be measured according to the position of the center of gravity. Circle to generate the image of the wafer to be tested after positioning.

在本新型的較佳實施例中,半導體晶圓檢測系統預設有多個物理特性(可針對不同待測晶圓、可能的多個物理特性),並且預設有對應該些物理特性的多個標準矩陣,而晶圓的標準矩陣的參數化程序是依據上述多個物理特性進行轉換,使所選區塊產生對應不同物理特性的特性矩陣,比對上述特性矩陣與標準矩陣後得到對應的參數差值;分類資料庫存有至少一個瑕疵類型以及對應瑕疵類型的至少一檢測門檻值;並且瑕疵辨識結果是依據分類資料庫的門檻值分類參數差值後匯出,以顯示不同區塊對應的不同瑕疵類型。In a preferred embodiment of the present invention, the semiconductor wafer inspection system is pre-configured with a plurality of physical characteristics (which may be for different wafers to be tested, possibly multiple physical characteristics), and is pre-configured with a plurality of physical characteristics. a standard matrix, and the parameterization procedure of the standard matrix of the wafer is converted according to the above plurality of physical characteristics, so that the selected block generates a characteristic matrix corresponding to different physical characteristics, and the parameters corresponding to the above-mentioned characteristic matrix and the standard matrix are obtained. The difference data; the classification data inventory has at least one 瑕疵 type and at least one detection threshold value corresponding to the 瑕疵 type; and 瑕疵 the identification result is categorized according to the threshold value of the classification database, and then is remitted to display different differences of different blocks.瑕疵 type.

在本新型的較佳實施例中,分類資料庫具有整合的特性矩陣,以定義出多個可能的瑕疵類別。In a preferred embodiment of the present invention, the classification database has an integrated property matrix to define a plurality of possible defect categories.

本新型還提供一種半導體晶圓檢測方法,進行於半導體晶圓製作完成之後,其包含以下步驟:步驟 (S1)利用輸送裝置移動待測晶圓至瑕疵辨識裝置中;步驟(S2)瑕疵辨識裝置中的影像擷取模組擷取待測晶圓位於輸送裝置上之原始影像;步驟(S3)瑕疵辨識裝置中的處理模組對原始影像進行去背景與定位程序,產生晶圓影像;步驟(S4)對晶圓影像進行區塊化程序,以將晶圓影像分割成複數個區塊;步驟(S5)對一區塊進行參數化程序,以產生對應上述區塊的特性矩陣;步驟(S6) 判斷是否存在訓練完成的分類資料庫,若是,進入步驟(S7) ,若否,進入步驟(S10);步驟(S7) 比對特性矩陣與標準矩陣,得到參數差值;步驟(S8)依據分類資料庫與上述參數差值進行瑕疵辨識與分類分類參數差值;步驟(S9)判斷是否對另一區塊進行瑕疵辨識與分類,若是,進入步驟(S5),若否,匯出瑕疵辨識結果;步驟(S10)將上述特性矩陣存入並建立分類資料庫;步驟(S11)判斷是否對另一區塊進行參數化程序,若是,進入步驟(S5),若否,進入步驟(S12);步驟 (S12)利用智慧型分類法分類上次分類資料庫中的特性矩陣,以完成對分類資料庫的訓練;以及步驟(S13)判斷是否輸入另一晶圓,若是,進入步驟(S1),若否則結束。The present invention also provides a semiconductor wafer inspection method, which is completed after the semiconductor wafer is completed, and includes the following steps: step (S1) using the transport device to move the wafer to be tested into the 瑕疵 identification device; step (S2) 瑕疵 identification device The image capturing module captures the original image of the wafer to be tested on the conveying device; and (S3) the processing module in the identification device performs a background removal and positioning process on the original image to generate a wafer image; S4) performing a tiling process on the wafer image to divide the wafer image into a plurality of blocks; and (S5) performing a parameterization process on the block to generate a characteristic matrix corresponding to the block; step (S6) Determining whether there is a classified database of training completion, if yes, proceeding to step (S7), if not, proceeding to step (S10); step (S7) comparing the characteristic matrix with the standard matrix to obtain a parameter difference; step (S8) is based on The classification database and the above parameter difference are used to identify and classify the classification parameter difference; step (S9) determines whether to identify and classify another block, and if so, proceeds to step (S5), if not, The identification result is output; the step (S10) stores the above characteristic matrix and establishes a classification database; the step (S11) determines whether the parameterization procedure is performed on another block, and if so, proceeds to step (S5), and if not, proceeds to the step (S12); step (S12) classifying the characteristic matrix in the last classification database by the smart classification method to complete the training of the classification database; and step (S13) determining whether to input another wafer, and if so, proceeding to the step (S1), if it ends otherwise.

在本新型的較佳實施例中,影像擷取模組為電荷耦合攝影機(CCD) 、互補式金屬氧化物(CMOS)半導體影像感測器,或是其他可擷取影像的裝置。並且舉例來說可以設置於避光環境中。In a preferred embodiment of the present invention, the image capture module is a charge coupled camera (CCD), a complementary metal oxide (CMOS) semiconductor image sensor, or other device capable of capturing images. And for example, it can be placed in a dark environment.

在本新型的較佳實施例中,其中步驟(S2)為輸送裝置將待測晶圓移動至瑕疵辨識裝置之影像擷取模組下方,而影像擷取模組由待測晶圓上方適當角度位置向下擷取原始影像。In a preferred embodiment of the present invention, the step (S2) is that the transport device moves the wafer to be tested under the image capture module of the identification device, and the image capture module is at an appropriate angle above the wafer to be tested. Position down to capture the original image.

在本新型的較佳實施例中,步驟(S12)的智慧型分類法選自人工智慧、類神經、深度計算、大數據分析、資料探勘以及決策樹(CART)分類法中的任一或多個。In a preferred embodiment of the present invention, the intelligent classification of step (S12) is selected from any one or more of artificial intelligence, neuron, depth calculation, big data analysis, data mining, and decision tree (CART) classification. One.

在本新型的較佳實施例中,步驟(S3)包含:步驟(S31)處理模組接收該原始影像;步驟(S32)利用指定範圍型Otsu演算法對原始影像進行多值化影像切割;步驟(S33)排除落在預設數值範圍外的部分原始影像以定義出待測晶圓之第一範圍;步驟(S34)填滿該第一範圍使第一範圍為完整圓形,定義完整圓形為第二範圍;步驟 (S35) 計算第二範圍的重心;以及步驟(S36)以重心為基準向外擴張以定位出晶圓影像。In a preferred embodiment of the present invention, the step (S3) includes: the step (S31) processing module receiving the original image; and the step (S32) performing multi-valued image cutting on the original image by using a specified range Otsu algorithm; (S33) excluding part of the original image falling outside the preset value range to define a first range of the wafer to be tested; step (S34) filling the first range to make the first range a complete circle, defining a complete circle The second range; the step (S35) calculates the center of gravity of the second range; and the step (S36) expands outward based on the center of gravity to locate the wafer image.

在本新型的較佳實施例中,於步驟(S31)之後、(S32)之前,還包含:(S31-1)利用知覺色彩模式技術優化原始影像,以提升辨識率。In the preferred embodiment of the present invention, after the step (S31) and before (S32), the method further comprises: (S31-1) optimizing the original image by using the perceptual color mode technique to improve the recognition rate.

在本新型的較佳實施例中,於步驟(S34)之後、(S35)之前,還包含:(S34-1) 排除面積小於第二範圍的部分第一範圍。In a preferred embodiment of the present invention, after the step (S34), before (S35), the method further comprises: (S34-1) excluding a portion of the first range having an area smaller than the second range.

在本新型的較佳實施例中,步驟(S5)中的特性矩陣為多個,分別對應多個物理特性,而步驟(S6)中的標準矩陣也為多個,分別對應特性矩陣。將特性矩陣與標準矩陣比對後得到多個分別對應物理特性的參數差值。In a preferred embodiment of the present invention, the plurality of characteristic matrices in the step (S5) correspond to a plurality of physical characteristics, and the standard matrices in the step (S6) are also plural, respectively corresponding to the characteristic matrices. Comparing the characteristic matrix with the standard matrix to obtain a plurality of parameter differences respectively corresponding to the physical characteristics.

在本新型的較佳實施例中,步驟(S12)包含:步驟(S121)利用智慧型分類法建立並分析分類資料庫、步驟(S122)整合特性矩陣以及步驟(S123)依據整合後的特性矩陣定義瑕疵類型及對應瑕疵類型的門檻值以完成對分類資料庫的訓練(即,產生訓練完成的分類資料庫)。In a preferred embodiment of the present invention, the step (S12) comprises: a step (S121) of establishing and analyzing a classification database using a smart classification method, an integration feature matrix of the step (S122), and a step (S123) according to the integrated characteristic matrix. The threshold values of the 瑕疵 type and the corresponding 瑕疵 type are defined to complete the training of the classification database (ie, the classification database that produces the training completion).

在本新型的較佳實施例中,步驟(S8)是依據門檻值分類參數差值以分類區塊的瑕疵結果。In a preferred embodiment of the present invention, step (S8) is to classify the parameter difference based on the threshold value to classify the result of the block.

因此,本新型提供一種利用一種基於影像瑕疵特徵參數化模型之方法(Image Parameterized Reference Model,簡稱IPRM)的檢測系統及方法,以針對產出之晶圓進行瑕疵檢測,除了能有效辨識半導體晶圓本身瑕疵種類與進行分析之外,由於使用參數化資料的方式來儲存於分類資料庫及儲存媒體中,因此具備可節省儲存空間、提高處理效率,尤其同時可以提供晶圓製造過程之回饋分析等優勢,並結合智慧型分類技術,如大數據資料探勘等技巧,追溯製程中造成瑕疵的可能原因與發生點;另外,本新型也可搭配並有效整合不同技術、機台、系統(如自動化機台與系統)以達到產線智慧製造,以實現工業4.0的自動化趨勢。Therefore, the present invention provides a detection system and method using an Image Parameterized Reference Model (IPRM) method for detecting defects in a wafer, in addition to being able to effectively identify a semiconductor wafer. In addition to the type and analysis of the data, it is stored in the classification database and the storage medium by using parameterized data, so it can save storage space, improve processing efficiency, and at the same time provide feedback analysis of the wafer manufacturing process. Advantages, combined with intelligent classification techniques, such as big data data exploration techniques, trace the possible causes and occurrences of defects in the process; in addition, the new model can also be combined with and effectively integrate different technologies, machines, systems (such as automation machines) Taiwan and the system) to achieve the wisdom of the production line to achieve the automation trend of Industry 4.0.

本新型是在提供一種半導體晶圓檢測之系統與方法,適用於Macro級檢測,並且利用參數化模型(IPRM)及自動檢測與分類技術,以改善傳統標準檢測需仰賴人力執行的種種上述問題。為讓本新型之上述和其他目的、特徵和優點能更明顯易懂,下文以實施例配合所附圖示,同時以揭示本新型實施例相關系統執行步驟來做詳細說明,以使本新型之結構與步驟能更容易理解。The present invention is to provide a system and method for semiconductor wafer inspection, which is suitable for Macro level detection, and utilizes parameterized model (IPRM) and automatic detection and classification techniques to improve the traditional standard detection and relies on various problems of human execution. The above and other objects, features and advantages of the present invention will become more apparent and understood. Structures and steps can be more easily understood.

如圖1所示為依據本新型所提供之半導體晶圓檢測系統,包含:輸送裝置1及瑕疵辨識裝置2,輸送裝置1與瑕疵辨識裝置2間彼此通訊或電性連接。其中,瑕疵辨識裝置2包含影像擷取模組21與處理模組22,彼此電性連接。當系統開始作用,輸送裝置1將待測晶圓W移動至瑕疵辨識裝置2,影像擷取模組21擷取位於輸送裝置1上的待測晶圓W之原始影像,並且傳輸至處理模組22進行瑕疵辨識。上述瑕疵辨識包含:對原始影像進行去背景與定位程序並產生晶圓影像,隨後藉由區塊化程序將上述晶圓影像分割成複數個等面積之區塊,接著對任一區塊進行參數化程序,以產生特性矩陣對應上述區塊的物理特性。藉由比對上述特性矩陣與標準矩陣後得到參數差值,依據分類資料庫分類所述參數差值,最後匯出瑕疵辨識結果。為避免干擾瑕疵辨識的進行,待測晶圓W的原始影像的需要在光源均勻,更或是在無光源干擾下或避光環境中進行影像擷取,因此本新型的一實施例中,辨識裝置2為一暗箱,架設於輸送裝置1上,待測晶圓W被輸送至暗箱中,得以使影像擷取模組21在無光源干擾下進行影像擷取。另外,影像擷取模組21可以任一影像擷取裝置,例如電荷耦合攝影機(CCD) 或互補式金屬氧化物半導體(CMOS)影像感測器;處理模組22可以為中央處理器(CPU);而上述的分類資料庫可儲存於記錄媒體(未繪示於圖中)中,記錄媒體與瑕疵辨識裝置2通訊或電性連接,上述的記錄媒體例如是嵌入式或內建於中央處理器的記憶體,又或例如是外接硬碟、雲端資料庫等。FIG. 1 shows a semiconductor wafer inspection system according to the present invention, comprising: a conveying device 1 and a 瑕疵 identification device 2, wherein the conveying device 1 and the 瑕疵 identification device 2 are in communication or electrical connection with each other. The 瑕疵 recognition device 2 includes an image capture module 21 and a processing module 22, and is electrically connected to each other. When the system starts to function, the transport device 1 moves the wafer W to be tested to the 瑕疵 recognition device 2, and the image capture module 21 captures the original image of the wafer W to be tested on the transport device 1 and transmits it to the processing module. 22 for identification. The 瑕疵 identification includes: performing a background removal and locating process on the original image and generating a wafer image, and then dividing the wafer image into a plurality of equal-area blocks by a tiling process, and then performing parameters on any of the blocks. The program is programmed to generate a property matrix corresponding to the physical characteristics of the block. By comparing the parameter matrix and the standard matrix to obtain the parameter difference, the parameter difference is classified according to the classification database, and finally the 瑕疵 identification result is extracted. In order to avoid interference, the original image of the wafer W needs to be imaged uniformly in the light source, or in the absence of light source interference or in a dark environment. Therefore, in an embodiment of the present invention, identification is performed. The device 2 is a black box, which is mounted on the conveying device 1. The wafer to be tested W is transported into the black box, so that the image capturing module 21 can perform image capturing without interference from the light source. In addition, the image capturing module 21 can be any image capturing device, such as a charge coupled camera (CCD) or a complementary metal oxide semiconductor (CMOS) image sensor; the processing module 22 can be a central processing unit (CPU). The above-mentioned classification database may be stored in a recording medium (not shown), and the recording medium is communicatively or electrically connected to the identification device 2, for example, embedded or built in a central processing unit. The memory, or for example, an external hard disk, a cloud database, and the like.

本新型同時提供一種半導體晶圓檢測之方法,其主要步驟流程如圖2 (瑕疵建模與辨識分類系統流程圖) 所示,並且為使本新型更容易理解,以下配合圖1所示系統示意圖中的元件標號進行說明。本新型提供的半導體晶圓檢測之方法包含:(S1)利用輸送裝置1移動待測晶圓W至瑕疵辨識裝置2;(S2)瑕疵辨識裝置2中的影像擷取模組21擷取待測晶圓W位於輸送裝置1上之原始影像;(S3)瑕疵辨識裝置2中的處理模組22對原始影像進行去背景與定位程序,產生晶圓影像;(S4)對晶圓影像進行區塊化程序,以將晶圓影像分割成複數個區塊;(S5)對晶圓影像的一區塊進行參數化程序,以產生特性矩陣對應上述區塊;(S6) 判斷是否存在訓練完成的分類資料庫,若是,進入步驟(S7) ,若否,進入步驟(S10);(S7) 比對特性矩陣與標準矩陣,得到參數差值;(S8)依據上述訓練完成的分類資料庫與參數差值進行瑕疵辨識與分類;(S9)判斷是否對另一區塊進行瑕疵辨識與分類,若是,進入步驟(S5),若否,匯出瑕疵辨識結果;(S10)將上述特性矩陣存入並建立分類資料庫(此時的分類資料庫還在訓練階段);(S11)判斷是否對另一區塊進行參數化程序,若是,進入步驟(S5),若否,進入步驟(S12);(S12)利用智慧型分類法分類上述分類資料庫中的特性矩陣,以完成對分類資料庫的訓練(此步驟會產生訓練完成的分類資料庫);以及(S13)判斷是否輸入另一晶圓,若是,進入步驟(S1),若否則結束。The present invention also provides a semiconductor wafer inspection method, the main steps of which are shown in Figure 2 (瑕疵 Modeling and Identification Classification System Flowchart), and in order to make the present invention easier to understand, the following is a schematic diagram of the system shown in Figure 1. The component numbers in the description are explained. The method for detecting semiconductor wafers provided by the present invention comprises: (S1) moving the wafer to be tested W to the identification device 2 by using the conveying device 1; (S2) capturing the image capturing module 21 in the identification device 2 for sampling The wafer W is located on the original image on the transport device 1; (S3) the processing module 22 in the identification device 2 performs a background removal and positioning process on the original image to generate a wafer image; (S4) blocks the wafer image a program for dividing the wafer image into a plurality of blocks; (S5) parameterizing a block of the wafer image to generate a characteristic matrix corresponding to the block; (S6) determining whether there is a training completed classification The database, if yes, proceeds to step (S7), if not, proceeds to step (S10); (S7) compares the characteristic matrix with the standard matrix to obtain a parameter difference; (S8) according to the above-mentioned training classification database and parameter difference The value is identified and classified; (S9) determining whether to identify and classify another block, if yes, proceeding to step (S5), if not, exporting the identification result; (S10) storing the above characteristic matrix and Establish a classification database (classification data at this time) Still in the training phase); (S11) determining whether to parameterize another block, if yes, proceeding to step (S5), if not, proceeding to step (S12); (S12) classifying the classified data by intelligent classification a property matrix in the library to complete the training of the classification database (this step will generate a training database of training completions); and (S13) determine whether to input another wafer, and if so, proceed to step (S1), if otherwise terminate .

其中,上述步驟(S2),輸送裝置1將待測晶圓W移動至瑕疵辨識裝置2之影像擷取模組21下方,影像擷取模組21由待測晶圓W上方適當角度位置向下擷取上述原始影像;而上述步驟(S3),如圖3所示,包含:(S31)處理模組21接收原始影像;(S32)利用指定範圍型Otsu演算法,對原始影像進行多值化(影像切割);(S33)排除落在預設數值範圍外的部分原始影像,定義保留的部分原始影像為第一範圍;(S34)填滿第一範圍中的空洞,使第一範圍包含一完整圓形,定義完整圓形為第二範圍;(S35)計算第二範圍之重心;以及(S36)以上述重心為基準,定位出晶圓影像。其中,步驟(S34)之後、步驟(S35)之前,還可以選擇性包含(S34-1)去除完整圓形以外的保留部分;另外,為使後續辨識更為準確,步驟(S31)與(S32)之間可以選擇性包含(S31-1)利用知覺色彩模式技術(perceptual color space,簡稱HSV技術)優化原始影像。In the above step (S2), the transport device 1 moves the wafer W to be tested under the image capturing module 21 of the identification device 2, and the image capturing module 21 is positioned downward from the appropriate angle above the wafer W to be tested. The above-mentioned original image is captured; and the above step (S3), as shown in FIG. 3, includes: (S31) the processing module 21 receives the original image; (S32) multi-values the original image by using the specified range Otsu algorithm. (image cutting); (S33) excluding part of the original image falling outside the preset value range, defining a portion of the original image retained as the first range; (S34) filling the hole in the first range, so that the first range includes one a complete circle defining a complete circle as a second range; (S35) calculating a center of gravity of the second range; and (S36) positioning the wafer image based on the center of gravity. Wherein, after the step (S34) and before the step (S35), the remaining portion other than the complete circle may be selectively included (S34-1); in addition, in order to make the subsequent recognition more accurate, the steps (S31) and (S32) Between the two, it is possible to selectively include (S31-1) the use of perceptual color space (HSV technology) to optimize the original image.

為使本新型的步驟(S3)與其包含的去背景與定位程序更容易理解,以本新型的一實施例為例說明,如圖3a~3e所示。處理模組21接收原始影像後,利用HSV技術優化原始影像,如圖3a所示(優化可以使後續辨識更為準確,但依需求不同於其他實施例中可以省略優化步驟;並且於其他實施例中,優化步驟亦可以為灰階化步驟),圖3a中不同的填滿效果(如格紋、點紋)代表本實施例原始影像中的不同顏色。接著利用指定範圍型Otsu演算法,對原始影像進行多值化之影像切割,之後排除落在預設數值範圍外的部分該原始影像,以定義出待測晶圓W的第一範圍,如圖3b所示。假設一般正常晶圓的顏色範圍介於50~150,將此範圍定義為預設範圍(5~150的範圍可以定義出二值化門檻),而多值化後數值落在此範圍的部分原始影像被保留,落在此範圍外的部分會被排除,而在原始影像中的待測晶圓W由於數值範圍與預設數值範圍接近,因此大部分會被保留,但待測晶圓W的邊緣區塊由於拍攝關係會有部分區塊數值不符合範圍而被排除,或是晶圓中有缺陷的部分由於顏色落差而被排除。圖3b所示的範圍被定義為第一範圍,之後接著填滿第一範圍中的空洞,使第一範圍包含一完整圓形,定義上述完整圓形為第二範圍,如圖3c所示。並且為了之後計算重心更為準確,因此本實施例中會排除面積小於第二範圍的部分第一範圍,亦即排除位於待測晶圓W外之保留的部分原始影像。最後,計算第二範圍的重心,以重心為基準定位出晶圓影像,如圖3d所示,完成去背景與定位程序並產生準確的晶圓影像。由於待測晶圓W的精確尺寸在半導體製程與瑕疵檢測之前能得知,因此依據精確計算出重心後,以重心為基準像外拉出晶圓的實際大小,即能準確定位出晶圓位置,產生無背景的晶圓影像以進行接下來進一步分析。In order to make the step (S3) of the present invention easier to understand with the background and positioning program included therein, an embodiment of the present invention is taken as an example, as shown in FIGS. 3a-3e. After receiving the original image, the processing module 21 optimizes the original image by using HSV technology, as shown in FIG. 3a (optimization can make subsequent identification more accurate, but the optimization step can be omitted in other embodiments according to requirements; and in other embodiments The optimization step may also be a grayscale step. The different fill effects (such as check patterns and dot patterns) in FIG. 3a represent different colors in the original image of the embodiment. Then, using the specified range Otsu algorithm, the original image is multi-valued image cut, and then the original image falling outside the preset value range is excluded to define the first range of the wafer W to be tested, as shown in the figure. 3b is shown. Assuming that the normal normal wafer has a color range of 50 to 150, this range is defined as a preset range (a range of 5 to 150 can define a binarization threshold), and a multi-valued value falls within this range. The image is retained, and the portion falling outside this range is excluded. The wafer W to be tested in the original image is mostly retained because the value range is close to the preset value range, but the wafer W to be tested is The edge block is excluded due to the fact that some of the block values do not conform to the range due to the shooting relationship, or the defective portion of the wafer is excluded due to the color drop. The range shown in Figure 3b is defined as the first range, followed by filling the voids in the first range such that the first range contains a complete circle, defining the complete circle as the second range, as shown in Figure 3c. Moreover, in order to calculate the center of gravity more accurately later, in this embodiment, a portion of the first range having an area smaller than the second range is excluded, that is, a portion of the original image remaining outside the wafer to be tested is excluded. Finally, the center of gravity of the second range is calculated, and the wafer image is positioned with reference to the center of gravity. As shown in FIG. 3d, the background and positioning process is completed and an accurate wafer image is generated. Since the exact size of the wafer W to be tested can be known before the semiconductor process and the germanium detection, the actual size of the wafer can be accurately positioned based on the center of gravity after accurately calculating the center of gravity, that is, the wafer position can be accurately located. , produces a background image without a background for further analysis.

步驟(S3)所產生之無背景晶圓影像則接著進入圖2所示的步驟(S4)~(S5),以進行區塊化與參數化程序,將影像轉為代表區塊特徵的參數,方便之後比對、分析、瑕疵辨識與智慧型分類資料庫的建立與訓練。由於晶圓表面不同區塊會受到晶圓形成的方式、速度等不同而有不一樣的品質,晶圓形成時的參數條件與環境的微小變化也可能造成單一晶圓的不同區塊具有不同品質。因此為了更精確分析其不同區塊品質之差異,將步驟(S3)中所產生的無背景晶圓影像先進行步驟(S4),對晶圓影像進行區塊化程序,將晶圓影像劃分成複數個區塊,以本新型之一實施例為例,以長寬相等間距的正方形網狀方式將晶圓影像分割成多個區塊。將完成區塊化程序後進行步驟(S5),對任一區塊進行參數化程序,以產生對應上述區塊的特性矩陣。特性矩陣代表的是物理特性,將所選區塊的物理特性進行參數化即為上述的特性矩陣。而物理特性舉例來說可以為晶圓中該區塊的影像強度、顏色、色塊大小、表面粗度、紋理等等,物理特性的類別與數量不限,內建於瑕疵辨識裝置2中,也能經由人工方式修改、新增或刪除物理特性,並且藉由參數化程序,每一物理特性具有對應的特性矩陣,因此依據預設的物理特性的數量不同,每一區塊可以具有一或多個特性矩陣。因此藉由此說明可以理解當一選定之區塊經過參數分析後會隨著所分析物理特性種類數量而產生相對應數量的特性矩陣。The background-free wafer image generated by the step (S3) then proceeds to the steps (S4) to (S5) shown in FIG. 2 to perform the tiling and parameterization process, and convert the image into parameters representing the feature of the block. Facilitate the establishment and training of comparison, analysis, identification and intelligent classification database. Since different blocks on the surface of the wafer may be different in quality and speed of wafer formation, the parameter conditions and small changes in the environment during wafer formation may also result in different quality of different blocks of a single wafer. . Therefore, in order to more accurately analyze the difference in the quality of different blocks, the background-free wafer image generated in the step (S3) is first subjected to the step (S4), and the wafer image is subjected to a sharding process to divide the wafer image into In a plurality of blocks, taking an embodiment of the present invention as an example, the wafer image is divided into a plurality of blocks in a square mesh manner with equal length and width. After the defragmentation process is completed, the step (S5) is performed, and a parameterization procedure is performed on any of the blocks to generate a characteristic matrix corresponding to the above blocks. The characteristic matrix represents the physical characteristics, and the physical properties of the selected block are parameterized to be the above-mentioned characteristic matrix. The physical property may be, for example, the image intensity, color, color block size, surface roughness, texture, etc. of the block in the wafer, and the type and quantity of the physical characteristics are not limited, and are built in the identification device 2, The physical characteristics can also be modified, added or deleted manually, and each physical characteristic has a corresponding characteristic matrix by a parameterization program. Therefore, each block may have one or one according to the number of preset physical characteristics. Multiple feature matrices. Therefore, it can be understood from this description that when a selected block is subjected to parameter analysis, a corresponding number of characteristic matrices are generated along with the number of physical property types analyzed.

依據本新型的上述方法與系統可以理解,本新型的系統與其方法,在獲得上述之特性矩陣後,接下來即進一步依據訓練完成的分類資料庫來分類分析系統所收集到晶圓上之特性。因此,系統首先會判斷系統中是否存有訓練完成的分類資料庫可以進一步用來作特性分類分析之工具。而當此系統是在初次使用時,或是未預先存有預設的訓練完成的分類資料庫可以提供作為分類工具時,系統先進行分類資料庫的建立與訓練(稱為建模規則)。因此以未建有訓練完成的分類資料庫的本新型一實施例為例說明,如圖4(瑕疵建模系統流程圖)所示之步驟流程圖為本新型方法與系統中的建模規則,進行完前述步驟(S1)~(S5)後,系統因不存在有訓練完成的分類資料庫,步驟(S6)判斷要進行分類資料庫的建立與訓練,系統下一步將會選擇執行步驟(S10)。此時,前述步驟(S5)所產生之特性矩陣會被儲存至指定資料庫中,以建立分類資料庫,並且系統可以依據使用者所預設的瑕疵分類需求而決定所需較佳分類資料庫大小而累積所需要資料數目。接著,步驟(S11)判斷是否對另一區塊進行參數化程序,一般來說,系統會重複前述步驟(S5)、(S6)、(S10)直到訓練中的分類資料庫所累積足夠的資料數量以產生訓練完成的分類資料庫,或是待測晶圓W上的所有區塊都進行過參數化程序後,進入步驟(S12)。接著,步驟(S12)會將訓練中的分類資料庫中的特性矩陣利用智慧型分類法來分類與分析,以完成對分類資料庫的訓練。智慧型分類法包含人工智慧、類神經、深度計算、大數據、資料探勘、決策數(CART)等,或是其他習知的智能分類技術。並且步驟(S12)包含:(S121)利用該智慧型分類法計算上述訓練中的分類資料庫;(S122)整合該些參數差值;(S123)依據整合後的該些參數差值,定義至少一瑕疵類型及對應該瑕疵類型的至少一個門檻值,以產生上述訓練完成的分類資料庫。步驟(S121)中,套用上述一或多種智慧型分類法,將存有多個參數差值的訓練中的分類資料庫進行計算,例如是轉換表示方式使資料能更直覺性的瞭解,以使訓練中的分類資料庫中的數據更容易分析與整合。之後步驟(S122)會將計算過的特性矩陣整合,例如一個區塊是否具有「表面損傷」,可以經由該區塊中對應「顏色」的特性矩陣、對應「色塊大小」的特性矩陣、對應「表面粗度」的特性矩陣以及對應「紋理」的特性矩陣,這四個特性矩陣的整合而得到,因此在步驟(S122)中,特性矩陣會被整合,以利步驟(S123)的進行。最後,步驟(S123)會依據整合後的特性矩陣進行瑕疵類型與分類門檻值的定義,以產生訓練完成的分類資料庫。例如上述「表面損傷」依據損傷範圍大小、深度等不同,可以被定義為「刮痕」或是「破損」兩個不同的瑕疵類型,因此即使是對應相同物理特性的特性矩陣,依據數值範圍的不同也可能被分類為不同的瑕疵類型。因此依據整合後的特性矩陣,能定義出至少一個瑕疵類型,以及每一瑕疵類型對應的門檻值。於本新型部分實施例中,依據使用的智慧型分類法與其設定,還可以判斷是否可能造成破片機率、瑕疵可能導致的製程問題或產品問題等,以作為日後產品管控與製程改善的依據。另外,本新型的分類資料庫一旦訓練完成後,就可以供以後的瑕疵辨識使用,同時還可以依據瑕疵辨識的執行次數增加來擴充訓練完成的分類資料庫的數據量。According to the above method and system of the present invention, the system and method of the present invention, after obtaining the above-mentioned characteristic matrix, further classify the characteristics collected on the wafer by the analysis system based on the trained classification database. Therefore, the system first determines whether there is a training-completed classification database in the system that can be further used as a tool for feature classification analysis. When the system is used for the first time, or if the classification database without pre-prepared training is available as a classification tool, the system first establishes and trains the classification database (called modeling rules). Therefore, taking a new embodiment of the classification database without training completion as an example, the flow chart shown in FIG. 4 (the flowchart of the modeling system) is a modeling rule in the novel method and system. After the foregoing steps (S1)~(S5), the system does not have a classified database with training completion, and step (S6) determines that the classification database is to be established and trained, and the system will select the execution step in the next step (S10). ). At this time, the characteristic matrix generated by the foregoing step (S5) is stored in the specified database to establish a classification database, and the system can determine the required classification database according to the user's preset classification requirements. The size and the amount of data required to accumulate. Next, the step (S11) determines whether the parameterization procedure is performed on another block. Generally, the system repeats the foregoing steps (S5), (S6), and (S10) until the classified data in the training accumulates sufficient data. The quantity is entered in the step (S12) after the classification database for generating the training is completed, or all the blocks on the wafer W to be tested are subjected to the parameterization process. Next, the step (S12) classifies and analyzes the characteristic matrix in the classified database in the training by using the intelligent classification method to complete the training of the classification database. Smart classifications include artificial intelligence, neuroscience, deep computation, big data, data mining, decision making (CART), etc., or other well-known intelligent classification techniques. And the step (S12) includes: (S121) calculating the classification database in the training by using the smart classification method; (S122) integrating the parameter difference values; (S123) defining at least the parameter difference values after the integration At least one threshold value of the type and the corresponding type to generate a classification database of the above training completion. In step (S121), the above-mentioned one or more intelligent classification methods are applied, and the classification database of the training in which the plurality of parameter differences are stored is calculated, for example, the conversion representation mode enables the data to be more intuitively understood, so that The data in the classified database in training is easier to analyze and integrate. Then, the step (S122) integrates the calculated characteristic matrix, for example, whether a block has "surface damage", and can pass the characteristic matrix corresponding to "color" in the block, the characteristic matrix corresponding to the "color block size", and the corresponding The characteristic matrix of "surface roughness" and the characteristic matrix corresponding to "texture" are obtained by integration of the four characteristic matrices. Therefore, in step (S122), the characteristic matrix is integrated to facilitate the step (S123). Finally, the step (S123) performs the definition of the 瑕疵 type and the classification threshold based on the integrated characteristic matrix to generate a trained classification database. For example, the above-mentioned "surface damage" can be defined as two types of "scratch" or "breakage" depending on the size and depth of the damage range, so even the characteristic matrix corresponding to the same physical property depends on the numerical range. Differences may also be classified as different types of defects. Therefore, according to the integrated property matrix, at least one 瑕疵 type can be defined, and the threshold value corresponding to each 瑕疵 type. In some embodiments of the present invention, depending on the intelligent classification used and its settings, it is also possible to determine whether it is likely to cause fragmentation probability, process problems or product problems that may be caused, as a basis for future product control and process improvement. In addition, once the training database of the new type is completed, it can be used for later identification, and the amount of data of the classified database can be expanded according to the increase of the number of executions of the identification.

另一方面,於步驟(S6)中判斷存在訓練完成的分類資料庫,則可以直接對待測晶圓W進行瑕疵辨識(稱為執行規則)。依據本新型存在有訓練完成的分類資料庫的實施例為例說明,如圖5(瑕疵辨識分類系統流程圖)所示的步驟流程圖為本新型方法與系統中的執行規則,進行完前述步驟(S1)~(S5)後,因系統已存在有訓練完成的分類資料庫,步驟(S6)判斷要使用訓練完成的分類資料庫進行瑕疵辨識與分類,接著系統會選擇執行步驟(S7),計算並比對特性矩陣與標準矩陣兩者間之差異,得到參數差值(依據不同實施例,參數差值可以為一差異矩陣,前述的「參數差值」不限制為單一數值,可以為一矩陣) 。另外如同上述的特性矩陣,每一物理特性具有對應的一個標準矩陣,標準矩陣代表對應的物理特性的標準值,例如正常晶圓具有的「顏色」具有對應的一個標準矩陣,將該區塊中對應「顏色」這個物理特性的參數矩陣與標準矩陣比對,可以得到該區塊「顏色」與標準值的差異值,即為上述的參數差值。並且標準矩陣如同上述物理特性,內建於瑕疵辨識裝置2中,也可以經由人工方式修改、新增或刪除。由於目前半導體產業使用晶圓做為原料已經是行之有年的技術,因此可以依據不同客戶與製程需求,定義出晶圓應該具有的顏色、紋理等物理特性的標準矩陣。之後進行步驟(S8),匯入訓練完成的分類資料庫,並依據此分類資料庫中定義的門檻值,將上述區塊中具有的對應多個物理特性的多個參數差值進行分析,因此能分類並歸納每一區塊的瑕疵報告。而當一區塊之參數差值分類完後,系統會進入步驟(S9),判斷是否重複進入上述步驟(S5)以對另一區塊進行瑕疵辨識與分類。當待測晶圓W的所有區塊都已經辨識/分類完成後,系統會選擇性進行步驟(S9-1),判斷是否匯入另一晶圓,若否則直接匯出瑕疵辨識結果,若是則回到步驟(S1)。依據不同實施例,步驟(S9-1)可以選擇進行或跳過,例如預設是分別匯出每一晶圓的瑕疵辨識結果,則不需要進行步驟(S9-1),若預設是希望分別匯出每批晶圓的瑕疵辨識結果,則會進行步驟(S9-1)。On the other hand, if it is determined in the step (S6) that there is a classification database in which the training is completed, the wafer W to be directly processed may be identified (referred to as an execution rule). According to the embodiment of the present invention, there is an example of a trained classification database, and the flow chart shown in FIG. 5 (the flowchart of the identification classification system) is an execution rule in the novel method and system, and the foregoing steps are performed. After (S1)~(S5), since the system already has the classified database of training completion, step (S6) determines that the classified database is used for identification and classification, and then the system selects the execution step (S7). Calculating and comparing the difference between the characteristic matrix and the standard matrix, the parameter difference is obtained. According to different embodiments, the parameter difference may be a difference matrix, and the foregoing “parameter difference value” is not limited to a single value, and may be one. Matrix). In addition, as with the above characteristic matrix, each physical property has a corresponding standard matrix, and the standard matrix represents a standard value of the corresponding physical property. For example, the "color" of the normal wafer has a corresponding standard matrix, and the block is in the block. The parameter matrix corresponding to the physical property of "color" is compared with the standard matrix, and the difference value between the "color" and the standard value of the block can be obtained, which is the parameter difference value described above. And the standard matrix is built into the identification device 2 like the above physical characteristics, and can also be modified, added or deleted manually. Since the semiconductor industry currently uses wafers as a raw material, it has been a technology for many years. Therefore, it is possible to define a standard matrix of physical properties such as color and texture that a wafer should have according to different customer and process requirements. Then, the step (S8) is performed, and the classified database of the training completion is imported, and the plurality of parameter differences corresponding to the plurality of physical characteristics in the block are analyzed according to the threshold value defined in the classified database, so A report that classifies and summarizes each block. When the parameter difference of a block is classified, the system proceeds to step (S9) to determine whether to repeatedly enter the above step (S5) to perform identification and classification on another block. After all the blocks of the wafer W to be tested have been identified/classified, the system will selectively perform the step (S9-1) to determine whether to import another wafer, and if otherwise, directly extract the identification result, if yes Go back to step (S1). According to different embodiments, the step (S9-1) may be selected or skipped. For example, the preset is to separately extract the 瑕疵 identification result of each wafer, and the step (S9-1) is not required, if the preset is hope Steps (S9-1) are performed by retrieving the enthalpy identification results for each batch of wafers.

匯出的瑕疵辨識結果的格式不限,圖6所示為本新型之一實施例,其中x代表非晶圓部分(即,上述步驟(S3)中去除的背景部分),N代表正常區塊,S代表刮傷,U代表晶格顏色不正常。於其他實施例中,瑕疵辨識結果的格式可以以顏色或是其他方式來顯示,在此不做限制,並且區塊的大小與切割方式亦不限。The format of the extracted 瑕疵 identification result is not limited. FIG. 6 shows an embodiment of the present invention, wherein x represents a non-wafer portion (ie, a background portion removed in the above step (S3)), and N represents a normal block. , S stands for scratching, and U stands for lattice color is not normal. In other embodiments, the format of the 瑕疵 recognition result may be displayed in a color or other manner, and is not limited herein, and the size and cutting manner of the block are not limited.

依據上述各實施例說明可了解,本新型所提供的半導體檢測系統與其方法可以與現有晶圓製程機台整合,不需要更換機台,大幅降低成本花費,並且分類資料庫可以儲存於嵌入式或是雲端記憶體,方便直接套用於既有的系統與機台。再者,本新型之半導體晶圓檢測系統可以有效檢測、智慧型分析及分類製造出的晶圓瑕疵,以有效提升半導體晶圓製程的良率。另一方面,此系統可針對個別半導體晶圓作基準比對並產生分類標準,可以取代人工作業,並且無需須採用標準模板比對。本系統採用基於影像特性的參數化模型方法分析,能將各種特性以更精準之參數描述並存置於分類資料庫,以節省大量人力、時間、物力成本,並且資訊的存取與讀取也更加便利。因此,此方法能同時具有快速處理能力、運算簡潔之特性。更進一步,上述之資料庫可回朔作分類資料探勘並進行大數據分析,以分析檢討生產製程中常造成瑕疵之原因而利於整體生產製程之不斷改進或將瑕疵進行不同之分類與資料匯整與匯出,以供相關人員作後續處理而達到品質監控的有效管理。According to the description of the above embodiments, the semiconductor detection system and the method thereof can be integrated with the existing wafer processing machine, and the machine does not need to be replaced, thereby greatly reducing the cost, and the classified database can be stored in the embedded or It is cloud memory, which is convenient for direct application to existing systems and machines. Furthermore, the novel semiconductor wafer inspection system can effectively detect, intelligently analyze and classify the fabricated wafer defects to effectively improve the yield of the semiconductor wafer process. On the other hand, the system can be used as a benchmark for individual semiconductor wafers and produces classification criteria that can replace manual operations without the need for standard template alignment. The system uses parametric model analysis based on image characteristics, which can describe various characteristics with more accurate parameters and store them in the classification database, saving a lot of manpower, time and material costs, and accessing and reading information. convenient. Therefore, this method can simultaneously have the characteristics of fast processing capability and simple operation. Furthermore, the above-mentioned database can be used for the classification of data and for the analysis of big data to analyze the reasons for the often embarrassing problems in the production process, which will facilitate the continuous improvement of the overall production process or the different classification and data collection. Exported for the follow-up of relevant personnel to achieve effective management of quality control.

雖然本新型已以實施例揭露如上,然其並非用以限定本新型。任何該領域中具有通常知識者,在不脫離本新型之精神和範圍內,當可作些許之更動與潤飾。因此本新型之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed above by way of example, it is not intended to limit the present invention. Anyone with ordinary knowledge in the field can make some changes and refinements without departing from the spirit and scope of the present invention. Therefore, the scope of protection of this new type is subject to the definition of the scope of the patent application.

1‧‧‧輸送裝置1‧‧‧ delivery device

2‧‧‧瑕疵辨識裝置2‧‧‧瑕疵 Identification device

21‧‧‧影像擷取模組21‧‧‧Image capture module

22‧‧‧處理模組22‧‧‧Processing module

W‧‧‧晶圓W‧‧‧ wafer

S1~S13、S31-S36、S31-1、S34-1、S121-S123、S9-1‧‧‧步驟S1~S13, S31-S36, S31-1, S34-1, S121-S123, S9-1‧‧

為讓本新型之上述和其他目的、特徵和優點能更明顯易懂,下文特舉數個較佳實施例,並配合所附圖示,做詳細說明如下: 圖1係依據本新型概念所提供之半導體晶圓檢測系統之示意圖; 圖2係依據本新型提供之一種半導體晶圓檢測方法的主要步驟流程示意圖; 圖3係依據本新型提供之一實施例所繪製,本新型上述方法中步驟(S3)的詳細步驟流程示意圖; 圖3a~3d係依據本新型之一實施例提供所繪製,半導體晶圓原始影像進行步驟(S3)時不同階段的示意圖; 圖4係依據本新型之一實施例所繪製,建模規則的流程示意圖; 圖5係依據本新型之一實施例所繪製,執行規則程序之流程示意圖;以及 圖6係依據本新型之一實施例所繪製,瑕疵辨識結果示意圖。The above and other objects, features, and advantages of the present invention will become more apparent from the aspects of the invention. 2 is a schematic diagram of the main steps of a semiconductor wafer inspection method according to the present invention; FIG. 3 is a schematic diagram of the above method in accordance with an embodiment of the present invention. S3) is a schematic diagram of a detailed step of the process; FIG. 3a to FIG. 3d are schematic diagrams showing different stages of performing the step (S3) of the original image of the semiconductor wafer according to an embodiment of the present invention; FIG. 4 is an embodiment according to the present invention. FIG. 5 is a schematic diagram of a process of executing a rule program according to an embodiment of the present invention; and FIG. 6 is a schematic diagram of a recognition result according to an embodiment of the present invention.

1‧‧‧輸送裝置 1‧‧‧ delivery device

2‧‧‧瑕疵辨識裝置 2‧‧‧瑕疵 Identification device

21‧‧‧影像擷取模組 21‧‧‧Image capture module

22‧‧‧處理模組 22‧‧‧Processing module

W‧‧‧晶圓 W‧‧‧ wafer

Claims (10)

一種半導體晶圓檢測系統,其包含: 一輸送裝置;以及 一瑕疵辨識裝置,包含一影像擷取模組與一處理模組,彼此電性連接,其中該輸送裝置將一待測晶圓移動至該瑕疵辨識裝置,該影像擷取模組擷取該待測晶圓位於該輸送裝置上之一原始影像,該處理模組進行一瑕疵辨識,該瑕疵辨識包含: 對該原始影像進行一去背景與定位程序,產生一晶圓影像,將該晶圓影像進行一區塊化程序,以將該晶圓影像分割成複數個區塊,對一區塊進行一參數化程序,以產生一特性矩陣對應該區塊,比對該特性矩陣與一標準矩陣後得到一參數差值,依據訓練完成的一分類資料庫與該參數差值進行瑕疵辨識與分類,匯出一瑕疵辨識結果。A semiconductor wafer inspection system, comprising: a conveying device; and a plurality of identification devices, comprising an image capturing module and a processing module electrically connected to each other, wherein the conveying device moves a wafer to be tested to The image capture module captures an original image of the wafer to be tested on the transport device, and the processing module performs a frame identification, and the image recognition includes: performing a background on the original image And a positioning program, generating a wafer image, performing a tiling process on the wafer image to divide the wafer image into a plurality of blocks, and performing a parameterization process on a block to generate a characteristic matrix Corresponding to the block, a parameter difference is obtained after comparing the characteristic matrix with a standard matrix, and a classification database based on the training and the parameter difference are used for identification and classification, and a recognition result is extracted. 如請求項1所述之系統,其中該影像擷取模組為電荷耦合攝影機(CCD)或是互補式金屬氧化物(CMOS)半導體影像感測器。The system of claim 1, wherein the image capturing module is a charge coupled camera (CCD) or a complementary metal oxide (CMOS) semiconductor image sensor. 如請求項1所述之半導體晶圓檢測系統,其中該處理模組為一中央處理單元(CPU)。The semiconductor wafer inspection system of claim 1, wherein the processing module is a central processing unit (CPU). 如請求項1所述之半導體晶圓檢測系統,其中該瑕疵辨識裝置為一暗箱。The semiconductor wafer inspection system of claim 1, wherein the defect recognition device is a black box. 如請求項1所述之半導體晶圓檢測系統,其中該分類資料庫儲存於一記錄媒體,該記錄媒體與該瑕疵辨識裝置電性連接。The semiconductor wafer inspection system of claim 1, wherein the classification database is stored in a recording medium, and the recording medium is electrically connected to the UI recognition device. 如請求項1所述之半導體晶圓檢測系統,其中該輸送裝置將該待測晶圓移動至該瑕疵辨識裝置之該影像擷取模組下方,該影像擷取模組由該待測晶圓上方一預設角度位置向下擷取該原始影像。The semiconductor wafer inspection system of claim 1, wherein the transport device moves the wafer to be tested under the image capture module of the UI device, and the image capture module is used by the wafer to be tested The original image is captured downward at a predetermined angular position. 如請求項1所述之半導體晶圓檢測系統,其中該去背景與定位程序是利用一指定範圍型Otsu演算法對該原始影像進行去背景後,計算出該待測晶圓的一重心後,依據該重心位置定位該待測晶圓,以產生該晶圓影像。The semiconductor wafer inspection system of claim 1, wherein the de-background and positioning program uses a specified range-type Otsu algorithm to de-background the original image, and after calculating a center of gravity of the wafer to be tested, Positioning the wafer to be tested according to the position of the center of gravity to generate the wafer image. 如請求項1所述之半導體晶圓檢測系統,其中該半導體晶圓檢測系統預設有多個物理特性,並且預設有對應該些物理特性的多個標準矩陣,該參數化程序是依據該些物理特性,使該區塊產生對應該些特性之多個特性矩陣,比對該些特性矩陣與該些標準矩陣後得到對應的多個參數差值;該分類資料庫存有至少一瑕疵類型以及對應該瑕疵類型的至少一門檻值;並且該瑕疵辨識結果是依據該分類資料庫的該門檻值分類該些參數差值後匯出。The semiconductor wafer inspection system of claim 1, wherein the semiconductor wafer inspection system is pre-configured with a plurality of physical characteristics, and a plurality of standard matrices corresponding to the physical characteristics are pre-set, the parameterization program is based on The physical characteristics are such that the block generates a plurality of characteristic matrices corresponding to the characteristics, and the plurality of parameter differences corresponding to the characteristic matrices and the standard matrices are obtained; the classified data stock has at least one type and Corresponding to at least one threshold value of the 瑕疵 type; and the 瑕疵 identification result is categorized according to the threshold value of the classification database and then remitted. 如請求項1所述之半導體晶圓檢測系統,其中該特性矩陣為多個,該分類資料庫存有該些特性矩陣,並且該分類資料庫的訓練是藉由對不同的區塊進行該參數化程序,累積足夠數量的該些特性矩陣後,以一智慧型分類法計算該分類資料庫,整合該些特性矩陣,並依據整合後的該些特性矩陣定義至少一瑕疵類型以及對應每一該瑕疵類型的至少一門檻值,以完成對該分類資料庫的訓練。The semiconductor wafer inspection system of claim 1, wherein the characteristic matrix is plural, the classification data inventory has the characteristic matrix, and the training of the classification database is performed by differentiating the different blocks. a program, after accumulating a sufficient number of the characteristic matrices, calculating the classified database by a smart classification method, integrating the characteristic matrices, and defining at least one type according to the integrated characteristic matrices and corresponding to each of the matrices At least one threshold value of the type to complete the training of the classification database. 如請求項9所述之半導體晶圓檢測系統,其中該智慧型分類法為人工智慧、類神經、深度計算、大數據分析、資料探勘以及決策樹(CART)分類法中之任一或多個。The semiconductor wafer inspection system of claim 9, wherein the intelligent classification is any one or more of artificial intelligence, neural like, depth calculation, big data analysis, data exploration, and decision tree (CART) classification. .
TW106209683U 2017-06-30 2017-06-30 Semiconductor wafer analyzing system TWM550465U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106209683U TWM550465U (en) 2017-06-30 2017-06-30 Semiconductor wafer analyzing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106209683U TWM550465U (en) 2017-06-30 2017-06-30 Semiconductor wafer analyzing system

Publications (1)

Publication Number Publication Date
TWM550465U true TWM550465U (en) 2017-10-11

Family

ID=61012755

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106209683U TWM550465U (en) 2017-06-30 2017-06-30 Semiconductor wafer analyzing system

Country Status (1)

Country Link
TW (1) TWM550465U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI667575B (en) * 2018-06-29 2019-08-01 由田新技股份有限公司 Defect inspection system and method using artificil intelligence
CN113542544A (en) * 2020-04-20 2021-10-22 南亚科技股份有限公司 Image processing system and method thereof
CN113759148A (en) * 2020-06-01 2021-12-07 汎铨科技股份有限公司 Semiconductor image measuring method for artificial intelligent identification

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI667575B (en) * 2018-06-29 2019-08-01 由田新技股份有限公司 Defect inspection system and method using artificil intelligence
CN113542544A (en) * 2020-04-20 2021-10-22 南亚科技股份有限公司 Image processing system and method thereof
CN113542544B (en) * 2020-04-20 2023-04-07 南亚科技股份有限公司 Image processing system and method thereof
CN113759148A (en) * 2020-06-01 2021-12-07 汎铨科技股份有限公司 Semiconductor image measuring method for artificial intelligent identification
CN113759148B (en) * 2020-06-01 2024-04-16 南京泛铨电子科技有限公司 Semiconductor image measuring method for artificial intelligent identification

Similar Documents

Publication Publication Date Title
TWI642126B (en) Semiconductor wafer analyzing sytem and method thereof
CN107064170B (en) Method for detecting profile defect of mobile phone shell
WO2021135300A1 (en) Product defect detection method, device, and system
CN110619620B (en) Method, device and system for positioning abnormity causing surface defects and electronic equipment
KR101799603B1 (en) Automatic fault detection and classification in a plasma processing system and methods thereof
US9293298B2 (en) Defect discovery and inspection sensitivity optimization using automated classification of corresponding electron beam images
CN112036755B (en) Supervision method and system for quality detection of building engineering
CN109949286A (en) Method and apparatus for output information
CN108711148B (en) Tire defect intelligent detection method based on deep learning
CN111401419A (en) Improved RetinaNet-based employee dressing specification detection method
CN205538710U (en) Inductance quality automatic check out system based on machine vision
CN110889838A (en) Fabric defect detection method and device
CN110473201A (en) A kind of automatic testing method and device of disc surface defect
TWM550465U (en) Semiconductor wafer analyzing system
CN102915432A (en) Method and device for extracting vehicle-bone microcomputer image video data
CN110414341A (en) A kind of Blasting In The Open Mining heap measurement statistical method based on unmanned air vehicle technique
CN112037222B (en) Automatic updating method and system of neural network model
CN112613454A (en) Electric power infrastructure construction site violation identification method and system
CN110927184A (en) Visual detection method for chip packaging defects
CN111160451A (en) Flexible material detection method and storage medium thereof
CN110070106A (en) Smog detection method, device and electronic equipment
Deulkar et al. An automated tomato quality grading using clustering based support vector machine
CN116026487B (en) Liquid level temperature measuring method, liquid level temperature measuring device, computer equipment and storage medium
CN117115148A (en) Chip surface defect intelligent identification method based on 5G technology
JP7404817B2 (en) Learning device, detection device, learning method, and learning program

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees