TWM544001U - Optical image capturing system - Google Patents

Optical image capturing system Download PDF

Info

Publication number
TWM544001U
TWM544001U TW105205745U TW105205745U TWM544001U TW M544001 U TWM544001 U TW M544001U TW 105205745 U TW105205745 U TW 105205745U TW 105205745 U TW105205745 U TW 105205745U TW M544001 U TWM544001 U TW M544001U
Authority
TW
Taiwan
Prior art keywords
lens
optical axis
imaging system
optical
optical imaging
Prior art date
Application number
TW105205745U
Other languages
Chinese (zh)
Inventor
賴建勳
唐廼元
劉燿維
張永明
Original Assignee
先進光電科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 先進光電科技股份有限公司 filed Critical 先進光電科技股份有限公司
Priority to TW105205745U priority Critical patent/TWM544001U/en
Priority to CN201720383758.7U priority patent/CN206757158U/en
Publication of TWM544001U publication Critical patent/TWM544001U/en

Links

Landscapes

  • Lenses (AREA)

Abstract

The invention discloses a four-piece optical lens for capturing image and a five-piece optical module for capturing image. In order from an object side to an image side, the optical lens along the optical axis comprises a first lens with positive refractive power; a second lens with refractive power; a third lens with refractive power; and a fourth lens with refractive power; and at least one of the image-side surface and object-side surface of each of the four lens elements are aspheric. The optical lens can increase aperture value and improve the imagining quality for use in compact cameras.

Description

光學成像系統 Optical imaging system

本創作是有關於一種光學成像系統,且特別是有關於一種應用於電子產品上的小型化光學成像系統。 The present invention relates to an optical imaging system, and more particularly to a miniaturized optical imaging system for use in electronic products.

近年來,隨著具有攝影功能的可攜式電子產品的興起,光學系統的需求日漸提高。一般光學系統的感光元件不外乎是感光耦合元件(Charge Coupled Device;CCD)或互補性氧化金屬半導體元(Complementary Metal-Oxide SemiconduTPor Sensor;CMOS Sensor)兩種,且隨著半導體製程技術的精進,使得感光元件的畫素尺寸縮小,光學系統逐漸往高畫素領域發展,因此對成像品質的要求也日益增加。 In recent years, with the rise of portable electronic products with photographic functions, the demand for optical systems has increased. Generally, the photosensitive element of the optical system is nothing more than a Charge Coupled Device (CCD) or a Complementary Metal-Oxide Semicondu TP Sensor (CMOS Sensor), and with the advancement of semiconductor process technology, As the size of the pixel of the photosensitive element is reduced, the optical system is gradually developed in the field of high-pixels, and thus the requirements for image quality are increasing.

傳統搭載於可攜式裝置上的光學系統,多採用二片或三片式透鏡結構為主,然而由於可攜式裝置不斷朝提昇畫素並且終端消費者對大光圈的需求例如微光與夜拍功能或是對廣視角的需求例如前置鏡頭的自拍功能。惟設計大光圈的光學系統常面臨產生更多像差致使周邊成像品質隨之劣化以及製造難易度的處境,而設計廣視角的光學系統則會面臨成像之畸變率(distortion)提高,習知的光學成像系統已無法滿足更高階的攝影要求。 The optical system conventionally mounted on a portable device mainly uses a two-piece or three-piece lens structure. However, since the portable device continues to enhance the pixels and the end consumer demand for a large aperture such as low light and night The shooting function or the need for a wide viewing angle such as the self-timer function of the front lens. However, an optical system designed with a large aperture often faces a situation in which more aberrations cause deterioration in peripheral imaging quality and ease of manufacture, and an optical system that designs a wide viewing angle faces an increase in distortion of imaging, which is conventionally known. Optical imaging systems have been unable to meet higher-order photography requirements.

因此,如何有效增加光學成像系統的進光量與增加光學成像系統的視角,除進一步提高成像的總畫素與品質外同時能兼顧微型化光學成像系統之衡平設計,便成為一個相當重要的議題。 Therefore, how to effectively increase the amount of light entering the optical imaging system and increase the viewing angle of the optical imaging system, in addition to further improving the overall pixel and quality of imaging, while taking into account the balanced design of the miniaturized optical imaging system, has become a very important issue.

本創作實施例之態樣係針對一種光學成像系統,能夠利用四個透鏡的屈光力、凸面與凹面的組合(本創作所述凸面或凹面原則上係指各透鏡之物側面或像側面於光軸上的幾何形狀描述),進而有效提高光學成像系統之進光量與增加光學成像系統的視角,同時提高成像的總畫素與品質,以應用於小型的電子產品上。 The embodiment of the present invention is directed to an optical imaging system capable of utilizing the refractive power of four lenses, a combination of convex and concave surfaces (the convex or concave surface of the present invention refers in principle to the object side or image side of each lens to the optical axis. The geometry is described above, which effectively increases the amount of light entering the optical imaging system and increases the viewing angle of the optical imaging system, while improving the overall picture quality and quality of the image for use in small electronic products.

本創作實施例相關之機構元件參數的用語與其代號詳列如下,作為後續描述的參考:請參照第7A、7B、7C圖,光學成像系統可包括一影像感測模組(未繪示),該影像感測模組包含有一基板以及設置於該基板上之一感光元件;光學成像系統包含第一透鏡710、第二透鏡720、第三透鏡730、第四透鏡740,並具有一成像面780。另外可包括一鏡片定位元件794,係呈中空且可容置任一透鏡,並使該些透鏡片排列於光軸上,該鏡片定位元件包含有一物端部796以及一像端部798,該物端部796靠近物側且具有一第一開口7962,該像端部798靠近像側具有一第二開口7982,該透鏡定位元件794外壁包含二個切平面799,該些切平面799分別具有一成型灌口痕7992。前述該第一開口7962的內徑為OD,該第二開口7982的內徑為ID,其滿足下列條件:0.1≦OD/ID<10。該物端部796之最小厚度為OT以及該像端部798之最小厚度為IT,其滿足下列條件:0.1≦OT/IT<10。 The terms and symbols of the mechanism component parameters related to the present embodiment are listed below as a reference for subsequent descriptions. Please refer to FIGS. 7A, 7B, and 7C. The optical imaging system may include an image sensing module (not shown). The image sensing module includes a substrate and a photosensitive element disposed on the substrate. The optical imaging system includes a first lens 710, a second lens 720, a third lens 730, and a fourth lens 740, and has an imaging surface 780. . In addition, a lens positioning component 794 can be included, which is hollow and can accommodate any lens, and the lens segments are arranged on the optical axis. The lens positioning component includes an object end 796 and an image end 798. The object end portion 796 is adjacent to the object side and has a first opening 7792. The image end portion 798 has a second opening 7982 near the image side. The outer wall of the lens positioning member 794 includes two tangent planes 799, respectively. A molded mouth mark 7992. The inner diameter of the first opening 7792 is OD, and the inner diameter of the second opening 7982 is ID, which satisfies the following condition: 0.1 ≦ OD / ID < 10. The minimum thickness of the object end 796 is OT and the minimum thickness of the image end 798 is IT, which satisfies the following condition: 0.1 ≦ OT / IT < 10.

請參照第8A、8B、8C圖,光學成像系統可包括一影像感測模組(未繪示),該影像感測模組包含有一基板以及設置於該基板上之一感光元件;光學成像系統包含第一透鏡810、第二透鏡820、第三透鏡830、第四透鏡840,並具有一成像面880。另外可包括一鏡片定位元件894,係呈中空且可容置任一透鏡,並使該些透鏡片排列於光軸上,該鏡片定位 元件包含有一物端部896以及一像端部898,該物端部896靠近物側且具有一第一開口8962,該像端部898靠近像側具有一第二開口8982,該透鏡定位元件894外壁包含三個切平面899,該些切平面899分別具有一成型灌口痕8992。前述該第一開口8962的內徑為OD,該第二開口8982的內徑為ID,其滿足下列條件:0.1≦OD/ID<10。該物端部896之最小厚度為OT以及該像端部898之最小厚度為IT,其滿足下列條件:0.1≦OT/IT<10。 Referring to FIGS. 8A, 8B, and 8C, the optical imaging system may include an image sensing module (not shown), the image sensing module includes a substrate and a photosensitive element disposed on the substrate; the optical imaging system The first lens 810, the second lens 820, the third lens 830, and the fourth lens 840 are included and have an imaging surface 880. In addition, a lens positioning component 894 can be included, which is hollow and can accommodate any lens, and arranges the lens segments on the optical axis. The element includes an object end 896 and an image end portion 898 that is adjacent to the object side and has a first opening 8962. The image end portion 898 has a second opening 8982 near the image side. The lens positioning element 894 The outer wall includes three incision planes 899, each having a profiled mouth mark 8992. The inner diameter of the first opening 8962 is OD, and the inner diameter of the second opening 8982 is ID, which satisfies the following condition: 0.1 ≦ OD / ID < 10. The minimum thickness of the object end 896 is OT and the minimum thickness of the image end portion 898 is IT, which satisfies the following condition: 0.1 ≦ OT / IT < 10.

本創作實施例相關之透鏡參數的用語與其代號詳列如下,作為後續描述的參考: The terms of the lens parameters associated with the present embodiment and their code numbers are listed below as a reference for subsequent descriptions:

與長度或高度有關之透鏡參數 Lens parameters related to length or height

光學成像系統之成像高度以HOI表示;光學成像系統之高度以HOS表示;光學成像系統之第一透鏡物側面至第四透鏡像側面間的距離以InTL表示;光學成像系統之第四透鏡像側面至成像面間的距離以InB表示;InTL+InB=HOS;光學成像系統之固定光欄(光圈)至成像面間的距離以InS表示;光學成像系統之第一透鏡與第二透鏡間的距離以IN12表示(例示);光學成像系統之第一透鏡於光軸上的厚度以TP1表示(例示)。 The imaging height of the optical imaging system is represented by HOI; the height of the optical imaging system is represented by HOS; the distance between the first lens side of the optical imaging system and the side of the fourth lens image is represented by InTL; the fourth lens image side of the optical imaging system The distance to the imaging plane is represented by InB; InTL+InB=HOS; the distance between the fixed diaphragm (aperture) of the optical imaging system to the imaging plane is represented by InS; the distance between the first lens and the second lens of the optical imaging system Indicated by IN12 (exemplary); the thickness of the first lens of the optical imaging system on the optical axis is represented by TP1 (exemplary).

與材料有關之透鏡參數 Material-related lens parameters

光學成像系統之第一透鏡的色散係數以NA1表示(例示);第一透鏡的折射律以Nd1表示(例示)。 The dispersion coefficient of the first lens of the optical imaging system is represented by NA1 (exemplary); the law of refraction of the first lens is represented by Nd1 (exemplary).

與視角有關之透鏡參數 Lens parameters related to viewing angle

視角以AF表示;視角的一半以HAF表示;主光線角度以MRA表示。 The angle of view is represented by AF; half of the angle of view is represented by HAF; the angle of the chief ray is expressed by MRA.

與出入瞳有關之透鏡參數 Lens parameters related to access

光學成像系統之入射瞳直徑以HEP表示;單一透鏡之任一表面的最大有效半徑係指系統最大視角入射光通過入射瞳最邊緣的光線於該透鏡表面交會點(Effective Half Diameter; EHD),該交會點與光軸之間的垂直高度。例如第一透鏡物側面的最大有效半徑以EHD11表示,第一透鏡像側面的最大有效半徑以EHD12表示。第二透鏡物側面的最大有效半徑以EHD21表示,第二透鏡像側面的最大有效半徑以EHD22表示。光學成像系統中其餘透鏡之任一表面的最大有效半徑表示方式以此類推。 The entrance pupil diameter of the optical imaging system is represented by HEP; the maximum effective radius of any surface of the single lens refers to the maximum viewing angle of the system through which the incident light passes through the edge of the entrance pupil at the intersection of the lens surface (Effective Half Diameter; EHD), the vertical height between the intersection and the optical axis. For example, the maximum effective radius of the side of the first lens is represented by EHD11, and the maximum effective radius of the side of the first lens image is represented by EHD12. The maximum effective radius of the side of the second lens is represented by EHD 21, and the maximum effective radius of the side of the second lens image is represented by EHD 22. The maximum effective radius representation of any of the remaining lenses in the optical imaging system is analogous.

與透鏡面形弧長及表面輪廓有關之參數 Parameters related to the lens arc length and surface profile

單一透鏡之任一表面的最大有效半徑之輪廓曲線長度,係指該透鏡之表面與所屬光學成像系統之光軸的交點為起始點,自該起始點沿著該透鏡之表面輪廓直至其最大有效半徑之終點為止,前述兩點間的曲線弧長為最大有效半徑之輪廓曲線長度,並以ARS表示。例如第一透鏡物側面的最大有效半徑之輪廓曲線長度以ARS11表示,第一透鏡像側面的最大有效半徑之輪廓曲線長度以ARS12表示。第二透鏡物側面的最大有效半徑之輪廓曲線長度以ARS21表示,第二透鏡像側面的最大有效半徑之輪廓曲線長度以ARS22表示。光學成像系統中其餘透鏡之任一表面的最大有效半徑之輪廓曲線長度表示方式以此類推。 The length of the profile curve of the maximum effective radius of any surface of a single lens refers to the intersection of the surface of the lens and the optical axis of the associated optical imaging system, starting from the starting point along the surface contour of the lens until The end of the maximum effective radius, the arc length between the above two points is the length of the contour curve of the maximum effective radius, and is represented by ARS. For example, the profile curve length of the maximum effective radius of the side of the first lens object is represented by ARS11, and the profile curve length of the maximum effective radius of the side of the first lens image is represented by ARS12. The profile curve length of the maximum effective radius of the side of the second lens object is represented by ARS21, and the profile curve length of the maximum effective radius of the side of the second lens image is represented by ARS22. The maximum effective radius profile curve length representation of any of the remaining lenses in the optical imaging system is analogous.

單一透鏡之任一表面的1/2入射瞳直徑(HEP)之輪廓曲線長度,係指該透鏡之表面與所屬光學成像系統之光軸的交點為起始點,自該起始點沿著該透鏡之表面輪廓直至該表面上距離光軸1/2入射瞳直徑的垂直高度之座標點為止,前述兩點間的曲線弧長為1/2入射瞳直徑(HEP)之輪廓曲線長度,並以ARE表示。例如第一透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE11表示,第一透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE12表示。第二透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE21表示,第二透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE22表示。光學成像系統中其餘透鏡之任一表面的1/2入 射瞳直徑(HEP)之輪廓曲線長度表示方式以此類推。 The length of the profile curve of the 1/2 incident pupil diameter (HEP) of any surface of a single lens means that the intersection of the surface of the lens and the optical axis of the associated optical imaging system is the starting point from which the starting point The surface profile of the lens is up to the coordinate point of the vertical height of the pupil diameter from the optical axis 1/2 incident on the surface, and the curve arc length between the two points is 1/2 the diameter of the entrance pupil diameter (HEP), and ARE said. For example, the length of the contour curve of the 1/2 incident pupil diameter (HEP) of the side surface of the first lens object is represented by ARE11, and the length of the contour curve of the 1/2 incident pupil diameter (HEP) of the side of the first lens image is represented by ARE12. The length of the contour curve of the 1/2 incident pupil diameter (HEP) of the side surface of the second lens object is represented by ARE21, and the length of the contour curve of the 1/2 incident pupil diameter (HEP) of the side surface of the second lens image is represented by ARE22. 1/2 of any surface of the remaining lenses in the optical imaging system The length of the profile curve of the exit pupil diameter (HEP) is deduced by analogy.

與透鏡面形深度有關之參數 Parameters related to the depth of the lens profile

第四透鏡物側面於光軸上的交點至第四透鏡物側面的最大有效半徑位置於光軸的水平位移距離以InRS41表示(例示);第四透鏡像側面於光軸上的交點至第四透鏡像側面的最大有效半徑位置於光軸的水平位移距離以InRS42表示(例示)。 The horizontal displacement distance from the intersection of the side of the fourth lens object on the optical axis to the maximum effective radius of the side of the fourth lens object on the optical axis is represented by InRS41 (exemplary); the intersection of the side of the fourth lens image on the optical axis to the fourth The horizontal displacement distance of the largest effective radius position of the lens image side on the optical axis is represented by InRS42 (exemplary).

與透鏡面型有關之參數 Parameters related to the lens surface

臨界點C係指特定透鏡表面上,除與光軸的交點外,一與光軸相垂直之切面相切的點。承上,例如第三透鏡物側面的臨界點C31與光軸的垂直距離為HVT31(例示),第三透鏡像側面的臨界點C32與光軸的垂直距離為HVT32(例示),第四透鏡物側面的臨界點C41與光軸的垂直距離為HVT41(例示),第四透鏡像側面的臨界點C42與光軸的垂直距離為HVT42(例示)。其他透鏡之物側面或像側面上的臨界點及其與光軸的垂直距離的表示方式比照前述。 The critical point C refers to a point on the surface of a specific lens that is tangent to a plane perpendicular to the optical axis except for the intersection with the optical axis. For example, the vertical distance C31 of the side surface of the third lens object and the vertical distance of the optical axis are HVT31 (exemplary), and the vertical distance of the critical point C32 of the third lens image side from the optical axis is HVT32 (exemplary), the fourth lens object The vertical distance between the critical point C41 of the side surface and the optical axis is HVT41 (exemplary), and the vertical distance of the critical point C42 of the fourth lens image side from the optical axis is HVT42 (exemplary). The critical point on the side or image side of the other lens and its vertical distance from the optical axis are expressed in the same manner as described above.

第四透鏡物側面上最接近光軸的反曲點為IF411,該點沉陷量SGI411(例示),SGI411亦即第四透鏡物側面於光軸上的交點至第四透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離,IF411該點與光軸間的垂直距離為HIF411(例示)。第四透鏡像側面上最接近光軸的反曲點為IF421,該點沉陷量SGI421(例示),SGI411亦即第四透鏡像側面於光軸上的交點至第四透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離,IF421該點與光軸間的垂直距離為HIF421(例示)。 The inflection point closest to the optical axis on the side of the fourth lens object is IF411, the point sinking amount SGI411 (exemplary), that is, the intersection of the side of the fourth lens object on the optical axis to the optical axis of the fourth lens object The horizontal displacement distance between the inflection points parallel to the optical axis, and the vertical distance between the point and the optical axis of the IF411 is HIF411 (exemplary). The inflection point closest to the optical axis on the side of the fourth lens image is IF421, the sinking amount SGI421 (exemplary), that is, the intersection of the side of the fourth lens image on the optical axis to the optical axis of the side of the fourth lens image The horizontal displacement distance between the inflection points parallel to the optical axis, and the vertical distance between the point and the optical axis of the IF421 is HIF421 (exemplary).

第四透鏡物側面上第二接近光軸的反曲點為IF412,該點沉陷量SGI412(例示),SGI412亦即第四透鏡物側面於光軸上的交點至第四透鏡物側面第二接近光軸的反曲點之間與光軸平行的水平位移距離,IF412該點與光軸間的垂直距離為HIF412(例示)。第四透鏡像側面上第二接近光軸的反 曲點為IF422,該點沉陷量SGI422(例示),SGI422亦即第四透鏡像側面於光軸上的交點至第四透鏡像側面第二接近光軸的反曲點之間與光軸平行的水平位移距離,IF422該點與光軸間的垂直距離為HIF422(例示)。 The inflection point of the second near-optical axis on the side of the fourth lens object is IF412, and the point sinking amount SGI412 (exemplary), that is, the intersection of the side of the fourth lens object on the optical axis and the side of the fourth lens object is second. The horizontal displacement distance between the inflection points of the optical axis and the optical axis, and the vertical distance between the point and the optical axis of the IF 412 is HIF 412 (exemplary). The second lens image on the side is opposite to the second optical axis The curvature point is IF422, the point sinking amount SGI422 (exemplary), that is, the intersection of the fourth lens image side on the optical axis and the fourth lens image side second close to the optical axis, and the optical axis is parallel Horizontal displacement distance, IF422 The vertical distance between this point and the optical axis is HIF422 (exemplary).

第四透鏡物側面上第三接近光軸的反曲點為IF413,該點沉陷量SGI413(例示),SGI413亦即第四透鏡物側面於光軸上的交點至第四透鏡物側面第三接近光軸的反曲點之間與光軸平行的水平位移距離,IF4132該點與光軸間的垂直距離為HIF413(例示)。第四透鏡像側面上第三接近光軸的反曲點為IF423,該點沉陷量SGI423(例示),SGI423亦即第四透鏡像側面於光軸上的交點至第四透鏡像側面第三接近光軸的反曲點之間與光軸平行的水平位移距離,IF423該點與光軸間的垂直距離為HIF423(例示)。 The inflection point of the third near-optical axis on the side of the fourth lens object is IF413, and the point sinking amount SGI413 (exemplary), that is, the intersection of the side of the fourth lens object on the optical axis and the side of the fourth lens object is the third closest. The horizontal displacement distance between the inflection point of the optical axis and the optical axis, and the vertical distance between the point and the optical axis of IF4132 is HIF413 (exemplary). The inflection point of the third near-optical axis on the side of the fourth lens image is IF423, the point sinking amount SGI423 (exemplary), that is, the intersection of the side of the fourth lens image on the optical axis and the side of the fourth lens image is the third closest. The horizontal displacement distance between the inflection point of the optical axis and the optical axis, and the vertical distance between the point and the optical axis of the IF 423 is HIF423 (exemplary).

第四透鏡物側面上第四接近光軸的反曲點為IF414,該點沉陷量SGI414(例示),SGI414亦即第四透鏡物側面於光軸上的交點至第四透鏡物側面第四接近光軸的反曲點之間與光軸平行的水平位移距離,IF414該點與光軸間的垂直距離為HIF414(例示)。第四透鏡像側面上第四接近光軸的反曲點為IF424,該點沉陷量SGI424(例示),SGI424亦即第四透鏡像側面於光軸上的交點至第四透鏡像側面第四接近光軸的反曲點之間與光軸平行的水平位移距離,IF424該點與光軸間的垂直距離為HIF424(例示)。 The inflection point of the fourth near-optical axis on the side of the fourth lens object is IF414, and the point sinking amount SGI414 (exemplary), that is, the intersection of the side of the fourth lens object on the optical axis and the side of the fourth lens object is fourth. The horizontal displacement distance between the inflection points of the optical axis and the optical axis, and the vertical distance between the point and the optical axis of the IF 414 is HIF 414 (exemplary). The inflection point of the fourth near-optical axis on the side of the fourth lens image is IF424, the point sinking amount SGI424 (exemplary), that is, the SGI 424, that is, the intersection of the side of the fourth lens image on the optical axis and the fourth lens image side is fourth. The horizontal displacement distance between the inflection points of the optical axis and the optical axis, and the vertical distance between the point and the optical axis of the IF 424 is HIF 424 (exemplary).

其他透鏡物側面或像側面上的反曲點及其與光軸的垂直距離或其沉陷量的表示方式比照前述。 The inflection point on the side or image side of the other lens and its vertical distance from the optical axis or the amount of its sinking are expressed in the same manner as described above.

與像差有關之變數 Variant related to aberration

光學成像系統之光學畸變(Optical Distortion)以ODT表示;其TV畸變(TV Distortion)以TDT表示,並且可以進一步限定描述在成像50%至100%視野間像差偏移的程度;球面像差偏移量以DFS表示;慧星像差偏移量以DFC表示。 Optical Distortion of an optical imaging system is represented by ODT; its TV Distortion is represented by TDT, and can further define the degree of aberration shift described between imaging 50% to 100% of field of view; spherical aberration bias The shift is represented by DFS; the comet aberration offset is represented by DFC.

光圈邊緣橫向像差以STA(STOP Transverse Aberration)表示,評價特定光學成像系統之性能,可利用子午面光扇(tangential fan)或弧矢面光扇(sagittal fan)上計算任一視場的光線橫向像差,特別是分別計算最長工作波長(例如波長為650nm)以及最短工作波長(例如波長為470nm)通過光圈邊緣之橫向像差大小作為性能優異的標準。前述子午面光扇之座標方向,可進一步區分成正向(上光線)與負向(下光線)。最長工作波長通過光圈邊緣之橫向像差,其定義為最長工作波長通過光圈邊緣入射在成像面上特定視場之成像位置,其與參考波長主光線(例如波長為555nm)在成像面上該視場之成像位置兩位置間之距離差,最短工作波長通過光圈邊緣之橫向像差,其定義為最短工作波長通過光圈邊緣入射在成像面上特定視場之成像位置,其與參考波長主光線在成像面上該視場之成像位置兩位置間之距離差,評價特定光學成像系統之性能為優異,可利用最短以及最長工作波長通過光圈邊緣入射在成像面上0.7視場(即0.7成像高度HOI)之橫向像差均小於100微米(μm)作為檢核方式,甚至可進一步以最短以及最長工作波長通過光圈邊緣入射在成像面上0.7視場之橫向像差均小於80微米(μm)作為檢核方式。 The lateral aberration of the aperture edge is expressed by STA (STOP Transverse Aberration), and the performance of the specific optical imaging system is evaluated. The ray lateral direction of any field of view can be calculated by using a tangential fan or a sagittal fan. The aberrations, in particular, the calculation of the longest operating wavelength (for example, a wavelength of 650 nm) and the shortest operating wavelength (for example, a wavelength of 470 nm) by the lateral aberration of the aperture edge are excellent criteria for performance. The coordinate direction of the aforementioned meridional surface fan can be further divided into a positive direction (upper ray) and a negative direction (lower ray). The longest working wavelength passes through the lateral aberration of the aperture edge, which is defined as the imaging position at which the longest working wavelength is incident on a certain field of view on the imaging plane through the aperture edge, which is compared with the reference wavelength chief ray (eg, wavelength 555 nm) on the imaging surface. The difference between the two positions of the imaging position of the field, the shortest working wavelength passing through the lateral aberration of the aperture edge, which is defined as the imaging position at which the shortest working wavelength is incident on the imaging surface through the aperture edge, which is opposite to the reference wavelength chief ray. The difference in distance between the two positions of the imaging position of the field of view on the imaging surface, the performance of the specific optical imaging system is evaluated to be excellent, and the shortest and longest working wavelengths can be used to enter the imaging field by the aperture edge at the 0.7 field of view (ie, the imaging height HOI) The lateral aberrations are all less than 100 micrometers (μm) as the inspection mode, and even the shortest and longest working wavelengths are incident on the imaging surface through the aperture edge. The lateral aberration of the field of view is less than 80 micrometers (μm). Nuclear way.

光學成像系統於成像面上垂直於光軸具有一最大成像高度HOI,光學成像系統的正向子午面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以PLTA表示,其正向子午面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以PSTA表示,負向子午面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以NLTA表示,負向子午面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以NSTA表示,弧矢面光扇之可見光最長工作波長通過該入射瞳 邊緣並入射在該成像面上0.7HOI處之橫向像差以SLTA表示,弧矢面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以SSTA表示。 The optical imaging system has a maximum imaging height HOI perpendicular to the optical axis on the imaging plane, and the longest working wavelength of the visible light of the positive meridional plane of the optical imaging system passes through the entrance pupil edge and is incident on the imaging plane at a lateral angle of 0.7 HOI The aberration is expressed by PLTA, and the shortest working wavelength of the visible light of the forward meridional fan passes through the entrance pupil edge and is incident on the imaging plane. The lateral aberration at 0.7HOI is represented by PSTA, and the negative visible light of the meridional plane fan is the longest. The transverse wavelength of the working wavelength passing through the edge of the entrance pupil and incident on the imaging plane at 0.7HOI is represented by NLTA, and the shortest visible wavelength of the visible light of the negative meridional plane fan passes through the entrance pupil edge and is incident on the imaging plane 0.7HOI The lateral aberration is represented by NSTA, and the longest working wavelength of the visible light of the sagittal plane fan passes through the incident 瞳 The lateral aberration of the edge and incident on the imaging plane at 0.7HOI is represented by SLTA, and the shortest visible wavelength of the visible light of the sagittal plane fan passes through the incident pupil edge and is incident on the imaging plane at a lateral angle of 0.7HOI represented by SSTA .

本創作提供一種光學成像系統,其第四透鏡的物側面或像側面設置有反曲點,可有效調整各視場入射於第四透鏡的角度,並針對光學畸變與TV畸變進行補正。另外,第四透鏡的表面可具備更佳的光路調節能力,以提升成像品質。 The present invention provides an optical imaging system in which an object side or an image side of a fourth lens is provided with an inflection point, which can effectively adjust the angle at which each field of view is incident on the fourth lens, and correct for optical distortion and TV distortion. In addition, the surface of the fourth lens can have better optical path adjustment capability to improve image quality.

依據本創作提供一種光學成像系統,由物側至像側依序包含第一透鏡、第二透鏡、第三透鏡、第四透鏡、透鏡定位元件以及一成像面。其中該透鏡定位元件係呈中空且可容置任一透鏡,並使該些透鏡片排列於光軸上,該透鏡定位元件包括一物端部以及一像端部,該物端部靠近物側且具有一第一開口,該像端部靠近像側具有一第二開口,該透鏡定位元件外壁包含至少二個切平面,該些切平面分別具有至少一成型灌口痕。第一透鏡具有屈折力。該光學成像系統的焦距為f,該光學成像系統之入射瞳直徑為HEP,該第一透鏡物側面至該成像面於光軸上具有一距離HOS,該第一透鏡物側面至該第四透鏡像側面於光軸上具有一距離InTL,該光學成像系統之最大可視角度的一半為HAF,該些透鏡中任一透鏡之任一表面與光軸的交點為起點,延著該表面的輪廓直到該表面上距離光軸1/2入射瞳直徑之垂直高度處的座標點為止,前述兩點間之輪廓曲線長度為ARE,其滿足下列條件:1≦f/HEP≦10;0deg<HAF≦150deg以及0.9≦2(ARE/HEP)≦2.0。 According to the present invention, there is provided an optical imaging system comprising a first lens, a second lens, a third lens, a fourth lens, a lens positioning element, and an imaging surface sequentially from the object side to the image side. The lens positioning component is hollow and can accommodate any lens, and the lens segments are arranged on the optical axis. The lens positioning component includes an object end and an image end, and the object end is close to the object side. And having a first opening, the image end has a second opening near the image side, and the outer wall of the lens positioning element comprises at least two cutting planes, each of the cutting planes having at least one shaped burr mark. The first lens has a refractive power. The focal length of the optical imaging system is f, the incident pupil diameter of the optical imaging system is HEP, and the first lens side to the imaging surface has a distance HOS on the optical axis, and the first lens side to the fourth through The mirror side has a distance InTL on the optical axis, and half of the maximum viewing angle of the optical imaging system is HAF, and the intersection of any surface of any of the lenses and the optical axis is the starting point, and the contour of the surface is extended until The surface of the surface is at a distance from the coordinate point at the vertical height of the optical axis 1/2 incident 瞳 diameter. The length of the contour curve between the two points is ARE, which satisfies the following conditions: 1≦f/HEP≦10; 0deg<HAF≦150deg And 0.9≦2(ARE/HEP)≦2.0.

依據本創作另提供一種光學成像系統,由物側至像側依序包含第一透鏡、第二透鏡、第三透鏡、第四透鏡、透鏡定位元件以及一成像面。其中該透鏡定位元件係呈中空且可容置任一透鏡,並使該些透鏡片排列於光軸上,該透鏡 定位元件包括一物端部以及一像端部,該物端部靠近物側且具有一第一開口,該像端部靠近像側具有一第二開口,該透鏡定位元件外壁包含至少二個切平面,該些切平面分別具有至少一成型灌口痕。第一透鏡具有屈折力。第二透鏡具有屈折力。第三透鏡具有屈折力。第四透鏡具有屈折力。該第一透鏡至該第四透鏡中至少兩透鏡其個別之至少一表面具有至少一反曲點,且該第二透鏡至該第四透鏡中至少一透鏡具有正屈折力,該光學成像系統的焦距為f,該光學成像系統之入射瞳直徑為HEP,該第一透鏡物側面至該成像面於光軸上具有一距離HOS,該第一透鏡物側面至該第四透鏡像側面於光軸上具有一距離InTL,該光學成像系統之最大可視角度的一半為HAF,該些透鏡中任一透鏡之任一表面與光軸的交點為起點,延著該表面的輪廓直到該表面上距離光軸1/2入射瞳直徑之垂直高度處的座標點為止,前述兩點間之輪廓曲線長度為ARE,其滿足下列條件:1≦f/HEP≦10;0deg<HAF≦150deg以及0.9≦2(ARE/HEP)≦2.0。 According to the present invention, there is further provided an optical imaging system comprising a first lens, a second lens, a third lens, a fourth lens, a lens positioning element and an imaging surface sequentially from the object side to the image side. Wherein the lens positioning component is hollow and can accommodate any lens, and the lens segments are arranged on the optical axis, the lens The positioning component includes an object end portion and an image end portion, the object end portion is adjacent to the object side and has a first opening. The image end portion has a second opening adjacent to the image side, and the lens positioning member outer wall includes at least two cut ends. Plane, each of the cutting planes having at least one shaped irrigant. The first lens has a refractive power. The second lens has a refractive power. The third lens has a refractive power. The fourth lens has a refractive power. At least one surface of at least two of the first lens to the fourth lens has at least one inflection point, and at least one of the second lens to the fourth lens has a positive refractive power, the optical imaging system The focal length is f, the incident pupil diameter of the optical imaging system is HEP, the first lens object side to the imaging surface has a distance HOS on the optical axis, and the first lens object side to the fourth lens image side is on the optical axis There is a distance InTL, half of the maximum viewing angle of the optical imaging system is HAF, and the intersection of any surface of any of the lenses with the optical axis is the starting point, and the contour of the surface is extended until the surface is separated from the light The axis 1/2 is incident on the coordinate point at the vertical height of the 瞳 diameter. The length of the contour curve between the two points is ARE, which satisfies the following conditions: 1≦f/HEP≦10; 0deg<HAF≦150deg and 0.9≦2 ( ARE/HEP) ≦ 2.0.

依據本創作再提供一種光學成像系統,由物側至像側依序包含第一透鏡、第二透鏡、第三透鏡、第四透鏡、透鏡定位元件以及一成像面。其中該透鏡定位元件係呈中空且可容置任一透鏡,並使該些透鏡片排列於光軸上,該透鏡定位元件包括一物端部以及一像端部,該物端部靠近物側且具有一第一開口,該像端部靠近像側具有一第二開口,該透鏡定位元件外壁包含至少三個切平面,該些切平面分別具有至少一成型灌口痕。第四透鏡之物側表面及像側表面中至少一表面具有至少一反曲點,其中該光學成像系統具有屈折力的透鏡為四枚。第一透鏡具有屈折力。第二透鏡具有屈折力。第三透鏡具有屈折力。第四透鏡具有屈折力。該光學成像系統的焦距為f,該光學成像系統之入射瞳直徑為HEP,該第一透鏡物側面至該成像面於光軸上具有一距離HOS,該第一透 鏡物側面至該第四透鏡像側面於光軸上具有一距離InTL,該光學成像系統之最大可視角度的一半為HAF,該些透鏡中任一透鏡之任一表面與光軸的交點為起點,延著該表面的輪廓直到該表面上距離光軸1/2入射瞳直徑之垂直高度處的座標點為止,前述兩點間之輪廓曲線長度為ARE,其滿足下列條件:1≦f/HEP≦10;0deg<HAF≦150deg以及0.9≦2(ARE/HEP)≦2.0。 According to the present invention, an optical imaging system is further provided, which includes a first lens, a second lens, a third lens, a fourth lens, a lens positioning element, and an imaging surface sequentially from the object side to the image side. The lens positioning component is hollow and can accommodate any lens, and the lens segments are arranged on the optical axis. The lens positioning component includes an object end and an image end, and the object end is close to the object side. And having a first opening, the image end has a second opening near the image side, and the outer wall of the lens positioning element comprises at least three cutting planes, each of the cutting planes having at least one shaped burr mark. At least one of the object side surface and the image side surface of the fourth lens has at least one inflection point, wherein the optical imaging system has four lenses having a refractive power. The first lens has a refractive power. The second lens has a refractive power. The third lens has a refractive power. The fourth lens has a refractive power. The focal length of the optical imaging system is f, the incident pupil diameter of the optical imaging system is HEP, and the first lens side to the imaging surface has a distance HOS on the optical axis, the first through The side of the mirror object has a distance InTL on the optical axis of the fourth lens image side, and the half of the maximum viewing angle of the optical imaging system is HAF, and the intersection of any surface of the lens and the optical axis is the starting point Extending the contour of the surface until the coordinate point on the surface at a vertical height from the optical axis 1/2 incident 瞳 diameter, the contour curve length between the two points is ARE, which satisfies the following condition: 1≦f/HEP ≦10; 0deg<HAF≦150deg and 0.9≦2(ARE/HEP)≦2.0.

單一透鏡之任一表面在最大有效半徑範圍內之輪廓曲線長度影響該表面修正像差以及各視場光線間光程差的能力,輪廓曲線長度越長則修正像差的能力提升,然而同時亦會增加生產製造上的困難度,因此必須控制單一透鏡之任一表面在最大有效半徑範圍內之輪廓曲線長度,特別是控制該表面之最大有效半徑範圍內之輪廓曲線長度(ARS)與該表面所屬之該透鏡於光軸上之厚度(TP)間的比例關係(ARS/TP)。例如第一透鏡物側面的最大有效半徑之輪廓曲線長度以ARS11表示,第一透鏡於光軸上之厚度為TP1,兩者間的比值為ARS11/TP1,第一透鏡像側面的最大有效半徑之輪廓曲線長度以ARS12表示,其與TP1間的比值為ARS12/TP1。第二透鏡物側面的最大有效半徑之輪廓曲線長度以ARS21表示,第二透鏡於光軸上之厚度為TP2,兩者間的比值為ARS21/TP2,第二透鏡像側面的最大有效半徑之輪廓曲線長度以ARS22表示,其與TP2間的比值為ARS22/TP2。光學成像系統中其餘透鏡之任一表面的最大有效半徑之輪廓曲線長度與該表面所屬之該透鏡於光軸上之厚度(TP)間的比例關係,其表示方式以此類推。 The length of the contour curve of any surface of a single lens in the range of the maximum effective radius affects the surface correction aberration and the optical path difference between the fields of view. The longer the profile curve length, the better the ability to correct the aberration, but at the same time It will increase the difficulty in manufacturing, so it is necessary to control the length of the profile curve of any surface of the single lens within the maximum effective radius, in particular to control the profile length (ARS) and the surface within the maximum effective radius of the surface. The proportional relationship (ARS/TP) between the thicknesses (TP) of the lens on the optical axis. For example, the length of the contour curve of the maximum effective radius of the side surface of the first lens object is represented by ARS11, and the thickness of the first lens on the optical axis is TP1, and the ratio between the two is ARS11/TP1, and the maximum effective radius of the side of the first lens image is The length of the contour curve is represented by ARS12, and the ratio between it and TP1 is ARS12/TP1. The length of the contour curve of the maximum effective radius of the side surface of the second lens object is represented by ARS21, the thickness of the second lens on the optical axis is TP2, the ratio between the two is ARS21/TP2, and the contour of the maximum effective radius of the side of the second lens image The length of the curve is represented by ARS22, and the ratio between it and TP2 is ARS22/TP2. The proportional relationship between the length of the profile of the maximum effective radius of any of the remaining lenses in the optical imaging system and the thickness (TP) of the lens on the optical axis to which the surface belongs, and so on.

單一透鏡之任一表面在1/2入射瞳直徑(HEP)高度範圍內之輪廓曲線長度特別影響該表面上在各光線視場共用區域之修正像差以及各視場光線間光程差的能力,輪廓曲線長度越長則修正像差的能力提升,然而同時亦會增加生產 製造上的困難度,因此必須控制單一透鏡之任一表面在1/2入射瞳直徑(HEP)高度範圍內之輪廓曲線長度,特別是控制該表面之1/2入射瞳直徑(HEP)高度範圍內之輪廓曲線長度(ARE)與該表面所屬之該透鏡於光軸上之厚度(TP)間的比例關係(ARE/TP)。例如第一透鏡物側面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度以ARE11表示,第一透鏡於光軸上之厚度為TP1,兩者間的比值為ARE11/TP1,第一透鏡像側面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度以ARE12表示,其與TP1間的比值為ARE12/TP1。第二透鏡物側面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度以ARE21表示,第二透鏡於光軸上之厚度為TP2,兩者間的比值為ARE21/TP2,第二透鏡像側面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度以ARE22表示,其與TP2間的比值為ARE22/TP2。光學成像系統中其餘透鏡之任一表面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度與該表面所屬之該透鏡於光軸上之厚度(TP)間的比例關係,其表示方式以此類推。 The length of the profile curve of any surface of a single lens in the height range of 1/2 incident pupil diameter (HEP) particularly affects the corrected aberration of the surface in the common field of the ray field and the optical path difference between the fields of view. The longer the length of the contour curve, the better the ability to correct aberrations, but at the same time it will increase production. The difficulty in manufacturing, so it is necessary to control the length of the profile curve of any surface of a single lens in the range of 1/2 incident 瞳 diameter (HEP), in particular to control the 1/2 incident 瞳 diameter (HEP) height range of the surface. The proportional relationship between the inner contour length (ARE) and the thickness (TP) of the lens on the optical axis (ARE/TP). For example, the length of the profile curve of the 1/2 incident pupil diameter (HEP) height of the side surface of the first lens object is represented by ARE11, and the thickness of the first lens on the optical axis is TP1, and the ratio between the two is ARE11/TP1. The profile curve length of the 1/2 incident pupil diameter (HEP) height of the mirror side is represented by ARE12, and the ratio between it and TP1 is ARE12/TP1. The length of the profile curve of the 1/2 incident pupil diameter (HEP) height of the side surface of the second lens object is represented by ARE21. The thickness of the second lens on the optical axis is TP2, and the ratio between the two is ARE21/TP2, and the second lens image The profile curve length of the 1/2 incident pupil diameter (HEP) height of the side is represented by ARE22, and the ratio between it and TP2 is ARE22/TP2. The proportional relationship between the length of the contour curve of the 1/2 incident pupil diameter (HEP) height of any surface of the remaining lenses in the optical imaging system and the thickness (TP) of the lens on the optical axis to which the surface belongs, expressed by This type of push.

前述光學成像系統可用以搭配成像在對角線長度為1/1.2英吋大小以下的影像感測元件,該影像感測元件之尺寸較佳者為1/2.3英吋,該影像感測元件之像素尺寸小於1.4微米(μm),較佳者其像素尺寸小於1.12微米(μm),最佳者其像素尺寸小於0.9微米(μm)。此外,該光學成像系統可適用於長寬比為16:9的影像感測元件。 The optical imaging system can be used to image an image sensing component having a diagonal length of 1/1.2 inch or less. The size of the image sensing component is preferably 1/2.3 inch, and the image sensing component is The pixel size is less than 1.4 micrometers (μm), preferably the pixel size is less than 1.12 micrometers (μm), and the pixel size is preferably less than 0.9 micrometers (μm). In addition, the optical imaging system can be applied to image sensing elements with an aspect ratio of 16:9.

前述光學成像系統可適用於百萬或千萬像素以上的攝錄影要求(例如4K2K或稱UHD、QHD)並擁有良好的成像品質。 The aforementioned optical imaging system can be applied to video recording requirements of millions or more pixels (for example, 4K2K or UHD, QHD) and has good imaging quality.

當|f1|>f4時,光學成像系統的系統總高度(HOS;Height of Optic System)可以適當縮短以達到微型化之目的。 When |f1|>f4, the total imaging height (HOS; Height of Optic System) of the optical imaging system can be appropriately shortened to achieve miniaturization.

當|f2|+|f3|>|f1|+|f4|時,藉由第二透 鏡至第三透鏡中至少一透鏡具有弱的正屈折力或弱的負屈折力。所稱弱屈折力,係指特定透鏡之焦距的絕對值大於10。當本創作第二透鏡至第三透鏡中至少一透鏡具有弱的正屈折力,其可有效分擔第一透鏡之正屈折力而避免不必要的像差過早出現,反之若第二透鏡至第三透鏡中至少一透鏡具有弱的負屈折力,則可以微調補正系統的像差。 When |f2|+|f3|>|f1|+|f4|, by the second At least one of the mirror to the third lens has a weak positive refractive power or a weak negative refractive power. The so-called weak refractive power means that the absolute value of the focal length of a particular lens is greater than 10. When at least one of the second lens to the third lens of the present invention has a weak positive refractive power, it can effectively share the positive refractive power of the first lens to avoid premature occurrence of unnecessary aberrations, and vice versa if the second lens is If at least one of the three lenses has a weak negative refractive power, the aberration of the correction system can be fine-tuned.

第四透鏡可具有負屈折力,其像側面可為凹面。藉此,有利於縮短其後焦距以維持小型化。另外,第四透鏡的至少一表面可具有至少一反曲點,可有效地壓制離軸視場光線入射的角度,進一步可修正離軸視場的像差。 The fourth lens may have a negative refractive power, and the image side may be a concave surface. Thereby, it is advantageous to shorten the back focal length to maintain miniaturization. In addition, at least one surface of the fourth lens may have at least one inflection point, which can effectively suppress the angle of incidence of the off-axis field of view light, and further correct the aberration of the off-axis field of view.

10、20、30、40、50、60‧‧‧光學成像系統 10, 20, 30, 40, 50, 60‧‧‧ optical imaging systems

100、200、300、400、500、600‧‧‧光圈 100, 200, 300, 400, 500, 600‧‧ ‧ aperture

110、210、310、410、510、610、710、810‧‧‧第一透鏡 110, 210, 310, 410, 510, 610, 710, 810 ‧ ‧ first lens

112、212、312、412、512、612‧‧‧物側面 Sides of 112, 212, 312, 412, 512, 612‧‧

114、214、314、414、514、614‧‧‧像側面 114, 214, 314, 414, 514, 614‧‧‧ side

120、220、320、420、520、620、720、820‧‧‧第二透鏡 120, 220, 320, 420, 520, 620, 720, 820‧‧‧ second lens

122、222、322、422、522、622‧‧‧物側面 Sides of 122, 222, 322, 422, 522, 622‧‧

124、224、324、424、524、624‧‧‧像側面 124, 224, 324, 424, 524, 624‧‧‧ side

130、230、330、430、530、630、730、830‧‧‧第三透鏡 130, 230, 330, 430, 530, 630, 730, 830 ‧ ‧ third lens

132、232、332、432、532、632‧‧‧物側面 132, 232, 332, 432, 532, 632‧‧‧ ‧ side

134、234、334、434、534、634‧‧‧像側面 134, 234, 334, 434, 534, 634 ‧ ‧ side

140、240、340、440、540、640、740、840‧‧‧第四透鏡 140, 240, 340, 440, 540, 640, 740, 840 ‧ ‧ fourth lens

142、242、342、442、542、642‧‧‧物側面 Sides of 142, 242, 342, 442, 542, 642‧‧

144、244、344、444、544、644‧‧‧像側面 144, 244, 344, 444, 544, 644‧‧‧

170、270、370、470、570、670‧‧‧紅外線濾光片 170, 270, 370, 470, 570, 670‧‧ ‧ infrared filters

180、280、380、480、580、680、780、880‧‧‧成像面 180, 280, 380, 480, 580, 680, 780, 880 ‧ ‧ imaging surface

190、290、390、490、590、690‧‧‧影像感測元件 190, 290, 390, 490, 590, 690‧‧‧ image sensing components

794、894‧‧‧鏡片定位元件 794, 894‧‧‧ lens positioning elements

796、896‧‧‧物端部 796, 896‧‧ ‧ end

798、898‧‧‧像端部 798, 898‧‧‧ like the end

7962、8962‧‧‧第一開口 7962, 8962‧‧‧ first opening

7982、8982‧‧‧第二開口 7982, 8982‧‧‧ second opening

799、899‧‧‧切平面 799, 899‧‧‧ cut plane

7992、8992‧‧‧成型灌口痕 7992, 8992‧‧‧ molding mouth mark

f‧‧‧光學成像系統之焦距 F‧‧‧focal length of optical imaging system

f1‧‧‧第一透鏡的焦距 F1‧‧‧The focal length of the first lens

f2‧‧‧第二透鏡的焦距 F2‧‧‧The focal length of the second lens

f3‧‧‧第三透鏡的焦距 f3‧‧‧The focal length of the third lens

f4‧‧‧第四透鏡的焦距 F4‧‧‧The focal length of the fourth lens

f/HEP;Fno;F#‧‧‧光學成像系統之光圈值 f/HEP; Fno; F#‧‧‧ aperture value of optical imaging system

HAF‧‧‧光學成像系統之最大視角的一半 Half of the largest perspective of the HAF‧‧ optical imaging system

NA1‧‧‧第一透鏡的色散係數 NA1‧‧‧Dispersion coefficient of the first lens

NA2、NA3、NA4‧‧‧第二透鏡至第四透鏡的色散係數 Dispersion coefficient of NA2, NA3, NA4‧‧‧ second lens to fourth lens

R1、R2‧‧‧第一透鏡物側面以及像側面的曲率半徑 R1, R2‧‧‧ radius of curvature of the side of the first lens and the side of the image

R3、R4‧‧‧第二透鏡物側面以及像側面的曲率半徑 R3, R4‧‧‧ radius of curvature of the side and image side of the second lens

R5、R6‧‧‧第三透鏡物側面以及像側面的曲率半徑 R5, R6‧‧‧ radius of curvature of the side and image side of the third lens

R7、R8‧‧‧第四透鏡物側面以及像側面的曲率半徑 R7, R8‧‧‧ fourth lens object side and image side radius of curvature

TP1‧‧‧第一透鏡於光軸上的厚度 TP1‧‧‧ thickness of the first lens on the optical axis

TP2、TP3、TP4‧‧‧第二透鏡至第四透鏡於光軸上的厚度 TP2, TP3, TP4‧‧‧ thickness of the second lens to the fourth lens on the optical axis

Σ TP‧‧‧所有具屈折力之透鏡的厚度總和 TP TP‧‧‧sum of the thickness of all refractive lenses

IN12‧‧‧第一透鏡與第二透鏡於光軸上的間隔距離 IN12‧‧‧The distance between the first lens and the second lens on the optical axis

IN23‧‧‧第二透鏡與第三透鏡於光軸上的間隔距離 IN23‧‧‧Separation distance between the second lens and the third lens on the optical axis

IN34‧‧‧第三透鏡與第四透鏡於光軸上的間隔距離 The distance between the third lens and the fourth lens on the optical axis of IN34‧‧‧

InRS41‧‧‧第四透鏡物側面於光軸上的交點至第四透鏡物側面的最大有效半徑位置於光軸的水平位移距離 InRS41‧‧‧ Horizontal displacement distance of the fourth lens from the intersection of the side on the optical axis to the maximum effective radius of the side of the fourth lens on the optical axis

IF411‧‧‧第四透鏡物側面上最接近光軸的反曲點 IF411‧‧‧ the inflection point closest to the optical axis on the side of the fourth lens

SGI411‧‧‧該點沉陷量 SGI411‧‧‧The amount of subsidence at this point

HIF411‧‧‧第四透鏡物側面上最接近光軸的反曲點與光軸間的垂直距離 HIF411‧‧‧The vertical distance between the inflection point closest to the optical axis on the side of the fourth lens and the optical axis

IF421‧‧‧第四透鏡像側面上最接近光軸的反曲點 IF 421‧‧‧ the fourth lens image on the side closest to the optical axis of the inflection point

SGI421‧‧‧該點沉陷量 SGI421‧‧‧The amount of subsidence at this point

HIF421‧‧‧第四透鏡像側面上最接近光軸的反曲點與光軸間的垂直距離 HIF421‧‧‧The vertical distance between the inflection point of the fourth lens image on the side closest to the optical axis and the optical axis

IF412‧‧‧第四透鏡物側面上第二接近光軸的反曲點 IF 412‧‧‧ the second inversion point on the side of the fourth lens object close to the optical axis

SGI412‧‧‧該點沉陷量 SGI412‧‧‧The amount of subsidence at this point

HIF412‧‧‧第四透鏡物側面第二接近光軸的反曲點與光軸間的垂直距離 HIF412‧‧‧The distance between the inflection point of the second near-optical axis of the fourth lens object and the optical axis

IF422‧‧‧第四透鏡像側面上第二接近光軸的反曲點 IF422‧‧‧The fourth lens image on the side of the second near the optical axis of the inflection point

SGI422‧‧‧該點沉陷量 SGI422‧‧‧The amount of subsidence

HIF422‧‧‧第四透鏡像側面第二接近光軸的反曲點與光軸間的垂直距離 HIF422‧‧‧The distance between the inflection point of the second lens image on the side closer to the optical axis and the optical axis

IF413‧‧‧第四透鏡物側面上第三接近光軸的反曲點 IF413‧‧‧ the third inversion point on the side of the fourth lens object close to the optical axis

SGI413‧‧‧該點沉陷量 SGI413‧‧‧The amount of subsidence at this point

HIF413‧‧‧第四透鏡物側面第三接近光軸的反曲點與光軸間的垂直距離 HIF413‧‧‧The vertical distance between the inflection point of the third lens near the optical axis and the optical axis

IF423‧‧‧第四透鏡像側面上第三接近光軸的反曲點 IF 423‧‧ ‧ the fourth lens on the side of the third close to the optical axis of the inflection point

SGI423‧‧‧該點沉陷量 SGI423‧‧‧The amount of subsidence at this point

HIF423‧‧‧第四透鏡像側面第三接近光軸的反曲點與光軸間的垂直距離 HIF423‧‧‧The distance between the inflection point of the third lens near the optical axis and the vertical distance between the optical axes

IF414‧‧‧第四透鏡物側面上第四接近光軸的反曲點 IF414‧‧‧ the fourth invisible point on the side of the fourth lens

SGI414‧‧‧該點沉陷量 SGI414‧‧‧The amount of subsidence at this point

HIF414‧‧‧第四透鏡物側面第四接近光軸的反曲點與光軸間的垂直距離 HIF414‧‧‧The fourth lens object side of the fourth close to the optical axis of the inflection point and the vertical distance between the optical axis

IF424‧‧‧第四透鏡像側面上第四接近光軸的反曲點 IF424‧‧‧The fourth lens image on the side of the fourth near the optical axis of the inflection point

SGI424‧‧‧該點沉陷量 SGI424‧‧‧The amount of subsidence at this point

HIF424‧‧‧第四透鏡像側面第四接近光軸的反曲點與光軸間的垂直距離 HIF424‧‧‧The distance between the inflection point of the fourth lens near the optical axis and the vertical distance between the optical axis

C41‧‧‧第四透鏡物側面的臨界點 C41‧‧‧The critical point on the side of the fourth lens

C42‧‧‧第四透鏡像側面的臨界點 C42‧‧‧The critical point of the fourth lens image side

SGC41‧‧‧第四透鏡物側面的臨界點與光軸的水平位移距離 SGC41‧‧‧The horizontal displacement distance between the critical point of the fourth lens object and the optical axis

SGC42‧‧‧第四透鏡像側面的臨界點與光軸的水平位移距離 SGC42‧‧‧The horizontal displacement distance between the critical point of the fourth lens image side and the optical axis

HVT41‧‧‧第四透鏡物側面的臨界點與光軸的垂直距離 HVT41‧‧‧The vertical distance between the critical point of the fourth lens object and the optical axis

HVT42‧‧‧第四透鏡像側面的臨界點與光軸的垂直距離 HVT42‧‧‧The distance between the critical point of the fourth lens image side and the optical axis

HOS‧‧‧系統總高度(第一透鏡物側面至成像面於光軸上的距離) Total height of the HOS‧‧‧ system (distance from the side of the first lens to the optical axis of the imaging surface)

Dg‧‧‧影像感測元件的對角線長度 Diagonal length of Dg‧‧ image sensing components

InS‧‧‧光圈至成像面的距離 InS‧‧‧ aperture to imaging surface distance

InTL‧‧‧第一透鏡物側面至該第四透鏡像側面的距離 InTL‧‧‧Distance of the side of the first lens to the side of the fourth lens

InB‧‧‧第四透鏡像側面至該成像面的距離 InB‧‧‧The distance from the side of the fourth lens image to the image plane

HOI‧‧‧影像感測元件有效感測區域對角線長的一半(最大像高) HOI‧‧‧ image sensing element effectively detects half of the diagonal length of the area (maximum image height)

TDT‧‧‧光學成像系統於結像時之TV畸變(TV Distortion) TV Distortion of TDT‧‧‧ optical imaging system during image formation

ODT‧‧‧光學成像系統於結像時之光學畸變(Optical Distortion) Optical Distortion of ODT‧‧‧Optical Imaging System in Image Formation

本創作上述及其他特徵將藉由參照附圖詳細說明。 The above and other features of the present invention will be described in detail with reference to the drawings.

第1A圖係繪示本創作第一實施例之光學成像系統的示意圖;第1B圖由左至右依序繪示本創作第一實施例之光學成像系統的球差、像散以及光學畸變之曲線圖;第1C圖係繪示本創作第一實施例光學成像系統之子午面光扇以及弧矢面光扇,最長工作波長以及最短工作波長通過光圈邊緣於0.7視場處之橫向像差圖;第2A圖係繪示本創作第二實施例之光學成像系統的示意圖;第2B圖由左至右依序繪示本創作第二實施例之光學成像系統的球差、像散以及光學畸變之曲線圖;第2C圖係繪示本創作第二實施例光學成像系統之子午面光扇以及弧矢面光扇,最長工作波長以及最短工作波長通過光圈邊緣於0.7視場處之橫向像差圖;第3A圖係繪示本創作第三實施例之光學成像系統的示意 圖;第3B圖由左至右依序繪示本創作第三實施例之光學成像系統的球差、像散以及光學畸變之曲線圖;第3C圖係繪示本創作第三實施例光學成像系統之子午面光扇以及弧矢面光扇,最長工作波長以及最短工作波長通過光圈邊緣於0.7視場處之橫向像差圖;第4A圖係繪示本創作第四實施例之光學成像系統的示意圖;第4B圖由左至右依序繪示本創作第四實施例之光學成像系統的球差、像散以及光學畸變之曲線圖;第4C圖係繪示本創作第四實施例光學成像系統之子午面光扇以及弧矢面光扇,最長工作波長以及最短工作波長通過光圈邊緣於0.7視場處之橫向像差圖;第5A圖係繪示本創作第五實施例之光學成像系統的示意圖;第5B圖由左至右依序繪示本創作第五實施例之光學成像系統的球差、像散以及光學畸變之曲線圖;第5C圖係繪示本創作第五實施例光學成像系統之子午面光扇以及弧矢面光扇,最長工作波長以及最短工作波長通過光圈邊緣於0.7視場處之橫向像差圖;第6A圖係繪示本創作第六實施例之光學成像系統的示意圖;第6B圖由左至右依序繪示本創作第六實施例之光學成像系統的球差、像散以及光學畸變之曲線圖;第6C圖係繪示本創作第六實施例光學成像系統之子午面光扇以及弧矢面光扇,最長工作波長以及最短工作波長通過光圈邊緣於0.7視場處之橫向像差圖。 1A is a schematic view showing the optical imaging system of the first embodiment of the present invention; FIG. 1B is a left-to-right sequence showing the spherical aberration, astigmatism, and optical distortion of the optical imaging system of the first embodiment of the present invention. 1C is a transverse aberration diagram of a meridional plane fan and a sagittal plane fan of the optical imaging system of the first embodiment of the present invention, the longest working wavelength and the shortest working wavelength passing through the aperture edge at 0.7 field of view; 2A is a schematic diagram showing an optical imaging system of a second embodiment of the present invention; FIG. 2B is a left-to-right sequence showing spherical aberration, astigmatism, and optical distortion of the optical imaging system of the second embodiment of the present invention. 2C is a transverse aberration diagram of the meridional plane fan and the sagittal plane fan of the optical imaging system of the second embodiment of the present invention, the longest working wavelength and the shortest working wavelength passing through the aperture edge at 0.7 field of view; Figure 3A is a schematic view showing the optical imaging system of the third embodiment of the present creation FIG. 3B is a graph showing spherical aberration, astigmatism, and optical distortion of the optical imaging system of the third embodiment of the present invention from left to right; FIG. 3C is a diagram showing optical imaging of the third embodiment of the present creation. The meridional plane fan and the sagittal plane fan of the system, the longest working wavelength and the shortest working wavelength pass the lateral aberration diagram of the aperture edge at 0.7 field of view; FIG. 4A shows the optical imaging system of the fourth embodiment of the present creation 4B is a graph showing the spherical aberration, astigmatism and optical distortion of the optical imaging system of the fourth embodiment of the present invention from left to right; FIG. 4C is a diagram showing the optical imaging of the fourth embodiment of the present creation. The meridional plane fan and the sagittal plane fan of the system, the longest working wavelength and the shortest working wavelength pass the lateral aberration diagram of the aperture edge at the 0.7 field of view; FIG. 5A shows the optical imaging system of the fifth embodiment of the present creation FIG. 5B is a graph showing spherical aberration, astigmatism, and optical distortion of the optical imaging system of the fifth embodiment of the present invention from left to right; FIG. 5C is a diagram showing optical imaging of the fifth embodiment of the present creation. Systematic a meridional plane fan and a sagittal plane fan, the longest working wavelength and the shortest working wavelength pass through the aperture edge at a 0.7 field of view lateral aberration diagram; FIG. 6A is a schematic diagram of the optical imaging system of the sixth embodiment of the present invention; 6B is a graph showing spherical aberration, astigmatism, and optical distortion of the optical imaging system of the sixth embodiment of the present invention from left to right; FIG. 6C is a diagram showing the optical imaging system of the sixth embodiment of the present invention. The meridional plane fan and the sagittal plane fan, the longest working wavelength and the shortest working wavelength pass the lateral aberration diagram of the aperture edge at 0.7 field of view.

第7A圖係繪示本創作第一實施例之透鏡定位元件的立體側視圖; 第7B圖係繪示本創作第一實施例之透鏡定位元件的俯視圖,俯視方向自像端部之第二開口朝向物端部之第一開口,該透鏡定位元件之外壁具有二個切平面,該些切平面分別具有一成型灌口痕;第7C圖係繪示本創作第一實施例之透鏡定位元件的剖面圖;第8A圖係繪示本創作第二實施例至第六實施例之透鏡定位元件的立體側視圖;第8B圖係繪示本創作第二實施例至第六實施例之透鏡定位元件的俯視圖,俯視方向自像端部之第二開口朝向物端部之第一開口,該透鏡定位元件之外壁具有三個切平面,該些切平面分別具有一成型灌口痕;第8C圖係繪示本創作第二實施例至第六實施例之透鏡定位元件的剖面圖。 Figure 7A is a perspective side view showing the lens positioning member of the first embodiment of the present invention; FIG. 7B is a plan view showing the lens positioning member of the first embodiment of the present invention, the second opening of the image end portion facing the first opening of the object end portion, and the outer wall of the lens positioning member has two cutting planes. The cutting planes respectively have a forming nozzle mark; the 7C is a cross-sectional view of the lens positioning component of the first embodiment of the present invention; and FIG. 8A is a diagram showing the second embodiment to the sixth embodiment of the present invention. A perspective view of the lens positioning member; FIG. 8B is a plan view showing the lens positioning member of the second to sixth embodiments of the present invention, the first opening of the second opening from the image end toward the object end in a plan view direction The outer wall of the lens positioning member has three tangential planes, each of which has a forming burr mark; and FIG. 8C is a cross-sectional view showing the lens locating elements of the second to sixth embodiments of the present invention.

一種光學成像系統,由物側至像側依序包含具屈折力的第一透鏡、第二透鏡、第三透鏡以及第四透鏡。光學成像系統更可包含一影像感測元件,其設置於成像面。 An optical imaging system includes a first lens, a second lens, a third lens, and a fourth lens having refractive power sequentially from the object side to the image side. The optical imaging system can further include an image sensing component disposed on the imaging surface.

光學成像系統可使用三個工作波長進行設計,分別為486.1nm、587.5nm、656.2nm,其中587.5nm為主要參考波長為主要提取技術特徵之參考波長。光學成像系統亦可使用五個工作波長進行設計,分別為470nm、510nm、555nm、610nm、650nm,其中555nm為主要參考波長為主要提取技術特徵之參考波長。 The optical imaging system can be designed using three operating wavelengths, 486.1 nm, 587.5 nm, and 656.2 nm, respectively, with 587.5 nm being the reference wavelength at which the primary reference wavelength is the dominant extraction technique. The optical imaging system can also be designed using five operating wavelengths, namely 470 nm, 510 nm, 555 nm, 610 nm, and 650 nm, with 555 nm being the reference wavelength at which the primary reference wavelength is the dominant extraction technique.

光學成像系統的焦距f與每一片具有正屈折力之透鏡的焦距fp之比值PPR,光學成像系統的焦距f與每一片具有負屈折力之透鏡的焦距fn之比值NPR,所有正屈折力之透鏡的PPR總和為ΣPPR,所有負屈折力之透鏡的NPR總和 為ΣNPR,當滿足下列條件時有助於控制光學成像系統的總屈折力以及總長度:0.5≦Σ PPR/|Σ NPR|≦4.5,較佳地,可滿足下列條件:1≦Σ PPR/|Σ NPR|≦3.5。 The ratio of the focal length f of the optical imaging system to the focal length fp of each lens having a positive refractive power, the ratio of the focal length f of the optical imaging system to the focal length fn of each lens having a negative refractive power, NPR, all positive refractive power lenses The sum of PPR is ΣPPR, the sum of NPR of all lenses with negative refractive power For ΣNPR, it helps to control the total refractive power and total length of the optical imaging system when the following conditions are met: 0.5 ≦Σ PPR / | Σ NPR | ≦ 4.5, preferably, the following conditions are satisfied: 1 ≦Σ PPR / | Σ NPR|≦3.5.

光學成像系統的系統高度為HOS,當HOS/f比值趨近於1時,將有利於製作微型化且可成像超高畫素的光學成像系統。 The system height of the optical imaging system is HOS. When the HOS/f ratio approaches 1, it will be advantageous to make a miniaturized and imageable ultra-high pixel optical imaging system.

光學成像系統的每一片具有正屈折力之透鏡的焦距fp之總和為ΣPP,每一片具有負屈折力之透鏡的焦距總和為ΣNP,本創作的光學成像系統之一種實施方式,其滿足下列條件:0<ΣPP≦200;以及f1/ΣPP≦0.85。較佳地,可滿足下列條件:0<ΣPP≦150;以及0.01≦f1/ΣPP≦0.7。藉此,有助於控制光學成像系統的聚焦能力,並且適當分配系統的正屈折力以抑制顯著之像差過早產生。 The sum of the focal lengths fp of each of the lenses of the optical imaging system having a positive refractive power is ΣPP, and the sum of the focal lengths of the lenses each having a negative refractive power is ΣNP. One embodiment of the optical imaging system of the present invention satisfies the following conditions: 0<ΣPP≦200; and f1/ΣPP≦0.85. Preferably, the following conditions are satisfied: 0 < Σ PP ≦ 150; and 0.01 ≦ f1/Σ PP ≦ 0.7. Thereby, it is helpful to control the focusing ability of the optical imaging system, and to properly distribute the positive refractive power of the system to suppress the occurrence of significant aberrations prematurely.

第一透鏡可具有正屈折力,其物側面可為凸面。藉此,可適當調整第一透鏡的正屈折力強度,有助於縮短光學成像系統的總長度。 The first lens may have a positive refractive power and the object side may be convex. Thereby, the positive refractive power of the first lens can be appropriately adjusted to help shorten the total length of the optical imaging system.

第二透鏡可具有負屈折力。藉此,可補正第一透鏡產生的像差。 The second lens can have a negative refractive power. Thereby, the aberration generated by the first lens can be corrected.

第三透鏡可具有正屈折力。藉此,可分擔第一透鏡的正屈折力。 The third lens can have a positive refractive power. Thereby, the positive refractive power of the first lens can be shared.

第四透鏡可具有負屈折力,其像側面可為凹面。藉此,有利於縮短其後焦距以維持小型化。另外,第四透鏡的至少一表面可具有至少一反曲點,可有效地壓制離軸視場光線入射的角度,進一步可修正離軸視場的像差。較佳地,其物側面以及像側面均具有至少一反曲點。 The fourth lens may have a negative refractive power, and the image side may be a concave surface. Thereby, it is advantageous to shorten the back focal length to maintain miniaturization. In addition, at least one surface of the fourth lens may have at least one inflection point, which can effectively suppress the angle of incidence of the off-axis field of view light, and further correct the aberration of the off-axis field of view. Preferably, both the object side and the image side have at least one inflection point.

光學成像系統可更包含一影像感測元件,其設置於成像面。影像感測元件有效感測區域對角線長的一半(即為光學成像系統之成像高度或稱最大像高)為HOI,第一透鏡物側面至成像面於光軸上的距離為HOS,其滿足下列條件: HOS/HOI≦3;以及0.5≦HOS/f≦3.0。較佳地,可滿足下列條件:1≦HOS/HOI≦2.5;以及1≦HOS/f≦2。藉此,可維持光學成像系統的小型化,以搭載於輕薄可攜式的電子產品上。 The optical imaging system can further include an image sensing component disposed on the imaging surface. The half of the diagonal length of the effective sensing area of the image sensing element (ie, the imaging height or the maximum image height of the optical imaging system) is HOI, and the distance from the side of the first lens to the optical axis of the imaging surface is HOS, The following conditions are met: HOS/HOI≦3; and 0.5≦HOS/f≦3.0. Preferably, the following conditions are satisfied: 1 ≦ HOS / HOI ≦ 2.5; and 1 ≦ HOS / f ≦ 2. Thereby, the miniaturization of the optical imaging system can be maintained to be mounted on a thin and portable electronic product.

另外,本創作的光學成像系統中,依需求可設置至少一光圈,以減少雜散光,有助於提昇影像品質。 In addition, in the optical imaging system of the present invention, at least one aperture can be set according to requirements to reduce stray light and help to improve image quality.

本創作的光學成像系統中,光圈配置可為前置光圈或中置光圈,其中前置光圈意即光圈設置於被攝物與第一透鏡間,中置光圈則表示光圈設置於第一透鏡與成像面間。若光圈為前置光圈,可使光學成像系統的出瞳與成像面產生較長的距離而容置更多光學元件,並可增加影像感測元件接收影像的效率;若為中置光圈,係有助於擴大系統的視場角,使光學成像系統具有廣角鏡頭的優勢。前述光圈至成像面間的距離為InS,其滿足下列條件:0.2≦InS/HOS≦1.1。較佳地,可滿足下列條件:0.8≦InS/HOS≦1藉此,可同時兼顧維持光學成像系統的小型化以及具備廣角的特性。 In the optical imaging system of the present invention, the aperture configuration may be a front aperture or a center aperture, wherein the front aperture means that the aperture is disposed between the object and the first lens, and the center aperture means that the aperture is disposed on the first lens and Between the imaging surfaces. If the aperture is a front aperture, the optical imaging system can make a long distance between the exit pupil and the imaging surface to accommodate more optical components, and increase the efficiency of the image sensing component to receive images; if it is a center aperture, Helps to expand the system's field of view, giving optical imaging systems the advantage of a wide-angle lens. The distance from the aforementioned aperture to the imaging surface is InS, which satisfies the following condition: 0.2 ≦ InS/HOS ≦ 1.1. Preferably, the following condition is satisfied: 0.8 ≦ InS/HOS ≦ 1 whereby the miniaturization of the optical imaging system and the wide-angle characteristics can be maintained at the same time.

本創作的光學成像系統中,第一透鏡物側面至第四透鏡像側面間的距離為InTL,於光軸上所有具屈折力之透鏡的厚度總和ΣTP,其滿足下列條件:0.45≦Σ TP/InTL≦0.95。較佳地,可滿足下列條件:0.6≦Σ TP/InTL≦0.9。藉此,當可同時兼顧系統成像的對比度以及透鏡製造的良率並提供適當的後焦距以容置其他元件。 In the optical imaging system of the present invention, the distance between the side of the first lens object and the side of the fourth lens image is InTL, and the total thickness of all lenses having refractive power on the optical axis is ΣTP, which satisfies the following condition: 0.45 ≦Σ TP/ InTL ≦ 0.95. Preferably, the following conditions are satisfied: 0.6 ≦Σ TP / InTL ≦ 0.9. Thereby, the contrast of the system imaging and the yield of the lens manufacturing can be simultaneously taken into consideration and an appropriate back focus can be provided to accommodate other components.

第一透鏡物側面的曲率半徑為R1,第一透鏡像側面的曲率半徑為R2,其滿足下列條件:0.01≦|R1/R2|≦0.5。藉此,第一透鏡的具備適當正屈折力強度,避免球差增加過速。較佳地,可滿足下列條件:0.01≦|R1/R2|≦0.4。 The radius of curvature of the side surface of the first lens object is R1, and the radius of curvature of the side surface of the first lens image is R2, which satisfies the following condition: 0.01 ≦ | R1/R2 | ≦ 0.5. Thereby, the first lens is provided with an appropriate positive refractive power to prevent the spherical aberration from increasing excessively. Preferably, the following conditions are satisfied: 0.01 ≦ | R 1 / R 2 | ≦ 0.4.

第四透鏡物側面的曲率半徑為R7,第四透鏡像側面的曲率半徑為R8,其滿足下列條件:-200<(R7-R8)/(R7+R8)<30。藉此,有利於修正光學成像系統 所產生的像散。 The radius of curvature of the side surface of the fourth lens object is R7, and the radius of curvature of the side surface of the fourth lens image is R8, which satisfies the following condition: -200 < (R7 - R8) / (R7 + R8) < 30. Thereby, it is advantageous to correct the optical imaging system The resulting astigmatism.

第一透鏡與第二透鏡於光軸上的間隔距離為IN12,其滿足下列條件:0<IN12/f≦0.25。較佳地,可滿足下列條件:0<IN12/f≦60。藉此,有助於改善透鏡的色差以提升其性能。 The distance between the first lens and the second lens on the optical axis is IN12, which satisfies the following condition: 0 < IN12 / f ≦ 0.25. Preferably, the following conditions are satisfied: 0 < IN12 / f ≦ 60. Thereby, it helps to improve the chromatic aberration of the lens to improve its performance.

第二透鏡與第三透鏡於光軸上的間隔距離為IN23,其滿足下列條件:0<IN23/f≦0.25。較佳地,可滿足下列條件:0.01≦IN23/f≦0.20。藉此,有助於改善透鏡的性能。 The distance between the second lens and the third lens on the optical axis is IN23, which satisfies the following condition: 0 < IN23 / f ≦ 0.25. Preferably, the following conditions are satisfied: 0.01 ≦ IN23/f ≦ 0.20. Thereby, it helps to improve the performance of the lens.

第三透鏡與第四透鏡於光軸上的間隔距離為IN34,其滿足下列條件:0<IN34/f≦0.25。較佳地,可滿足下列條件:0.001≦IN34/f≦0.20。藉此,有助於改善透鏡的性能。 The distance between the third lens and the fourth lens on the optical axis is IN34, which satisfies the following condition: 0 < IN34 / f ≦ 0.25. Preferably, the following conditions are satisfied: 0.001 ≦ IN34/f ≦ 0.20. Thereby, it helps to improve the performance of the lens.

第一透鏡與第二透鏡於光軸上的厚度分別為TP1以及TP2,其滿足下列條件:1≦(TP1+IN12)/TP2≦10。藉此,有助於控制光學成像系統製造的敏感度並提升其性能。 The thicknesses of the first lens and the second lens on the optical axis are TP1 and TP2, respectively, which satisfy the following conditions: 1 ≦ (TP1 + IN12) / TP2 ≦ 10. Thereby, it helps to control the sensitivity of the optical imaging system manufacturing and improve its performance.

第三透鏡與第四透鏡於光軸上的厚度分別為TP3以及TP4,前述兩透鏡於光軸上的間隔距離為IN34,其滿足下列條件:1≦(TP4+IN34)/TP3≦10。藉此,有助於控制光學成像系統製造的敏感度並降低系統總高度。 The thicknesses of the third lens and the fourth lens on the optical axis are TP3 and TP4, respectively, and the distance between the two lenses on the optical axis is IN34, which satisfies the following condition: 1≦(TP4+IN34)/TP3≦10. Thereby, it helps to control the sensitivity of the optical imaging system manufacturing and reduce the overall height of the system.

第二透鏡與第三透鏡於光軸上的間隔距離為IN23,第一透鏡至第四透鏡於光軸上的總和距離為Σ TP,其滿足下列條件:0.01≦IN23/(TP2+IN23+TP3)≦0.5。較佳地,可滿足下列條件:0.05≦IN23/(TP2+IN23+TP3)≦0.4。藉此有助層層微幅修正入射光行進過程所產生的像差並降低系統總高度。 The distance between the second lens and the third lens on the optical axis is IN23, and the total distance of the first lens to the fourth lens on the optical axis is Σ TP, which satisfies the following condition: 0.01≦IN23/(TP2+IN23+TP3 )≦0.5. Preferably, the following conditions are satisfied: 0.05 ≦ IN23 / (TP2+IN23 + TP3) ≦ 0.4. This helps the layer to slightly correct the aberration generated by the incident light and reduce the total height of the system.

本創作的光學成像系統中,第四透鏡物側面142於光軸上的交點至第四透鏡物側面142的最大有效半徑位置於光軸的水平位移距離為InRS41(若水平位移朝向像側,InRS41為正值;若水平位移朝向物側,InRS41為負值),第 四透鏡像側面144於光軸上的交點至第四透鏡像側面144的最大有效半徑位置於光軸的水平位移距離為InRS42,第四透鏡140於光軸上的厚度為TP4,其滿足下列條件:-1mm≦InRS41≦1mm;-1mm≦InRS42≦1mm;1mm≦|InRS41|+|InRS42|≦2mm;0.01≦|InRS41|/TP4≦10;0.01≦|InRS42|/TP4≦10。藉此,可控制第四透鏡兩面間最大有效半徑位置,而有助於光學成像系統之週邊視場的像差修正以及有效維持其小型化。 In the optical imaging system of the present invention, the horizontal displacement distance of the fourth lens object side surface 142 from the intersection on the optical axis to the maximum effective radius position of the fourth lens object side 142 on the optical axis is InRS41 (if the horizontal displacement is toward the image side, InRS41 Positive value; if the horizontal displacement is toward the object side, InRS41 is negative), The maximum effective radius position of the four lens image side surface 144 on the optical axis to the fourth lens image side surface 144 is the horizontal displacement distance of the optical axis is InRS42, and the thickness of the fourth lens 140 on the optical axis is TP4, which satisfies the following conditions : -1 mm ≦ InRS 41 ≦ 1 mm; -1 mm ≦ InRS 42 ≦ 1 mm; 1 mm ≦ | InRS41 | + | InRS42 | ≦ 2 mm; 0.01 ≦ | InRS41 | / TP4 ≦ 10; 0.01 ≦ | InRS42 | / TP4 ≦ 10. Thereby, the position of the maximum effective radius between the two faces of the fourth lens can be controlled, which contributes to the aberration correction of the peripheral field of view of the optical imaging system and effectively maintains the miniaturization thereof.

本創作的光學成像系統中,第四透鏡物側面於光軸上的交點至第四透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI411表示,第四透鏡像側面於光軸上的交點至第四透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI421表示,其滿足下列條件:0<SGI411/(SGI411+TP4)≦0.9;0<SGI421/(SGI421+TP4)≦0.9。較佳地,可滿足下列條件:0.01<SGI411/(SGI411+TP4)≦0.7;0.01<SGI421/(SGI421+TP4)≦0.7。 In the optical imaging system of the present invention, the horizontal displacement distance parallel to the optical axis between the intersection of the fourth lens object side on the optical axis and the inversion point of the optical axis of the fourth lens object side is represented by SGI411, and the fourth lens image The horizontal displacement distance parallel to the optical axis between the intersection of the side on the optical axis and the inflection point of the optical axis closest to the side of the fourth lens image is represented by SGI421, which satisfies the following condition: 0<SGI411/(SGI411+TP4)≦0.9 ; 0 < SGI421 / (SGI421 + TP4) ≦ 0.9. Preferably, the following conditions are satisfied: 0.01 < SGI411 / (SGI411 + TP4) ≦ 0.7; 0.01 < SGI421 / (SGI421 + TP4) ≦ 0.7.

第四透鏡物側面於光軸上的交點至第四透鏡物側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI412表示,第四透鏡像側面於光軸上的交點至第四透鏡像側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI422表示,其滿足下列條件:0<SGI412/(SGI412+TP4)≦0.9;0<SGI422/(SGI422+TP4)≦0.9。較佳地,可滿足下列條件:0.1≦SGI412/(SGI412+TP4)≦0.8;0.1≦SGI422/(SGI422+TP4)≦0.8。 The horizontal displacement distance parallel to the optical axis between the intersection of the side of the fourth lens object on the optical axis to the inflection point of the second lens object and the second optical axis is represented by SGI 412, and the side of the fourth lens image is on the optical axis. The horizontal displacement distance parallel to the optical axis between the intersection point and the inflection point of the second lens image side of the fourth lens image side is represented by SGI422, which satisfies the following condition: 0<SGI412/(SGI412+TP4)≦0.9; 0<SGI422 /(SGI422+TP4)≦0.9. Preferably, the following conditions are satisfied: 0.1 ≦ SGI 412 / (SGI 412 + TP 4 ) ≦ 0.8; 0.1 ≦ SGI 422 / (SGI 422 + TP 4 ) ≦ 0.8.

第四透鏡物側面最近光軸的反曲點與光軸間的垂直距離以HIF411表示,第四透鏡像側面於光軸上的交點至第四透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF421表示,其滿足下列條件:0.01≦HIF411/HOI≦0.9;0.01≦HIF421/HOI≦0.9。較佳地,可滿足下列條件:0.09≦ HIF411/HOI≦0.5;0.09≦HIF421/HOI≦0.5。 The vertical distance between the inflection point of the optical axis and the optical axis of the side of the fourth lens object is represented by HIF411, and the intersection of the fourth lens image side on the optical axis and the optical axis of the optical axis near the side of the fourth lens image The vertical distance between them is represented by HIF421, which satisfies the following conditions: 0.01 ≦ HIF411/HOI ≦ 0.9; 0.01 ≦ HIF421/HOI ≦ 0.9. Preferably, the following conditions are met: 0.09≦ HIF411/HOI≦0.5; 0.09≦HIF421/HOI≦0.5.

第四透鏡物側面第二接近光軸的反曲點與光軸間的垂直距離以HIF412表示,第四透鏡像側面於光軸上的交點至第四透鏡像側面第二接近光軸的反曲點與光軸間的垂直距離以HIF422表示,其滿足下列條件:0.01≦HIF412/HOI≦0.9;0.01≦HIF422/HOI≦0.9。較佳地,可滿足下列條件:0.09≦HIF412/HOI≦0.8;0.09≦HIF422/HOI≦0.8。 The vertical distance between the inflection point of the second lens object near the optical axis and the optical axis is represented by HIF412, and the intersection of the fourth lens image side on the optical axis to the fourth lens image side and the second optical axis is reversed. The vertical distance between the point and the optical axis is represented by HIF 422, which satisfies the following conditions: 0.01 ≦ HIF 412 / HOI ≦ 0.9; 0.01 ≦ HIF 422 / HOI ≦ 0.9. Preferably, the following conditions are satisfied: 0.09 ≦ HIF 412 / HOI ≦ 0.8; 0.09 ≦ HIF 422 / HOI ≦ 0.8.

第四透鏡物側面第三接近光軸的反曲點與光軸間的垂直距離以HIF413表示,第四透鏡像側面於光軸上的交點至第四透鏡像側面第三接近光軸的反曲點與光軸間的垂直距離以HIF423表示,其滿足下列條件:0.001mm≦|HIF413|≦5mm;0.001mm≦|HIF423|≦5mm。較佳地,可滿足下列條件:0.1mm≦|HIF423|≦3.5mm;0.1mm≦|HIF413|≦3.5mm。 The vertical distance between the inflection point of the third lens object near the optical axis and the optical axis is represented by HIF413, and the intersection of the fourth lens image side on the optical axis to the fourth lens image side and the third optical axis is reversed. The vertical distance between the point and the optical axis is represented by HIF 423, which satisfies the following conditions: 0.001 mm ≦ | HIF 413 | ≦ 5 mm; 0.001 mm ≦ | HIF 423 | ≦ 5 mm. Preferably, the following conditions are satisfied: 0.1 mm ≦ | HIF 423 | ≦ 3.5 mm; 0.1 mm ≦ | HIF 413 | ≦ 3.5 mm.

第四透鏡物側面第四接近光軸的反曲點與光軸間的垂直距離以HIF414表示,第四透鏡像側面於光軸上的交點至第四透鏡像側面第四接近光軸的反曲點與光軸間的垂直距離以HIF424表示,其滿足下列條件:0.001mm≦|HIF414|≦5mm;0.001mm≦|HIF424|≦5mm。較佳地,可滿足下列條件:0.1mm≦|HIF424|≦3.5mm;0.1mm≦|HIF414|≦3.5mm。 The vertical distance between the inflection point of the fourth lens side near the optical axis and the optical axis is represented by HIF 414, and the intersection of the fourth lens image side on the optical axis and the fourth lens image side is close to the optical axis. The vertical distance between the point and the optical axis is represented by HIF 424, which satisfies the following conditions: 0.001 mm ≦ | HIF 414 | ≦ 5 mm; 0.001 mm ≦ | HIF 424 | ≦ 5 mm. Preferably, the following conditions are satisfied: 0.1 mm ≦ | HIF 424 | ≦ 3.5 mm; 0.1 mm ≦ | HIF 414 | ≦ 3.5 mm.

本創作的光學成像系統之一種實施方式,可藉由具有高色散係數與低色散係數之透鏡交錯排列,而助於光學成像系統色差的修正。 An embodiment of the optical imaging system of the present invention can assist in the correction of the chromatic aberration of the optical imaging system by staggering the lenses having a high dispersion coefficient and a low dispersion coefficient.

上述非球面之方程式係為:z=ch2/[1+[1(k+1)c2h2]0.5]+A4h4+A6h6+A8h8+A10h10+A12h12+A14h14+A16h16+A18h18+A20h20+... (1) The above aspheric equation is: z = ch 2 / [1 + [1 (k + 1) c 2 h 2 ] 0.5 ] + A4h 4 + A6h 6 + A8h 8 + A10h 10 + A12h 12 + A14h 14 + A16h 16 +A18h 18 +A20h 20 +... (1)

其中,z為沿光軸方向在高度為h的位置以表面頂點作參考的位置值,k為錐面係數,c為曲率半徑的倒數,且A4、 A6、A8、A10、A12、A14、A16、A18以及A20為高階非球面係數。 Where z is the position value at the height h of the position along the optical axis with reference to the surface apex, k is the cone coefficient, c is the reciprocal of the radius of curvature, and A4, A6, A8, A10, A12, A14, A16, A18, and A20 are high-order aspherical coefficients.

本創作提供的光學成像系統中,透鏡的材質可為塑膠或玻璃。當透鏡材質為塑膠,可以有效降低生產成本與重量。另當透鏡的材質為玻璃,則可以控制熱效應並且增加光學成像系統屈折力配置的設計空間。此外,光學成像系統中第一透鏡至第四透鏡的物側面及像側面可為非球面,其可獲得較多的控制變數,除用以消減像差外,相較於傳統玻璃透鏡的使用甚至可縮減透鏡使用的數目,因此能有效降低本創作光學成像系統的總高度。 In the optical imaging system provided by the present invention, the lens may be made of plastic or glass. When the lens is made of plastic, it can effectively reduce production cost and weight. In addition, when the lens is made of glass, it can control the thermal effect and increase the design space of the optical imaging system's refractive power configuration. In addition, the object side and the image side of the first to fourth lenses in the optical imaging system may be aspherical, which can obtain more control variables, in addition to reducing aberrations, compared to the use of conventional glass lenses. The number of lenses used can be reduced, thus effectively reducing the overall height of the present optical imaging system.

再者,本創作提供的光學成像系統中,若透鏡表面係為凸面,則表示透鏡表面於近光軸處為凸面;若透鏡表面係為凹面,則表示透鏡表面於近光軸處為凹面。 Furthermore, in the optical imaging system provided by the present invention, if the surface of the lens is convex, it indicates that the surface of the lens is convex at the near-optical axis; if the surface of the lens is concave, it indicates that the surface of the lens is concave at the near-optical axis.

另外,本創作的光學成像系統中,依需求可設置至少一光欄,以減少雜散光,有助於提昇影像品質。 In addition, in the optical imaging system of the present invention, at least one light bar can be set according to requirements to reduce stray light and help to improve image quality.

本創作的光學成像系統更可視需求應用於移動對焦的光學系統中,並兼具優良像差修正與良好成像品質的特色,從而擴大應用層面。 The optical imaging system of this creation is more suitable for the optical system of moving focus, and has the characteristics of excellent aberration correction and good imaging quality, thereby expanding the application level.

本創作的光學成像系統更可視需求包括一驅動模組,該驅動模組可與該些透鏡相耦合並使該些透鏡產生位移。前述驅動模組可以是音圈馬達(VCM)用於帶動鏡頭進行對焦,或者為光學防手振元件(OIS)用於降低拍攝過程因鏡頭振動所導致失焦的發生頻率。 The optical imaging system of the present invention further includes a driving module that can be coupled to the lenses and cause displacement of the lenses. The aforementioned driving module may be a voice coil motor (VCM) for driving the lens to focus, or an optical anti-vibration element (OIS) for reducing the frequency of defocus caused by lens vibration during the shooting process.

本創作的光學成像系統更可視需求令第一透鏡、第二透鏡、第三透鏡、第四透鏡中至少一透鏡為波長小於500nm之光線濾除元件,其可藉由該特定具濾除功能之透鏡的至少一表面上鍍膜或該透鏡本身即由具可濾除短波長之材質所製作而達成。 The optical imaging system of the present invention further requires that at least one of the first lens, the second lens, the third lens, and the fourth lens be a light filtering component having a wavelength of less than 500 nm, which can be filtered by the specific filtering function. The coating of at least one surface of the lens or the lens itself is achieved by a material having a short wavelength that can be filtered out.

本創作的光學成像系統之成像面更可視需求選 擇為一平面或一曲面。當成像面為一曲面(例如具有一曲率半徑的球面),有助於降低聚焦光線於成像面所需之入射角,除有助於達成微縮光學成像系統之長度(TTL)外,對於提升相對照度同時有所助益。 The imaging surface of the optical imaging system of this creation is more visually selectable Choose a plane or a surface. When the imaging surface is a curved surface (for example, a spherical surface having a radius of curvature), it helps to reduce the incident angle required to focus the light on the imaging surface, in addition to helping to achieve the length (TTL) of the miniature optical imaging system, Illumination also helps.

本創作的一態樣是在提供一種塑膠透鏡定位元件,該塑膠透鏡定位元件可為一體成型,除用以容置與定位本創作的透鏡外,塑膠透鏡定位元件之外壁更包含至少二個成型灌口痕,該些成型灌口痕可以依需求環繞於一軸心(例如光軸)對稱方式設置,可產生較均勻的厚度配置,並提升結構強度。塑膠透鏡定位元件之外壁若具有二個成型灌口痕,則成型灌口痕之間夾角可為180度。塑膠透鏡定位元件之外壁若具有三個成型灌口痕,則成型灌口痕之間夾角可為120度。前述成型灌口痕可依需求設置於物端部之外壁或是設置於像端部之外壁。 One aspect of the present invention is to provide a plastic lens positioning component which can be integrally formed. In addition to accommodating and positioning the lens of the present invention, the outer wall of the plastic lens positioning component further comprises at least two moldings. The irrigating marks can be arranged symmetrically around a central axis (for example, the optical axis) according to requirements, which can produce a relatively uniform thickness configuration and enhance the structural strength. If the outer wall of the plastic lens positioning element has two forming nozzle marks, the angle between the forming nozzle marks can be 180 degrees. If the outer wall of the plastic lens positioning element has three forming nozzle marks, the angle between the forming nozzle marks can be 120 degrees. The forming nozzle mark may be disposed on the outer wall of the object end or on the outer wall of the image end portion as required.

根據上述實施方式,以下提出具體實施例並配合圖式予以詳細說明。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the light of the above-described embodiments, the specific embodiments are described below in detail with reference to the drawings.

第一實施例 First embodiment

請參照第1A圖及第1B圖,其中第1A圖繪示依照本創作第一實施例的一種光學成像系統的示意圖,第1B圖由左至右依序為第一實施例的光學成像系統的球差、像散及光學畸變曲線圖。第1C圖為第一實施例的光學成像系統的子午面光扇以及弧矢面光扇,最長工作波長以及最短工作波長通過光圈邊緣於0.7視場處之橫向像差圖。由第1A圖可知,光學成像系統10由物側至像側依序包含光圈100、第一透鏡110、第二透鏡120、第三透鏡130、第四透鏡140、紅外線濾光片170、成像面180以及影像感測元件190。 Please refer to FIG. 1A and FIG. 1B , wherein FIG. 1A is a schematic diagram of an optical imaging system according to a first embodiment of the present invention. FIG. 1B is a left-to-right sequential optical imaging system of the first embodiment. Spherical aberration, astigmatism and optical distortion curves. 1C is a lateral aberration diagram of the meridional plane fan and the sagittal plane fan of the optical imaging system of the first embodiment, the longest working wavelength and the shortest working wavelength passing through the aperture edge at 0.7 field of view. As can be seen from FIG. 1A, the optical imaging system 10 includes the aperture 100, the first lens 110, the second lens 120, the third lens 130, the fourth lens 140, the infrared filter 170, and the imaging surface in this order from the object side to the image side. 180 and image sensing component 190.

第一透鏡110具有正屈折力,且為塑膠材質,其物側面112為凸面,其像側面114為凹面,並皆為非球面,且其物側面112以及像側面114均具有一反曲點。第一透鏡 物側面的最大有效半徑之輪廓曲線長度以ARS11表示,第一透鏡像側面的最大有效半徑之輪廓曲線長度以ARS12表示。第一透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE11表示,第一透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE12表示。第一透鏡於光軸上之厚度為TP1。 The first lens 110 has a positive refractive power and is made of a plastic material. The object side surface 112 is a convex surface, and the image side surface 114 is a concave surface, and both are aspherical surfaces, and the object side surface 112 and the image side surface 114 each have an inflection point. First lens The length of the profile curve of the maximum effective radius of the side of the object is represented by ARS11, and the length of the profile curve of the maximum effective radius of the side of the first lens image is represented by ARS12. The length of the profile curve of the 1/2 incident pupil diameter (HEP) of the side of the first lens object is represented by ARE11, and the length of the profile curve of the 1/2 incident pupil diameter (HEP) of the side of the first lens image is represented by ARE12. The thickness of the first lens on the optical axis is TP1.

第一透鏡物側面於光軸上的交點至第一透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI111表示,第一透鏡像側面於光軸上的交點至第一透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI121表示,其滿足下列條件:SGI111=0.2008mm;SGI121=0.0113mm;|SGI111|/(|SGI111|+TP1)=0.3018;|SGI121|/(|SGI121|+TP1)=0.0238。 The horizontal displacement distance parallel to the optical axis between the intersection of the side of the first lens object on the optical axis and the inversion point of the optical axis of the first lens object is represented by SGI 111, and the intersection of the side of the first lens image on the optical axis is The horizontal displacement distance parallel to the optical axis between the inflection points of the nearest optical axis of the first lens image side is represented by SGI121, which satisfies the following conditions: SGI111=0.2008mm; SGI121=0.0113mm; |SGI111|/(|SGI111|+ TP1)=0.3018;|SGI121|/(|SGI121|+TP1)=0.0238.

第一透鏡物側面於光軸上的交點至第一透鏡物側面最近光軸的反曲點與光軸間的垂直距離以HIF111表示,第一透鏡像側面於光軸上的交點至第一透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF121表示,其滿足下列條件:HIF111=0.7488mm;HIF121=0.4451mm;HIF111/HOI=0.2552;HIF121/HOI=0.1517。 The vertical distance between the inflection point of the optical axis and the optical axis of the first lens object on the optical axis to the side of the first lens object is represented by HIF111, and the intersection of the first lens image side on the optical axis to the first through The vertical distance between the inflection point of the nearest optical axis and the optical axis of the mirror side is represented by HIF121, which satisfies the following conditions: HIF111=0.7488 mm; HIF121=0.4451 mm; HIF111/HOI=0.2552; HIF121/HOI=0.1517.

第二透鏡120具有正屈折力,且為塑膠材質,其物側面122為凹面,其像側面124為凸面,並皆為非球面,且其物側面122具有一反曲點。第二透鏡物側面的最大有效半徑之輪廓曲線長度以ARS21表示,第二透鏡像側面的最大有效半徑之輪廓曲線長度以ARS22表示。第二透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE21表示,第二透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE22表示。第二透鏡於光軸上之厚度為TP2。 The second lens 120 has a positive refractive power and is made of a plastic material. The object side surface 122 is a concave surface, and the image side surface 124 is a convex surface, and both are aspherical surfaces, and the object side surface 122 has an inflection point. The profile curve length of the maximum effective radius of the side of the second lens object is represented by ARS21, and the profile curve length of the maximum effective radius of the side of the second lens image is represented by ARS22. The length of the contour curve of the 1/2 incident pupil diameter (HEP) of the side surface of the second lens object is represented by ARE21, and the length of the contour curve of the 1/2 incident pupil diameter (HEP) of the side surface of the second lens image is represented by ARE22. The thickness of the second lens on the optical axis is TP2.

第二透鏡物側面於光軸上的交點至第二透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI211表示,第二透鏡像側面於光軸上的交點至第二透鏡像 側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI221表示,其滿足下列條件:SGI211=-0.1791mm;|SGI211|/(|SGI211|+TP2)=0.3109。 The horizontal displacement distance parallel to the optical axis between the intersection of the side of the second lens object on the optical axis and the inversion point of the optical axis of the second lens object is represented by SGI211, and the intersection of the side of the second lens image on the optical axis is Second lens image The horizontal displacement distance parallel to the optical axis between the inflection points of the nearest optical axis of the side surface is represented by SGI221, which satisfies the following condition: SGI211=-0.1791 mm; |SGI211|/(|SGI211|+TP2)=0.3109.

第二透鏡物側面於光軸上的交點至第二透鏡物側面最近光軸的反曲點與光軸間的垂直距離以HIF211表示,第二透鏡像側面於光軸上的交點至第二透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF221表示,其滿足下列條件:HIF211=0.8147mm;HIF211/HOI=0.2777。 The vertical distance between the intersection of the side of the second lens object on the optical axis and the optical axis of the second lens object to the optical axis is represented by HIF211, and the intersection of the second lens image side on the optical axis to the second through The vertical distance between the inflection point of the nearest optical axis and the optical axis of the mirror side is represented by HIF221, which satisfies the following conditions: HIF211=0.8147 mm; HIF211/HOI=0.2777.

第三透鏡130具有負屈折力,且為塑膠材質,其物側面132為凹面,其像側面134為凸面,並皆為非球面,且其像側面134具有一反曲點。第三透鏡物側面的最大有效半徑之輪廓曲線長度以ARS31表示,第三透鏡像側面的最大有效半徑之輪廓曲線長度以ARS32表示。第三透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE31表示,第三透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE32表示。第三透鏡於光軸上之厚度為TP3。 The third lens 130 has a negative refractive power and is made of a plastic material. The object side surface 132 is a concave surface, and the image side surface 134 is a convex surface, and both are aspherical surfaces, and the image side surface 134 has an inflection point. The contour curve length of the maximum effective radius of the side surface of the third lens object is represented by ARS31, and the contour curve length of the maximum effective radius of the side surface of the third lens image is represented by ARS32. The length of the contour curve of the 1/2 incident pupil diameter (HEP) of the side surface of the third lens object is represented by ARE31, and the length of the contour curve of the 1/2 incident pupil diameter (HEP) of the side surface of the third lens image is represented by ARE32. The thickness of the third lens on the optical axis is TP3.

第三透鏡物側面於光軸上的交點至第三透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI311表示,第三透鏡像側面於光軸上的交點至第三透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI321表示,其滿足下列條件:SGI321=-0.1647mm;|SGI321|/(|SGI321|+TP3)=0.1884。 The horizontal displacement distance parallel to the optical axis between the intersection of the side of the third lens object on the optical axis and the inversion point of the optical axis of the third lens object is represented by SGI311, and the intersection of the side of the third lens image on the optical axis is The horizontal displacement distance parallel to the optical axis between the inflection points of the nearest optical axis of the third lens image side is represented by SGI 321, which satisfies the following condition: SGI321=-0.1647 mm; |SGI321|/(|SGI321|+TP3)=0.1884 .

第三透鏡物側面最近光軸的反曲點與光軸間的垂直距離以HIF311表示,第三透鏡像側面於光軸上的交點至第三透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF321表示,其滿足下列條件:HIF321=0.7269mm;HIF321/HOI=0.2477。 The vertical distance between the inflection point of the optical axis and the optical axis of the side of the third lens object is represented by HIF311, and the intersection of the third lens image side on the optical axis and the optical axis of the optical axis near the side of the third lens image The vertical distance between them is represented by HIF 321, which satisfies the following conditions: HIF321 = 0.7269 mm; HIF321 / HOI = 0.2477.

第四透鏡140具有負屈折力,且為塑膠材質,其物側面142為凸面,其像側面144為凹面,並皆為非球面, 且其物側面142具有二反曲點以及像側面144具有一反曲點。第四透鏡物側面的最大有效半徑之輪廓曲線長度以ARS41表示,第四透鏡像側面的最大有效半徑之輪廓曲線長度以ARS42表示。第四透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE41表示,第四透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE42表示。第四透鏡於光軸上之厚度為TP4。 The fourth lens 140 has a negative refractive power and is made of a plastic material. The object side surface 142 is a convex surface, and the image side surface 144 is a concave surface, and both are aspherical. And its object side 142 has two inflection points and the image side 144 has an inflection point. The contour curve length of the maximum effective radius of the side surface of the fourth lens object is represented by ARS41, and the contour curve length of the maximum effective radius of the side surface of the fourth lens image is represented by ARS42. The length of the contour curve of the 1/2 incident pupil diameter (HEP) of the side surface of the fourth lens object is represented by ARE41, and the length of the contour curve of the 1/2 incident pupil diameter (HEP) of the side surface of the fourth lens image is represented by ARE42. The thickness of the fourth lens on the optical axis is TP4.

第四透鏡物側面於光軸上的交點至第四透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI411表示,第四透鏡像側面於光軸上的交點至第四透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI421表示,其滿足下列條件:SGI411=0.0137mm;SGI421=0.0922mm;|SGI411|/(|SGI411|+TP4)=0.0155;|SGI421|/(|SGI421|+TP4)=0.0956。 The horizontal displacement distance parallel to the optical axis between the intersection of the side of the fourth lens object on the optical axis and the inversion point of the optical axis of the fourth lens object is indicated by SGI411, and the intersection of the side of the fourth lens image on the optical axis is The horizontal displacement distance parallel to the optical axis between the inflection points of the nearest optical axis of the fourth lens image side is represented by SGI421, which satisfies the following conditions: SGI411=0.0137 mm; SGI421=0.0922 mm; |SGI411|/(|SGI411|+ TP4)=0.0155;|SGI421|/(|SGI421|+TP4)=0.0956.

第四透鏡物側面於光軸上的交點至第四透鏡物側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI412表示,其滿足下列條件:SGI412=-0.1518mm;|SGI412|/(|SGI412|+TP4)=0.1482。 The horizontal displacement distance parallel to the optical axis between the intersection of the side of the fourth lens object on the optical axis and the inversion point of the second lens object near the optical axis is represented by SGI 412, which satisfies the following condition: SGI412=-0.1518mm ;|SGI412|/(|SGI412|+TP4)=0.1482.

第四透鏡物側面最近光軸的反曲點與光軸間的垂直距離以HIF411表示,第四透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF411表示,其滿足下列條件:HIF411=0.2890mm;HIF421=0.5794mm;HIF411/HOI=0.0985;HIF421/HOI=0.1975。 The vertical distance between the inflection point of the optical axis and the optical axis of the side of the fourth lens object is represented by HIF411, and the vertical distance between the inflection point of the optical axis of the fourth lens image and the optical axis is represented by HIF411, which satisfies the following conditions : HIF411 = 0.2890 mm; HIF421 = 0.5794 mm; HIF411/HOI = 0.0985; HIF421/HOI = 0.11975.

第四透鏡物側面第二近光軸的反曲點與光軸間的垂直距離以HIF412表示,其滿足下列條件:HIF412=1.3328mm;HIF412/HOI=0.4543。 The vertical distance between the inflection point of the second near-optical axis of the fourth lens object and the optical axis is represented by HIF 412, which satisfies the following conditions: HIF412 = 1.3328 mm; HIF412 / HOI = 0.4543.

紅外線濾光片170為玻璃材質,其設置於第四透鏡140及成像面180間且不影響光學成像系統的焦距。 The infrared filter 170 is made of glass and is disposed between the fourth lens 140 and the imaging surface 180 without affecting the focal length of the optical imaging system.

第一實施例的光學成像系統中,光學成像系統的 焦距為f,光學成像系統之入射瞳直徑為HEP,光學成像系統中最大視角的一半為HAF,其數值如下:f=3.4375mm;f/HEP=2.23;以及HAF=39.69度與tan(HAF)=0.8299。 In the optical imaging system of the first embodiment, the optical imaging system The focal length is f, the entrance pupil diameter of the optical imaging system is HEP, and the half of the maximum viewing angle in the optical imaging system is HAF. The values are as follows: f=3.4375mm; f/HEP=2.23; and HAF=39.69 degrees and tan(HAF) =0.8299.

第一實施例的光學成像系統中,第一透鏡110的焦距為f1,第四透鏡140的焦距為f4,其滿足下列條件:f1=3.2736mm;|f/f1|=1.0501;f4=-8.3381mm;以及|f1/f4|=0.3926。 In the optical imaging system of the first embodiment, the focal length of the first lens 110 is f1, and the focal length of the fourth lens 140 is f4, which satisfies the following conditions: f1 = 3.2736 mm; |f/f1| = 1.0501; f4 = -8.3381 Mm; and |f1/f4|=0.3926.

第一實施例的光學成像系統中,第二透鏡120至第三透鏡130的焦距分別為f2、f3,其滿足下列條件:|f2|+|f3|=10.0976mm;|f1|+|f4|=11.6116mm以及|f2|+|f3|<|f1|+|f4|。 In the optical imaging system of the first embodiment, the focal lengths of the second lens 120 to the third lens 130 are f2 and f3, respectively, which satisfy the following conditions: |f2|+|f3|=10.0976 mm; |f1|+|f4| =11.6116mm and |f2|+|f3|<|f1|+|f4|.

光學成像系統的焦距f與每一片具有正屈折力之透鏡的焦距fp之比值PPR,光學成像系統的焦距f與每一片具有負屈折力之透鏡的焦距fn之比值NPR,第一實施例的光學成像系統中,所有正屈折力之透鏡的PPR總和為ΣPPR=|f/f1|+|f/f2|=1.95585,所有負屈折力之透鏡的NPR總和為ΣNPR=|f/f3|+|f/f4|=0.95770,Σ PPR/|Σ NPR|=2.04224。同時亦滿足下列條件:|f/f1|=1.05009;|f/f2|=0.90576;|f/f3|=0.54543;|f/f4|=0.41227。 The ratio of the focal length f of the optical imaging system to the focal length fp of each lens having a positive refractive power, the ratio of the focal length f of the optical imaging system to the focal length fn of each lens having a negative refractive power, the optical of the first embodiment In the imaging system, the sum of the PPRs of all positive refractive power lenses is ΣPPR=|f/f1|+|f/f2|=1.95585, and the NPR sum of all negative refractive power lenses is ΣNPR=|f/f3|+|f /f4|=0.95770, Σ PPR/|Σ NPR|=2.04224. The following conditions are also satisfied: |f/f1|=1.05009;|f/f2|=0.90576;|f/f3|=0.54543;|f/f4|=0.41227.

第一實施例的光學成像系統中,第一透鏡物側面112至第四透鏡像側面144間的距離為InTL,第一透鏡物側面112至成像面180間的距離為HOS,光圈100至成像面180間的距離為InS,影像感測元件190有效感測區域對角線長的一半為HOI,第四透鏡像側面144至成像面180間的距離為InB,其滿足下列條件:InTL+InB=HOS;HOS=4.4250mm;HOI=2.9340mm;HOS/HOI=1.5082;HOS/f=1.2873;InTL/HOS=0.7191;InS=4.2128mm;以及InS/HOS=0.95204。 In the optical imaging system of the first embodiment, the distance between the first lens object side surface 112 to the fourth lens image side surface 144 is InTL, and the distance between the first lens object side surface 112 and the imaging surface 180 is HOS, and the aperture 100 to the imaging surface The distance between 180 is InS, the half of the diagonal length of the effective sensing region of the image sensing element 190 is HOI, and the distance between the fourth lens image side 144 and the imaging surface 180 is InB, which satisfies the following condition: InTL+InB= HOS; 4.6250 mm; HOI=2.9340 mm; HOS/HOI=1.5082; HOS/f=1.2873; InTL/HOS=0.7191; InS=4.2128 mm; and InS/HOS=0.95204.

第一實施例的光學成像系統中,於光軸上所有具屈折力之透鏡的厚度總和為Σ TP,其滿足下列條件:Σ TP=2.4437mm;以及Σ TP/InTL=0.76793。藉此,當可同時兼顧系統成像的對比度以及透鏡製造的良率並提供適當的後焦距以容置其他元件。 In the optical imaging system of the first embodiment, the sum of the thicknesses of all the refractive power lenses on the optical axis is Σ TP, which satisfies the following conditions: TP = 2.4437 mm; and Σ TP / InTL = 0.77673. Thereby, the contrast of the system imaging and the yield of the lens manufacturing can be simultaneously taken into consideration and an appropriate back focus can be provided to accommodate other components.

第一實施例的光學成像系統中,第一透鏡物側面112的曲率半徑為R1,第一透鏡像側面114的曲率半徑為R2,其滿足下列條件:|R1/R2|=0.1853。藉此,第一透鏡的具備適當正屈折力強度,避免球差增加過速。 In the optical imaging system of the first embodiment, the radius of curvature of the first lens object side surface 112 is R1, and the radius of curvature of the first lens image side surface 114 is R2, which satisfies the following condition: |R1/R2|=0.1853. Thereby, the first lens is provided with an appropriate positive refractive power to prevent the spherical aberration from increasing excessively.

第一實施例的光學成像系統中,第四透鏡物側面142的曲率半徑為R7,第四透鏡像側面144的曲率半徑為R8,其滿足下列條件:(R7-R8)/(R7+R8)=0.2756。藉此,有利於修正光學成像系統所產生的像散。 In the optical imaging system of the first embodiment, the radius of curvature of the fourth lens object side surface 142 is R7, and the radius of curvature of the fourth lens image side surface 144 is R8, which satisfies the following condition: (R7-R8) / (R7 + R8) =0.2756. Thereby, it is advantageous to correct the astigmatism generated by the optical imaging system.

第一實施例的光學成像系統中,第一透鏡110與第二透鏡120之個別焦距分別為f1、f2,所有具正屈折力的透鏡之焦距總和為Σ PP,其滿足下列條件:Σ PP=f1+f2=7.0688mm;以及f1/(f1+f2)=0.4631。藉此,有助於適當分配第一透鏡110之正屈折力至其他正透鏡,以抑制入射光線行進過程顯著像差的產生。 In the optical imaging system of the first embodiment, the individual focal lengths of the first lens 110 and the second lens 120 are f1 and f2, respectively, and the total focal length of all lenses having positive refractive power is Σ PP, which satisfies the following conditions: Σ PP = F1 + f2 = 7.0688 mm; and f1/(f1 + f2) = 0.4631. Thereby, it is helpful to appropriately distribute the positive refractive power of the first lens 110 to other positive lenses to suppress the generation of significant aberrations during the traveling of the incident light.

第一實施例的光學成像系統中,第三透鏡130與第四透鏡140之個別焦距分別為f3以及f4,所有具負屈折力的透鏡之焦距總和為Σ NP,其滿足下列條件:Σ NP=f3+f4=-14.6405mm;以及f4/(f2+f4)=0.5695。藉此,有助於適當分配第四透鏡之負屈折力至其他負透鏡,以抑制入射光線行進過程顯著像差的產生。 In the optical imaging system of the first embodiment, the respective focal lengths of the third lens 130 and the fourth lens 140 are f3 and f4, respectively, and the sum of the focal lengths of all lenses having negative refractive power is Σ NP, which satisfies the following condition: Σ NP = F3 + f4 = -14.6405 mm; and f4 / (f2 + f4) = 0.5695. Thereby, it is helpful to appropriately distribute the negative refractive power of the fourth lens to the other negative lenses to suppress the generation of significant aberrations during the traveling of the incident light.

第一實施例的光學成像系統中,第一透鏡110與第二透鏡120於光軸上的間隔距離為IN12,其滿足下列條件:IN12=0.3817mm;IN12/f=0.11105。藉此,有助於改善透鏡的色差以提升其性能。 In the optical imaging system of the first embodiment, the distance between the first lens 110 and the second lens 120 on the optical axis is IN12, which satisfies the following conditions: IN12=0.3817 mm; IN12/f=0.11105. Thereby, it helps to improve the chromatic aberration of the lens to improve its performance.

第一實施例的光學成像系統中,第二透鏡120與第三透鏡130於光軸上的間隔距離為IN23,其滿足下列條件: IN23=0.0704mm;IN23/f=0.02048。藉此,有助於改善透鏡的色差以提升其性能。 In the optical imaging system of the first embodiment, the distance between the second lens 120 and the third lens 130 on the optical axis is IN23, which satisfies the following conditions: IN23=0.0704mm; IN23/f=0.02048. Thereby, it helps to improve the chromatic aberration of the lens to improve its performance.

第一實施例的光學成像系統中,第三透鏡130與第四透鏡140於光軸上的間隔距離為IN34,其滿足下列條件:IN34=0.2863mm;IN34/f=0.08330。藉此,有助於改善透鏡的色差以提升其性能。 In the optical imaging system of the first embodiment, the distance between the third lens 130 and the fourth lens 140 on the optical axis is IN34, which satisfies the following conditions: IN34=0.2863 mm; IN34/f=0.08330. Thereby, it helps to improve the chromatic aberration of the lens to improve its performance.

第一實施例的光學成像系統中,第一透鏡110與第二透鏡120於光軸上的厚度分別為TP1以及TP2,其滿足下列條件:TP1=0.46442mm;TP2=0.39686mm;TP1/TP2=1.17023以及(TP1+IN12)/TP2=2.13213。藉此,有助於控制光學成像系統製造的敏感度並提升其性能。 In the optical imaging system of the first embodiment, the thicknesses of the first lens 110 and the second lens 120 on the optical axis are TP1 and TP2, respectively, which satisfy the following conditions: TP1=0.46442 mm; TP2=0.39686 mm; TP1/TP2= 1.17023 and (TP1+IN12)/TP2=2.13213. Thereby, it helps to control the sensitivity of the optical imaging system manufacturing and improve its performance.

第一實施例的光學成像系統中,第三透鏡130與第四透鏡140於光軸上的厚度分別為TP3以及TP4,前述兩透鏡於光軸上的間隔距離為IN34,其滿足下列條件:TP3=0.70989mm;TP4=0.87253mm;TP3/TP4=0.81359以及(TP4+IN34)/TP3=1.63248。藉此,有助於控制光學成像系統製造的敏感度並降低系統總高度。 In the optical imaging system of the first embodiment, the thicknesses of the third lens 130 and the fourth lens 140 on the optical axis are TP3 and TP4, respectively, and the distance between the two lenses on the optical axis is IN34, which satisfies the following condition: TP3 =0.70989mm; TP4=0.87253mm; TP3/TP4=0.81359 and (TP4+IN34)/TP3=1.63248. Thereby, it helps to control the sensitivity of the optical imaging system manufacturing and reduce the overall height of the system.

第一實施例的光學成像系統中,其滿足下列條件:IN23/(TP2+IN23+TP3)=0.05980。藉此有助層層微幅修正入射光行進過程所產生的像差並降低系統總高度。 In the optical imaging system of the first embodiment, it satisfies the following condition: IN23/(TP2+IN23+TP3)=0.05980. This helps the layer to slightly correct the aberration generated by the incident light and reduce the total height of the system.

第一實施例的光學成像系統中,第四透鏡物側面142於光軸上的交點至第四透鏡物側面142的最大有效半徑位置於光軸的水平位移距離為InRS41,第四透鏡像側面144於光軸上的交點至第四透鏡像側面144的最大有效半徑位置於光軸的水平位移距離為InRS42,第四透鏡140於光軸上的厚度為TP4,其滿足下列條件:InRS41=-0.23761mm;InRS42=-0.20206mm;|InRS41|+|InRS42|=0.43967mm;|InRS41|/TP4=0.27232;以及|InRS42|/TP4=0.23158。藉此有利於鏡片製作與成型,並有效維持其小型化。 In the optical imaging system of the first embodiment, the horizontal displacement distance of the fourth lens object side surface 142 from the intersection on the optical axis to the maximum effective radius position of the fourth lens object side 142 on the optical axis is InRS41, and the fourth lens image side 144 The horizontal effective displacement distance from the intersection of the intersection on the optical axis to the fourth lens image side 144 on the optical axis is InRS42, and the thickness of the fourth lens 140 on the optical axis is TP4, which satisfies the following condition: InRS41=-0.23761 Mm; InRS42=-0.20206mm; |InRS41|+|InRS42|=0.43967mm;|InRS41|/TP4=0.27232; and |InRS42|/TP4=0.23158. This is advantageous for lens fabrication and molding, and effectively maintains its miniaturization.

本實施例的光學成像系統中,第四透鏡物側面142的臨界點C41與光軸的垂直距離為HVT41,第四透鏡像側面144的臨界點C42與光軸的垂直距離為HVT42,其滿足下列條件:HVT41=0.5695mm;HVT42=1.3556mm;HVT41/HVT42=0.4201。藉此,可有效修正離軸視場的像差。 In the optical imaging system of the embodiment, the vertical distance between the critical point C41 of the fourth lens object side surface 142 and the optical axis is HVT41, and the vertical distance between the critical point C42 of the fourth lens image side surface 144 and the optical axis is HVT42, which satisfies the following Conditions: HVT41 = 0.5695 mm; HVT42 = 1.3556 mm; HVT41 / HVT42 = 0.4201. Thereby, the aberration of the off-axis field of view can be effectively corrected.

本實施例的光學成像系統其滿足下列條件:HVT42/HOI=0.4620。藉此,有助於光學成像系統之週邊視場的像差修正。 The optical imaging system of this embodiment satisfies the following conditions: HVT42/HOI = 0.4620. Thereby, it contributes to the aberration correction of the peripheral field of view of the optical imaging system.

本實施例的光學成像系統其滿足下列條件:HVT42/HOS=0.3063。藉此,有助於光學成像系統之週邊視場的像差修正。 The optical imaging system of this embodiment satisfies the following conditions: HVT42/HOS = 0.3063. Thereby, it contributes to the aberration correction of the peripheral field of view of the optical imaging system.

第一實施例的光學成像系統中,第一透鏡的色散係數為NA1,第二透鏡的色散係數為NA2,第三透鏡的色散係數為NA3,第四透鏡的色散係數為NA4,其滿足下列條件:|NA1-NA2|=0;NA3/NA2=0.39921。藉此,有助於光學成像系統色差的修正。 In the optical imaging system of the first embodiment, the first lens has a dispersion coefficient of NA1, the second lens has a dispersion coefficient of NA2, the third lens has a dispersion coefficient of NA3, and the fourth lens has a dispersion coefficient of NA4, which satisfies the following conditions. :|NA1-NA2|=0; NA3/NA2=0.39921. Thereby, it contributes to the correction of the chromatic aberration of the optical imaging system.

第一實施例的光學成像系統中,光學成像系統於結像時之 In the optical imaging system of the first embodiment, the optical imaging system is in the image formation

TV畸變為TDT,結像時之光學畸變為ODT,其滿足下列條件:|TDT|=0.4%;|ODT|=2.5%。 The TV distortion is changed to TDT, and the optical distortion at the time of image formation becomes ODT, which satisfies the following conditions: |TDT|=0.4%;|ODT|=2.5%.

本實施例的光學成像系統中,正向子午面光扇圖之最長工作波長通過光圈邊緣入射在成像面上0.7視場之橫向像差以PLTA表示,其為0.001mm(像素大小Pixel Size為1.12μm),正向子午面光扇圖之最短工作波長通過光圈邊緣入射在成像面上0.7視場之橫向像差以PSTA表示,其為0.004mm(像素大小Pixel Size為1.12μm),負向子午面光扇圖之最長工作波長通過光圈邊緣入射在成像面上0.7視場之橫向像差以NLTA表示,其為0.003mm(像素大小Pixel Size為1.12μm),負向子午面光扇圖之最短工作波長通過光圈邊緣入射 在成像面上0.7視場之橫向像差以NSTA表示,其為-0.003mm(像素大小Pixel Size為1.12μm)。弧矢面光扇圖之最長工作波長通過光圈邊緣入射在成像面上0.7視場之橫向像差以SLTA表示,其為0.003mm(像素大小Pixel Size為1.12μm),弧矢面光扇圖之最短工作波長通過光圈邊緣入射在成像面上0.7視場之橫向像差以SSTA表示,其為0.004mm(像素大小Pixel Size為1.12μm)。 In the optical imaging system of the present embodiment, the longest operating wavelength of the forward meridional plane fan pattern is incident on the imaging plane through the aperture edge. The lateral aberration of the field of view is represented by PLTA, which is 0.001 mm (pixel size Pixel Size is 1.12). Μm), the shortest working wavelength of the forward meridional plane fan pattern is incident on the imaging plane through the aperture edge. The lateral aberration of the field of view is represented by PSTA, which is 0.004 mm (Pixel Size is 1.12 μm), negative meridian The longest working wavelength of the surface fan pattern is incident on the imaging surface through the aperture edge. The lateral aberration of the field of view is represented by NLTA, which is 0.003 mm (Pixel Size is 1.12 μm), and the shortest radial meroscopic fan pattern is the shortest. Operating wavelength incident through the edge of the aperture The lateral aberration of the 0.7 field of view on the imaging plane is represented by NSTA, which is -0.003 mm (Pixel Size is 1.12 μm). The longest working wavelength of the sagittal plane fan pattern is incident on the imaging plane through the aperture edge. The lateral aberration of the field of view is represented by SLTA, which is 0.003 mm (Pixel Size is 1.12 μm), and the shortest operation of the sagittal plane fan pattern The wavelength is incident on the imaging plane through the aperture edge. The lateral aberration of the field of view is represented by SSTA, which is 0.004 mm (Pixel Size is 1.12 μm).

請參照第7圖,本實施例之鏡片定位元件794,係呈中空且可容置任一透鏡,並使該些透鏡片排列於光軸上,該鏡片定位元件包含有一物端部796以及一像端部798,該物端部796靠近物側且具有一第一開口7962,該像端部798靠近像側具有一第二開口7982,該透鏡定位元件794外壁包含二個切平面799,該些切平面799分別具有一成型灌口痕7992。前述該第一開口7962的內徑為OD,該第二開口7982的內徑為ID,其滿足下列條件:OD=0.8mm;ID=2.82mm;OD/ID=0.2837。該物端部796之最小厚度為OT以及該像端部798之最小厚度為IT,其滿足下列條件:OT=0.1mm;IT=0.3mm;OT/IT=0.33。 Referring to FIG. 7 , the lens positioning component 794 of the embodiment is hollow and can accommodate any lens, and the lens segments are arranged on the optical axis. The lens positioning component includes an object end 796 and a Like the end portion 798, the object end portion 796 is adjacent to the object side and has a first opening 7792. The image end portion 798 has a second opening 7982 near the image side. The outer wall of the lens positioning member 794 includes two tangent planes 799. The cut planes 799 each have a molded irritant 7992. The inner diameter of the first opening 7792 is OD, and the inner diameter of the second opening 7982 is ID, which satisfies the following conditions: OD=0.8 mm; ID=2.82 mm; OD/ID=0.2837. The minimum thickness of the object end 796 is OT and the minimum thickness of the image end 798 is IT, which satisfies the following conditions: OT = 0.1 mm; IT = 0.3 mm; OT / IT = 0.33.

再配合參照下列表一以及表二。 Refer to Table 1 and Table 2 below for reference.

依據表一及表二可得到輪廓曲線長度相關之數值: According to Table 1 and Table 2, the values related to the length of the contour curve can be obtained:

表一為第1圖第一實施例詳細的結構數據,其中曲率半徑、厚度、距離及焦距的單位為mm,且表面0-14依序表示由物側至像側的表面。表二為第一實施例中的非球面數據,其中,k表非球面曲線方程式中的錐面係數,A1-A20則表示各表面第1-20階非球面係數。此外,以下各實施例表格乃對應各實施例的示意圖與像差曲線圖,表格中數據的定義皆與第一實施例的表一及表二的定義相同,在此不加贅述。 Table 1 is the detailed structural data of the first embodiment of Fig. 1, in which the unit of curvature radius, thickness, distance, and focal length is mm, and the surface 0-14 sequentially indicates the surface from the object side to the image side. Table 2 is the aspherical data in the first embodiment, wherein the cone surface coefficients in the a-spherical curve equation of k, and A1-A20 represent the first--20th-order aspheric coefficients of each surface. In addition, the following table of the embodiments corresponds to the schematic diagram and the aberration diagram of the respective embodiments, and the definitions of the data in the table are the same as those of the first embodiment and the second embodiment, and are not described herein.

第二實施例 Second embodiment

請參照第2A圖及第2B圖,其中第2A圖繪示依照本創作第二實施例的一種光學成像系統的示意圖,第2B圖由左至右依序為第二實施例的光學成像系統的球差、像散及光學畸變曲線圖。第2C圖為第二實施例的光學成像系統的子午面光扇以及弧矢面光扇,最長工作波長以及最短工作波長通過光圈 邊緣於0.7視場處之橫向像差圖。由第2A圖可知,光學成像系統20由物側至像側依序包含第一透鏡210、光圈200、第二透鏡220、第三透鏡230、第四透鏡240、紅外線濾光片270、成像面280以及影像感測元件290。 Please refer to FIG. 2A and FIG. 2B , wherein FIG. 2A is a schematic diagram of an optical imaging system according to a second embodiment of the present invention, and FIG. 2B is a left-to-right sequential optical imaging system of the second embodiment. Spherical aberration, astigmatism and optical distortion curves. 2C is a meridional plane fan and a sagittal plane fan of the optical imaging system of the second embodiment, the longest working wavelength and the shortest working wavelength pass through the aperture A lateral aberration diagram at the edge of the 0.7 field of view. As can be seen from FIG. 2A, the optical imaging system 20 includes the first lens 210, the aperture 200, the second lens 220, the third lens 230, the fourth lens 240, the infrared filter 270, and the imaging surface in this order from the object side to the image side. 280 and image sensing component 290.

第一透鏡210具有負屈折力,且為塑膠材質,其物側面212為凸面,其像側面214為凹面,並皆為非球面,且其物側面212具有一反曲點。 The first lens 210 has a negative refractive power and is made of a plastic material. The object side surface 212 is a convex surface, and the image side surface 214 is a concave surface, and both are aspherical surfaces, and the object side surface 212 has an inflection point.

第二透鏡220具有正屈折力,且為塑膠材質,其物側面222為凸面,其像側面224為凸面,並皆為非球面。 The second lens 220 has a positive refractive power and is made of a plastic material. The object side surface 222 is a convex surface, and the image side surface 224 is a convex surface, and both are aspherical surfaces.

第三透鏡230具有正屈折力,且為塑膠材質,其物側面232為凸面,其像側面234為凸面,並皆為非球面,且其物側面232具有二反曲點以及像側面234具有一反曲點。 The third lens 230 has a positive refractive power and is made of a plastic material. The object side surface 232 is a convex surface, the image side surface 234 is a convex surface, and both are aspherical surfaces, and the object side surface 232 has two inflection points and the image side surface 234 has a Recurve point.

第四透鏡240具有負屈折力,且為塑膠材質,其物側面242為凹面,其像側面244為凹面,並皆為非球面,且其像側面244具有一反曲點。 The fourth lens 240 has a negative refractive power and is made of a plastic material. The object side surface 242 is a concave surface, and the image side surface 244 is a concave surface, and both are aspherical surfaces, and the image side surface 244 has an inflection point.

紅外線濾光片270為玻璃材質,其設置於第四透鏡240及成像面280間且不影響光學成像系統的焦距。 The infrared filter 270 is made of glass and is disposed between the fourth lens 240 and the imaging surface 280 without affecting the focal length of the optical imaging system.

請配合參照下列表三以及表四。 Please refer to Table 3 and Table 4 below.

第二實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。 In the second embodiment, the aspherical curve equation represents the form as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and are not described herein.

依據表三及表四可得到下列條件式數值: According to Tables 3 and 4, the following conditional values can be obtained:

依據表三及表四可得到下列條件式數值: According to Tables 3 and 4, the following conditional values can be obtained:

依據表三及表四可得到輪廓曲線長度相關之數值: According to Table 3 and Table 4, the values related to the length of the contour curve can be obtained:

第三實施例 Third embodiment

請參照第3A圖及第3B圖,其中第3A圖繪示依照本創作第三實施例的一種光學成像系統的示意圖,第3B圖由左至右依序為第三實施例的光學成像系統的球差、像散及光學畸變曲線圖。第3C圖為第三實施例的光學成像系統的子午面光扇以及弧矢面光扇,最長工作波長以及最短工作波長通過光圈邊緣於0.7視場處之橫向像差圖。由第3A圖可知,光學成像系統30由物側至像側依序包含第一透鏡310、光圈300、第二透鏡320、第三透鏡330、第四透鏡340、紅外線濾光片370、成像面380以及影像感測元件390。 Please refer to FIG. 3A and FIG. 3B , wherein FIG. 3A is a schematic diagram of an optical imaging system according to a third embodiment of the present invention, and FIG. 3B is a left-to-right sequential optical imaging system of the third embodiment. Spherical aberration, astigmatism and optical distortion curves. 3C is a lateral aberration diagram of the meridional plane fan and the sagittal plane fan of the optical imaging system of the third embodiment, the longest working wavelength and the shortest working wavelength passing through the aperture edge at 0.7 field of view. As can be seen from FIG. 3A, the optical imaging system 30 includes the first lens 310, the aperture 300, the second lens 320, the third lens 330, the fourth lens 340, the infrared filter 370, and the imaging surface in this order from the object side to the image side. 380 and image sensing component 390.

第一透鏡310具有負屈折力,且為塑膠材質,其物側面312為凸面,其像側面314為凹面,並皆為非球面,其物側面312。 The first lens 310 has a negative refractive power and is made of a plastic material. The object side surface 312 is a convex surface, and the image side surface 314 is a concave surface, and both are aspherical surfaces, and the object side surface 312.

第二透鏡320具有正屈折力,且為塑膠材質,其物側面322為凸面,其像側面324為凸面,並皆為非球面。 The second lens 320 has a positive refractive power and is made of a plastic material. The object side surface 322 is a convex surface, and the image side surface 324 is a convex surface, and both are aspherical.

第三透鏡330具有正屈折力,且為塑膠材質,其物側面332為凸面,其像側面334為凸面,並皆為非球面,其物側面332具有二反曲點以及像側面334具有一反曲點。 The third lens 330 has a positive refractive power and is made of a plastic material. The object side surface 332 is a convex surface, and the image side surface 334 is a convex surface, and both are aspherical surfaces. The object side surface 332 has two inflection points and the image side surface 334 has an inverse surface. Curved point.

第四透鏡340具有負屈折力,且為塑膠材質,其物側面342為凹面,其像側面344為凹面,並皆為非球面,且其物側面342具有二反曲點。 The fourth lens 340 has a negative refractive power and is made of a plastic material. The object side surface 342 is a concave surface, and the image side surface 344 is a concave surface, and both are aspherical surfaces, and the object side surface 342 has two inflection points.

紅外線濾光片370為玻璃材質,其設置於第四透 鏡340及成像面380間且不影響光學成像系統的焦距。 The infrared filter 370 is made of glass, and is disposed on the fourth through. The mirror 340 and the imaging surface 380 do not affect the focal length of the optical imaging system.

請配合參照下列表五以及表六。 Please refer to Table 5 and Table 6 below.

第三實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。 In the third embodiment, the aspherical curve equation represents the form as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and are not described herein.

依據表五及表六可得到下列條件式數值: According to Tables 5 and 6, the following conditional values can be obtained:

依據表五及表六可得到下列條件式數值: According to Tables 5 and 6, the following conditional values can be obtained:

依據表五及表六可得到輪廓曲線長度相關之數值: According to Table 5 and Table 6, the values related to the length of the contour curve can be obtained:

第四實施例 Fourth embodiment

請參照第4A圖及第4B圖,其中第4A圖繪示依照本創作第四實施例的一種光學成像系統的示意圖,第4B圖由左至右依序為第四實施例的光學成像系統的球差、像散及光學畸變曲線圖。第4C圖為第四實施例的光學成像系統的子午面光扇以及弧矢面光扇,最長工作波長以及最短工作波長通過光圈邊緣於0.7視場處之橫向像差圖。由第4A圖可知,光學成像系統40由物側至像側依序包含第一透鏡410、光圈400、第二透鏡420、第三透鏡430、第四透鏡440、紅外線濾光片470、 成像面480以及影像感測元件490。 Please refer to FIG. 4A and FIG. 4B , wherein FIG. 4A is a schematic diagram of an optical imaging system according to a fourth embodiment of the present invention, and FIG. 4B is a left-to-right sequential optical imaging system of the fourth embodiment. Spherical aberration, astigmatism and optical distortion curves. 4C is a lateral aberration diagram of the meridional plane fan and the sagittal plane fan of the optical imaging system of the fourth embodiment, the longest working wavelength and the shortest working wavelength passing through the aperture edge at 0.7 field of view. As can be seen from FIG. 4A, the optical imaging system 40 sequentially includes the first lens 410, the aperture 400, the second lens 420, the third lens 430, the fourth lens 440, and the infrared filter 470 from the object side to the image side. Imaging surface 480 and image sensing element 490.

第一透鏡410具有負屈折力,且為塑膠材質,其物側面412為凸面,其像側面414為凹面,並皆為非球面。 The first lens 410 has a negative refractive power and is made of a plastic material. The object side surface 412 is a convex surface, and the image side surface 414 is a concave surface, and both are aspherical.

第二透鏡420具有正屈折力,且為塑膠材質,其物側面422為凸面,其像側面424為凸面,並皆為非球面。 The second lens 420 has a positive refractive power and is made of a plastic material. The object side surface 422 is a convex surface, and the image side surface 424 is a convex surface, and both are aspherical.

第三透鏡430具有負屈折力,且為塑膠材質,其物側面432為凹面,其像側面434為凹面,並皆為非球面。 The third lens 430 has a negative refractive power and is made of a plastic material. The object side surface 432 is a concave surface, and the image side surface 434 is a concave surface, and both are aspherical surfaces.

第四透鏡440具有正屈折力,且為塑膠材質,其物側面442為凸面,其像側面444為凸面,並皆為非球面,且其物側面442具有一反曲點。 The fourth lens 440 has a positive refractive power and is made of a plastic material. The object side surface 442 is a convex surface, the image side surface 444 is a convex surface, and both are aspherical surfaces, and the object side surface 442 has an inflection point.

紅外線濾光片470為玻璃材質,其設置於第四透鏡440及成像面480間且不影響光學成像系統的焦距。 The infrared filter 470 is made of glass and is disposed between the fourth lens 440 and the imaging surface 480 without affecting the focal length of the optical imaging system.

請配合參照下列表七以及表八。 Please refer to Table 7 and Table 8 below.

第四實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。 In the fourth embodiment, the aspherical curve equation represents the form as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and are not described herein.

依據表七及表八可得到下列條件式數值: According to Tables 7 and 8, the following conditional values can be obtained:

依據表七及表八可得到下列條件式數值: According to Tables 7 and 8, the following conditional values can be obtained:

依據表七及表八可得到輪廓曲線長度相關之數值: According to Table 7 and Table 8, the values related to the length of the contour curve can be obtained:

第五實施例 Fifth embodiment

請參照第5A圖及第5B圖,其中第5A圖繪示依照本創作第五實施例的一種光學成像系統的示意圖,第5B圖由左至右依序為第五實施例的光學成像系統的球差、像散及光學畸變 曲線圖。第5C圖為第五實施例的光學成像系統的子午面光扇以及弧矢面光扇,最長工作波長以及最短工作波長通過光圈邊緣於0.7視場處之橫向像差圖。由第5A圖可知,光學成像系統50由物側至像側依序包含第一透鏡510、光圈500、第二透鏡520、第三透鏡530、第四透鏡540、紅外線濾光片570、成像面580以及影像感測元件590。 Please refer to FIG. 5A and FIG. 5B , wherein FIG. 5A is a schematic diagram of an optical imaging system according to a fifth embodiment of the present invention, and FIG. 5B is a left-to-right sequential optical imaging system of the fifth embodiment. Spherical aberration, astigmatism and optical distortion Graph. Fig. 5C is a diagram showing the lateral aberration of the meridional plane fan and the sagittal plane fan of the optical imaging system of the fifth embodiment, the longest working wavelength and the shortest working wavelength passing through the aperture edge at 0.7 field of view. As can be seen from FIG. 5A, the optical imaging system 50 includes the first lens 510, the aperture 500, the second lens 520, the third lens 530, the fourth lens 540, the infrared filter 570, and the imaging surface in this order from the object side to the image side. 580 and image sensing component 590.

第一透鏡510具有負屈折力,且為塑膠材質,其物側面512為凸面,其像側面514為凹面,並皆為非球面,其像側面514具有一反曲點。 The first lens 510 has a negative refractive power and is made of a plastic material. The object side surface 512 is a convex surface, and the image side surface 514 is a concave surface, and both are aspherical surfaces, and the image side surface 514 has an inflection point.

第二透鏡520具有正屈折力,且為塑膠材質,其物側面522為凹面,其像側面524為凸面,並皆為非球面。 The second lens 520 has a positive refractive power and is made of a plastic material. The object side surface 522 is a concave surface, and the image side surface 524 is a convex surface, and both are aspherical.

第三透鏡530具有負屈折力,且為塑膠材質,其物側面532為凹面,其像側面534為凸面,並皆為非球面。 The third lens 530 has a negative refractive power and is made of a plastic material. The object side surface 532 is a concave surface, and the image side surface 534 is a convex surface, and both are aspherical surfaces.

第四透鏡540具有正屈折力,且為塑膠材質,其物側面542為凸面,其像側面544為凸面,並皆為非球面,且其物側面542具有一反曲點。 The fourth lens 540 has a positive refractive power and is made of a plastic material. The object side surface 542 is a convex surface, and the image side surface 544 is a convex surface, and both are aspherical surfaces, and the object side surface 542 has an inflection point.

紅外線濾光片570為玻璃材質,其設置於第四透鏡540及成像面580間且不影響光學成像系統的焦距。 The infrared filter 570 is made of glass and is disposed between the fourth lens 540 and the imaging surface 580 without affecting the focal length of the optical imaging system.

請配合參照下列表九以及表十。 Please refer to the following list IX and Table 10.

第五實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。 In the fifth embodiment, the aspherical curve equation represents the form as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and are not described herein.

依據表九及表十可得到下列條件式數值: According to Table 9 and Table 10, the following conditional values can be obtained:

依據表九及表十可得到下列條件式數值: According to Table 9 and Table 10, the following conditional values can be obtained:

依據表九及表十可得到輪廓曲線長度相關之數值: According to Table 9 and Table 10, the values related to the length of the contour curve can be obtained:

第六實施例 Sixth embodiment

請參照第6A圖及第6B圖,其中第6A圖繪示依照本創作第六實施例的一種光學成像系統的示意圖,第6B圖由左至右依序為第六實施例的光學成像系統的球差、像散及光學畸變曲線圖。第6C圖為第六實施例的光學成像系統的子午面光扇以及弧矢面光扇,最長工作波長以及最短工作波長通過光圈邊緣於0.7視場處之橫向像差圖。由第6A圖可知,光學成像系統60由物側至像側依序包含第一透鏡610、光圈600、第二透鏡620、第三透鏡630、第四透鏡640、紅外線濾光片670、成像面680以及影像感測元件690。 Please refer to FIG. 6A and FIG. 6B , wherein FIG. 6A is a schematic diagram of an optical imaging system according to a sixth embodiment of the present invention, and FIG. 6B is a left-to-right sequential optical imaging system of the sixth embodiment. Spherical aberration, astigmatism and optical distortion curves. Fig. 6C is a diagram showing the lateral aberration of the meridional plane fan and the sagittal plane fan of the optical imaging system of the sixth embodiment, the longest working wavelength and the shortest working wavelength passing through the aperture edge at 0.7 field of view. As can be seen from FIG. 6A, the optical imaging system 60 includes the first lens 610, the aperture 600, the second lens 620, the third lens 630, the fourth lens 640, the infrared filter 670, and the imaging surface in this order from the object side to the image side. 680 and image sensing component 690.

第一透鏡610具有負屈折力,且為塑膠材質,其物側面612為凸面,其像側面614為凹面,並皆為非球面。 The first lens 610 has a negative refractive power and is made of a plastic material. The object side surface 612 is a convex surface, and the image side surface 614 is a concave surface, and both are aspherical.

第二透鏡620具有正屈折力,且為塑膠材質,其物側面622為凹面,其像側面624為凸面,並皆為非球面,且其物側面622具有一反曲點。 The second lens 620 has a positive refractive power and is made of a plastic material. The object side surface 622 is a concave surface, and the image side surface 624 is convex, and both are aspherical, and the object side surface 622 has an inflection point.

第三透鏡630具有正屈折力,且為塑膠材質,其物側面632為凸面,其像側面634為凸面,並皆為非球面,且其像側面634具有一反曲點。 The third lens 630 has a positive refractive power and is made of a plastic material. The object side surface 632 is a convex surface, and the image side surface 634 is a convex surface, and both are aspherical surfaces, and the image side surface 634 has an inflection point.

第四透鏡640具有負屈折力,且為塑膠材質,其物側面642為凸面,其像側面644為凹面,並皆為非球面,且其物側面642以及像側面644均具有二反曲點。 The fourth lens 640 has a negative refractive power and is made of a plastic material. The object side surface 642 is a convex surface, and the image side surface 644 is a concave surface, and both are aspherical surfaces, and the object side surface 642 and the image side surface 644 have two inflection points.

紅外線濾光片670為玻璃材質,其設置於第四透鏡640及成像面680間且不影響光學成像系統的焦距。 The infrared filter 670 is made of glass and is disposed between the fourth lens 640 and the imaging surface 680 without affecting the focal length of the optical imaging system.

請配合參照下列表十一以及表十二。 Please refer to Table 11 and Table 12 below.

第六實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。 In the sixth embodiment, the aspherical curve equation represents the form as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and are not described herein.

依據表十一及表十二可得到下列條件式數值: According to Table 11 and Table 12, the following conditional values can be obtained:

依據表十一及表十二可得到下列條件式數值: According to Table 11 and Table 12, the following conditional values can be obtained:

依據表十一及表十二可得到輪廓曲線長度相關 之數值: According to Table 11 and Table 12, the values related to the length of the contour curve can be obtained:

雖然本創作已以實施方式揭露如上,然其並非用以限定本創作,任何熟習此技藝者,在不脫離本創作的精神和範圍內,當可作各種的更動與潤飾,因此本創作的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any person skilled in the art can make various changes and refinements without departing from the spirit and scope of the present creation. The scope is subject to the definition of the scope of the patent application.

雖然本創作已參照其例示性實施例而特別地顯示及描述,將為所屬技術領域具通常知識者所理解的是,於不脫離以下申請專利範圍及其等效物所定義之本創作之精神與範疇下可對其進行形式與細節上之各種變更。 The present invention has been particularly shown and described with reference to the exemplary embodiments thereof, and it is understood by those of ordinary skill in the art that the spirit of the present invention as defined by the following claims and their equivalents Various changes in form and detail can be made in the context of the category.

200‧‧‧光圈 200‧‧ ‧ aperture

210‧‧‧第一透鏡 210‧‧‧First lens

212‧‧‧物側面 212‧‧‧ ‧ side

214‧‧‧像側面 214‧‧‧like side

220‧‧‧第二透鏡 220‧‧‧second lens

222‧‧‧物側面 222‧‧‧ ‧ side

224‧‧‧像側面 224‧‧‧like side

230‧‧‧第三透鏡 230‧‧‧ third lens

232‧‧‧物側面 232‧‧‧ ‧ side

234‧‧‧像側面 234‧‧‧like side

240‧‧‧第四透鏡 240‧‧‧4th lens

242‧‧‧物側面 242‧‧‧ ‧ side

244‧‧‧像側面 244‧‧‧like side

270‧‧‧成像面 270‧‧‧ imaging surface

280‧‧‧紅外線濾光片 280‧‧‧Infrared filter

290‧‧‧影像感測元件 290‧‧‧Image sensing components

Claims (25)

一種光學成像系統,由物側至像側依序包含:一第一透鏡,具有屈折力;一第二透鏡,具有屈折力;一第三透鏡,具有屈折力;一第四透鏡,具有屈折力;一成像面;以及一透鏡定位元件,其中該透鏡定位元件係呈中空且可容置任一透鏡,並使該些透鏡片排列於光軸上,該透鏡定位元件包括一物端部以及一像端部,該物端部靠近物側且具有一第一開口,該像端部靠近像側具有一第二開口,該透鏡定位元件外壁包含至少二個切平面,該些切平面分別具有至少一成型灌口痕,其中該光學成像系統具有屈折力的透鏡為四枚,該第一透鏡至該第四透鏡中至少一透鏡具有正屈折力,該光學成像系統的焦距為f,該光學成像系統之入射瞳直徑為HEP,該第一透鏡物側面至該成像面於光軸上具有一距離HOS,該第一透鏡物側面至該第四透鏡像側面於光軸上具有一距離InTL,該光學成像系統之最大可視角度的一半為HAF,該些透鏡中任一透鏡之任一表面與光軸的交點為起點,延著該表面的輪廓直到該表面上距離光軸1/2入射瞳直徑之垂直高度處的座標點為止,前述兩點間之輪廓曲線長度為 ARE,其滿足下列條件:1≦f/HEP≦10;0deg<HAF≦150deg以及0.9≦2(ARE/HEP)≦2.0。 An optical imaging system comprising, from the object side to the image side, a first lens having a refractive power; a second lens having a refractive power; a third lens having a refractive power; and a fourth lens having a refractive power An imaging surface, wherein the lens positioning element is hollow and can accommodate any lens, and the lens sheets are arranged on the optical axis, the lens positioning element includes an object end and a Like the end portion, the object end portion is adjacent to the object side and has a first opening, the image end portion has a second opening near the image side, and the outer wall of the lens positioning member includes at least two cutting planes, the cutting planes having at least two cutting planes respectively a forming nozzle mark, wherein the optical imaging system has four lenses having a refractive power, at least one of the first lens to the fourth lens has a positive refractive power, and the optical imaging system has a focal length f, the optical imaging The entrance pupil diameter of the system is HEP, the first lens object side to the imaging surface has a distance HOS on the optical axis, and the first lens object side to the fourth lens image side has a distance InT on the optical axis. L, half of the maximum viewing angle of the optical imaging system is HAF, and the intersection of any surface of any of the lenses with the optical axis is the starting point, and the contour of the surface is extended until the surface is 1/2 from the optical axis. The length of the contour curve between the two points is the coordinate point at the vertical height of the entrance pupil diameter. ARE, which satisfies the following conditions: 1 ≦ f / HEP ≦ 10; 0 deg < HAF ≦ 150 deg and 0.9 ≦ 2 (ARE / HEP) ≦ 2.0. 如請求項1所述之光學成像系統,其中該透鏡定位元件外壁包含至少三個切平面,該些切平面分別具有至少一成型灌口痕。 The optical imaging system of claim 1, wherein the outer wall of the lens positioning element comprises at least three tangential planes, each of the tangential planes having at least one shaped irrigant. 如請求項1所述之光學成像系統,其中該第一開口的內徑為OD,該第二開口的內徑為ID,其滿足下列條件:0.1≦OD/ID≦10。 The optical imaging system of claim 1, wherein the first opening has an inner diameter of OD and the second opening has an inner diameter of ID, which satisfies the following condition: 0.1 ≦ OD / ID ≦ 10. 如請求項1所述之光學成像系統,其中該物端部之最小厚度為OT以及該像端部之最小厚度為IT,其滿足下列條件:0.1≦OT/IT≦10。 The optical imaging system of claim 1, wherein the minimum thickness of the end of the object is OT and the minimum thickness of the image end is IT, which satisfies the following condition: 0.1 ≦ OT / IT ≦ 10. 如請求項1所述之光學成像系統,其中該光學成像系統於結像時之TV畸變為TDT,該光學成像系統於該成像面上垂直於光軸具有一成像高度HOI,該光學成像系統的正向子午面光扇之最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以PLTA表示,其正向子午面光扇之最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以PSTA表示,負向子午面光扇之最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以NLTA表示,負向子午面光扇之最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以NSTA表示,弧矢面光扇之最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以SLTA表示,弧矢面光扇之最 短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以SSTA表示,其滿足下列條件:PLTA≦100微米;PSTA≦100微米;NLTA≦100微米;NSTA≦100微米;SLTA≦100微米;以及SSTA≦100微米;|TDT|<100%。 The optical imaging system of claim 1, wherein the optical imaging system has a TV distortion at the time of image formation, and the optical imaging system has an imaging height HOI perpendicular to the optical axis on the imaging surface, the optical imaging system The longest working wavelength of the forward meridional plane fan passes through the entrance pupil edge and is incident on the imaging plane at a lateral angle of 0.7HOI, represented by PLTA, and the shortest working wavelength of the forward meridional plane fan passes through the entrance pupil edge and The lateral aberration at 0.7HOI incident on the imaging plane is represented by PSTA, and the longest operating wavelength of the negative meridional fan passes through the entrance pupil edge and is incident on the imaging plane at 0.7HOI, and the lateral aberration is represented by NLTA. The shortest working wavelength of the negative meridional fan passes through the entrance pupil edge and is incident on the imaging plane at 0.7HOI, and the lateral aberration is represented by NSTA. The longest working wavelength of the sagittal plane fan passes through the entrance pupil edge and is incident on the The lateral aberration at 0.7HOI on the imaging surface is represented by SLTA, the most of the sagittal plane fan The short-working wavelength passes through the entrance pupil edge and is incident on the imaging plane at 0.7HOI. The lateral aberration is represented by SSTA, which satisfies the following conditions: PLTA ≦ 100 μm; PSTA ≦ 100 μm; NLTA ≦ 100 μm; NSTA ≦ 100 μm ; SLTA ≦ 100 μm; and SSTA ≦ 100 μm; |TDT|<100%. 如請求項1所述之光學成像系統,其中該成像面可選擇為一平面或一曲面。 The optical imaging system of claim 1, wherein the imaging surface is selectable as a plane or a curved surface. 如請求項1所述之光學成像系統,其中該第四透鏡之物側表面於光軸上的交點為起點,延著該表面的輪廓直到該表面上距離光軸1/2入射瞳直徑之垂直高度處的座標點為止,前述兩點間之輪廓曲線長度為ARE41,該第四透鏡之像側表面於光軸上的交點為起點,延著該表面的輪廓直到該表面上距離光軸1/2入射瞳直徑之垂直高度處的座標點為止,前述兩點間之輪廓曲線長度為ARE42,第四透鏡於光軸上的厚度為TP4,其滿足下列條件:0.05≦ARE41/TP4≦25;以及0.05≦ARE42/TP4≦25。 The optical imaging system of claim 1, wherein an intersection of the object side surface of the fourth lens on the optical axis is a starting point, and the contour of the surface is extended until the surface is perpendicular to the optical axis 1/2 incident 瞳 diameter At the height of the coordinate point, the length of the contour curve between the two points is ARE41, and the intersection of the image side surface of the fourth lens on the optical axis is the starting point, and the contour of the surface is extended until the surface is 1/1 from the optical axis. 2 The focal point of the vertical height of the entrance pupil diameter is ARE42 between the two points, and the thickness of the fourth lens on the optical axis is TP4, which satisfies the following condition: 0.05≦ARE41/TP4≦25; 0.05≦ARE42/TP4≦25. 如請求項1所述之光學成像系統,其中該第三透鏡之物側表面於光軸上的交點為起點,延著該表面的輪廓直到該表面上距離光軸1/2入射瞳直徑之垂直高度處的座標點為止,前述兩點間之輪廓曲線長度為為ARE31,該第三透鏡之像側表面於光軸上的交點為起點,延著該表面的輪廓直到該表面上距離光軸1/2入射瞳直徑之垂直高度處的座標點為止,前述兩點間之輪廓曲線長度為ARE32,該 第三透鏡於光軸上的厚度為TP3,其滿足下列條件:0.05≦ARE31/TP3≦25;以及0.05≦ARE32/TP3≦25。 The optical imaging system of claim 1, wherein an intersection of the object side surface of the third lens on the optical axis is a starting point, and the contour of the surface is extended until the surface is perpendicular to the optical axis 1/2 incident 瞳 diameter At the height of the coordinate point, the length of the contour curve between the two points is ARE31, and the intersection of the image side surface of the third lens on the optical axis is the starting point, and the contour of the surface is extended until the surface is separated from the optical axis 1 /2 is the coordinate point at the vertical height of the entrance pupil diameter, and the length of the contour curve between the two points is ARE32. The thickness of the third lens on the optical axis is TP3, which satisfies the following conditions: 0.05 ≦ ARE31 / TP3 ≦ 25; and 0.05 ≦ ARE32 / TP3 ≦ 25. 如請求項1所述之光學成像系統,其中更包括一光圈,並且於該光圈至該成像面於光軸上具有一距離InS,其滿足下列公式:0.2≦InS/HOS≦1.1。 The optical imaging system of claim 1, further comprising an aperture, and having a distance InS from the aperture to the imaging plane on the optical axis, which satisfies the following formula: 0.2 ≦ InS/HOS ≦ 1.1. 一種光學成像系統,由物側至像側依序包含:一第一透鏡,具有屈折力;一第二透鏡,具有屈折力;一第三透鏡,具有屈折力;一第四透鏡,具有屈折力;一成像面;以及一透鏡定位元件,其中該透鏡定位元件係呈中空且可容置任一透鏡,並使該些透鏡片排列於光軸上,該透鏡定位元件包括一物端部以及一像端部,該物端部靠近物側且具有一第一開口,該像端部靠近像側具有一第二開口,該透鏡定位元件外壁包含至少二個切平面,該些切平面分別具有至少一成型灌口痕,該光學成像系統具有屈折力的透鏡為四枚且該第一透鏡至該第四透鏡中至少一透鏡其個別之至少一表面具有至少一反曲點,該第二透鏡至該第四透鏡中至少一透鏡具有正屈折力,該光學成像系統的焦距為f,該光學成像系統之入射瞳直徑為HEP,該第一透鏡物側面至該成像面於光軸上具有一距離HOS,該第一透鏡物側面至該第四透鏡像側面於光軸上 具有一距離InTL,該光學成像系統之最大可視角度的一半為HAF,該些透鏡中任一透鏡之任一表面與光軸的交點為起點,延著該表面的輪廓直到該表面上距離光軸1/2入射瞳直徑之垂直高度處的座標點為止,前述兩點間之輪廓曲線長度為ARE,其滿足下列條件:1≦f/HEP≦10;0deg<HAF≦150deg以及0.9≦2(ARE/HEP)≦2.0。 An optical imaging system comprising, from the object side to the image side, a first lens having a refractive power; a second lens having a refractive power; a third lens having a refractive power; and a fourth lens having a refractive power An imaging surface, wherein the lens positioning element is hollow and can accommodate any lens, and the lens sheets are arranged on the optical axis, the lens positioning element includes an object end and a Like the end portion, the object end portion is adjacent to the object side and has a first opening, the image end portion has a second opening near the image side, and the outer wall of the lens positioning member includes at least two cutting planes, the cutting planes having at least two cutting planes respectively a forming nozzle mark, the optical imaging system has four lenses having a refractive power, and at least one surface of at least one of the first lens to the fourth lens has at least one inflection point, and the second lens is At least one lens of the fourth lens has a positive refractive power, the focal length of the optical imaging system is f, the incident pupil diameter of the optical imaging system is HEP, and the first lens object side to the imaging surface has an optical axis a distance HOS, the side of the first lens to the side of the fourth lens image on the optical axis Having a distance InTL, half of the maximum viewing angle of the optical imaging system is HAF, and the intersection of any surface of any of the lenses with the optical axis is the starting point, extending the contour of the surface until the optical axis from the surface The focal length of the 1/2 incident 瞳 diameter at the vertical height is ARE, which satisfies the following conditions: 1≦f/HEP≦10; 0deg<HAF≦150deg and 0.9≦2(ARE /HEP)≦2.0. 如請求項10所述之光學成像系統,其中該透鏡定位元件外壁包含至少三個切平面,該些切平面分別具有至少一成型灌口痕。 The optical imaging system of claim 10, wherein the outer wall of the lens positioning element comprises at least three tangential planes, each of the tangential planes having at least one shaped irrigant. 如請求項10所述之光學成像系統,其中該第一開口的內徑為OD,該第二開口的內徑為ID,其滿足下列條件:0.1≦OD/ID≦10。 The optical imaging system of claim 10, wherein the first opening has an inner diameter of OD and the second opening has an inner diameter of ID, which satisfies the following condition: 0.1 ≦ OD / ID ≦ 10. 如請求項10所述之光學成像系統,其中該物端部之最小厚度為OT以及該像端部之最小厚度為IT,其滿足下列條件:0.1≦OT/IT≦10。 The optical imaging system of claim 10, wherein the minimum thickness of the end of the object is OT and the minimum thickness of the image end is IT, which satisfies the following condition: 0.1 ≦ OT / IT ≦ 10. 如請求項10所述之光學成像系統,其中該些透鏡中任一透鏡之任一表面的最大有效半徑以EHD表示,該些透鏡中任一透鏡之任一表面與光軸的交點為起點,延著該表面的輪廓直到該表面之最大有效半徑處為終點,前述兩點間之輪廓曲線長度為ARS,其滿足下列公式:0.9≦ARS/EHD≦2.0。 The optical imaging system of claim 10, wherein a maximum effective radius of any one of the lenses is represented by EHD, and an intersection of any one of the lenses and the optical axis is a starting point, The contour of the surface is extended until the maximum effective radius of the surface is the end point, and the profile curve length between the two points is ARS, which satisfies the following formula: 0.9 ≦ ARS / EHD ≦ 2.0. 如請求項10所述之光學成像系統,其中該光學成像系統於該成像面上垂直於光軸具有一成像高度HOI,該 光學成像系統的正向子午面光扇之最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以PLTA表示,其正向子午面光扇之最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以PSTA表示,負向子午面光扇之最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以NLTA表示,負向子午面光扇之最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以NSTA表示,弧矢面光扇之最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以SLTA表示,弧矢面光扇之最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以SSTA表示,其滿足下列條件:PLTA≦50微米;PSTA≦50微米;NLTA≦50微米;NSTA≦50微米;SLTA≦50微米;以及SSTA≦50微米。 The optical imaging system of claim 10, wherein the optical imaging system has an imaging height HOI perpendicular to the optical axis on the imaging surface, The longest operating wavelength of the forward meridional plane of the optical imaging system passes through the entrance pupil edge and is incident on the imaging plane at a lateral angle of 0.7HOI, represented by PLTA, and the shortest operating wavelength of the forward meridional plane fan passes through The lateral aberration at the entrance edge of the entrance pupil and incident on the imaging plane at 0.7HOI is represented by PSTA, and the longest working wavelength of the negative meridional plane fan passes through the entrance pupil edge and is incident on the imaging plane at a lateral angle of 0.7HOI In NLTA, the shortest operating wavelength of the negative meridional fan passes through the entrance pupil edge and is incident on the imaging plane at 0.7HOI, and the lateral aberration is represented by NSTA. The longest operating wavelength of the sagittal fan passes through the entrance pupil edge. And the lateral aberration at 0.7HOI incident on the imaging surface is represented by SLTA, and the shortest operating wavelength of the sagittal plane fan passes through the entrance pupil edge and is incident on the imaging plane at a lateral angle of 0.7HOI, represented by SSTA, The following conditions were met: PLTA ≦ 50 μm; PSTA ≦ 50 μm; NLTA ≦ 50 μm; NSTA ≦ 50 μm; SLTA ≦ 50 μm; and SSTA ≦ 50 μm. 如請求項10所述之光學成像系統,其中該第一透鏡與該第二透鏡之間於光軸上的距離為IN12,且滿足下列公式:0<IN12/f≦60。 The optical imaging system of claim 10, wherein a distance between the first lens and the second lens on the optical axis is IN12, and the following formula is satisfied: 0<IN12/f≦60. 如請求項10所述之光學成像系統,其中該第三透鏡與該第四透鏡之間於光軸上的距離為IN34,該第三透鏡與第四透鏡於光軸上的厚度分別為TP3以及TP4,其滿足下列條件:1≦(TP4+IN34)/TP3≦10。 The optical imaging system of claim 10, wherein a distance between the third lens and the fourth lens on the optical axis is IN34, and thicknesses of the third lens and the fourth lens on the optical axis are respectively TP3 and TP4, which satisfies the following conditions: 1 ≦ (TP4 + IN34) / TP3 ≦ 10. 如請求項10所述之光學成像系統,其中該第一透鏡與該第二透鏡之間於光軸上的距離為IN12,該第一透鏡 與第二透鏡於光軸上的厚度分別為TP1以及TP2,其滿足下列條件:1≦(TP1+IN12)/TP2≦10。 The optical imaging system of claim 10, wherein a distance between the first lens and the second lens on an optical axis is IN12, the first lens The thicknesses on the optical axis with the second lens are TP1 and TP2, respectively, which satisfy the following conditions: 1 ≦ (TP1 + IN12) / TP2 ≦ 10. 如請求項10所述之光學成像系統,其中該第一透鏡、該第二透鏡、該第三透鏡及該第四透鏡中至少一透鏡為波長小於500nm之光線濾除元件。 The optical imaging system of claim 10, wherein at least one of the first lens, the second lens, the third lens, and the fourth lens is a light filtering element having a wavelength of less than 500 nm. 一種光學成像系統,由物側至像側依序包含:一第一透鏡,具有屈折力;一第二透鏡,具有屈折力;一第三透鏡,具有屈折力;一第四透鏡,具有屈折力;一成像面;以及一透鏡定位元件,其中該透鏡定位元件係呈中空且可容置任一透鏡,並使該些透鏡片排列於光軸上,該透鏡定位元件包括一物端部以及一像端部,該物端部靠近物側且具有一第一開口,該像端部靠近像側具有一第二開口,該透鏡定位元件外壁包含至少三個切平面,該些切平面分別具有至少一成型灌口痕,該光學成像系統具有屈折力的透鏡為四枚,該光學成像系統的焦距為f,該光學成像系統之入射瞳直徑為HEP,該第一透鏡物側面至該成像面於光軸上具有一距離HOS,該第一透鏡物側面至該第四透鏡像側面於光軸上具有一距離InTL,該光學成像系統之最大可視角度的一半為HAF,該些透鏡中任一透鏡之任一表面與光軸的交點為起點,延著該表 面的輪廓直到該表面上距離光軸1/2入射瞳直徑之垂直高度處的座標點為止,前述兩點間之輪廓曲線長度為ARE,其滿足下列條件:1≦f/HEP≦10;0deg<HAF≦150deg以及0.9≦2(ARE/HEP)≦2.0。 An optical imaging system comprising, from the object side to the image side, a first lens having a refractive power; a second lens having a refractive power; a third lens having a refractive power; and a fourth lens having a refractive power An imaging surface, wherein the lens positioning element is hollow and can accommodate any lens, and the lens sheets are arranged on the optical axis, the lens positioning element includes an object end and a Like the end portion, the object end portion is adjacent to the object side and has a first opening, the image end portion has a second opening near the image side, and the lens positioning member outer wall includes at least three tangential planes, and the tangential planes respectively have at least three tangential planes A forming nozzle mark, the optical imaging system has four lenses having a refractive power, the focal length of the optical imaging system is f, the incident pupil diameter of the optical imaging system is HEP, and the first lens object side to the imaging surface The optical axis has a distance HOS, the first lens object side to the fourth lens image side has a distance InTL on the optical axis, and the half of the maximum viewing angle of the optical imaging system is HAF, the lenses The intersection of any of any one of a lens surface and the optical axis as a starting point, with the extension table The contour of the surface is up to the coordinate point on the surface at a vertical height from the optical axis 1/2 incident 瞳 diameter. The length of the contour curve between the two points is ARE, which satisfies the following condition: 1≦f/HEP≦10; 0deg <HAF≦150deg and 0.9≦2(ARE/HEP)≦2.0. 如請求項20所述之光學成像系統,其中該第一開口的內徑為OD,該第二開口的內徑為ID,其滿足下列條件:0.1≦OD/ID≦10。 The optical imaging system of claim 20, wherein the first opening has an inner diameter of OD and the second opening has an inner diameter of ID, which satisfies the following condition: 0.1 ≦ OD / ID ≦ 10. 如請求項20所述之光學成像系統,其中該物端部之最小厚度為OT以及該像端部之最小厚度為IT,其滿足下列條件:1≦OT/IT≦10。 The optical imaging system of claim 20, wherein the minimum thickness of the object end is OT and the minimum thickness of the image end is IT, which satisfies the following condition: 1 ≦ OT / IT ≦ 10. 如請求項20所述之光學成像系統,其中該第四透鏡之物側表面於光軸上的交點為起點,延著該表面的輪廓直到該表面上距離光軸1/2入射瞳直徑之垂直高度處的座標點為止,前述兩點間之輪廓曲線長度為ARE41,該第四透鏡之像側表面於光軸上的交點為起點,延著該表面的輪廓直到該表面上距離光軸1/2入射瞳直徑之垂直高度處的座標點為止,前述兩點間之輪廓曲線長度為ARE42,第四透鏡於光軸上的厚度為TP4,其滿足下列條件:0.05≦ARE41/TP4≦25;以及0.05≦ARE42/TP4≦25。 The optical imaging system of claim 20, wherein an intersection of the object side surface of the fourth lens on the optical axis is a starting point, and the contour of the surface is extended until the surface is perpendicular to the optical axis 1/2 incident 瞳 diameter At the height of the coordinate point, the length of the contour curve between the two points is ARE41, and the intersection of the image side surface of the fourth lens on the optical axis is the starting point, and the contour of the surface is extended until the surface is 1/1 from the optical axis. 2 The focal point of the vertical height of the entrance pupil diameter is ARE42 between the two points, and the thickness of the fourth lens on the optical axis is TP4, which satisfies the following condition: 0.05≦ARE41/TP4≦25; 0.05≦ARE42/TP4≦25. 如請求項20所述之光學成像系統,其中該第三透鏡之物側表面於光軸上的交點為起點,延著該表面的輪廓直到該表面上距離光軸1/2入射瞳直徑之垂直高度處的座標點為止,前述兩點間之輪廓曲線長度為為ARE31,該第 三透鏡之像側表面於光軸上的交點為起點,延著該表面的輪廓直到該表面上距離光軸1/2入射瞳直徑之垂直高度處的座標點為止,前述兩點間之輪廓曲線長度為ARE32,該第三透鏡於光軸上的厚度為TP3,其滿足下列條件:0.05≦ARE31/TP3≦25;以及0.05≦ARE32/TP3≦25。 The optical imaging system of claim 20, wherein an intersection of the object side surface of the third lens on the optical axis is a starting point, and the contour of the surface is extended until the surface is perpendicular to the optical axis 1/2 incident 瞳 diameter Up to the coordinate point of the height, the length of the contour curve between the two points is ARE31, the first The intersection of the image side surface of the three lens on the optical axis is the starting point, and the contour of the surface is extended until the coordinate point on the surface at a vertical height from the optical axis 1/2 incident 瞳 diameter, the contour curve between the two points The length is ARE32, and the thickness of the third lens on the optical axis is TP3, which satisfies the following conditions: 0.05 ≦ ARE31 / TP3 ≦ 25; and 0.05 ≦ ARE32 / TP3 ≦ 25. 如請求項20所述之光學成像系統,其中該光學成像系統更包括一光圈、一影像感測元件以及一驅動模組,該影像感測元件設置於該成像面,並且於該光圈至該成像面具有一距離InS,該驅動模組可與該些透鏡相耦合並使該些透鏡產生位移,其滿足下列公式:0.2≦InS/HOS≦1.1。 The optical imaging system of claim 20, wherein the optical imaging system further comprises an aperture, an image sensing component, and a driving module, the image sensing component is disposed on the imaging surface, and the aperture is to the imaging The mask has a distance InS, and the driving module is coupled to the lenses and causes displacement of the lenses, which satisfies the following formula: 0.2 ≦ InS/HOS ≦ 1.1.
TW105205745U 2016-04-22 2016-04-22 Optical image capturing system TWM544001U (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105205745U TWM544001U (en) 2016-04-22 2016-04-22 Optical image capturing system
CN201720383758.7U CN206757158U (en) 2016-04-22 2017-04-13 Optical imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105205745U TWM544001U (en) 2016-04-22 2016-04-22 Optical image capturing system

Publications (1)

Publication Number Publication Date
TWM544001U true TWM544001U (en) 2017-06-21

Family

ID=59688511

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105205745U TWM544001U (en) 2016-04-22 2016-04-22 Optical image capturing system

Country Status (2)

Country Link
CN (1) CN206757158U (en)
TW (1) TWM544001U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110146967A (en) * 2018-02-13 2019-08-20 先进光电科技股份有限公司 Optical imaging system
TWI679444B (en) * 2016-04-22 2019-12-11 先進光電科技股份有限公司 Optical image capturing system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113189746B (en) 2017-12-08 2022-09-02 大立光电股份有限公司 Electronic device
TWI730517B (en) 2019-11-29 2021-06-11 大立光電股份有限公司 Lens system and electronic device
TWI796546B (en) * 2020-01-17 2023-03-21 先進光電科技股份有限公司 Optical image capturing system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI679444B (en) * 2016-04-22 2019-12-11 先進光電科技股份有限公司 Optical image capturing system
CN110146967A (en) * 2018-02-13 2019-08-20 先进光电科技股份有限公司 Optical imaging system
US10746961B2 (en) 2018-02-13 2020-08-18 Ability Opto-Electronics Technology Co. Ltd. Optical image capturing system
TWI703365B (en) * 2018-02-13 2020-09-01 先進光電科技股份有限公司 Optical image capturing system

Also Published As

Publication number Publication date
CN206757158U (en) 2017-12-15

Similar Documents

Publication Publication Date Title
TWI589918B (en) Optical image capturing system
TWI641890B (en) Optical image capturing system
TWI592682B (en) Optical image capturing system
TWI591375B (en) Optical image capturing system
TWI597520B (en) Optical image capturing system
TWI638184B (en) Optical image capturing system
TWI588529B (en) Optical image capturing system
TWI598628B (en) Optical image capturing system
TWI625543B (en) Optical image capturing system
TW201738608A (en) Optical image capturing system
TW201740153A (en) Optical image capturing system
TW201734554A (en) Optical image capturing system
TWI592683B (en) Optical image capturing system
TW201712389A (en) Optical image capturing system
TW201728942A (en) Optical image capturing system
TW201732356A (en) Optical image capturing system
TWI583989B (en) Optical image capturing system
TW201825955A (en) Optical image capturing system
TW201732357A (en) Optical image capturing system
TW201732354A (en) Optical image capturing system
TW201734547A (en) Optical image capturing system
TW201740151A (en) Optical image capturing system
TW201738614A (en) Optical image capturing system
TW201732352A (en) Optical image capturing system
TW201734555A (en) Optical image capturing system