TWM538619U - Sensing device with functions of force measurement, touch control and fingerprint identification - Google Patents

Sensing device with functions of force measurement, touch control and fingerprint identification Download PDF

Info

Publication number
TWM538619U
TWM538619U TW105204774U TW105204774U TWM538619U TW M538619 U TWM538619 U TW M538619U TW 105204774 U TW105204774 U TW 105204774U TW 105204774 U TW105204774 U TW 105204774U TW M538619 U TWM538619 U TW M538619U
Authority
TW
Taiwan
Prior art keywords
electrode
touch
sensing
switch
pressure
Prior art date
Application number
TW105204774U
Other languages
Chinese (zh)
Inventor
李祥宇
金上
林丙村
Original Assignee
速博思股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 速博思股份有限公司 filed Critical 速博思股份有限公司
Priority to TW105204774U priority Critical patent/TWM538619U/en
Publication of TWM538619U publication Critical patent/TWM538619U/en

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

The invention provides a sensing device with functions of force measurement, touch control and fingerprint identification. A first electrode layer is provided with a plurality of first electrodes. A switch and wire layer includes a plurality of switch circuits, a plurality switch control lines, and a plurality of sensing lines. Each of the switch circuits is corresponding to an adjacent first electrode and is electrically connected to the corresponding first electrode through a contact. Each of the switch control lines includes at least two control lines and is electrically connected to the at least two switch circuits. Each of the sensing lines includes at least one sensing signal line and is electrically connected to the at least two switch circuits. A force electrode layer includes at least one force electrode. An compressible dielectric layer is arranged between the first electrode layer and the force electrode layer. The compressible dielectric layer is deformed when a force is applied, and is restored to the original shape after removing the force.

Description

具壓力量測、觸控及指紋辨識之感測裝置Sensing device with pressure measurement, touch and fingerprint identification

本創作係關於感測之技術領域,尤指一種具壓力量測、觸控及指紋辨識之感測裝置。This creation is about the technical field of sensing, especially a sensing device with pressure measurement, touch and fingerprint recognition.

觸控技術的蓬勃發展已使觸控操作成為3C產品必備的人機界面,然而單純的平面觸碰操作已不能滿足使用者的需要,特別是如智慧型手錶等穿戴式裝置的崛起更深化了3D壓力觸控的市場需求。又由於電子商務之興起,遠端支付之發展一日千里,故而生物辨識之商業需求急速膨脹,因此如何整合壓力觸控與生物辨識已成為業界研發的主要課題。生物辨識技術又可區分為指紋辨識技術、虹膜辨識技術、DNA辨識技術等。考量效率、安全、與非侵入性等要求,指紋辨識已成為生物辨識之首選技術。指紋辨識技術又有光學式、熱感應式、超音波式與電容式。其中又以電容式技術在裝置體積、成本、省電、可靠、防偽等綜合考量下脫穎而出。The booming touch technology has made touch operation a necessary human-machine interface for 3C products. However, pure flat touch operation can no longer meet the needs of users, especially the rise of wearable devices such as smart watches has deepened. 3D pressure touch market demand. Due to the rise of e-commerce, the development of remote payment has been growing rapidly. Therefore, the commercial demand for biometric identification has rapidly expanded. Therefore, how to integrate pressure touch and biometric identification has become a major issue in the industry. Biometric technology can be divided into fingerprint identification technology, iris recognition technology, and DNA identification technology. Considering the requirements of efficiency, safety, and non-intrusion, fingerprint identification has become the technology of choice for biometric identification. Fingerprint identification technology is also available in optical, thermal, ultrasonic and capacitive. Among them, capacitive technology stands out under the comprehensive considerations of device size, cost, power saving, reliability, and anti-counterfeiting.

習知的全指按壓電容式指紋辨識技術由於感應訊號極其微小與周遭雜訊繁雜具大等因素,通常將感應電極與感應電路等一併做在一個積體電路晶片上;再以封膠體保護封裝的導出線,導致感應電極與手指間額外多出數十微米(μm)之距離,嚴重影響感測之正確性,若欲減少此距離,則需以昂貴之高介電係數的藍寶石膜填充保護;上述諸項莫不增加產品整合的困難度,不利成本之降低,且產品的良率、壽命與耐受性皆不理想。The conventional finger-finger capacitive fingerprint identification technology generally uses the sensing electrode and the sensing circuit together on an integrated circuit chip because of the extremely small inductive signal and the complexity of the surrounding noise. The lead-out of the package leads to an extra tens of micrometers (μm) between the sensing electrode and the finger, which seriously affects the correctness of the sensing. If you want to reduce this distance, you need to fill it with an expensive high-dielectric sapphire film. Protection; the above items do not increase the difficulty of product integration, the disadvantageous cost is reduced, and the product yield, life and tolerance are not ideal.

習知之壓力觸控顯示面板往往將微機電之壓力感測器置於顯示面板之邊緣或角落,藉以感測面板表面之觸碰壓力,不僅感測器成本高昂且貼合不易。也有以複雜製程製作細微可變形之彈性微結構,增加壓力與變形量之相關性,藉此產生較多的物理量變動以利偵測;因此如何整合壓力感測、觸控感測與生物辨識於一身,仍有很大的改進空間。Conventional pressure touch display panels often place MEMS pressure sensors on the edges or corners of the display panel to sense the touch pressure of the panel surface, which is not only costly but also difficult to fit. There are also complex microstructures to create a finely deformable elastic microstructure, which increases the correlation between pressure and deformation, thereby generating more physical quantity changes for detection; therefore, how to integrate pressure sensing, touch sensing and biometric identification In one body, there is still much room for improvement.

本創作之目的主要係在提供一具壓力量測、觸控及指紋辨識之感測裝置及方法,其利用複數開關電路、複數開關控制走線、複數感測訊號走線、電容偵測暨開關陣列控制電路、及開關控制訊號產生電路,而可將該複數第一電極單獨使用,以感測手指指紋所引起的電容變化,或是將部分第一電極電氣連接以形成較大的觸控電極,以進行觸碰感測。同時,藉由量測壓力感測電極與觸控電極之間的電容變化量,以計算壓力的大小。於本創作中,當施加電容偵測激勵訊號於一電極時,在該電極周遭施加同相反射訊號,藉此可使該電極上的電力線聚集而拱高,藉以提升感應靈敏度,加大有效感測距離,增進訊號雜訊比,提昇感測訊號之穩定性與正確性。The purpose of this creation is to provide a sensing device and method for pressure measurement, touch and fingerprint identification, which utilizes a plurality of switch circuits, a plurality of switches to control the traces, a complex sense signal trace, a capacitance detection and a switch. The array control circuit and the switch control signal generating circuit can separately use the plurality of first electrodes to sense a change in capacitance caused by a finger fingerprint, or electrically connect part of the first electrodes to form a larger touch electrode For touch sensing. At the same time, the magnitude of the pressure is calculated by measuring the amount of change in capacitance between the pressure sensing electrode and the touch electrode. In the present invention, when a capacitance detecting excitation signal is applied to an electrode, an in-phase reflection signal is applied around the electrode, thereby causing the power line on the electrode to be concentrated and arched, thereby improving the sensing sensitivity and increasing the effective sensing. Distance, enhance the signal noise ratio, improve the stability and correctness of the sensing signal.

依據本創作之一特色,本創作提出一種具壓力量測、觸控及指紋辨識之感測裝置,包括一感應電極基板、一第一電極層、一開關暨走線層、一壓力電極層、及一彈性介電材料層。該第一電極層設置於該感應電極基板之一側,其包含有複數第一電極,該複數第一電極係沿一第一方向與一第二方向排列,該第一方向與該第二方向約略垂直。該開關暨走線層包含:複數開關電路、複數開關控制走線、及複數感測訊號走線。該複數開關電路的每一開關電路包含至少三個開關,每一開關電路與鄰近之一第一電極相對應,且具有一接點與該對應之第一電極電氣連接。該複數開關控制走線的每一開關控制走線包含至少兩控制走線,每一開關控制走線與至少兩開關電路電氣連接。該複數感測訊號走線的每一感測訊號走線包含至少一感測走線,每一感測訊號走線與至少兩開關電路電氣連接。該壓力電極層設置於該第一電極層背對該感應電極基板之一側,其包含至少一壓力感測電極。該彈性介電材料層設置於該第一電極層與該壓力電極層之間,且該彈性介電材料層遇壓力時體積壓縮變形,並於除去壓力時回復原有的體積與形狀。According to one of the features of the present invention, the present invention provides a sensing device with pressure measurement, touch and fingerprint identification, comprising a sensing electrode substrate, a first electrode layer, a switch and trace layer, a pressure electrode layer, And a layer of elastic dielectric material. The first electrode layer is disposed on one side of the sensing electrode substrate, and includes a plurality of first electrodes, the plurality of first electrodes are aligned along a first direction and a second direction, the first direction and the second direction About vertical. The switch and trace layer includes: a plurality of switch circuits, a plurality of switch control traces, and a plurality of sense signal traces. Each switching circuit of the plurality of switching circuits includes at least three switches, each switching circuit corresponding to one of the adjacent first electrodes, and having a contact electrically connected to the corresponding first electrode. Each switch control trace of the plurality of switch control traces includes at least two control traces, and each switch control trace is electrically connected to at least two switch circuits. Each of the sensing signal traces of the plurality of sensing signal traces includes at least one sensing trace, and each of the sensing signal traces is electrically connected to at least two switching circuits. The pressure electrode layer is disposed on a side of the first electrode layer facing away from the sensing electrode substrate, and includes at least one pressure sensing electrode. The layer of elastic dielectric material is disposed between the first electrode layer and the pressure electrode layer, and the layer of elastic dielectric material compresses and deforms when subjected to pressure, and returns to the original volume and shape when the pressure is removed.

圖1係本創作之一種具壓力量測、觸控及指紋辨識之感測裝置100的疊層示意圖,如圖1所示,該具壓力量測、觸控及指紋辨識之感測裝置100包括有一感應電極基板110、一第一電極層120、一開關暨走線層130、一第二電極層140、一彈性介電材料層150、一壓力電極層160及一基板170。FIG. 1 is a schematic diagram of a stacking of a sensing device 100 with pressure measurement, touch and fingerprint identification. As shown in FIG. 1 , the sensing device 100 with pressure measurement, touch and fingerprint identification includes There is a sensing electrode substrate 110, a first electrode layer 120, a switch and wiring layer 130, a second electrode layer 140, an elastic dielectric material layer 150, a pressure electrode layer 160 and a substrate 170.

圖2係本創作之一種具壓力量測、觸控及指紋辨識之感測裝置100的結構示意圖。該第一電極層120設置於該感應電極基板110之一側,其包含有複數第一電極121,該複數第一電極121係沿一第一方向(X軸方向)與一第二方向(Y軸方向)排列,該第一方向與該第二方向約略垂直。FIG. 2 is a schematic structural view of a sensing device 100 with pressure measurement, touch and fingerprint identification according to the present invention. The first electrode layer 120 is disposed on one side of the sensing electrode substrate 110 and includes a plurality of first electrodes 121 along a first direction (X-axis direction) and a second direction (Y The axis direction is arranged, and the first direction is approximately perpendicular to the second direction.

該開關暨走線層130包含複數開關電路131、複數開關控制走線132、複數感測訊號走線133、一電容偵測暨開關陣列控制電路134、及一開關控制訊號產生電路135。在其他實施例中,該開關控制訊號產生電路也可以包含於該電容偵測暨開關陣列控制電路134之內,並由該電容偵測暨開關陣列控制電路134直接產生相關之開關控制訊號施予該等開關控制走線132。該複數開關電路的每一開關電路131包含至少三個開關,每一開關電路131與鄰近之一第一電極121相對應,且具有一接點136與該對應之第一電極121電氣連接(參考圖3)。The switch and trace layer 130 includes a plurality of switch circuits 131, a plurality of switch control traces 132, a plurality of sense signal traces 133, a capacitance detection and switch array control circuit 134, and a switch control signal generating circuit 135. In other embodiments, the switch control signal generating circuit can also be included in the capacitance detecting and switching array control circuit 134, and the capacitance detecting and switching array control circuit 134 directly generates the relevant switch control signal to be applied. The switches control the trace 132. Each switch circuit 131 of the plurality of switch circuits includes at least three switches, each switch circuit 131 corresponding to one of the adjacent first electrodes 121, and having a contact 136 electrically connected to the corresponding first electrode 121 (refer to image 3).

每一該複數開關控制走線132包含至少兩控制走線,每一開關控制走線132與至少兩開關電路131電氣連接。如圖2所示,開關控制走線132_1與第一列(row)的開關電路131電氣連接,其他亦是如此,不予贅述。其中,每一該開關控制走線132控制與其相連接之各開關電路131以決定該等對應之第一電極121分別與那一條感測走線相連接。Each of the plurality of switch control traces 132 includes at least two control traces, and each switch control trace 132 is electrically coupled to at least two switch circuits 131. As shown in FIG. 2, the switch control trace 132_1 is electrically connected to the switch circuit 131 of the first row, and the others are also not described. Each of the switch control traces 132 controls the switch circuits 131 connected thereto to determine that the corresponding first electrodes 121 are respectively connected to the one sensing trace.

每一該複數感測訊號走線133包含至少一感測走線,每一感測訊號走線133與至少兩開關電路131電氣連接。如圖2所示,感測訊號走線133-1與第一行(column)的所有開關電路131電氣連接,其他亦是如此,不予贅述。Each of the plurality of sensing signal traces 133 includes at least one sensing trace, and each of the sensing signal traces 133 is electrically connected to at least two switch circuits 131. As shown in FIG. 2, the sensing signal trace 133-1 is electrically connected to all the switch circuits 131 of the first column, and the others are also not described.

該電容偵測暨開關陣列控制電路134直接或間接產生開關控制訊號、並施予該複數開關控制走線132,俾設定各第一電極121與何感測走線相連接。該電容偵測暨開關陣列控制電路134並產生電容偵測激勵訊號、同相反射訊號及電容激勵對應訊號,以分別施加至該等感測走線,以及自部分該感測走線輸入感應訊號。The capacitance detection and switch array control circuit 134 directly or indirectly generates a switch control signal and applies the complex switch control trace 132 to set the connection of each of the first electrodes 121 with the sense trace. The capacitance detecting and switching array control circuit 134 generates a capacitance detecting excitation signal, an in-phase reflection signal and a capacitance excitation corresponding signal to be respectively applied to the sensing lines, and input sensing signals from a part of the sensing lines.

該開關控制訊號產生電路135依據該電容偵測暨開關陣列控制電路134,以產生該等開關控制訊號。該開關控制訊號產生電路135可為複數個暫存器、或複數個位移暫存器。亦即,該電容偵測暨開關陣列控制電路134係經設置於該開關暨走線層130之暫存器、或位移暫存器電路產生該等開關控制訊號。於其他實施例中,該電容偵測暨開關陣列控制電路134及該開關控制訊號產生電路135可設置於該感應電極基板。亦即,該電容偵測暨開關陣列控制電路134係經設置於該感應電極基板之暫存器、或位移暫存器電路產生該等開關控制訊號。The switch control signal generating circuit 135 is configured to generate the switch control signals according to the capacitance detecting and switching array control circuit 134. The switch control signal generating circuit 135 can be a plurality of registers or a plurality of shift registers. That is, the capacitance detection and switch array control circuit 134 generates the switch control signals via the register or the shift register circuit disposed in the switch and trace layer 130. In other embodiments, the capacitance detecting and switching array control circuit 134 and the switch control signal generating circuit 135 can be disposed on the sensing electrode substrate. That is, the capacitance detecting and switching array control circuit 134 generates the switching control signals via a register disposed on the sensing electrode substrate or a displacement register circuit.

該電容偵測暨開關陣列控制電路134更包含至少一個自電容偵測電路1341。該自電容偵測電路1341接收該感應訊號,以決定對應之電極的電容變化。根據電極上電容的變化,可進行壓力量測、觸控量測及指紋量測。The capacitance detecting and switching array control circuit 134 further includes at least one self-capacitance detecting circuit 1341. The self-capacitance detecting circuit 1341 receives the sensing signal to determine a capacitance change of the corresponding electrode. According to the change of capacitance on the electrode, pressure measurement, touch measurement and fingerprint measurement can be performed.

圖3係本創作開關暨走線層及第一電極的示意圖。其中,該複數開關電路131之開關係薄膜電晶體電路或CMOS電路。每一開關電路131包含至少三個開關SW1、SW2、SW3。每一個開關電路131具有一第一端點a、N個第二端點b、及m個控制端點c。該m個控制端點c用以控制該第一端點a與該N個第二端點b的連接,其中m、N為大於1之整數。於本實施例中,該開關電路131係為1對3開關電路131,故其具有一第一端點a、3個第二端點b1、b2、b3、及3個控制端點c1、c2、c3。Figure 3 is a schematic diagram of the creation switch and the wiring layer and the first electrode. The opening of the complex switching circuit 131 is related to a thin film transistor circuit or a CMOS circuit. Each switch circuit 131 includes at least three switches SW1, SW2, SW3. Each of the switch circuits 131 has a first terminal a, N second terminals b, and m control terminals c. The m control endpoints c are used to control the connection of the first endpoint a with the N second endpoints b, where m and N are integers greater than one. In this embodiment, the switch circuit 131 is a 1-to-3 switch circuit 131, so it has a first terminal a, three second terminals b1, b2, b3, and three control terminals c1, c2. , c3.

其中,鄰近每一個第一電極121處各有對應之一個1對3開關電路131。每一行(column)的第一電極121之對應1對3開關電路131的第i個第二端點係對應地電氣連接在一起,該N個第二端點其中之一係電氣連接至其對應之第一電極121,當中,1≦i≦N。亦即,同一行的1對3開關電路131的第一個第二端點b1均電氣連接在一起,同一行的1對3開關電路131的第二個第二端點b2均電氣連接在一起,同一行的1對3開關電路131的第三個第二端點b3均電氣連接在一起,而當有N個第二端點時,亦是如此。There is a corresponding one-to-three switch circuit 131 adjacent to each of the first electrodes 121. The i-th second end point of the corresponding one-to-three switch circuit 131 of the first electrode 121 of each row is correspondingly electrically connected together, and one of the N second end points is electrically connected to the corresponding The first electrode 121, of which 1≦i≦N. That is, the first second end point b1 of the 1-to-3 switch circuit 131 of the same row is electrically connected together, and the second second end point b2 of the 1-to-3 switch circuit 131 of the same row is electrically connected together. The third second terminal b3 of the one-to-three switching circuit 131 of the same row is electrically connected together, and the same is true when there are N second terminals.

其中,每一行第一電極121與至少一條感測訊號走線133對應。於本實施例中,每一行第一電極121係對應至一條感測走線。例如,第一行第一電極121係對應至一條感測走線11L1,第二行第一電極121係對應至一條感測走線12L1,第三行第一電極121係對應至一條感測走線13L1,...,第n行第一電極121係對應至一條感測走線1nL1。每一條感測訊號走線133電氣連接至複數個該行第一電極121對應之1對3開關電路131的該N個第二端點之一。例如,該感測走線11L1電氣連接至第一行第一電極121對應之所有1對3開關電路131的第一個第二端點b1。於其他實施例中,所有的1對3開關電路131的第二個第二端點b2可經由貫孔via2均連接到其他電氣訊號,例如一第一電壓共點。同樣地,所有的該1對3開關電路131的第三個第二端點b3可經由貫孔via3均連接到其他電氣訊號,例如一第二電壓共點。The first electrode 121 of each row corresponds to at least one sensing signal trace 133. In this embodiment, each row of the first electrodes 121 corresponds to one sensing trace. For example, the first row of the first electrodes 121 corresponds to one sensing trace 11L1, the second row of first electrodes 121 corresponds to one sensing trace 12L1, and the third row of first electrodes 121 corresponds to one sensing trace. The line 13L1, . . . , the nth row of first electrodes 121 corresponds to one sensing trace 1nL1. Each of the sensing signal traces 133 is electrically connected to one of the N second terminals of the pair of 3-switch circuits 131 corresponding to the plurality of row first electrodes 121. For example, the sensing trace 11L1 is electrically connected to the first second end point b1 of all of the pair of 3-switch circuits 131 corresponding to the first row of first electrodes 121. In other embodiments, the second second end point b2 of all the 1-to-3 switch circuits 131 can be connected to other electrical signals via the via via2, such as a first voltage common point. Similarly, all of the third second terminals b3 of the one-to-three switch circuit 131 can be connected to other electrical signals via the vias via3, such as a second voltage common point.

圖4係本創作之開關暨走線層及第一電極的另一示意圖,其與圖3主要差別在於感測訊號走線133於圖4中係為三條感測走線。例如,第一行第一電極121係對應至三條感測走線11L1~11L3,第二行第一電極121係對應至三條感測走線12L1~12L3,第三行第一電極121係對應至三條感測走線13L1~13L3,...,第n行第一電極121係對應至三條感測走線1nL1~1nL3。每一條感測走線133電氣連接至複數個該行第一電極121對應之1對3開關電路131的該N個第二端點之一。例如,該感測走線11L1電氣連接至第一行第一電極121對應之所有1對3開關電路131的第一個第二端點b1,該感測走線11L2電氣連接至第一行第一電極121對應之所有1對3開關電路131的第二個第二端點b2,該感測走線11L3電氣連接至第一行第一電極121對應之所有1對3開關電路131的第三個第二端點b3,該感測走線1nL3電氣連接至第N行第一電極121對應之所有1對3開關電路的第三個第二端點b3。FIG. 4 is another schematic diagram of the switch and the wiring layer and the first electrode of the present invention. The main difference from FIG. 3 is that the sensing signal traces 133 are three sensing traces in FIG. For example, the first row of the first electrodes 121 corresponds to the three sensing traces 11L1 to 11L3, the second row of the first electrodes 121 corresponds to the three sensing traces 12L1 to 12L3, and the third row of the first electrodes 121 corresponds to The three sensing traces 13L1~13L3, ..., the nth row of the first electrodes 121 correspond to the three sensing traces 1nL1~1nL3. Each of the sensing traces 133 is electrically connected to one of the N second terminals of the pair of 3-switch circuits 131 corresponding to the plurality of row first electrodes 121. For example, the sensing trace 11L1 is electrically connected to the first second end point b1 of all the 1-to-3 switching circuits 131 corresponding to the first row of first electrodes 121, and the sensing trace 11L2 is electrically connected to the first row. The second second end point b2 of all the one pair of three switch circuits 131 corresponding to one electrode 121 is electrically connected to the third of all the one pair of three switch circuits 131 corresponding to the first row of first electrodes 121. The second end point b3, the sensing trace 1nL3 is electrically connected to the third second end point b3 of all the 1-to-3 switching circuits corresponding to the Nth row first electrode 121.

每一列第一電極121與m條開關控制走線132對應。於本實施例中,每一列第一電極121係對應至三條控制走線。例如,第一列第一電極121係對應至三條控制走線1Y1~1Y3,...,第P列第一電極121係對應至三條控制走線PY1~PY3。每一條開關控制走線132電氣連接至複數個該列第一電極121對應之1對3開關電路131的該m個控制端點之一。例如,該控制走線1Y1電氣連接至第一列第一電極121對應之所有1對3開關電路131的第一個控制端點c1,該控制走線1Y2電氣連接至第一列第一電極121對應之所有1對3開關電路131的第二個控制端點c2,該控制走線1Y3電氣連接至第一列第一電極121對應之所有1對3開關電路131的第三個控制端點c3。該控制走線PY1電氣連接至第P列第一電極121對應之所有1對3開關電路131的第一個控制端點c1。該控制走線PY2電氣連接至第P列第一電極121對應之所有1對3開關電路131的第二個控制端點c2,該控制走線PY3電氣連接至第P列第一電極121對應之所有1對3開關電路131的第三個控制端點c3。Each column of first electrodes 121 corresponds to m switch control traces 132. In this embodiment, each column of the first electrodes 121 corresponds to three control traces. For example, the first column first electrode 121 corresponds to three control traces 1Y1~1Y3, ..., and the P column first electrode 121 corresponds to three control traces PY1~PY3. Each of the switch control traces 132 is electrically connected to one of the m control terminals of the pair of 3-switch circuits 131 corresponding to the plurality of column first electrodes 121. For example, the control trace 1Y1 is electrically connected to the first control terminal c1 of all the 1-to-3 switch circuits 131 corresponding to the first column first electrode 121, and the control trace 1Y2 is electrically connected to the first column first electrode 121. Corresponding to the second control terminal c2 of all the 1-to-3 switch circuits 131, the control trace 1Y3 is electrically connected to the third control terminal c3 of all the 1-to-3 switch circuits 131 corresponding to the first column first electrode 121. . The control trace PY1 is electrically connected to the first control terminal c1 of all the 1-to-3 switch circuits 131 corresponding to the first electrode 121 of the Pth column. The control trace PY2 is electrically connected to the second control terminal c2 of all the 1-to-3 switch circuits 131 corresponding to the first electrode 121 of the P-th column, and the control trace PY3 is electrically connected to the first electrode 121 of the P-th column. The third control terminal c3 of all 1-to-3 switch circuits 131.

於本實施例中,開關控制走線132與開關電路131之間的關係是為一位有效編碼(one-hot encoding)。亦即,開關電路131為1對3開關電路131時,該1對3開關電路131有m(=3)個控制端點,則同一列的1對3開關電路131對應之控制走線則為三條。In the present embodiment, the relationship between the switch control trace 132 and the switch circuit 131 is one-hot encoding. That is, when the switch circuit 131 is a 1-to-3 switch circuit 131, the 1-to-3 switch circuit 131 has m (=3) control terminals, and the control traces corresponding to the 1-to-3 switch circuit 131 in the same column are Three.

藉由複數開關電路131、複數開關控制走線132、複數感測訊號走線133、一電容偵測暨開關陣列控制電路134、及一開關控制訊號產生電路135,本創作可將該複數第一電極121單獨使用,亦可將部分第一電極121電氣連接以形成較大的電極。The plurality of switch circuits 131, the plurality of switch control traces 132, the complex sense signal traces 133, a capacitance detection and switch array control circuit 134, and a switch control signal generation circuit 135, the first The electrode 121 is used alone, and a part of the first electrode 121 may be electrically connected to form a larger electrode.

壓力電極層160係設置於該第一電極層120背對該感應電極基板110之一側,其包含至少一壓力感測電極161。該彈性介電材料層150設置於該第一電極層120與該壓力電極層160之間。該彈性介電材料層150遇壓力時體積壓縮變形,並於除去壓力時回復原有的體積與形狀。The pressure electrode layer 160 is disposed on one side of the first electrode layer 120 facing away from the sensing electrode substrate 110 and includes at least one pressure sensing electrode 161. The elastic dielectric material layer 150 is disposed between the first electrode layer 120 and the pressure electrode layer 160. The layer of elastic dielectric material 150 is compressively deformed in volume upon pressure and returns to its original volume and shape upon removal of pressure.

該第二電極層140設置於該開關暨走線層130與該彈性介電材料層150之間。該第二電極層140包含複數第二電極141。每一該第二電極141與該複數第一電極121之一第一電極121相對應且電氣相連接。如圖1所示,每一第二電極141與對應之第一電極121係經由一慣孔(Via)137電氣相連接。The second electrode layer 140 is disposed between the switch and wiring layer 130 and the elastic dielectric material layer 150. The second electrode layer 140 includes a plurality of second electrodes 141. Each of the second electrodes 141 corresponds to one of the first electrodes 121 of the plurality of first electrodes 121 and is electrically connected. As shown in FIG. 1, each of the second electrodes 141 is electrically connected to the corresponding first electrode 121 via a IA.

如圖1所示,第一電極E11與第一電極E12之間的空隙S1和第二電極E21與第二電極E22之間的空隙S2係互相錯置。亦即空隙S1和空隙S2相差一距離d,以免一使用者手指所產生的電力線影響到該壓力電極層160上的壓力感測電極161;亦即當進行壓力感測操作時,該等第一電極與該等第二電極對該壓力感應電極161形成良好之遮蔽,所以觸控訊號便不會干擾到壓力之量測。As shown in FIG. 1, the gap S1 between the first electrode E11 and the first electrode E12 and the gap S2 between the second electrode E21 and the second electrode E22 are mutually offset. That is, the gap S1 and the gap S2 are separated by a distance d, so as to prevent the power line generated by a user's finger from affecting the pressure sensing electrode 161 on the pressure electrode layer 160; that is, when the pressure sensing operation is performed, the first The electrodes and the second electrodes form a good shield for the pressure sensing electrode 161, so the touch signal does not interfere with the measurement of the pressure.

該基板170設置於該彈性介電材料層150背對該第一電極層之一側,其中,該基板170係一顯示器的保護玻璃或保護膠膜。於其他實施例中,該基板170係一顯示器的彩色濾光器基板,該壓力電極層也可以是一顯示器的遮蔽保護層。The substrate 170 is disposed on a side of the elastic dielectric material layer 150 facing away from the first electrode layer, wherein the substrate 170 is a protective glass or a protective film of a display. In other embodiments, the substrate 170 is a color filter substrate of a display, and the pressure electrode layer may also be a shielding protective layer of a display.

圖5A係本創作之一種具壓力量測、觸控及指紋辨識之感測裝置100的另一疊層示意圖。圖5A與圖1主要區別在於以一走線遮蔽層180代替該第二電極層140。圖5B係本創作之一種具壓力量測、觸控及指紋辨識之感測裝置100的再一疊層示意圖。圖5B與圖5A主要區別在於移除該走線遮蔽層180。FIG. 5A is another stacked diagram of a sensing device 100 with pressure measurement, touch and fingerprint identification according to the present invention. The main difference between FIG. 5A and FIG. 1 is that the second electrode layer 140 is replaced by a trace shielding layer 180. FIG. 5B is a further schematic diagram of a stacking of the sensing device 100 with pressure measurement, touch and fingerprint identification. The main difference between FIG. 5B and FIG. 5A is that the trace shielding layer 180 is removed.

圖6A係本創作之一種具壓力量測、觸控及指紋辨識之感測裝置100的又一疊層示意圖。圖6A與圖1主要區別在於以壓力電極層160與基板170的位置互調。圖6B係本創作之一種具壓力量測、觸控及指紋辨識之感測裝置100的更一疊層示意圖。圖6B與圖6A主要區別在於以一走線遮蔽層180代替該第二電極層140。圖6C係本創作之一種具壓力量測、觸控及指紋辨識之感測裝置的更另一疊層示意圖。圖6C與圖6A主要區別在於移除該走線遮蔽層180。前述之具壓力量測、觸控及指紋辨識之感測裝置100的不同實施方式係熟於本領域技術人士基於圖1之實施例所能理解並實施,故不再贅述。FIG. 6A is still another stacked diagram of a sensing device 100 with pressure measurement, touch and fingerprint identification according to the present invention. The main difference between FIG. 6A and FIG. 1 is that the position of the pressure electrode layer 160 and the substrate 170 are intermodulated. FIG. 6B is a schematic diagram of a further stacking of the sensing device 100 with pressure measurement, touch and fingerprint identification according to the present invention. The main difference between FIG. 6B and FIG. 6A is that the second electrode layer 140 is replaced by a trace shielding layer 180. FIG. 6C is a further layered schematic diagram of a sensing device with pressure measurement, touch and fingerprint identification according to the present invention. The main difference between FIG. 6C and FIG. 6A is that the trace shielding layer 180 is removed. The various embodiments of the above-described sensing device 100 for pressure measurement, touch and fingerprint identification are well understood and implemented by those skilled in the art based on the embodiment of FIG. 1 and will not be described again.

圖7係本創作之運作示意圖。其中,第一電極121與第二電極141的大小約略相等,其長寬約為50微米至100微米(50μm-100μm)。當進行指紋辨識時,藉由複數開關電路131、複數開關控制走線132、複數感測訊號走線133、電容偵測暨開關陣列控制電路134、及開關控制訊號產生電路135,本創作可將該複數第一電極121單獨使用,以感測手指指紋所引起的電容變化。一般手指指紋的指紋峰(ridge)的有效寬度約200μm~300μm。因此第一電極121的長寬約為50微米至100微米(50μm-100μm),正好適合進行指紋辨識。Figure 7 is a schematic diagram of the operation of the present creation. The first electrode 121 and the second electrode 141 are approximately equal in size, and have a length and a width of about 50 micrometers to 100 micrometers (50 micrometers to 100 micrometers). When fingerprinting is performed, the plurality of switch circuits 131, the plurality of switch control traces 132, the complex sense signal traces 133, the capacitance detection and switch array control circuit 134, and the switch control signal generation circuit 135 can be The plurality of first electrodes 121 are used alone to sense a change in capacitance caused by a finger fingerprint. Generally, the fingerprint ridge has an effective width of about 200 μm to 300 μm. Therefore, the first electrode 121 has a length and width of about 50 micrometers to 100 micrometers (50 micrometers to 100 micrometers), which is suitable for fingerprint recognition.

當進行觸碰感測時,藉由複數開關電路131、複數開關控制走線132、複數感測訊號走線133、電容偵測暨開關陣列控制電路134、及開關控制訊號產生電路135,本創作可將部分第一電極121電氣連接以形成較大的觸控電極710。以一觸控筆頭的大小約為1公釐(mm)、第一電極121長寬約為50微米(50μ0約為例,一觸控筆頭的大小較佳可橫跨兩個觸控電極710,這樣觸控感測訊號具有較佳的線性度。因此一個觸控電極710大小約為500微米,故一個觸控電極710寬度可包含10個第一電極121(500微米/50微米=10)。亦即,一個觸控電極710約由100個第一電極121所構成。於圖7中,一個觸控電極710約由15(=3X5)個第一電極121所構成,此僅是範例性的舉例。When the touch sensing is performed, the plurality of switching circuits 131, the plurality of switching control lines 132, the complex sensing signal traces 133, the capacitance detecting and switching array control circuit 134, and the switch control signal generating circuit 135, A portion of the first electrodes 121 may be electrically connected to form a larger touch electrode 710. The size of a touch pen tip is about 1 mm (mm), and the length of the first electrode 121 is about 50 micrometers (50 μ0 is about an example. A touch pen tip preferably has a size across the two touch electrodes 710. The touch sensing signal has a better linearity. Therefore, the size of one touch electrode 710 is about 500 micrometers, so that one touch electrode 710 can include ten first electrodes 121 (500 micrometers / 50 micrometers = 10). That is, one touch electrode 710 is composed of about 100 first electrodes 121. In FIG. 7, one touch electrode 710 is composed of 15 (= 3×5) first electrodes 121, which is merely exemplary. For example.

圖8係本創作進行觸碰偵測的示意圖。如圖8所示,TE代表觸控電極710,PE代表壓力感測電極161,VT代表一個電容偵測激勵訊號,VT1代表一個同相反射訊號。VT1係與VT同相位、且其振幅可與VT的振幅相同。如圖8所示,當選定觸控電極TE22作為現行的觸控電極時,觸控電極TE22係被施加一個電容偵測激勵訊號VT,而其周遭的其他觸控電極則被施加一個同相反射訊號VT1,壓力感測電極PE01被施加一個同相反射訊號VT1。由於壓力感測電極PE01與觸控電極TE22係上下疊置,當壓力感測電極PE01與觸控電極TE22具有同一電位時,可消除壓力感測電極PE01與觸控電極TE22之間的電容效應,因此壓力不會對觸碰偵測產生影響。亦即,當有觸碰時,因壓力所產生形變,會使壓力感測電極PE01與觸控電極TE22之間的距離變小,而使壓力感測電極PE01與觸控電極TE22之間的電容變大。然而,於本創作中,由於壓力感測電極PE01與觸控電極TE22具有同一電位,故壓力感測電極PE01與觸控電極TE22之間並無電容效應。因此,即使因形變而使壓力感測電極PE01與觸控電極TE22之間的距離變小,壓力感測電極PE01與觸控電極TE22之間還是沒有電容效應,因此壓力所產生的形變不會對觸碰偵測產生影響。Figure 8 is a schematic diagram of the touch detection performed by the present invention. As shown in FIG. 8, TE represents touch electrode 710, PE represents pressure sensing electrode 161, VT represents a capacitance detecting excitation signal, and VT1 represents an in-phase reflection signal. The VT1 is in phase with VT and its amplitude can be the same as the amplitude of VT. As shown in FIG. 8 , when the touch electrode TE22 is selected as the current touch electrode, the touch electrode TE22 is applied with a capacitance detecting excitation signal VT, and other surrounding touch electrodes are applied with an in-phase reflection signal. VT1, the pressure sensing electrode PE01 is applied with an in-phase reflection signal VT1. The pressure sensing electrode PE01 and the touch electrode TE22 are stacked on top of each other. When the pressure sensing electrode PE01 and the touch electrode TE22 have the same potential, the capacitive effect between the pressure sensing electrode PE01 and the touch electrode TE22 can be eliminated. Therefore, pressure does not affect the touch detection. That is, when there is a touch, the deformation caused by the pressure causes the distance between the pressure sensing electrode PE01 and the touch electrode TE22 to become smaller, and the capacitance between the pressure sensing electrode PE01 and the touch electrode TE22. Become bigger. However, in the present invention, since the pressure sensing electrode PE01 and the touch electrode TE22 have the same potential, there is no capacitance effect between the pressure sensing electrode PE01 and the touch electrode TE22. Therefore, even if the distance between the pressure sensing electrode PE01 and the touch electrode TE22 is reduced due to the deformation, there is no capacitance effect between the pressure sensing electrode PE01 and the touch electrode TE22, so the deformation caused by the pressure is not correct. Touch detection has an effect.

同時,位於同一平面的周遭的其他觸控電極與選定觸控電極TE22具有同一電位,可讓選定觸控電極TE22的電力線散發更遠,如此可更有效地進行觸碰偵測。於其他實施例中,VT1的振幅可與VT的振幅不相同。At the same time, the other touch electrodes in the same plane have the same potential as the selected touch electrodes TE22, so that the power lines of the selected touch electrodes TE22 can be transmitted farther, so that the touch detection can be performed more effectively. In other embodiments, the amplitude of VT1 may be different from the amplitude of VT.

圖9係本創作進行壓力偵測的示意圖。如圖9所示,VP代表一個電容偵測激勵訊號,VP1代表一個同相反射訊號,VPcount代表一個電容激勵對應訊號。VP1係與VP同相位、其振幅與VP的振幅相同。VPcount可為一直流參考訊號、或0V。VPcount可與VP反相位、其振幅可與VP的振幅相同或不同。如此,壓力感測電極PE01與觸控電極TE22係上下疊置,可在壓力感測電極PE01與觸控電極TE22之間形成一電容。當有手指或觸碰筆按壓在觸控電極TE22處時,因壓力會使壓力感測電極PE01與觸控電極TE22之間的距離變小,而使壓力感測電極PE01與觸控電極TE22之間的電容變大。因此量測壓力感測電極PE01與觸控電極TE22之間的電容變化量,則可對應算出壓力的大小。Figure 9 is a schematic diagram of pressure detection in this creation. As shown in FIG. 9, VP represents a capacitance detecting excitation signal, VP1 represents an in-phase reflection signal, and VPcount represents a capacitance excitation corresponding signal. The VP1 system is in phase with VP and its amplitude is the same as the amplitude of VP. VPcount can be a continuous flow reference signal, or 0V. VPcount may be out of phase with VP, and its amplitude may be the same or different from the amplitude of VP. In this way, the pressure sensing electrode PE01 and the touch electrode TE22 are stacked one on another, and a capacitance can be formed between the pressure sensing electrode PE01 and the touch electrode TE22. When a finger or a touch pen is pressed against the touch electrode TE22, the distance between the pressure sensing electrode PE01 and the touch electrode TE22 is reduced due to the pressure, and the pressure sensing electrode PE01 and the touch electrode TE22 are made. The capacitance between them becomes larger. Therefore, by measuring the amount of change in capacitance between the pressure sensing electrode PE01 and the touch electrode TE22, the magnitude of the pressure can be calculated.

當VPcount為VP反相位、其振幅與VP的振幅相同時,在壓力感測電極PE01與觸控電極TE22所形成的電容會較VPcount為直流參考訊號時所形成的電容大。因壓力所產生的電容變化量與壓力感測電極PE01與觸控電極TE22所形成的電容成一比例,故當VPcount為VP反相位、其振幅與VP的振幅相同時所產生的電容變化量較大,更有助於電容變化量的量測,則算出壓力的大小更準確。When VPcount is VP reverse phase and its amplitude is the same as the amplitude of VP, the capacitance formed by the pressure sensing electrode PE01 and the touch electrode TE22 is larger than the capacitance formed when the VPcount is the DC reference signal. The amount of change in capacitance due to pressure is proportional to the capacitance formed by the pressure sensing electrode PE01 and the touch electrode TE22. Therefore, when VPcount is VP reverse phase and its amplitude is the same as the amplitude of VP, the amount of capacitance change is larger. Larger, more helpful for the measurement of the amount of capacitance change, then calculate the pressure is more accurate.

當手指或觸碰筆按壓在其他處時,壓力感測電極PE01與觸控電極TE22之間的距離變化很小,因而使壓力感測電極PE01與觸控電極TE22之間的電容變化很小。故量測壓力感測電極PE01與觸控電極TE22之間的電容變化量小於一門檻值時,則無需計算相關壓力的大小。因為此時表示手指或觸碰筆按壓在其他處。When the finger or the touch pen is pressed elsewhere, the change in the distance between the pressure sensing electrode PE01 and the touch electrode TE22 is small, so that the capacitance change between the pressure sensing electrode PE01 and the touch electrode TE22 is small. Therefore, when the capacitance change between the pressure sensing electrode PE01 and the touch electrode TE22 is less than a threshold, it is not necessary to calculate the magnitude of the relevant pressure. Because it means that the finger or the touch pen is pressed elsewhere.

圖10係本創作進行指紋辨識的示意圖。如圖10所示,進行指紋辨識時,第一電極121可單獨進行相關的電容偵測。當第一電極121單獨進行電容偵測時,其被施加一電容偵測激勵訊號VF,其周遭的第一電極121則被施加一個同相反射訊號VF1、壓力感測電極PE01被施加一個同相反射訊號VF1。其中,VF1係與VF同相位、且其振幅可與VF的振幅相同。於其他實施例中,VF1的振幅可與VF的振幅不相同。FIG. 10 is a schematic diagram of fingerprint recognition in the present creation. As shown in FIG. 10, when fingerprint recognition is performed, the first electrode 121 can perform related capacitance detection separately. When the first electrode 121 is separately performing capacitance detection, it is applied with a capacitance detecting excitation signal VF, and the surrounding first electrode 121 is applied with an in-phase reflection signal VF1, and the pressure sensing electrode PE01 is applied with an in-phase reflection signal. VF1. Among them, the VF1 system is in phase with the VF, and its amplitude can be the same as the amplitude of the VF. In other embodiments, the amplitude of VF1 may be different from the amplitude of VF.

圖11係本創作進行指紋辨識的另一示意圖。如圖11所示,進行指紋辨識時,第一電極121可單獨進行相關的電容偵測。當第一電極121單獨進行電容偵測時,其被施加一電容偵測激勵訊號VF。其周遭的兩圈之第一電極121則被施加一個同相反射訊號VF1。如圖11所示,對於虛線框1101內的第一電極121,除了進行電容偵測的第一電極121被施加一電容偵測激勵訊號VF外,其餘第一電極則被施加一個同相反射訊號VF1。虛線框1101外的第一電極121則被施加一電容激勵對應訊號VF2。壓力感測電極PE01被施加一個同相反射訊號VF1。其中,VF1係與VF同相位、且其振幅可與VF的振幅相同。電容激勵對應訊號VF2係與VF反相位、且其振幅可與VF的振幅相同。於其他實施例中,VF1、VF2的振幅可與VF的振幅不相同。於其他實施例中,VF2也可以是一特定之直流電位,例如為一零電位。FIG. 11 is another schematic diagram of fingerprint recognition in the present creation. As shown in FIG. 11, when fingerprint recognition is performed, the first electrode 121 can perform related capacitance detection separately. When the first electrode 121 performs capacitance detection separately, it is applied with a capacitance detecting excitation signal VF. The first electrode 121 of the two turns around it is applied with an in-phase reflection signal VF1. As shown in FIG. 11, for the first electrode 121 in the dotted line frame 1101, except for the first electrode 121 for performing capacitance detection, a capacitance detecting excitation signal VF is applied, and the other first electrodes are applied with an in-phase reflection signal VF1. . The first electrode 121 outside the dotted line frame 1101 is applied with a capacitive excitation corresponding signal VF2. The pressure sensing electrode PE01 is applied with an in-phase reflection signal VF1. Among them, the VF1 system is in phase with the VF, and its amplitude can be the same as the amplitude of the VF. The capacitive excitation corresponding signal VF2 is opposite to VF and its amplitude can be the same as the amplitude of VF. In other embodiments, the amplitudes of VF1, VF2 may be different from the amplitude of VF. In other embodiments, VF2 can also be a specific DC potential, such as a zero potential.

圖12A係本創作的自電容偵測電路之電路圖。其係使用於圖8中的觸碰偵測。如圖12A所示,自電容偵測電路1341包含一電容激勵訊號源電路1201、一第一放大器1203、一電容讀取電路1205、及一第二放大器1207。其中該第二放大器1207的增益大於或等於0,該增益值較佳為1,俾依據電容偵測激勵訊號VT產生該同相位的同相反射訊號VT1。由於是自電容偵測,所以電容偵測激勵訊號VT施加於一電極後,電容讀取電路1205會讀取該電極上的電壓,以計算電容的變化量。圖12B係本創作的自電容偵測電路之另一電路圖。其係新增一增益大等於1的第三放大器1209。FIG. 12A is a circuit diagram of the self-capacitance detecting circuit of the present invention. It is used for the touch detection in FIG. As shown in FIG. 12A, the self-capacitance detecting circuit 1341 includes a capacitive excitation signal source circuit 1201, a first amplifier 1203, a capacitance reading circuit 1205, and a second amplifier 1207. The gain of the second amplifier 1207 is greater than or equal to 0, and the gain value is preferably 1. The in-phase reflected signal VT1 of the same phase is generated according to the capacitance detecting excitation signal VT. Since the self-capacitance detection is performed, after the capacitance detecting excitation signal VT is applied to an electrode, the capacitance reading circuit 1205 reads the voltage on the electrode to calculate the amount of change in the capacitance. FIG. 12B is another circuit diagram of the self-capacitance detecting circuit of the present invention. A third amplifier 1209 having a gain equal to one is added.

圖13A係本創作的自電容偵測電路之再一電路圖。其係使用於圖9中的壓力偵測。如圖13A所示,自電容偵測電路1341包含一電容激勵訊號源電路1201、一第一放大器1203、一電容讀取電路1205、一第二放大器1207、一第三放大器1301、一切換器1303、及一參考電壓產生裝置1305。其中該第二放大器1207的增益大於0且以等於1為較佳,該第三放大器1301的增益小於等於0,俾依據電容偵測激勵訊號VP分別產生該同相位的同相反射訊號VP1、及反相位的電容激勵對應訊號VPcount;該電容激勵對應訊號VPcount亦可為一特定的直流參考電位,例如為零電位。圖13B係本創作的自電容偵測電路之又一電路圖。其係新增一增益大等於1的第四放大器1307。圖14A與圖14B亦顯示係本創作的自電容偵測電路的其他可能實施方式,其電路和圖13A與圖13B的電路相似,故不再贅述。FIG. 13A is still another circuit diagram of the self-capacitance detecting circuit of the present invention. It is used in the pressure detection in Figure 9. As shown in FIG. 13A, the self-capacitance detecting circuit 1341 includes a capacitive excitation signal source circuit 1201, a first amplifier 1203, a capacitor reading circuit 1205, a second amplifier 1207, a third amplifier 1301, and a switch 1303. And a reference voltage generating device 1305. The gain of the second amplifier 1207 is greater than 0 and is preferably equal to 1. The gain of the third amplifier 1301 is less than or equal to 0, and the in-phase reflected signal VP1 and the opposite phase are respectively generated according to the capacitance detecting excitation signal VP. The capacitive excitation of the phase corresponds to the signal VPcount; the capacitive excitation corresponding signal VPcount can also be a specific DC reference potential, such as a zero potential. FIG. 13B is another circuit diagram of the self-capacitance detecting circuit of the present invention. A fourth amplifier 1307 having a gain equal to one is added. 14A and FIG. 14B also show other possible implementations of the self-capacitance detecting circuit of the present invention. The circuit is similar to the circuit of FIG. 13A and FIG. 13B, and therefore will not be described again.

圖15係本創作一種具壓力量測、觸控及指紋辨識之感測方法之流程圖,請一併參考前述說明之本創作的具壓力量測、觸控及指紋辨識之感測裝置。首先於步驟S1501中,提供一壓力量測、觸控及指紋辨識之感測裝置100。該壓力量測、觸控及指紋辨識之感測裝置100包含一感應電極基板110、一第一電極層120、一開關暨走線層130、一壓力電極層160、一彈性介電材料層150、一電容偵測暨開關陣列控制電路134。第一電極層120設置有複數第一電極121。開關暨走線層130包含複數開關電路131、複數開關控制走線132、及複數感測訊號走線133。每一開關電路131與鄰近之一第一電極121相對應。每一開關控制走線132與至少兩開關電路131電氣連接。每一感測訊號走線133與至少兩開關電路131電氣連接。壓力電極層160其包含至少一壓力感測電極161。彈性介電材料層150設置於第一電極層120與壓力電極層160之間。電容偵測暨開關陣列控制電路134直接或間接產生開關控制訊號、並施予該複數開關控制走線132,俾設定各第一電極121與何感測走線相連接。FIG. 15 is a flow chart of a sensing method with pressure measurement, touch and fingerprint identification. Please refer to the above-mentioned sensing device with pressure measurement, touch and fingerprint identification. First, in step S1501, a sensing device 100 for pressure measurement, touch and fingerprint identification is provided. The sensing device 100 for pressure measurement, touch and fingerprint identification comprises a sensing electrode substrate 110, a first electrode layer 120, a switch and wiring layer 130, a pressure electrode layer 160, and an elastic dielectric material layer 150. , a capacitance detection and switch array control circuit 134. The first electrode layer 120 is provided with a plurality of first electrodes 121. The switch and trace layer 130 includes a plurality of switch circuits 131, a plurality of switch control traces 132, and a plurality of sense signal traces 133. Each of the switch circuits 131 corresponds to one of the adjacent first electrodes 121. Each switch control trace 132 is electrically coupled to at least two switch circuits 131. Each sense signal trace 133 is electrically connected to at least two switch circuits 131. The pressure electrode layer 160 includes at least one pressure sensing electrode 161. The elastic dielectric material layer 150 is disposed between the first electrode layer 120 and the pressure electrode layer 160. The capacitance detection and switch array control circuit 134 directly or indirectly generates a switch control signal and applies the complex switch control trace 132 to set the connection of each of the first electrodes 121 with the sense trace.

於步驟S1503中,進行一生物偵測時序,其中,該電容偵測暨開關陣列控制電路134控制該複數開關電路131依序或隨機將一電容偵測激勵訊號施加於選定的第一電極121,並自該選定的第一電極121輸入一生物特徵感應訊號以進行生物辨識偵測操作。In step S1503, a biometric detection sequence is performed, wherein the capacitance detection and switch array control circuit 134 controls the complex switch circuit 131 to sequentially or randomly apply a capacitance detection excitation signal to the selected first electrode 121. And inputting a biometric sensing signal from the selected first electrode 121 for biometric detection operation.

其中,於該生物偵測時序中,更將一與該電容偵測激勵訊號VF同相的反射訊號VF1施加於選定的第一電極121周遭的第一電極121。In the biodetection sequence, a reflected signal VF1 in phase with the capacitive detection excitation signal VF is applied to the first electrode 121 around the selected first electrode 121.

於步驟S1505中,進行一觸控偵測時序,其中,該電容偵測暨開關陣列控制電路134控制該複數開關電路131以將複數第一電極121組合成複數觸控電極710,並依序或隨機將一電容偵測激勵訊號施加於選定的觸控電極710,並自該選定的觸控電極710輸入一觸控感應訊號以進行觸控偵測操作;其中,每一觸控電極710至少包含五十個第一電極121。In step S1505, a touch detection timing is performed, wherein the capacitance detection and switch array control circuit 134 controls the plurality of switch circuits 131 to combine the plurality of first electrodes 121 into a plurality of touch electrodes 710, and sequentially or A touch detection excitation signal is applied to the selected touch electrode 710, and a touch sensing signal is input from the selected touch electrode 710 to perform a touch detection operation. Each touch electrode 710 includes at least one touch sensor. Fifty first electrodes 121.

其中,於該觸控偵測時序中,更將一與該電容偵測激勵訊號VT同相的反射訊號VT1施加於該選定的觸控電極710周遭的觸控電極710。其中,於該觸控時序中判斷有否偵測到觸碰,若有觸碰,則設置一觸碰旗標並記錄該觸碰點的座標,若無則清除或重置該觸碰旗標。In the touch detection timing, a reflective signal VT1 that is in phase with the capacitive detection excitation signal VT is applied to the touch electrode 710 around the selected touch electrode 710. In the touch timing, it is determined whether the touch is detected. If there is a touch, a touch flag is set and the coordinates of the touch point are recorded. If not, the touch flag is cleared or reset. .

在步驟S1507中,於該觸控時序結束時判斷有否偵測到觸碰,若有,則進入該壓力偵測時序。其係依據觸碰旗標之設置與否以決定是否執行該壓力偵測時序。若否,則進入該生物偵測時序。In step S1507, it is determined whether the touch is detected at the end of the touch timing, and if so, the pressure detection timing is entered. It is based on whether the touch flag is set or not to determine whether to perform the pressure detection timing. If not, the biodetection timing is entered.

於其他實施例中,於該觸控時序結束時判斷有否偵測到觸碰,若有,則進入該生物偵測時序。若否,則重複該觸控時序或結束該觸控時序。其依據觸碰旗標之設置與否以決定是否執行該生物偵測時序。In other embodiments, it is determined whether the touch is detected at the end of the touch timing, and if so, the biometric detection timing is entered. If not, repeat the touch timing or end the touch timing. It determines whether to execute the biometric detection timing according to whether the touch flag is set or not.

於步驟S1509中,進行一壓力偵測時序,其中,該電容偵測暨開關陣列控制電路134將一電容偵測激勵訊號施加於至少一壓力電極161,並自該壓力電極161輸入一壓力感應訊號以進行壓力偵測操作。In step S1509, a pressure detecting sequence is performed, wherein the capacitance detecting and switching array control circuit 134 applies a capacitance detecting excitation signal to the at least one pressure electrode 161, and inputs a pressure sensing signal from the pressure electrode 161. For pressure detection operations.

其中,於該壓力偵測時序中,更將一電容激勵對應訊號VPcount施加於至少一選定的觸控電極710。於該壓力偵測時序中,更將一與該電容偵測激勵訊號VP同相的反射訊號VP1施加於該選定的觸控電極710之外的觸控電極710。The capacitor excitation corresponding signal VPcount is applied to at least one selected touch electrode 710 in the pressure detection timing. In the pressure detection sequence, a reflective signal VP1 that is in phase with the capacitive detection excitation signal VP is applied to the touch electrode 710 outside the selected touch electrode 710.

其中,該電容偵測激勵訊號VT、VP、VF係一為弦波、方波、三角波、或梯形波之交變電壓,或是一交變的電流源信號。該電容激勵對應訊號VPcount、VF2係一直流參考電位或一與該電容偵測激勵訊號VT、VP、VF反相的交變訊號。The capacitance detecting excitation signals VT, VP, and VF are alternating voltages of a sine wave, a square wave, a triangular wave, or a trapezoidal wave, or an alternating current source signal. The capacitor excitation corresponding signals VPcount and VF2 are current reference potentials or an alternating signal inverted from the capacitance detecting excitation signals VT, VP, and VF.

由前述說明可知,本創作當進行指紋辨識時,藉由複數開關電路131、複數開關控制走線132、複數感測訊號走線133、電容偵測暨開關陣列控制電路134、及開關控制訊號產生電路135,本創作可將該複數第一電極121單獨使用,以感測手指指紋所引起的電容變化。並藉由複數開關電路131、複數開關控制走線132、複數感測訊號走線133、電容偵測暨開關陣列控制電路134、及開關控制訊號產生電路135,本創作可將部分第一電極121電氣連接以形成較大的觸控電極710,以進行觸碰感測。同時,藉由量測壓力感測電極PE01與觸控電極TE22之間的電容變化量,則可對應算出壓力的大小。It can be seen from the foregoing description that the present invention generates a fingerprint switch 131, a plurality of switch control traces 132, a plurality of sense signal traces 133, a capacitance detection and switch array control circuit 134, and a switch control signal. Circuit 135, the creation of the plurality of first electrodes 121 can be used alone to sense the change in capacitance caused by the fingerprint of the finger. And by the plurality of switch circuits 131, the plurality of switch control traces 132, the complex sense signal traces 133, the capacitance detection and switch array control circuit 134, and the switch control signal generation circuit 135, the portion of the first electrode 121 can be created by the present invention. Electrically connected to form a larger touch electrode 710 for touch sensing. At the same time, by measuring the amount of change in capacitance between the pressure sensing electrode PE01 and the touch electrode TE22, the magnitude of the pressure can be calculated correspondingly.

於本創作中,當施加電容偵測激勵訊號於一電極時,在該電極周遭施加同相反射訊號,藉此消除該電極與周遭電極間之雜散電容並可使該電極上的電力線聚集而拱高,藉以提升感應靈敏度,加大有效感測距離,增進訊號雜訊比,提昇感測訊號之穩定性與正確性。In the present invention, when a capacitance detecting excitation signal is applied to an electrode, an in-phase reflection signal is applied around the electrode, thereby eliminating stray capacitance between the electrode and the surrounding electrode and allowing the power line on the electrode to gather and arch. High, in order to improve the sensing sensitivity, increase the effective sensing distance, improve the signal noise ratio, and improve the stability and correctness of the sensing signal.

上述實施例僅係為了方便說明而舉例而已,本創作所主張之權利範圍自應以申請專利範圍所述為準,而非僅限於上述實施例。The above-described embodiments are merely examples for convenience of description, and the scope of the claims is intended to be limited to the above embodiments.

100‧‧‧具壓力量測、觸控及指紋辨識之感測裝置
110‧‧‧感應電極基板
120‧‧‧第一電極層
130‧‧‧開關暨走線層
140‧‧‧第二電極層
150‧‧‧彈性介電材料層
160‧‧‧壓力電極層
170‧‧‧基板
121‧‧‧第一電極
141‧‧‧第二電極
137‧‧‧慣孔(Via)
131‧‧‧開關電路
132‧‧‧開關控制走線
133‧‧‧感測訊號走線
134‧‧‧電容偵測暨開關陣列控制電路
135‧‧‧開關控制訊號產生電路
136‧‧‧接點
1341‧‧‧自電容偵測電路
SW1、SW2、SW3‧‧‧開關
a‧‧‧第一端點
b、b1、b2、b3‧‧‧第二端點
c、c1、c2、c3‧‧‧控制端點
via2、via3、137‧‧‧慣孔
11L1~11L3、12L1~12L3、13L1~13L3、...、1nL1~1nL3‧‧‧感測走線
1Y1~1Y3、2Y1~2Y3、…、PY1~PY3‧‧‧控制走線
161、PE01‧‧‧壓力感測電極
E11、E12‧‧‧第一電極
S1、S2‧‧‧空隙
d‧‧‧距離
180‧‧‧走線遮蔽層
710、TE11~TE34‧‧‧觸控電極
VT、VP、VF‧‧‧電容偵測激勵訊號
VT1、VP1、VF1‧‧‧同相反射訊號
VPcount、VF2‧‧‧電容激勵對應訊號
1101‧‧‧虛線框
1201‧‧‧電容激勵訊號源電路
1203‧‧‧第一放大器
1205‧‧‧電容讀取電路
1207‧‧‧第二放大器
1209‧‧‧第三放大器
1301‧‧‧第三放大器
1303‧‧‧切換器
1305‧‧‧參考電壓產生裝置
1307‧‧‧第四放大器
S1501、S1503、S1505、S1507、S1509‧‧‧步驟
100‧‧‧Sensing device with pressure measurement, touch and fingerprint identification
110‧‧‧Induction electrode substrate
120‧‧‧First electrode layer
130‧‧‧Switch and wiring layer
140‧‧‧Second electrode layer
150‧‧‧Elastic dielectric material layer
160‧‧‧pressure electrode layer
170‧‧‧Substrate
121‧‧‧First electrode
141‧‧‧second electrode
137‧‧‧Habitat (Via)
131‧‧‧Switch circuit
132‧‧‧Switch control wiring
133‧‧‧Sense signal routing
134‧‧‧Capacitance Detection and Switch Array Control Circuit
135‧‧‧Switch control signal generation circuit
136‧‧‧Contacts
1341‧‧‧Self capacitance detection circuit
SW1, SW2, SW3‧‧‧ switch
A‧‧‧first endpoint
b, b1, b2, b3‧‧‧ second endpoint
c, c1, c2, c3‧‧‧ control endpoint
Via2, via3, 137‧‧.
11L1~11L3, 12L1~12L3, 13L1~13L3,...,1nL1~1nL3‧‧‧ Sensing trace
1Y1~1Y3, 2Y1~2Y3,..., PY1~PY3‧‧‧ Control trace
161, PE01‧‧‧ pressure sensing electrode
E11, E12‧‧‧ first electrode
S1, S2‧‧‧ gap
D‧‧‧distance
180‧‧‧Line masking
710, TE11~TE34‧‧‧ touch electrode
VT, VP, VF‧‧‧ capacitance detection excitation signal
VT1, VP1, VF1‧‧‧ in-phase reflection signal
VPcount, VF2‧‧‧ capacitor excitation corresponding signal
1101‧‧‧dotted box
1201‧‧‧Capacitor excitation signal source circuit
1203‧‧‧First amplifier
1205‧‧‧Capacitor reading circuit
1207‧‧‧second amplifier
1209‧‧‧3rd amplifier
1301‧‧‧3rd amplifier
1303‧‧‧Switcher
1305‧‧‧reference voltage generating device
1307‧‧‧4th amplifier
S1501, S1503, S1505, S1507, S1509‧‧‧ steps

圖1係本創作之一種具壓力量測、觸控及指紋辨識之感測裝置的一疊層示意圖。 圖2係本創作之一種具壓力量測、觸控及指紋辨識之感測裝置的結構示意圖。 圖3係本創作開關暨走線層及第一電極的示意圖。 圖4係本創作之開關暨走線層及第一電極的另一示意圖。 圖5A係本創作之一種具壓力量測、觸控及指紋辨識之感測裝置的另一疊層示意圖。 圖5B係本創作之一種具壓力量測、觸控及指紋辨識之感測裝置的再一疊層示意圖。 圖6A係本創作之一種具壓力量測、觸控及指紋辨識之感測裝置的又一疊層示意圖。 圖6B係本創作之一種具壓力量測、觸控及指紋辨識之感測裝置的更一疊層示意圖。 圖6C係本創作之一種具壓力量測、觸控及指紋辨識之感測裝置的更另一疊層示意圖。 圖7係本創作之運作示意圖。 圖8係本創作進行觸碰偵測的示意圖。 圖9係本創作進行壓力偵測的示意圖。 圖10係本創作進行指紋辨識的示意圖。 圖11係本創作進行指紋辨識的另一示意圖。 圖12A係本創作的自電容偵測電路之一電路圖。 圖12B係本創作的自電容偵測電路之另一電路圖。 圖13A係本創作的自電容偵測電路之再一電路圖。 圖13B係本創作的自電容偵測電路之又一電路圖。 圖14A係本創作的自電容偵測電路之更一電路圖。 圖14B及係本創作的自電容偵測電路之更另一電路圖。 圖15係本創作一種具壓力量測、觸控及指紋辨識之感測方法之流程圖。FIG. 1 is a stacked diagram of a sensing device with pressure measurement, touch and fingerprint identification according to the present invention. FIG. 2 is a schematic structural view of a sensing device with pressure measurement, touch and fingerprint identification according to the present invention. Figure 3 is a schematic diagram of the creation switch and the wiring layer and the first electrode. FIG. 4 is another schematic diagram of the switch and the wiring layer and the first electrode of the present invention. FIG. 5A is another stacked diagram of a sensing device with pressure measurement, touch and fingerprint identification according to the present invention. FIG. 5B is a further schematic diagram of a stacking of a sensing device with pressure measurement, touch and fingerprint identification according to the present invention. FIG. 6A is another stacked diagram of a sensing device with pressure measurement, touch and fingerprint identification according to the present invention. FIG. 6B is a schematic diagram of a further stacking of a sensing device with pressure measurement, touch and fingerprint identification according to the present invention. FIG. 6C is a further layered schematic diagram of a sensing device with pressure measurement, touch and fingerprint identification according to the present invention. Figure 7 is a schematic diagram of the operation of the present creation. Figure 8 is a schematic diagram of the touch detection performed by the present invention. Figure 9 is a schematic diagram of pressure detection in this creation. FIG. 10 is a schematic diagram of fingerprint recognition in the present creation. FIG. 11 is another schematic diagram of fingerprint recognition in the present creation. FIG. 12A is a circuit diagram of a self-capacitance detecting circuit of the present invention. FIG. 12B is another circuit diagram of the self-capacitance detecting circuit of the present invention. FIG. 13A is still another circuit diagram of the self-capacitance detecting circuit of the present invention. FIG. 13B is another circuit diagram of the self-capacitance detecting circuit of the present invention. FIG. 14A is a further circuit diagram of the self-capacitance detecting circuit of the present invention. FIG. 14B is a further circuit diagram of the self-capacitance detecting circuit of the present invention. FIG. 15 is a flow chart of a sensing method with pressure measurement, touch and fingerprint identification.

100‧‧‧具壓力量測、觸控及指紋辨識之感測裝置 100‧‧‧Sensing device with pressure measurement, touch and fingerprint identification

110‧‧‧感應電極基板 110‧‧‧Induction electrode substrate

120‧‧‧第一電極層 120‧‧‧First electrode layer

130‧‧‧開關暨走線層 130‧‧‧Switch and wiring layer

140‧‧‧第二電極層 140‧‧‧Second electrode layer

150‧‧‧彈性介電材料層 150‧‧‧Elastic dielectric material layer

160‧‧‧壓力電極層 160‧‧‧pressure electrode layer

170‧‧‧基板 170‧‧‧Substrate

121‧‧‧第一電極 121‧‧‧First electrode

141‧‧‧第二電極 141‧‧‧second electrode

137‧‧‧慣孔 137‧‧‧Same hole

Claims (12)

一種具壓力量測、觸控及指紋辨識之感測裝置,包括: 一感應電極基板; 一第一電極層,設置於該感應電極基板之一側,其包含有複數第一電極,該複數第一電極係沿一第一方向與一第二方向排列,該第一方向與該第二方向約略垂直; 一開關暨走線層,其包含: 複數開關電路,每一開關電路包含至少三個開關,每一開關電路與鄰近之一第一電極相對應,且具有一接點與該對應之第一電極電氣連接; 複數開關控制走線,每一開關控制走線包含至少兩控制走線,每一開關控制走線與至少兩開關電路電氣連接;及 複數感測訊號走線,每一感測訊號走線包含至少一感測走線,每一感測訊號走線與至少兩開關電路電氣連接; 一壓力電極層,設置於該第一電極層背對該感應電極基板之一側,其包含至少一壓力感測電極;以及 一彈性介電材料層,設置於該第一電極層與該壓力電極層之間,且該彈性介電材料層遇壓力時體積壓縮變形,並於除去壓力時回復原有的體積與形狀。A sensing device with pressure measurement, touch and fingerprint identification, comprising: a sensing electrode substrate; a first electrode layer disposed on one side of the sensing electrode substrate, comprising a plurality of first electrodes, the plurality An electrode system is arranged along a first direction and a second direction, the first direction being approximately perpendicular to the second direction; a switch and a wiring layer comprising: a plurality of switching circuits, each switching circuit comprising at least three switches Each switch circuit corresponds to one of the adjacent first electrodes, and has a contact electrically connected to the corresponding first electrode; the plurality of switches control the traces, and each of the switch control traces includes at least two control traces, each a switch control trace is electrically connected to at least two switch circuits; and a plurality of sense signal traces, each sense signal trace includes at least one sense trace, and each sense signal trace is electrically connected to at least two switch circuits a pressure electrode layer disposed on a side of the first electrode layer facing away from the sensing electrode substrate, comprising at least one pressure sensing electrode; and a layer of elastic dielectric material disposed on the layer An electrode layer between the electrode layer and the pressure and the elastic dielectric material layer in case of the pressure-volume compression, and to respond to the volume of the original shape when pressure is removed. 如申請專利範圍第1項所述之具壓力量測、觸控及指紋辨識之感測裝置,其更包含一第二電極層,該二電極層設置於該開關暨走線層與該彈性介電材料層之間,該第二電極層包含複數第二電極,每一該第二電極與該複數第一電極之一第一電極相對應且電氣相連接。The sensing device with pressure measurement, touch and fingerprint identification according to claim 1 further includes a second electrode layer disposed on the switch and the wiring layer and the elastic layer. Between the layers of electrical material, the second electrode layer includes a plurality of second electrodes, each of the second electrodes corresponding to one of the first electrodes of the plurality of first electrodes and electrically connected. 如申請專利範圍第1項所述之具壓力量測、觸控及指紋辨識之感測裝置,其中,每一該開關控制走線控制與其相連接之各開關電路以決定該等對應之第一電極分別與那一條感測走線相連接。The sensing device with pressure measurement, touch and fingerprint identification as described in claim 1 , wherein each switch controls a switching circuit to control each of the switching circuits to determine the first of the correspondences The electrodes are respectively connected to the sensing trace. 如申請專利範圍第1項所述之具壓力量測、觸控及指紋辨識之感測裝置,其更包含一電容偵測暨開關陣列控制電路,該電容偵測暨開關陣列控制電路直接或間接產生開關控制訊號並施予該複數開關控制走線,俾設定各第一電極與何感測走線相連接,並產生電容偵測激勵訊號、同相反射訊號及電容激勵對應訊號,以分別施加至該等感測走線,以及自部分該感測走線輸入感應訊號。The sensing device with pressure measurement, touch and fingerprint identification as described in claim 1 further includes a capacitance detecting and switching array control circuit, and the capacitance detecting and switching array control circuit is directly or indirectly Generating a switch control signal and applying the plurality of switch control traces, and setting each of the first electrodes to be connected with the sense traces, and generating a capacitance detecting excitation signal, an in-phase reflection signal, and a capacitance excitation corresponding signal to respectively apply to The sensing traces, and the sensing signals are input from a portion of the sensing traces. 如申請專利範圍第4項所述之具壓力量測、觸控及指紋辨識之感測裝置,其中,該電容偵測暨開關陣列控制電路更包含至少一個自電容偵測電路。The sensing device for pressure measurement, touch and fingerprint identification according to claim 4, wherein the capacitance detecting and switching array control circuit further comprises at least one self-capacitance detecting circuit. 如申請專利範圍第4項所述之具壓力量測、觸控及指紋辨識之感測裝置,其中,該電容偵測暨開關陣列控制電路係經一設置於該感應電極基板之暫存器,或位移暫存器電路產生該等開關控制訊號。The sensing device for pressure measurement, touch and fingerprint identification according to claim 4, wherein the capacitance detecting and switching array control circuit is disposed in a register disposed on the sensing electrode substrate. Or the shift register circuit generates the switch control signals. 如申請專利範圍第1項所述之具壓力量測、觸控及指紋辨識之感測裝置,其中,該複數開關電路之開關係薄膜電晶體電路或CMOS電路。The sensing device with pressure measurement, touch and fingerprint identification as described in claim 1 , wherein the plurality of switching circuits are in a relationship between a thin film transistor circuit or a CMOS circuit. 如申請專利範圍第1項所述之具壓力量測、觸控及指紋辨識之感測裝置,其更包含一基板,該基板設置於該彈性介電材料層背對該第一電極層之一側,其中,該基板係一顯示器的保護玻璃或保護膠膜。The sensing device with pressure measurement, touch and fingerprint identification according to claim 1, further comprising a substrate disposed on the layer of the elastic dielectric material facing away from the first electrode layer The side, wherein the substrate is a protective glass or a protective film of a display. 如申請專利範圍第1項所述之具壓力量測、觸控及指紋辨識之感測裝置,其中,該壓力電極層係一顯示器的遮蔽保護層。The sensing device for pressure measurement, touch and fingerprint identification according to claim 1, wherein the pressure electrode layer is a shielding protection layer of a display. 申請專利範圍第1項所述之具壓力量測、觸控及指紋辨識之感測裝置,其中,該等第一電極與壓力感測電極係透明的導電電極。The sensing device for pressure measurement, touch and fingerprint identification according to the first aspect of the invention, wherein the first electrode and the pressure sensing electrode are transparent conductive electrodes. 申請專利範圍第1項所述之具壓力量測、觸控及指紋辨識之感測裝置,其中,該等第一電極與壓力感測電極係不透明的導電電極。The sensing device for pressure measurement, touch and fingerprint identification according to claim 1 , wherein the first electrode and the pressure sensing electrode are opaque conductive electrodes. 申請專利範圍第1項所述之具壓力量測、觸控及指紋辨識之感測裝置,其中,該感應電極基板係一高分子薄膜基板、一玻璃基板、一藍寶石基板、或一陶磁基板。The sensing device with pressure measurement, touch and fingerprint identification according to the first aspect of the invention, wherein the sensing electrode substrate is a polymer film substrate, a glass substrate, a sapphire substrate, or a ceramic substrate.
TW105204774U 2016-04-07 2016-04-07 Sensing device with functions of force measurement, touch control and fingerprint identification TWM538619U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105204774U TWM538619U (en) 2016-04-07 2016-04-07 Sensing device with functions of force measurement, touch control and fingerprint identification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105204774U TWM538619U (en) 2016-04-07 2016-04-07 Sensing device with functions of force measurement, touch control and fingerprint identification

Publications (1)

Publication Number Publication Date
TWM538619U true TWM538619U (en) 2017-03-21

Family

ID=58775550

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105204774U TWM538619U (en) 2016-04-07 2016-04-07 Sensing device with functions of force measurement, touch control and fingerprint identification

Country Status (1)

Country Link
TW (1) TWM538619U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107831939A (en) * 2017-10-17 2018-03-23 友达光电股份有限公司 Touch control panel
TWI623887B (en) * 2017-04-21 2018-05-11 致伸科技股份有限公司 Fingerprint recognition module
CN108733996A (en) * 2017-04-21 2018-11-02 致伸科技股份有限公司 Fingerprint identification module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI623887B (en) * 2017-04-21 2018-05-11 致伸科技股份有限公司 Fingerprint recognition module
CN108733996A (en) * 2017-04-21 2018-11-02 致伸科技股份有限公司 Fingerprint identification module
CN108733996B (en) * 2017-04-21 2021-11-02 致伸科技股份有限公司 Fingerprint identification module
CN107831939A (en) * 2017-10-17 2018-03-23 友达光电股份有限公司 Touch control panel
TWI645321B (en) * 2017-10-17 2018-12-21 友達光電股份有限公司 Touch panel

Similar Documents

Publication Publication Date Title
KR102480003B1 (en) Pressure sensitive touch panel
CN105549790B (en) A kind of pressure-sensing touch module
TWI514210B (en) Touch display device
TWI601046B (en) Sensing device and method with functions of force measurement, touch control and fingerprint identification
TWI541712B (en) Touch screen, touch panel, and driving method thereof
TWI581170B (en) Force-touch sensing device with metal traces
US10061966B2 (en) Fingerprint identification apparatus
US10120479B2 (en) Capacitive pressure sensor and method for the same
US10289893B2 (en) Fingerprint identification apparatus
TW201841100A (en) Discriminative controller and driving method for touch panel with array electrodes
TWI626579B (en) Display panel
TWI643106B (en) Touch display panel
TW201709106A (en) Two-substrate fingerprint recognition device
TWM538619U (en) Sensing device with functions of force measurement, touch control and fingerprint identification
US10055044B2 (en) Integral sensing apparatus for touch and pressure sensing and method for the same
CN109669585B (en) Capacitive touch sensing that can determine conductivity type
KR102107786B1 (en) touch screen system
TWM537260U (en) Force-touch sensing device with metal traces
TWM522410U (en) Capacitive type pressure sensor
TWM517375U (en) Two-substrate fingerprint recognition device
TWI594161B (en) Integral device for sensing touch control and force
US20170364199A1 (en) Sensing apparatus for touch and force sensing
TW202109259A (en) Electronic device and force sensing touch assembly thereof
KR101429390B1 (en) Touch screen panel
TWM538614U (en) Integral device for sensing touch control and force