TWM542848U - Energy purity module - Google Patents

Energy purity module Download PDF

Info

Publication number
TWM542848U
TWM542848U TW106201846U TW106201846U TWM542848U TW M542848 U TWM542848 U TW M542848U TW 106201846 U TW106201846 U TW 106201846U TW 106201846 U TW106201846 U TW 106201846U TW M542848 U TWM542848 U TW M542848U
Authority
TW
Taiwan
Prior art keywords
graphite
purification module
protective layer
energy purification
ion beam
Prior art date
Application number
TW106201846U
Other languages
Chinese (zh)
Inventor
陳宜君
劉政德
Original Assignee
有成精密股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有成精密股份有限公司 filed Critical 有成精密股份有限公司
Priority to TW106201846U priority Critical patent/TWM542848U/en
Publication of TWM542848U publication Critical patent/TWM542848U/en

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

An energy purity module adapted to a ion-implant system includes a chamber, graphite components and protection layers. The graphite components are disposed in the chamber and extend parallelly. The surfaces of the graphite components have apertures. The protection layers are respectively formed on the surfaces of the graphite components and filled inside of the apertures.

Description

能量純化模組Energy purification module

本新型創作是有關於一種能量純化模組,且特別是有關於一種具有形成於石墨元件上的保護層的能量純化模組。The present invention relates to an energy purification module, and more particularly to an energy purification module having a protective layer formed on a graphite element.

離子植入是經由離子轟擊將摻雜材料或雜質植入基底層內的製程。在半導體製程中,植入摻雜材料可改變原本材料層的電性、光學或機械特性。舉例來說,將摻雜劑植入到既有的半導體基底層內可改變基底層的傳導電性。因此,在積體電路(integrated circuit,IC)的製程中,雜質的摻雜可改善積體電路既有的性質。Ion implantation is a process in which dopant materials or impurities are implanted into a substrate layer via ion bombardment. In a semiconductor process, implanting a dopant material can alter the electrical, optical, or mechanical properties of the original material layer. For example, implanting a dopant into an existing semiconductor substrate layer can change the conductivity of the substrate layer. Therefore, in the process of an integrated circuit (IC), doping of impurities can improve the existing properties of the integrated circuit.

一般的離子植入系統包括離子源以及一系列的離子束線元件。此外,離子源包括產生離子束的腔室。再者,離子源還包括安裝在腔室附近的電源與提取電極組合件。離子植入系統可產生用於不同的離子物質和提取電壓的離子束。在離子植入系統的操作過程中,來自於晶圓的殘餘物,包含矽和光阻化合物等可能會塗佈於導引離子束線元件上。這些殘餘物會在前述的離子束線元件上累積,並會產生脫落的情形,而於製作的晶圓上產生粒子汙染。A typical ion implantation system includes an ion source and a series of ion beam elements. Additionally, the ion source includes a chamber that produces an ion beam. Further, the ion source further includes a power supply and extraction electrode assembly mounted adjacent the chamber. Ion implantation systems can generate ion beams for different ionic species and extraction voltages. During the operation of the ion implantation system, residues from the wafer, including germanium and photoresist compounds, may be applied to the guided ion beam line elements. These residues accumulate on the aforementioned ion beam line elements and can cause detachment, which causes particle contamination on the fabricated wafer.

在目前的離子植入系統中,雖可以能量純化模組(energy purity module,EPM)來過濾離子束線元件上產生的粒子,以將晶片與汙染粒子隔離。然而,由於能量純化模組本身具有石墨元件,並且當離子束通過能量純化模組的石墨元件後,仍可能會沖蝕石墨元件而產生碳粒。此外,碳粒可隨離子束植入晶片,進而影響晶片的製作品質。In current ion implantation systems, an energy purity module (EPM) can be used to filter particles produced on the ion beam line components to isolate the wafer from contaminating particles. However, since the energy purification module itself has a graphite element, and after the ion beam passes through the graphite element of the energy purification module, it is still possible to erode the graphite element to produce carbon particles. In addition, carbon particles can be implanted into the wafer with the ion beam, which in turn affects the quality of the wafer.

本新型創作提供一種能量純化模組,其石墨元件上具有保護層,可減少石墨元件被離子束沖蝕而產生的碳粒。The novel creation provides an energy purification module having a protective layer on the graphite element, which can reduce the carbon particles generated by the ion beam erosion of the graphite element.

本新型創作的能量純化模組適用於離子植入系統中。能量純化模組包括腔體、石墨元件以及保護層。石墨元件彼此平行延伸配置於腔體中,並且石墨元件的表面分別具有孔隙。保護層分別形成於石墨元件的表面,並且分別填充於孔隙中。The energy purification module created by the novel is suitable for use in an ion implantation system. The energy purification module includes a cavity, a graphite element, and a protective layer. The graphite elements are arranged in parallel with each other in the cavity, and the surfaces of the graphite elements respectively have pores. The protective layers are respectively formed on the surface of the graphite member and filled in the pores, respectively.

在本新型創作的一實施例中,上述的保護層的組成材料包括玻璃相碳。In an embodiment of the present invention, the constituent material of the protective layer includes glass phase carbon.

在本新型創作的一實施例中,上述的石墨元件的孔隙自石墨元件的表面向內延伸的深度為5毫英吋至10毫英吋。In an embodiment of the novel creation, the pores of the graphite element described above extend inwardly from the surface of the graphite element to a depth of from 5 milliTorr to 10 millimeters.

在本新型創作的一實施例中,上述的保護層的製作方式包括含浸製程。In an embodiment of the present invention, the above-described protective layer is formed by an impregnation process.

在本新型創作的一實施例中,上述的石墨元件包括石墨電極棒。In an embodiment of the novel creation, the graphite element described above comprises a graphite electrode rod.

基於上述,在本新型創作的多個實施例中,能量純化模組可適用於離子植入系統中。此外,能量純化模組具有多個石墨元件,且石墨元件彼此平行延伸配置於能量純化模組的腔體中。在本新型創作的多個實施例中,石墨元件上可形成保護層,其覆蓋石墨元件的表面並且填充於石墨元件的孔隙中。石墨元件可藉由形成於其表面的保護層來減少離子束通過石墨元件時所沖蝕下來的碳粒,以避免碳粒在離入植入晶圓的製程中對晶圓造成汙染,而影響最終製作完成的晶片品質。Based on the above, in various embodiments of the novel creation, the energy purification module can be adapted for use in an ion implantation system. In addition, the energy purification module has a plurality of graphite elements, and the graphite elements are arranged in parallel with each other and disposed in the cavity of the energy purification module. In various embodiments of the novel creation, a protective layer may be formed on the graphite element that covers the surface of the graphite element and is filled in the pores of the graphite element. The graphite element can reduce the carbon particles eroded by the ion beam through the graphite element by the protective layer formed on the surface thereof, so as to avoid contamination of the wafer by the carbon particles in the process of implanting the implanted wafer, and the influence The quality of the finished wafer is finally produced.

為讓本新型創作的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will become more apparent and understood from the following description.

圖1A是本新型創作的離子植入系統的示意圖。圖1B是本新型創作的一實施例的能量純化模組的示意圖。圖2是圖1B的能量純化模組的俯視示意圖。如圖1A所示,離子植入系統50可包括離子源51、90度分析磁鐵元件52、離子減速模組53、55度分析磁鐵元件54、能量純化模組100以及晶圓處理腔體55。此外,如圖1B所示,能量純化模組100具有腔體110、多個石墨元件120以及保護層130。在本實施例中,石墨元件120配置於腔體110中並且彼此平行延伸。再者,每一個石墨元件120的表面可分別形成保護層130。Figure 1A is a schematic illustration of the ion implant system of the present invention. FIG. 1B is a schematic diagram of an energy purification module according to an embodiment of the present invention. 2 is a top plan view of the energy purification module of FIG. 1B. As shown in FIG. 1A, the ion implantation system 50 can include an ion source 51, a 90 degree analytical magnet element 52, an ion deceleration module 53, a 55 degree analytical magnet element 54, an energy purification module 100, and a wafer processing chamber 55. In addition, as shown in FIG. 1B , the energy purification module 100 has a cavity 110 , a plurality of graphite elements 120 , and a protective layer 130 . In the present embodiment, the graphite elements 120 are disposed in the cavity 110 and extend parallel to each other. Furthermore, the surface of each of the graphite elements 120 may form a protective layer 130, respectively.

在本實施例中,上述的離子源51的材料可包括含有硼(boron,B)、碳(carbon,C)、氧(oxygen,O)、鍺(germanium,Ge)、磷(phosphorus,P)、砷(arsenic,As)、矽(silicon,Si)、氦(helium,He)、氖(neon,Ne)、氬(argon,Ar)、氪(krypton,Kr)、氮(nitrogen,N)、氫(hydrogen,H)、氟(fluorine,F)和氯(chlorine,Cl)的原子或分子物質。In this embodiment, the material of the ion source 51 may include boron (boron, B), carbon (carbon), oxygen (oxygen), germanium (germanium, Ge), phosphorus (phosphorus, P). , arsenic (As), germanium (silicon, Si), helium (helium, He), neon (neon), argon (argon), krypton (Kr), nitrogen (nitrogen, N), Atom or molecular species of hydrogen (hydrogen), fluorine (fluorine), and chlorine (chlorine, Cl).

如同上述。離子植入系統50產生用於多種不同的離子物質和提取電壓的穩定的離子束。當離子植入系統50使用源氣體(例如,AsH 3、PH 3、BF 3和其他物質)進行操作一段時間後,離子束會在離子植入系統50內的光學元件上產生沉積物。前述的沉積物可能會脫落,並產生汙染粒子。汙染粒子會汙染導致晶圓,進而導致最終完成的晶片的製作品質不佳。 As above. The ion implantation system 50 produces a stable ion beam for a variety of different ionic species and extraction voltages. When the ion implantation system 50 uses a source gas (e.g., AsH 3, PH 3, BF 3 , and others) for a period of operation, the ion beam is implanted at the ion generating deposits on the optical elements in the system 50. The aforementioned deposits may fall off and produce contaminating particles. Contaminant particles can contaminate the wafer, which in turn results in poor quality of the finished wafer.

詳細而言,粒子汙染問題降低了在電子裝置製程中的電漿蝕刻和沉積的效力。粒子汙染可導致裝置失效、不佳的成膜性質、材料電阻率的變化以及雜質滲透。此外,隨著電子裝置的尺寸減小,半導體晶圓製程對於蝕刻分佈需進行更嚴格的控制。因此,在製程上,可允許的汙染粒子的數量、密度和大小亦需達到更嚴格的要求。在本實施例中,離子植入系統50可藉由能量純化模組100的配置來過濾上述的汙染粒子,以減少汙染粒子到達晶圓處理腔體55的數量。In detail, the particle contamination problem reduces the effectiveness of plasma etching and deposition in electronic device processes. Particle contamination can result in device failure, poor film formation properties, changes in material resistivity, and impurity penetration. In addition, as the size of electronic devices decreases, semiconductor wafer processes require tighter control over the etch profile. Therefore, in terms of process, the number, density and size of allowable contaminating particles also need to meet more stringent requirements. In the present embodiment, the ion implantation system 50 can filter the above-mentioned contaminated particles by the configuration of the energy purification module 100 to reduce the amount of contaminated particles reaching the wafer processing chamber 55.

請參考圖2,本實施例的石墨元件120例如是石墨電極棒,其彼此平行延伸配置於腔體110中。此外,保護層130是由玻璃相碳材料所組成,其可藉由本身的材料特性減少石墨元件120受到通過的離子束沖蝕的時候所產生的碳粒(particle),以減少對於半導體晶圓製程的汙染。Referring to FIG. 2, the graphite element 120 of the present embodiment is, for example, a graphite electrode rod, which is disposed in parallel with each other and disposed in the cavity 110. In addition, the protective layer 130 is composed of a glass-phase carbon material, which can reduce the carbon particles generated when the graphite element 120 is subjected to ion beam erosion by its own material characteristics, thereby reducing the semiconductor wafer. Process pollution.

如圖2所示,能量純化模組100可被配置於離子植入系統50中,以獨立地控制離子束的偏轉、減速、純化和聚焦,使得離子束具有均勻性並可特定的入射角度入射。詳細而言,能量純化模組100可包括離子束光學元件(未示出),其包括安置在離子束上方的上部電極集合和安置在離子束下方的下部電極集合。上部電極集合和下部電極集合可為靜止的,且具有固定位置。上部電極集合與下部電極集合之間的電位差也可沿著中心離子束軌跡變化,以反映在沿著中心離子束軌跡的每個點上的離子束的能量。因此,能量存化模組100可如上述用於獨立地控制離子束的偏轉、減速和/或聚焦。在本實施例中,離子束可沿圖2中的箭頭方向被導引通過能量純化模組100的腔體110內的石墨元件120。As shown in FIG. 2, the energy purification module 100 can be configured in the ion implantation system 50 to independently control the deflection, deceleration, purification, and focusing of the ion beam so that the ion beam has uniformity and can be incident at a specific incident angle. . In particular, the energy purification module 100 can include an ion beam optical element (not shown) including an upper electrode set disposed over the ion beam and a lower electrode set disposed below the ion beam. The upper electrode set and the lower electrode set can be stationary and have a fixed position. The potential difference between the upper electrode set and the lower electrode set can also vary along the central ion beam trajectory to reflect the energy of the ion beam at each point along the central ion beam trajectory. Thus, the energy storage module 100 can be used to independently control the deflection, deceleration, and/or focus of the ion beam as described above. In the present embodiment, the ion beam can be directed through the graphite element 120 within the cavity 110 of the energy purification module 100 in the direction of the arrow in FIG.

圖3A及圖3B是圖1的石墨元件的部分表面的示意圖。請參考圖3A及圖3B。在本實施例中,石墨元件120的表面121具有多個孔隙122。此外,孔隙122由的表面121向石墨元件120的內部延伸,且延伸的深度約為5毫英吋(mil)至10毫英吋。一般而言,當石墨元件120的表面121上的孔隙122過多時,石墨元件120的表面121顯得不夠緻密,使得石墨元件120易受衝擊而剝落。因此,當離子束通過石墨元件120時,石墨元件120易受到離子束的沖蝕而剝落並產生碳粒,並且碳粒易隨離子束進入晶圓處理腔體55中,進而被植入半導體晶圓(未示出)內,使得最終完成的晶片品質受到影響。3A and 3B are schematic views of a partial surface of the graphite element of Fig. 1. Please refer to FIG. 3A and FIG. 3B. In the present embodiment, the surface 121 of the graphite element 120 has a plurality of apertures 122. In addition, the apertures 122 extend from the surface 121 toward the interior of the graphite element 120 and extend to a depth of between about 5 millimeters (mil) and 10 millimeters. In general, when the apertures 122 on the surface 121 of the graphite element 120 are excessive, the surface 121 of the graphite element 120 appears to be insufficiently dense, making the graphite element 120 susceptible to impact and peeling off. Therefore, when the ion beam passes through the graphite element 120, the graphite element 120 is easily peeled off by the ion beam to generate carbon particles, and the carbon particles easily enter the wafer processing chamber 55 with the ion beam, thereby being implanted into the semiconductor crystal. Within the circle (not shown), the quality of the finished wafer is affected.

如圖3B所示,在本實施例中,石墨元件120的表面可以浸潤(impregnation)的製程方法形成保護層130。此外,保護層130可形成於石墨元件120的表面以及上述的孔隙122內,並可將孔隙122內的空間填滿。再者,如上述,本實施例的保護層130的組成材料例如是玻璃相碳(glassy carbon)。由於玻璃相碳是結合了玻璃和陶瓷的屬性的非石墨化碳,因此,玻璃相碳具有耐高溫,高硬度、光滑、低摩擦、耐化學侵蝕性以及不滲透於氣體和液體等特性。As shown in FIG. 3B, in the present embodiment, the surface of the graphite member 120 may be formed by an impregnation process to form the protective layer 130. Further, the protective layer 130 may be formed on the surface of the graphite member 120 and the apertures 122 described above, and may fill the space within the apertures 122. Further, as described above, the constituent material of the protective layer 130 of the present embodiment is, for example, glassy carbon. Since glass phase carbon is a non-graphitizable carbon that combines the properties of glass and ceramics, glass phase carbon has high temperature resistance, high hardness, smoothness, low friction, chemical resistance, and impermeability to gases and liquids.

在本實施例中,石墨元件120的表面121上以玻璃相碳形成的保護層130具有高硬度以及耐侵蝕等特性,使得石墨元件120的表面121的結構緻密度及硬度皆可有效提升。因此,被保護層130覆蓋的表面121不易被離子束沖蝕而脫落並形成碳粒。此外,將保護層130填充於孔隙122中,可進一步減少石墨元件120的表面121的孔隙122數量。孔隙122數量的減少有助於表面121的緻密性以及硬度的增加。因此,在本實施例中,能量純化模組100的腔體110內得碳粒的數量可有效減少百分之70以上。也因此,能量純化模組100的使用壽命(life time)可進而增加一倍以上。In the present embodiment, the protective layer 130 formed of the glass phase carbon on the surface 121 of the graphite member 120 has characteristics of high hardness and erosion resistance, so that the structural density and hardness of the surface 121 of the graphite member 120 can be effectively improved. Therefore, the surface 121 covered by the protective layer 130 is less likely to be eroded by the ion beam to fall off and form carbon particles. Furthermore, by filling the protective layer 130 in the voids 122, the number of voids 122 of the surface 121 of the graphite element 120 can be further reduced. The reduction in the number of voids 122 contributes to the compactness of the surface 121 and the increase in hardness. Therefore, in the present embodiment, the number of carbon particles in the cavity 110 of the energy purification module 100 can be effectively reduced by more than 70%. Therefore, the life time of the energy purification module 100 can be further increased by more than one time.

綜上所述,本新型創作的多個實施例中,能量純化模組可設置於離子植入系統中以過濾離子束中的汙染粒子。能量純化模組可具有多個石墨元件,配置於其腔體中,並且保護層可形成於石墨元件的表面上。在新型創作的多個實施例中,保護層例如是由玻璃相碳材料所組成,並且保護層可填充於石墨元件的表面及孔隙中,以減少石墨元件表面的孔隙數量,並且增加石墨元件的表面的緻密性、硬度以及機械強度。因此,當離子束通過能量純化模組的腔體時,可減少離子束對於石墨元件表面沖蝕而產生剝落的情形,進而減少於能量純化模組所產生的碳粒數量,以避免碳粒進入離子植入系統的晶圓處理腔體中,而使碳粒被植入晶片內,使得最終製作完成的晶片的品質受到影響。In summary, in various embodiments of the novel creation, the energy purification module can be disposed in the ion implantation system to filter the contaminating particles in the ion beam. The energy purification module can have a plurality of graphite elements disposed in a cavity thereof, and a protective layer can be formed on the surface of the graphite element. In various embodiments of the novel creation, the protective layer is composed, for example, of a glassy carbon material, and the protective layer can be filled in the surface and pores of the graphite element to reduce the number of pores on the surface of the graphite element and to increase the graphite element. The compactness, hardness and mechanical strength of the surface. Therefore, when the ion beam passes through the cavity of the energy purification module, the ion beam can be reduced to peel off the surface of the graphite component, thereby reducing the amount of carbon particles generated by the energy purification module to avoid carbon particle entry. The wafer processing chamber of the ion implantation system allows carbon particles to be implanted into the wafer, so that the quality of the finished wafer is affected.

雖然本新型創作已以實施例揭露如上,然其並非用以限定本新型創作,任何所屬技術領域中具有通常知識者,在不脫離本新型創作的精神和範圍內,當可作些許的更動與潤飾,故本新型創作的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the novel creation, and any person skilled in the art can make some changes without departing from the spirit and scope of the novel creation. Retouching, the scope of protection of this new creation is subject to the definition of the scope of the patent application attached.

50‧‧‧離子植入系統
51‧‧‧離子源
52‧‧‧90度分析磁鐵元件
53‧‧‧離子減速模組
54‧‧‧55度分析磁鐵元件
55‧‧‧晶圓處理腔體
100‧‧‧能量純化模組
110‧‧‧腔體
120‧‧‧石墨元件
121‧‧‧表面
122‧‧‧孔隙
130‧‧‧保護層
50‧‧‧Ion Implant System
51‧‧‧Ion source
52‧‧‧90 degree analytical magnet component
53‧‧‧Ion deceleration module
54‧‧.55 degree analysis of magnet components
55‧‧‧ Wafer processing chamber
100‧‧‧Energy purification module
110‧‧‧ cavity
120‧‧‧Graphite components
121‧‧‧ surface
122‧‧‧ pores
130‧‧‧Protective layer

圖1A是本新型創作的離子植入系統的示意圖。 圖1B是本新型創作的一實施例的能量純化模組的示意圖。 圖2是圖1B的能量純化模組的俯視示意圖。 圖3A及圖3B是圖1的石墨元件的部分表面的示意圖。Figure 1A is a schematic illustration of the ion implant system of the present invention. FIG. 1B is a schematic diagram of an energy purification module according to an embodiment of the present invention. 2 is a top plan view of the energy purification module of FIG. 1B. 3A and 3B are schematic views of a partial surface of the graphite element of Fig. 1.

100‧‧‧能量純化模組 100‧‧‧Energy purification module

110‧‧‧腔體 110‧‧‧ cavity

120‧‧‧石墨元件 120‧‧‧Graphite components

130‧‧‧保護層 130‧‧‧Protective layer

Claims (5)

一種能量純化模組,適用於一離子植入系統中,包括: 一腔體; 多個石墨元件,彼此平行延伸配置於該腔體中,其中該些石墨元件的表面分別具有多個孔隙;以及 一保護層,分別形成於該些石墨元件的表面,並且分別填充於該些孔隙中。An energy purification module, which is suitable for use in an ion implantation system, comprising: a cavity; a plurality of graphite elements disposed in parallel with each other in the cavity, wherein the surfaces of the graphite elements respectively have a plurality of apertures; A protective layer is formed on the surfaces of the graphite elements, respectively, and is filled in the pores. 如申請專利範圍第1項所述的能量純化模組,其中該保護層的組成材料包括玻璃相碳。The energy purification module of claim 1, wherein the protective layer comprises a glass phase carbon. 如申請專利範圍第1項所述的能量純化模組,其中該些石墨元件的該些孔隙自該些石墨元件的表面向內延伸的深度為5毫英吋至10毫英吋。The energy purification module of claim 1, wherein the pores of the graphite elements extend inwardly from the surface of the graphite elements to a depth of 5 mils to 10 mils. 如申請專利範圍第1項所述的能量純化模組,其中該保護層的製作方法包括含浸製程。The energy purification module of claim 1, wherein the protective layer is formed by an impregnation process. 如申請專利範圍第1項所述的能量純化模組,其中該些石墨元件包括多個石墨電極棒。The energy purification module of claim 1, wherein the graphite elements comprise a plurality of graphite electrode rods.
TW106201846U 2017-02-08 2017-02-08 Energy purity module TWM542848U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106201846U TWM542848U (en) 2017-02-08 2017-02-08 Energy purity module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106201846U TWM542848U (en) 2017-02-08 2017-02-08 Energy purity module

Publications (1)

Publication Number Publication Date
TWM542848U true TWM542848U (en) 2017-06-01

Family

ID=59690040

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106201846U TWM542848U (en) 2017-02-08 2017-02-08 Energy purity module

Country Status (1)

Country Link
TW (1) TWM542848U (en)

Similar Documents

Publication Publication Date Title
US10325803B2 (en) Semiconductor wafer and method for processing a semiconductor wafer
US11037758B2 (en) In-situ plasma cleaning of process chamber components
KR102380085B1 (en) Generation of compact alumina passivation layers on aluminum plasma equipment components
KR101354281B1 (en) SEALED ELASTOMER BONDED Si ELECTRODES AND THE LIKE FOR REDUCED PARTICLE CONTAMINATION IN DIELECTRIC ETCH
KR101335120B1 (en) Apparatus for the optimization of atmospheric plasma in a plasma processing system
US20050260354A1 (en) In-situ process chamber preparation methods for plasma ion implantation systems
US9721750B2 (en) Controlling contamination particle trajectory from a beam-line electrostatic element
US20090317964A1 (en) Platen for reducing particle contamination on a substrate and a method thereof
US20170092473A1 (en) In-situ plasma cleaning of process chamber electrostatic elements having varied geometries
TW201608594A (en) Ion implantation source with textured interior surfaces
CN110431650B (en) Ion implantation system and method thereof, and conductive beam optics of electrostatic filter
TWM542848U (en) Energy purity module
US20060169209A1 (en) Substrate processing apparatus, substrate processing method, and storage medium storing program for implementing the method
US6124218A (en) Method for cleaning wafer surface and a method for forming thin oxide layers
TWM546003U (en) Decelerate module
JP4278533B2 (en) Ashing method and ashing apparatus
CN113383405A (en) Method for manufacturing chamber component
JPS6350854B2 (en)
JP2003234328A (en) Etching method
US20210265139A1 (en) System for controlling radicals using a radical filter
RU2331949C1 (en) Method of roduction structure "silicon-on-insulator"
JP5227734B2 (en) Method and apparatus for low energy electron enhanced etching and cleaning of substrates
JP2023002853A (en) Laminated substrate and method for manufacturing the same
CN114649179A (en) Semiconductor component, plasma processing apparatus, and method for forming corrosion-resistant coating
JPH0516656B2 (en)

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees