TWM527439U - Composite sintering powder - Google Patents

Composite sintering powder Download PDF

Info

Publication number
TWM527439U
TWM527439U TW105203418U TW105203418U TWM527439U TW M527439 U TWM527439 U TW M527439U TW 105203418 U TW105203418 U TW 105203418U TW 105203418 U TW105203418 U TW 105203418U TW M527439 U TWM527439 U TW M527439U
Authority
TW
Taiwan
Prior art keywords
electromagnetic wave
powder
powder structure
temperature
composite sintered
Prior art date
Application number
TW105203418U
Other languages
Chinese (zh)
Inventor
陳正士
陳怡親
Original Assignee
優克材料科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 優克材料科技股份有限公司 filed Critical 優克材料科技股份有限公司
Priority to TW105203418U priority Critical patent/TWM527439U/en
Publication of TWM527439U publication Critical patent/TWM527439U/en

Links

Abstract

A composite sintering powder including an electromagnetic wave absorbing powder and a ceramic material sintered on the electromagnetic wave absorbing powder is provided. The electromagnetic wave absorbing powder is adapted to absorb an electromagnetic wave and pre-heats the ceramic powder to a first temperature lower then a second temperature, and the second temperature is the sintering temperature of the ceramic material.

Description

複合燒結粉體結構 Composite sintered powder structure

本新型是有關於一種加工粉體結構,且特別是有關於一種適用於三維列印的複合燒結粉體結構。 The present invention relates to a processed powder structure, and in particular to a composite sintered powder structure suitable for three-dimensional printing.

隨著科技發展,三維列印(3D printing)技術及增材製造(Additive Manufacturing,AM)技術已經成為最主要發展的技術之一。上述這些技術屬於快速成型技術的一種,它可以直接藉由使用者設計好的數位模型檔案來直接製造出所需的成品,且成品幾乎是任意形狀的三維實體。現有的三維列印根據各式的機型及材料有多種不同的成型機制,舉凡是液態樹脂、漿料、金屬(例如金屬粉體)或非金屬(例如陶瓷粉體)等材料,皆可透過逐層堆疊累積的方式來構造出所需形狀的三維實體。在過去的模具製造、工業設計等領域,三維列印技術常常被用於製造模型,現在則逐漸被應用於珠寶、鞋類、工業設計、建築、工程、汽車、航空、牙科和醫療產業、教育、土木工程以及其他領域中。 With the development of technology, 3D printing technology and Additive Manufacturing (AM) technology have become one of the most important development technologies. These technologies are one of the rapid prototyping technologies. They can directly produce the desired finished product directly by the user-designed digital model file, and the finished product is almost a three-dimensional entity of any shape. The existing three-dimensional printing has various molding mechanisms according to various models and materials, and all materials such as liquid resin, slurry, metal (such as metal powder) or non-metal (such as ceramic powder) can pass through. Accumulate the layers by layer to construct a 3D solid of the desired shape. In the past, in the field of mold manufacturing, industrial design, etc., 3D printing technology is often used to make models, and now it is gradually used in jewelry, footwear, industrial design, construction, engineering, automotive, aerospace, dental and medical industries, education. , civil engineering and other fields.

現有將上述粉末狀的金屬粉體或非金屬粉體堆疊累積成三維實體的方法包括選擇性雷射燒結(Selective Laser Sintering, SLS)及選擇性雷射熔融(Selective Laser Melting,SLM),上述兩者都是將粉體加熱至其燒結溫度或熔點以使粉體燒結或熔融成為一層具有特定厚度的薄膜,經過多次的燒結或熔融後可製造出多層堆疊的薄膜,進而構成三維實體。然而,上述的燒結溫度或熔點往往都需要上千度,若直接將粉體從常溫加熱至上千度,在此快速升溫的過程中,粉體內的溫度梯度會產生熱應力累積在材料中,進而導致三維實體出現捲翹、變形,甚至破裂等問題。因此,選擇性雷射燒結(SLS)與選擇性雷射熔融(SLM)通常需使用預熱裝置以對粉體進行預熱,藉由讓粉體的溫度略低於其燒結溫度或熔點來減小粉體內的溫度梯度並提昇燒結效率。在現有技術中,選擇性雷射燒結與選擇性雷射熔融多半採用熱耦加熱器(thermal coupler)、雷射光源、近紅外光光源等裝置對粉體進行預熱的動作,然該等加熱器材對於粉體的加熱效率與加熱均勻性仍有改善的空間。換言之,如何更有效率且均勻地對粉體進行預熱,實為目前研發人員亟欲解決的問題之一。 A conventional method of accumulating the above-mentioned powdery metal powder or non-metal powder stack into a three-dimensional entity includes selective laser sintering (Selective Laser Sintering, SLS) and Selective Laser Melting (SLM), both of which heat the powder to its sintering temperature or melting point to sinter or melt the powder into a film of a specific thickness. After sintering or melting, a multilayer stacked film can be fabricated to form a three-dimensional entity. However, the above sintering temperature or melting point often needs to be thousands of degrees. If the powder is directly heated from a normal temperature to a thousand degrees, during the rapid temperature rise, the temperature gradient in the powder body will generate thermal stress and accumulate in the material. Causes three-dimensional solids to curl, deform, and even rupture. Therefore, selective laser sintering (SLS) and selective laser melting (SLM) usually require the use of a preheating device to preheat the powder by reducing the temperature of the powder slightly below its sintering temperature or melting point. The temperature gradient within the small powder increases the sintering efficiency. In the prior art, selective laser sintering and selective laser melting mostly use a thermal coupler, a laser source, a near-infrared light source, etc. to preheat the powder, and then the heating There is still room for improvement in the heating efficiency and heating uniformity of the powder. In other words, how to preheat the powder more efficiently and evenly is one of the problems that researchers are currently trying to solve.

本新型提供一種複合燒結粉體結構,其可以在一三維列印製程中提供良好的燒結效果。 The present invention provides a composite sintered powder structure that provides good sintering in a three dimensional printing process.

本新型的實施例的複合燒結粉體結構包括一電磁波吸收粉末結構以及一燒結於電磁波吸收粉末結構的表面的陶瓷物質。電磁波吸收粉末結構適於吸收一電磁波並升溫,進而預熱陶瓷物 質至低於第二溫度的第一溫度,且第二溫度為陶瓷物質的燒結溫度。 The composite sintered powder structure of the embodiment of the present invention comprises an electromagnetic wave absorbing powder structure and a ceramic material sintered on the surface of the electromagnetic wave absorbing powder structure. The electromagnetic wave absorbing powder structure is adapted to absorb an electromagnetic wave and heat up, thereby preheating the ceramic material The first temperature is lower than the second temperature, and the second temperature is the sintering temperature of the ceramic material.

在本新型的一實施例中,上述的陶瓷物質的主要成份包括二氧化鋯(Zirconium dioxide,ZrO2)、釔安定二氧化鋯(Yttria-stabilized zirconia,YSZ)、二氧化矽(Silicon oxide)、矽酸鋯氧化合物(Zirconium Silicate)、三氧化二鋁(Aluminum oxide)、二氧化鈦(Titanium dioxide,TiO2)或上述的組合。 In an embodiment of the present invention, the main components of the ceramic material include zirconium dioxide (ZrO 2 ), Yttria-stabilized zirconia (YSZ), and cerium oxide (Silicon oxide). Zirconium Silicate, Aluminum Oxide, Titanium dioxide (TiO 2 ) or a combination thereof.

在本新型的一實施例中,上述的陶瓷物質在複合燒結粉體結構中的重量百分比介於70%至98%之間。 In an embodiment of the present invention, the weight percentage of the ceramic material in the composite sintered powder structure is between 70% and 98%.

在本新型的一實施例中,上述的燒結有陶瓷物質的電磁波吸收粉末結構的中心粒徑介於20奈米(nanometer,nm)至800奈米之間。 In an embodiment of the present invention, the electromagnetic particle absorbing powder structure of the sintered ceramic material has a center particle diameter of between 20 nanometers (nm) and 800 nanometers.

在本新型的一實施例中,上述的電磁波吸收粉末結構在複合燒結粉末中的重量百分比介於2%至30%之間。 In an embodiment of the present invention, the above-mentioned electromagnetic wave absorbing powder structure has a weight percentage in the composite sintered powder of between 2% and 30%.

在本新型的一實施例中,上述的電磁波吸收粉末結構的主要成份包括碳化矽(Silicon carbide,SiC)、鐵氧體(Ferrite)、碳化矽纖維、碳黑(Soot)、碳纖維、氮化矽(Silicon nitride)、羰基鐵粉(Carbonyl iron)、氧化鋅(Zinc oxide)或上述的組合。 In an embodiment of the present invention, the main components of the electromagnetic wave absorbing powder structure include silicon carbide (SiC), ferrite, barium carbide fiber, carbon black (Soot), carbon fiber, tantalum nitride. (Silicon nitride), Carbonyl iron, Zinc oxide or a combination thereof.

在本新型的一實施例中,上述的電磁波為一微波(microwave)。 In an embodiment of the invention, the electromagnetic wave is a microwave.

基於上述,本新型的實施例的複合燒結粉體結構具有電磁波吸收粉末結構,複合燒結粉末中的陶瓷物質在到達燒結溫度 前可被預熱到第一溫度,因此可以減少複合燒結粉體結構中熱應力的產生,進而達到良好的燒結效果。 Based on the above, the composite sintered powder structure of the embodiment of the present invention has an electromagnetic wave absorbing powder structure, and the ceramic material in the composite sintered powder reaches the sintering temperature. The front can be preheated to the first temperature, so that the generation of thermal stress in the composite sintered powder structure can be reduced, thereby achieving a good sintering effect.

為讓本新型的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the present invention will be more apparent from the following description.

d1、d2‧‧‧方向 D1, d2‧‧‧ direction

h‧‧‧熱能 H‧‧‧热能

L1‧‧‧光束 L1‧‧‧ Beam

P1、k1‧‧‧路徑 P1, k1‧‧ path

S1、S2‧‧‧電磁波 S1, S2‧‧‧ electromagnetic waves

100、100B、100C‧‧‧三維列印裝置 100, 100B, 100C‧‧‧ three-dimensional printing device

110、110B、110C‧‧‧預熱載台 110, 110B, 110C‧‧‧ preheating stage

112C‧‧‧載台 112C‧‧‧ stage

113、113B、113C‧‧‧承載面 113, 113B, 113C‧‧‧ bearing surface

114B‧‧‧側壁 114B‧‧‧ Sidewall

115B‧‧‧內表面 115B‧‧‧ inner surface

116B‧‧‧承載槽 116B‧‧‧ Carrying trough

120、120B‧‧‧電磁波產生器 120, 120B‧‧‧ electromagnetic wave generator

121、121B、121C‧‧‧電磁波預熱區域 121, 121B, 121C‧‧‧ electromagnetic wave preheating area

130‧‧‧光學掃描元件 130‧‧‧ Optical scanning components

132‧‧‧雷射光源 132‧‧‧Laser light source

134‧‧‧掃描單元 134‧‧‧ scanning unit

200、203B、203C‧‧‧粉體 200, 203B, 203C‧‧‧ powder

200A、200C‧‧‧複合燒結粉體結構 200A, 200C‧‧‧Composite sintered powder structure

201B、205B‧‧‧粉體層 201B, 205B‧‧‧ powder layer

210A‧‧‧電磁波吸收粉末結構 210A‧‧‧Electromagnetic wave absorption powder structure

220A‧‧‧陶瓷物質 220A‧‧‧ceramic materials

300‧‧‧粉體供應模組 300‧‧‧ powder supply module

301‧‧‧噴灑端 301‧‧‧ spray end

310C‧‧‧滾筒 310C‧‧‧Roller

311C‧‧‧側面 311C‧‧‧ side

320C‧‧‧儲藏載台 320C‧‧‧Storage carrier

321C‧‧‧底面 321C‧‧‧ bottom

圖1是依照本新型的第一實施例的一種三維列印裝置的示意圖。 1 is a schematic view of a three-dimensional printing apparatus in accordance with a first embodiment of the present invention.

圖2是依照本新型的第二實施例的一種複合燒結粉體結構的示意圖。 2 is a schematic view of a composite sintered powder structure in accordance with a second embodiment of the present invention.

圖3A至圖3C是依照本新型的第三實施例的一種三維列印裝置的示意圖。 3A through 3C are schematic views of a three-dimensional printing apparatus in accordance with a third embodiment of the present invention.

圖4是依照本新型的第四實施例的三維列印裝置的示意圖。 4 is a schematic view of a three-dimensional printing apparatus in accordance with a fourth embodiment of the present invention.

圖1是依照本新型的第一實施例的一種三維列印裝置的示意圖。請參照圖1,在本新型的第一實施例中,三維列印裝置100包括一預熱載台110、一電磁波產生器120以及一光學掃描元件130。電磁波產生器120適於產生一電磁波S1以定義出一電磁波預熱區域121,且預熱載台110配置於電磁波預熱區域121內。在本實施例中,電磁波產生器120例如連接於預熱載台110下方, 但本新型不限於此,在其他實施例中電磁波產生器120更可以配置於其他適於定義出電磁波預熱區域121的位置。 1 is a schematic view of a three-dimensional printing apparatus in accordance with a first embodiment of the present invention. Referring to FIG. 1, in the first embodiment of the present invention, the three-dimensional printing apparatus 100 includes a preheating stage 110, an electromagnetic wave generator 120, and an optical scanning element 130. The electromagnetic wave generator 120 is adapted to generate an electromagnetic wave S1 to define an electromagnetic wave preheating region 121, and the preheating stage 110 is disposed in the electromagnetic wave preheating region 121. In the present embodiment, the electromagnetic wave generator 120 is connected, for example, below the preheating stage 110. However, the present invention is not limited thereto. In other embodiments, the electromagnetic wave generator 120 may be disposed at other positions suitable for defining the electromagnetic wave preheating region 121.

在本新型的第一實施例中,預熱載台110適於承載一粉體200,且預熱載台110吸收電磁波S1而使粉體200升溫至一第一溫度。光學掃描元件130適於發出一光束L1至粉體200上以局部加熱粉體200至一第二溫度,且第一溫度低於第二溫度,且第二溫度為粉體200的燒結溫度或熔點。光束L1用以加熱粉體200至一第二溫度,其中第一溫度低於第二溫度。具體來說,本實施例的三維列印裝置藉由可以吸收電磁波的預熱載台110來預熱粉體200到第一溫度。粉體200被預熱到第一溫度後,光學掃描元件130所發出的光束L1再將局部粉體200加熱至粉體200的燒結溫度或熔點。藉由兩次加熱的方式,粉體200在從第一溫度到第二溫度的加熱過程中不會經歷太大的溫度差。因此,本實施例的三維列印裝置100在燒結或熔化粉體200後,粉體成型時也不會產生過多的熱應力,提高了整體製作的良率。 In the first embodiment of the present invention, the preheating stage 110 is adapted to carry a powder 200, and the preheating stage 110 absorbs the electromagnetic wave S1 to raise the powder 200 to a first temperature. The optical scanning element 130 is adapted to emit a light beam L1 onto the powder 200 to locally heat the powder 200 to a second temperature, and the first temperature is lower than the second temperature, and the second temperature is the sintering temperature or melting point of the powder 200. . The light beam L1 is used to heat the powder 200 to a second temperature, wherein the first temperature is lower than the second temperature. Specifically, the three-dimensional printing apparatus of the present embodiment preheats the powder 200 to the first temperature by the preheating stage 110 that can absorb electromagnetic waves. After the powder 200 is preheated to the first temperature, the light beam L1 emitted from the optical scanning element 130 heats the local powder 200 to the sintering temperature or melting point of the powder 200. By means of two heatings, the powder 200 does not experience too much temperature difference during the heating from the first temperature to the second temperature. Therefore, after the three-dimensional printing apparatus 100 of the present embodiment sinters or melts the powder 200, excessive thermal stress is not generated during powder molding, and the overall production yield is improved.

詳細來說,在本實施例中,預熱載台110的材質例如包括碳化矽(Silicon carbide,SiC),而電磁波產生器120例如是微波發射源,其用以發出一微波供預熱載台110吸收並加熱,但本新型不限於此。在其他實施例中,預熱載台110的材質更可以包括鐵氧體(Ferrite)、碳化矽纖維、碳黑(Soot)、碳纖維、氮化矽(Silicon nitride)、羰基鐵粉(Carbonyl iron)、氧化鋅(Zinc oxide)等其他適於吸收微波且具有高介電損耗或磁損耗的金屬、非金屬或金屬 氧化物,並藉由上述材質吸收發射到預熱載台100表面的電磁波,並透過上述材質的介電損耗或磁損耗來將吸收的電磁波的能量轉變為熱能。進一步來說,電磁波產生器更可以是近紅外光產生器或其他波長電磁波的產生器,而預熱載台的材質更可以包括其他金屬、非金屬或金屬氧化物等可以吸收上述電磁波產生器所發出之電磁波的材質。在本新型的第一實施例中,電磁波產生器120所發出之電磁波S1的功率較佳為200瓦至1000瓦,且電磁波S1較佳為頻率範圍為0.3GHz至30GHz,但本新型不限於此。 In detail, in the present embodiment, the material of the preheating stage 110 includes, for example, silicon carbide (SiC), and the electromagnetic wave generator 120 is, for example, a microwave emission source for emitting a microwave for the preheating stage. 110 absorbs and heats, but the present invention is not limited thereto. In other embodiments, the material of the preheating stage 110 may further include ferrite, tantalum carbide, soot, carbon fiber, silicon nitride, carbonyl iron. Other metals, non-metals or metals suitable for absorbing microwaves and having high dielectric loss or magnetic loss, such as zinc oxide The oxide absorbs electromagnetic waves emitted to the surface of the preheating stage 100 by the above material, and converts the energy of the absorbed electromagnetic wave into heat energy by dielectric loss or magnetic loss of the material. Further, the electromagnetic wave generator may be a near-infrared light generator or a generator of other wavelength electromagnetic waves, and the material of the preheating stage may further include other metals, non-metals or metal oxides to absorb the electromagnetic wave generator. The material of the electromagnetic wave emitted. In the first embodiment of the present invention, the electromagnetic wave S1 emitted from the electromagnetic wave generator 120 preferably has a power of 200 watts to 1000 watts, and the electromagnetic wave S1 preferably has a frequency range of 0.3 GHz to 30 GHz, but the present invention is not limited thereto. .

另一方面,在本新型的第一實施例中,光學掃描元件130包括一提供光束L1的雷射光源132以及一掃描單元134。掃描單元134配置於光束L1的光路徑上,且掃描單元134位於雷射光源132與預熱載台110之間。光學掃描元件130可以選擇性的對預熱載台110的一承載面113上的粉體200加熱。詳細來說,雷射光源132例如是一二氧化碳雷射源、一釹釔鋁石榴石(Neodymium-doped Yttrium Aluminium Garnet,Nd-YAG)雷射源、光纖雷射源、紫外光雷射源或脈衝雷射(pulsed laser)源,而掃描單元134例如是一動態反射鏡,藉以使雷射光源132所發出的雷射光束L1可以照射到所需的位置。具體來說,本實施例的雷射光源132較佳為能提供功率為10瓦(Watts,W)至100瓦且光斑直徑為0.05公釐至0.5公釐的光束,而掃描單元134的掃描速度較佳為每秒50公釐至500公釐,但本新型不限於此。 On the other hand, in the first embodiment of the present invention, the optical scanning element 130 includes a laser light source 132 that supplies the light beam L1 and a scanning unit 134. The scanning unit 134 is disposed on the light path of the light beam L1, and the scanning unit 134 is located between the laser light source 132 and the preheating stage 110. The optical scanning element 130 can selectively heat the powder 200 on a bearing surface 113 of the preheating stage 110. In detail, the laser source 132 is, for example, a carbon dioxide laser source, a neodymium-doped Yttrium Aluminium Garnet (Nd-YAG) laser source, a fiber laser source, an ultraviolet laser source or a pulse. The pumping unit 134 is, for example, a dynamic mirror, whereby the laser beam L1 emitted by the laser source 132 can be illuminated to a desired position. Specifically, the laser light source 132 of the present embodiment preferably provides a light beam having a power of 10 watts (Watts, W) to 100 watts and a spot diameter of 0.05 mm to 0.5 mm, and the scanning speed of the scanning unit 134. It is preferably from 50 to 500 mm per second, but the present invention is not limited thereto.

在本新型的第一實施例中,應用此三維列印裝置100的 粉體加熱方法包括提供粉體200於預熱載台110的承載面113,接著用電磁波產生器120提供一電磁波S1至預熱載台110,使粉體200藉由預熱載台110加熱至第一溫度。接著再提供光束L1至局部的粉體200,藉以加熱局部粉體200至第二溫度並使局部粉體200開始燒結或熔化,但本新型不限於此。 In the first embodiment of the present invention, the three-dimensional printing apparatus 100 is applied The powder heating method includes providing the powder 200 on the bearing surface 113 of the preheating stage 110, and then supplying an electromagnetic wave S1 to the preheating stage 110 by the electromagnetic wave generator 120, so that the powder 200 is heated by the preheating stage 110 to First temperature. The beam L1 is then supplied to the local powder 200, whereby the local powder 200 is heated to a second temperature and the local powder 200 begins to sinter or melt, but the present invention is not limited thereto.

本新型的第二實施例的三維列印裝置類似於三維列印裝置100,惟其不同之處在於預熱載台110並不是用電磁波吸收材質形成,且三維列印裝置所加熱的粉體為一複合燒結粉體結構。圖2是依照本新型的第二實施例的一種複合燒結粉體結構的示意圖。請參照圖2,在本新型的第二實施例中,適於應用在例如是上述的三維列印裝置100中的複合燒結粉體結構200A包括一電磁波吸收粉末結構210A以及一陶瓷物質220A,且陶瓷物質220A燒結於電磁波吸收粉末結構210A的表面上。意即,本實施例的複合燒結粉體結構200A是由陶瓷物質220A燒結於電磁波吸收粉末結構210A的表面上而成,其中電磁波吸收粉末結構210A適於吸收電磁波S1並升溫,進而預熱陶瓷物質220A至一第一溫度。也就是說,只要提供一電磁波S1給本實施例的複合燒結粉體結構200A,電磁波吸收粉末結構210A就會吸收所述電磁波S1並傳遞熱能h給四周的陶瓷物質220A,進而使陶瓷物質220A可以被預熱至低於第二溫度的第一溫度,其中第二溫度例如為陶瓷物質220A的燒結溫度。因此,可以吸收電磁波S1的電磁波吸收粉末結構210A可以在複合燒結粉體結構200A中提供一個良好的預熱效果。 The three-dimensional printing apparatus of the second embodiment of the present invention is similar to the three-dimensional printing apparatus 100 except that the preheating stage 110 is not formed by an electromagnetic wave absorbing material, and the powder heated by the three-dimensional printing apparatus is one. Composite sintered powder structure. 2 is a schematic view of a composite sintered powder structure in accordance with a second embodiment of the present invention. Referring to FIG. 2, in the second embodiment of the present invention, the composite sintered powder structure 200A suitable for use in, for example, the three-dimensional printing apparatus 100 described above includes an electromagnetic wave absorbing powder structure 210A and a ceramic material 220A, and The ceramic substance 220A is sintered on the surface of the electromagnetic wave absorbing powder structure 210A. That is, the composite sintered powder structure 200A of the present embodiment is formed by sintering the ceramic material 220A on the surface of the electromagnetic wave absorbing powder structure 210A, wherein the electromagnetic wave absorbing powder structure 210A is adapted to absorb the electromagnetic wave S1 and heat up, thereby preheating the ceramic material. 220A to a first temperature. That is, as long as an electromagnetic wave S1 is supplied to the composite sintered powder structure 200A of the present embodiment, the electromagnetic wave absorbing powder structure 210A absorbs the electromagnetic wave S1 and transmits thermal energy h to the surrounding ceramic material 220A, thereby enabling the ceramic material 220A to It is preheated to a first temperature lower than the second temperature, wherein the second temperature is, for example, the sintering temperature of the ceramic material 220A. Therefore, the electromagnetic wave absorbing powder structure 210A which can absorb the electromagnetic wave S1 can provide a good preheating effect in the composite sintered powder structure 200A.

具體來說,當複合燒結粉體結構200A例如是放置到圖1所繪示的三維列印裝置100的電磁波預熱區域121中時,電磁波產生器120提供的電磁波S1就可以讓複合燒結粉體結構200A預熱至第一溫度。在本實施例的複合燒結粉體結構200A在預熱至第一溫度的過程中,由於複合燒結粉體結構200A的陶瓷物質220A是燒結於電磁波吸收粉末結構210A的表面上,因此,在電磁波吸收粉末結構210A因吸收電磁波S1而發熱時,電磁波吸收粉末結構210A所傳出的熱能可以向外傳遞傳而被燒結於電磁波吸收粉末結構210A的表面上之陶瓷物質220A所充分吸收。 Specifically, when the composite sintered powder structure 200A is placed, for example, in the electromagnetic wave preheating region 121 of the three-dimensional printing apparatus 100 illustrated in FIG. 1, the electromagnetic wave S1 provided by the electromagnetic wave generator 120 allows the composite sintered powder to be made. Structure 200A is preheated to a first temperature. In the process of preheating to the first temperature of the composite sintered powder structure 200A of the present embodiment, since the ceramic material 220A of the composite sintered powder structure 200A is sintered on the surface of the electromagnetic wave absorbing powder structure 210A, electromagnetic wave absorption is performed. When the powder structure 210A generates heat by absorbing the electromagnetic wave S1, the heat energy transmitted from the electromagnetic wave absorbing powder structure 210A can be sufficiently absorbed by the ceramic material 220A which is transmitted to the surface of the electromagnetic wave absorbing powder structure 210A.

另一方面,由於本實施例的複合燒結粉體結構200A可以藉由上述的方式對複合燒結粉體結構200A中的陶瓷物質220A進行預熱,因此陶瓷物質220A在複合燒結粉體結構200A中的比例可以作適度的調整。更具體來說,藉由吸收電磁波S1的電磁波吸收粉末結構210A由內至外的對四周的陶瓷物質220A進行預熱,陶瓷物質220A可以均勻且有效率地被預熱至第一溫度。此外,由於本實施例僅需使用電磁波吸收粉末結構210A即可對其四周的陶瓷物質220A進行預熱,且在複合燒結粉體結構200A中的電磁波吸收粉末結構210A的含量較陶瓷物質220A的含量低,因此本實施例的複合燒結粉體結構200A可以被應用於選擇性雷射燒結或其他燒結製程以製作全瓷、近全瓷或具有高比例陶瓷材料的物體。 On the other hand, since the composite sintered powder structure 200A of the present embodiment can preheat the ceramic material 220A in the composite sintered powder structure 200A by the above-described manner, the ceramic material 220A is in the composite sintered powder structure 200A. The ratio can be adjusted moderately. More specifically, the ceramic material 220A is preheated from the inside to the outside by the electromagnetic wave absorbing powder structure 210A absorbing the electromagnetic wave S1, and the ceramic material 220A can be preheated to the first temperature uniformly and efficiently. In addition, since the present embodiment only needs to use the electromagnetic wave absorbing powder structure 210A, the ceramic material 220A around it can be preheated, and the content of the electromagnetic wave absorbing powder structure 210A in the composite sintered powder structure 200A is higher than that of the ceramic material 220A. Low, so the composite sintered powder structure 200A of the present embodiment can be applied to selective laser sintering or other sintering processes to produce all-ceramic, near-ceramic or objects having a high proportion of ceramic materials.

另一方面,由於本實施例的複合燒結粉體結構200A中的 陶瓷物質220A燒結於電磁波吸收粉末結構210A的表面,因此當複合燒結粉體結構200A藉由吸收電磁波S1的電磁波吸收粉末結構210A將熱傳遞給陶瓷物質220A時,複合燒結粉體結構200A可以達到一個良好的預熱效果。同時,被覆於電磁波吸收粉末結構210A的表面之陶瓷物質220A可與周圍相鄰的複合燒結粉體結構200A之陶瓷物質220A彼此接觸。因此,經過預熱的複合燒結粉體結構200A再經由雷射光束照射並加熱至第二溫度(也就是陶瓷物質220A的燒結溫度)時,陶瓷物質220A之間可以更有效率的燒結成一體。進一步來說,在複合燒結粉體結構200A的預熱過程中,陶瓷物質220A對電磁波S1的吸收效率在到達一特定溫度後會提昇,進而使複合燒結粉體結構200A的預熱效率更佳。 On the other hand, due to the composite sintered powder structure 200A of the present embodiment The ceramic material 220A is sintered on the surface of the electromagnetic wave absorbing powder structure 210A. Therefore, when the composite sintered powder structure 200A transfers heat to the ceramic material 220A by the electromagnetic wave absorbing powder structure 210A that absorbs the electromagnetic wave S1, the composite sintered powder structure 200A can reach one. Good warm-up effect. At the same time, the ceramic substance 220A coated on the surface of the electromagnetic wave absorbing powder structure 210A can be in contact with the ceramic substance 220A of the composite sintered powder structure 200A adjacent thereto. Therefore, when the preheated composite sintered powder structure 200A is irradiated by the laser beam and heated to the second temperature (that is, the sintering temperature of the ceramic material 220A), the ceramic materials 220A can be sintered more efficiently. Further, during the preheating process of the composite sintered powder structure 200A, the absorption efficiency of the electromagnetic wave S1 by the ceramic material 220A is increased after reaching a certain temperature, thereby further improving the preheating efficiency of the composite sintered powder structure 200A.

本新型的第二實施例的複合燒結粉體結構200A可以應用於一種選擇性燒結方法,其包括提供包括有電磁波吸收粉末結構210A以及陶瓷物質220A的複合燒結粉體結構200A,接著提供一電磁波S1至複合燒結粉體結構200A,複合燒結粉體結構200A的電磁波吸收粉末結構210A吸收電磁波S1並升溫,進而預熱陶瓷物質220A至第一溫度。接著,提供一光束來加熱局部複合燒結粉體結構200A至第二溫度,進而使局部複合燒結粉體結構200A燒結。第一溫度低於第二溫度,也就是第一溫度低於陶瓷物質的燒結溫度。換句話說,複合燒結粉體結構200A應用在上述三維列印裝置100中時,光束照射到局部複合燒結粉體結構200A時可以讓局部複合燒結粉體結構200A加熱至第二溫度。複合燒結粉體結 構200A中的陶瓷物質220A的燒結溫度為第二溫度,且藉由電磁波S1預熱陶瓷物質220A的效果,複合燒結粉體結構200A在燒結或是熔化後不會在成型時產生過多的熱應力及殘餘應力,提高了整體製作的良率。 The composite sintered powder structure 200A of the second embodiment of the present invention can be applied to a selective sintering method including providing a composite sintered powder structure 200A including an electromagnetic wave absorbing powder structure 210A and a ceramic substance 220A, followed by providing an electromagnetic wave S1 To the composite sintered powder structure 200A, the electromagnetic wave absorbing powder structure 210A of the composite sintered powder structure 200A absorbs the electromagnetic wave S1 and raises the temperature, thereby preheating the ceramic material 220A to the first temperature. Next, a light beam is provided to heat the partially composite sintered powder structure 200A to the second temperature, thereby sintering the local composite sintered powder structure 200A. The first temperature is lower than the second temperature, that is, the first temperature is lower than the sintering temperature of the ceramic material. In other words, when the composite sintered powder structure 200A is applied to the above-described three-dimensional printing apparatus 100, the partial composite sintered powder structure 200A can be heated to the second temperature when the light beam is irradiated to the partial composite sintered powder structure 200A. Composite sintered powder knot The sintering temperature of the ceramic material 220A in the structure 200A is the second temperature, and the effect of preheating the ceramic material 220A by the electromagnetic wave S1, the composite sintered powder structure 200A does not generate excessive thermal stress during molding after sintering or melting. And residual stress, which improves the overall yield.

在本新型的第二實施例中,陶瓷物質220A的主要成份包括二氧化鋯(Zirconium dioxide,ZrO2)、釔安定二氧化鋯(Yttria-stabilized zirconia,YSZ)、二氧化矽(Silicon oxide)、矽酸鋯氧化合物(Zirconium Silicate)、三氧化二鋁(Aluminum oxide)、二氧化鈦(Titanium dioxide,TiO2)或上述的組合,但本新型不限於此。在本實施例中,電磁波吸收粉末結構210A的主要成份包括碳化矽、鐵氧體、碳化矽纖維、碳黑、碳纖維、氮化矽、羰基鐵粉、氧化鋅或上述的組合,但本新型不限於此。另一方面,在本新型的一實施例中,電磁波吸收粉末結構210A在複合燒結粉體結構200A中的重量百分比介於2%至30%之間。換句話說,在本新型的實施例中,電磁波吸收粉末結構的材料藉由介電損耗或磁損耗來轉變為熱能,也就是在常溫下或是相對低於陶瓷物質的燒結溫度的溫度下,本實施例的電磁波吸收粉末結構的材料具有高介電損耗或磁損耗的特性,因此可以藉由吸收一電磁波來預熱陶瓷物質。另一方面,本新型的一實施例中,當電磁波吸收粉末結構210A的主要成份例如是氮化矽或碳化矽時,複合燒結粉體結構200A經過一三維列印製程所形成的加工件因為摻有氮化矽或碳化矽,可以具有較高的硬度及強度。也就是本新型的實施例的 電磁波吸收粉末結構210A除了可以對複合燒結粉體結構200A提供良好的預熱效果,更可以調整複合燒結粉體結構200A在成型後的機械性質。 In the second embodiment of the present invention, the main components of the ceramic material 220A include zirconium dioxide (ZrO2), Yttria-stabilized zirconia (YSZ), cerium oxide (Silicon oxide), yttrium. Zirconium Silicate, Aluminum Oxide, Titanium dioxide (TiO2) or a combination thereof, but the present invention is not limited thereto. In the present embodiment, the main components of the electromagnetic wave absorbing powder structure 210A include tantalum carbide, ferrite, tantalum carbide fiber, carbon black, carbon fiber, tantalum nitride, carbonyl iron powder, zinc oxide or a combination thereof, but the present invention does not Limited to this. On the other hand, in an embodiment of the present invention, the weight percentage of the electromagnetic wave absorbing powder structure 210A in the composite sintered powder structure 200A is between 2% and 30%. In other words, in the embodiment of the present invention, the material of the electromagnetic wave absorbing powder structure is converted into thermal energy by dielectric loss or magnetic loss, that is, at normal temperature or at a temperature relatively lower than the sintering temperature of the ceramic material. The material of the electromagnetic wave absorbing powder structure of the present embodiment has a characteristic of high dielectric loss or magnetic loss, and thus the ceramic substance can be preheated by absorbing an electromagnetic wave. On the other hand, in an embodiment of the present invention, when the main component of the electromagnetic wave absorbing powder structure 210A is, for example, tantalum nitride or tantalum carbide, the composite sintered powder structure 200A is processed by a three-dimensional printing process. It has tantalum nitride or tantalum carbide and can have high hardness and strength. That is, the embodiment of the present invention The electromagnetic wave absorbing powder structure 210A can provide a good preheating effect on the composite sintered powder structure 200A, and can also adjust the mechanical properties of the composite sintered powder structure 200A after molding.

在本實施例中,電磁波吸收粉末結構210A的中心粒徑較佳為介於20奈米至800奈米之間。因此,詳細來說,本實施例的選擇性燒結方法可以藉由燒結陶瓷物質220A在電磁波吸收粉末結構210A表面來提供較佳的複合燒結粉體結構200A,進而使複合燒結粉體結構200A在接收到電磁波S1時可以均勻的預熱至第一溫度,而局部複合燒結粉體結構200A因照射到光束而加熱至第二溫度並達成良好的燒結功效。舉例來說,上述的中心粒徑是指一包含多個顆粒的粉末中全部這些顆粒的直徑的中間數。 In the present embodiment, the central particle diameter of the electromagnetic wave absorbing powder structure 210A is preferably between 20 nm and 800 nm. Therefore, in detail, the selective sintering method of the present embodiment can provide a preferred composite sintered powder structure 200A by sintering the ceramic material 220A on the surface of the electromagnetic wave absorbing powder structure 210A, thereby allowing the composite sintered powder structure 200A to be received. The electromagnetic wave S1 can be uniformly preheated to the first temperature, and the local composite sintered powder structure 200A is heated to the second temperature by irradiation to the light beam and achieves a good sintering effect. For example, the above-mentioned center particle diameter refers to the intermediate number of the diameters of all of the particles in a powder containing a plurality of particles.

在本新型的一實施例中,複合燒結粉體結構的製作方式例如是先將電磁波吸收粉末結構均勻分散一混合溶液中,混合溶液例如包含特定比例之醇類、去離子水及氨水。將含有金屬氧化物前驅物的溶液緩慢滴入上述混有電磁波吸收粉末結構的混合溶液中以形成一反應溶液,在室溫下持續攪拌反應溶液2至24小時。藉由離心(centrifugation)自攪拌後的反應溶液分離出反應粉體,並以乙醇清洗反應粉體。接著將清洗過的反應粉體放置到烘箱中以乾燥,其中烘箱的溫度例如是攝氏60度至攝氏80度。將乾燥後的反應粉體放置到高溫爐中進行燒結處理並形成複合燒結粉體結構,其中高溫爐中的溫度例如是攝氏500度至1000度。本實施例的醇類例如是甲醇、乙醇、乙二醇、異丙醇、丁醇及其組 合,本新型不限於此。 In an embodiment of the present invention, the composite sintered powder structure is prepared by, for example, uniformly dispersing the electromagnetic wave absorbing powder structure in a mixed solution containing, for example, a specific proportion of alcohol, deionized water, and ammonia water. The solution containing the metal oxide precursor is slowly dropped into the above mixed solution in which the electromagnetic wave absorbing powder structure is mixed to form a reaction solution, and the reaction solution is continuously stirred at room temperature for 2 to 24 hours. The reaction powder was separated from the stirred reaction solution by centrifugation, and the reaction powder was washed with ethanol. The washed reaction powder is then placed in an oven for drying, wherein the temperature of the oven is, for example, 60 degrees Celsius to 80 degrees Celsius. The dried reaction powder is placed in a high temperature furnace for sintering treatment to form a composite sintered powder structure, wherein the temperature in the high temperature furnace is, for example, 500 to 1000 degrees Celsius. The alcohols of this embodiment are, for example, methanol, ethanol, ethylene glycol, isopropanol, butanol, and the like. The present invention is not limited thereto.

請參照圖1,在本新型的第一實施例中,三維列印裝置100更包括一粉體供應模組300,其供應粉體200至承載面113。更具體來說,在本實施例中,粉體供應模組300具有一噴灑端301,噴灑端301用以噴灑粉體200至預熱載台110。也就是說,粉體供應裝置300可以沿著路徑P1令粉體200在預熱載台110的承載面113上形成一粉體層,粉體層平行於承載面113,但本新型不限於此。 Referring to FIG. 1 , in the first embodiment of the present invention, the three-dimensional printing apparatus 100 further includes a powder supply module 300 that supplies the powder 200 to the bearing surface 113 . More specifically, in the present embodiment, the powder supply module 300 has a spray end 301 for spraying the powder 200 to the preheating stage 110. That is, the powder supply device 300 can form a powder layer on the bearing surface 113 of the preheating stage 110 along the path P1, and the powder layer is parallel to the bearing surface 113, but the present invention is not limited thereto. .

圖3A至圖3C是依照本新型的第三實施例的一種三維列印裝置的示意圖。請參照圖3A,本新型的第三實施例的三維列印裝置100B以粉體供應模組300的噴灑端301噴灑粉體至預熱載台110B的承載面113B並形成粉體層201B在承載面113B上,粉體層201B平行於承載面113B。接著藉由預熱載台110B中的電磁波產生器120B提供一電磁波S1來定義配置有預熱載台110B的電磁波預熱區域121B中。 3A through 3C are schematic views of a three-dimensional printing apparatus in accordance with a third embodiment of the present invention. Referring to FIG. 3A, the three-dimensional printing apparatus 100B of the third embodiment of the present invention sprays the powder to the bearing surface 113B of the preheating stage 110B with the spraying end 301 of the powder supply module 300 and forms a powder layer 201B. On the face 113B, the powder layer 201B is parallel to the bearing surface 113B. Next, an electromagnetic wave S1 is supplied from the electromagnetic wave generator 120B in the preheating stage 110B to define an electromagnetic wave preheating area 121B in which the preheating stage 110B is disposed.

在本實施例中,預熱載台110B包括一容器,也就是預熱載台110B更包括多個側壁114B,這些側壁114B的內表面115B連接承載面113B並形成所述容器。因此,本實施例的預熱載台110B除了可以提供更大的接觸面積來對粉體層201B預熱外,還可以更穩固的容納形成粉體層201B的粉體。詳細來說,內表面115B與承載面113B形成一承載槽116B,其提供一個更完善且可以更均勻預熱的粉體容置空間。另一方面,上述的預熱載台110B 可以沿著方向d1移動,且方向d1平行於承載面113B的法線。 In the present embodiment, the preheating stage 110B includes a container, that is, the preheating stage 110B further includes a plurality of side walls 114B, and the inner surface 115B of the side walls 114B connects the bearing surface 113B and forms the container. Therefore, in addition to providing a larger contact area to preheat the powder layer 201B, the preheating stage 110B of the present embodiment can more stably accommodate the powder forming the powder layer 201B. In detail, the inner surface 115B and the bearing surface 113B form a bearing groove 116B, which provides a powder accommodation space which is more complete and can be more uniformly preheated. On the other hand, the preheating stage 110B described above It is possible to move along the direction d1, and the direction d1 is parallel to the normal to the bearing surface 113B.

詳細來說,請參照圖3A及圖3B,當粉體層201B經由吸收了電磁波S1的預熱載台110B預熱至第一溫度後,光學掃描元件130提供一光束L1至局部粉體。光束L1例如將局部粉體203B加熱至比第一溫度高的第二溫度並完成粉體層201B的燒結後,預熱載台110B沿著方向d1移動。接著,粉體供應模組300噴灑粉體至粉體層201B上並形成粉體層205B。也就是說,本實施例的粉體供應模組300的噴灑端301可以固定沿著方向d2形成一粉體層,而噴灑端301例如沿著路徑k1噴灑粉體。 In detail, referring to FIG. 3A and FIG. 3B, after the powder layer 201B is preheated to the first temperature via the preheating stage 110B that absorbs the electromagnetic wave S1, the optical scanning element 130 supplies a light beam L1 to the local powder. The light beam L1, for example, heats the local powder 203B to a second temperature higher than the first temperature and completes the sintering of the powder layer 201B, and the preheating stage 110B moves in the direction d1. Next, the powder supply module 300 sprays the powder onto the powder layer 201B and forms a powder layer 205B. That is, the spray end 301 of the powder supply module 300 of the present embodiment can be fixed to form a powder layer along the direction d2, and the spray end 301 sprays the powder, for example, along the path k1.

請參照圖3C,在粉體層205B形成完後,發光元件130再提供光束L1來將粉體層205B的局部粉體加熱至第二溫度。所述的第二溫度並不限於粉體層205B中例如是一陶瓷物質的燒結溫度,當粉體包括有金屬粉末時,第二溫度更可以是金屬粉末的熔點,本新型不限於此。也就是說,第三實施例的三維列印裝置100B是藉由預熱載台110B對粉體層201B、205B預熱,再利用光學掃描元件130進一步加熱,因此可以應用在選擇性雷射燒結或選擇性雷射熔融的技術上。 Referring to FIG. 3C, after the powder layer 205B is formed, the light-emitting element 130 further supplies the light beam L1 to heat the local powder of the powder layer 205B to the second temperature. The second temperature is not limited to the sintering temperature of the ceramic material 205B, for example, a ceramic material. When the powder includes the metal powder, the second temperature may be the melting point of the metal powder, and the present invention is not limited thereto. That is, the three-dimensional printing apparatus 100B of the third embodiment preheats the powder layers 201B, 205B by the preheating stage 110B, and further heats it by the optical scanning element 130, and thus can be applied to selective laser sintering. Or selective laser melting technology.

另一方面,當上述的粉體層藉由上述本新型的第二實施例的複合燒結粉體結構200A所形成時,粉體層中的電磁波吸收粉末結構可以藉由吸收微波對其中的陶瓷物質作良好地預熱,進而提供一個良好的燒結效果。 On the other hand, when the above-mentioned powder layer is formed by the composite sintered powder structure 200A of the second embodiment of the present invention described above, the electromagnetic wave absorbing powder structure in the powder layer can absorb the microwave to the ceramic material therein. Preheated well to provide a good sintering effect.

圖4是依照本新型的第四實施例的三維列印裝置的示意 圖。請參照圖4,在本新型的第四實施例中,三維列印裝置100C的粉體供應模組300C包括一滾筒310C以及一儲藏載台320C。儲藏載台320C包括一底面321C,底面321C用以沿著一推動方向(也就是方向d1)移動,儲藏載台320C容置了複合燒結粉體200C。滾筒310C沿著一滾動方向d2在一滾動區域A滾動,且滾動方向d2平行於一載台112C上的承載面113C並垂直於方向d1,且儲藏載台320C及載台112C位於滾動區域A內。 Figure 4 is a schematic illustration of a three-dimensional printing apparatus in accordance with a fourth embodiment of the present invention Figure. Referring to FIG. 4, in the fourth embodiment of the present invention, the powder supply module 300C of the three-dimensional printing apparatus 100C includes a drum 310C and a storage stage 320C. The storage stage 320C includes a bottom surface 321C for moving in a pushing direction (that is, a direction d1), and the storage stage 320C accommodates the composite sintered powder 200C. The drum 310C rolls along a rolling direction d2 in a rolling area A, and the rolling direction d2 is parallel to the bearing surface 113C on a stage 112C and perpendicular to the direction d1, and the storage stage 320C and the stage 112C are located in the rolling area A. .

在本實施例中,複合燒結粉體200C類似於上述的複合燒結粉體200A,其一樣包括有電磁波吸收粉末結構以及陶瓷物質,因此在利用一電磁波產生器(未繪示)產生電磁波S2以定義出電磁波預熱區域121C後,複合燒結粉體200C可以藉由其中的電磁波吸收粉末結構來吸收電磁波S2並對陶瓷物質作均勻且良好的預熱,並進而提供一個良好的選擇性燒結效果或選擇性熔融效果。 In the present embodiment, the composite sintered powder 200C is similar to the composite sintered powder 200A described above, and includes the electromagnetic wave absorbing powder structure and the ceramic substance as in the above, and thus the electromagnetic wave S2 is generated by using an electromagnetic wave generator (not shown) to define After the electromagnetic wave preheating zone 121C is exited, the composite sintered powder 200C can absorb the electromagnetic wave S2 by the electromagnetic wave absorbing powder structure therein and uniformly and well preheat the ceramic material, thereby providing a good selective sintering effect or selection. Sexual melting effect.

也就是說,本實施例的三維列印裝置100C例如是先沿著方向d1移動儲藏載台320C的底面321C來將複合燒結粉體200C推頂出來,再以滾筒310C將被推頂出的複合燒結粉體200C自儲藏載台320C推動至承載面113C形成粉體層,且因為複合燒結粉體200C包括有電磁波吸收粉末結構,因此在儲藏載台320C、滾筒310C旁及承載面113C上的複合燒結粉體200C都可以在電磁波預熱區域121C接收到電磁波S2後得到良好的預熱效果。 That is, the three-dimensional printing apparatus 100C of the present embodiment is, for example, first moving the bottom surface 321C of the storage stage 320C in the direction d1 to push the composite sintered powder 200C out, and then pushing the composite by the drum 310C. The sintered powder 200C is pushed from the storage stage 320C to the bearing surface 113C to form a powder layer, and since the composite sintered powder 200C includes an electromagnetic wave absorbing powder structure, composite sintering on the storage stage 320C, the drum 310C, and the bearing surface 113C The powder 200C can obtain a good warm-up effect after receiving the electromagnetic wave S2 in the electromagnetic wave preheating region 121C.

進一步來說,在本實施例中,載台112C更可以包括預熱載台110C,其用以吸收電磁波S2使複合燒結粉體200C預熱至第 一溫度。儲藏載台320C更可以包括有與預熱載台110C相同的材質,且滾筒310C的側面311C的材質也與預熱載台110C的材質相同,因此本實施例的三維列印裝置100C在吸收過電磁波S2後可以提供一種高效率且均勻的預熱效果,進而使光學掃描單元130可以提供光束來燒結或熔化局部粉體203C。在本新型上述的實施例中,上述的第一溫度及第二溫度之間具有一溫差,溫差介於攝氏200度至攝氏600度之間,因此經過預熱後的粉體在經過光束照射時,不會造成過大的溫差,因此應用在選擇性雷射燒結或選擇性雷射熔融的技術上時可以解決成型時所產生的龜裂、裂痕或變形。在本新型上述的實施例中,上述的第二溫度例如介於攝氏500度至攝氏1000度之間,端視粉體中所包含的材質來決定,本新型不限於此。 Further, in this embodiment, the stage 112C may further include a preheating stage 110C for absorbing the electromagnetic wave S2 to preheat the composite sintered powder 200C to the first stage. a temperature. The storage stage 320C may further include the same material as the preheating stage 110C, and the material of the side surface 311C of the drum 310C is also the same as that of the preheating stage 110C. Therefore, the three-dimensional printing apparatus 100C of the present embodiment is absorbed. The electromagnetic wave S2 can provide a highly efficient and uniform preheating effect, thereby allowing the optical scanning unit 130 to provide a light beam to sinter or melt the local powder 203C. In the above embodiment of the present invention, the first temperature and the second temperature have a temperature difference between 200 degrees Celsius and 600 degrees Celsius, so that the preheated powder is irradiated by the light beam. It does not cause excessive temperature difference, so it can be applied to the technology of selective laser sintering or selective laser melting to solve the cracks, cracks or deformations generated during molding. In the above-described embodiment of the present invention, the second temperature is, for example, between 500 degrees Celsius and 1000 degrees Celsius, and is determined by the material contained in the powder, and the present invention is not limited thereto.

綜上所述,在上述實施例中,透過電磁波可相當有效率地對複合燒結粉體結構進行預熱,以利後續例如是三維列印製程的進行。 In summary, in the above embodiment, the composite sintered powder structure can be preheated relatively efficiently by electromagnetic waves to facilitate subsequent processing of, for example, a three-dimensional printing process.

雖然本新型已以實施例揭露如上,然其並非用以限定本新型,任何所屬技術領域中具有通常知識者,在不脫離本新型的精神和範圍內,當可作些許的更動與潤飾,故本新型的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any person skilled in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the present invention is defined by the scope of the appended claims.

h‧‧‧熱能 H‧‧‧热能

S1‧‧‧電磁波 S1‧‧‧Electromagnetic waves

200A‧‧‧複合燒結粉體結構 200A‧‧‧Composite sintered powder structure

210A‧‧‧電磁波吸收粉末結構 210A‧‧‧Electromagnetic wave absorption powder structure

220A‧‧‧陶瓷物質 220A‧‧‧ceramic materials

Claims (7)

一種複合燒結粉體結構,適於應用於一三維列印製程中,該複合燒結粉體結構包括:一電磁波吸收粉末結構;以及一陶瓷物質,燒結於該電磁波吸收粉末結構的表面,其中該電磁波吸收粉末結構適於吸收一電磁波並升溫,進而預熱該陶瓷物質至一第一溫度,且該第一溫度低於一第二溫度,且該第二溫度為該陶瓷物質的燒結溫度。 A composite sintered powder structure suitable for use in a three-dimensional printing process, the composite sintered powder structure comprising: an electromagnetic wave absorbing powder structure; and a ceramic material sintered on a surface of the electromagnetic wave absorbing powder structure, wherein the electromagnetic wave The absorbing powder structure is adapted to absorb an electromagnetic wave and raise the temperature, thereby preheating the ceramic material to a first temperature, and the first temperature is lower than a second temperature, and the second temperature is a sintering temperature of the ceramic material. 如申請專利範圍第1項所述的複合燒結粉體結構,其中該陶瓷物質包覆於該電磁波吸收粉末結構。 The composite sintered powder structure according to claim 1, wherein the ceramic material is coated on the electromagnetic wave absorbing powder structure. 如申請專利範圍第1項所述的複合燒結粉體結構,其中該陶瓷物質的主要成份包括二氧化鋯、釔安定二氧化鋯、二氧化矽、矽酸鋯氧化合物、三氧化二鋁、二氧化鈦或上述的組合。 The composite sintered powder structure according to claim 1, wherein the main components of the ceramic material include zirconium dioxide, yttrium zirconium dioxide, cerium oxide, zirconium oxynitride oxy-compound, aluminum oxide, and titanium dioxide. Or a combination of the above. 如申請專利範圍第1項所述的複合燒結粉體結構,其中該電磁波吸收粉末結構在該複合燒結粉體結構中的重量百分比介於2%至30%之間。 The composite sintered powder structure according to claim 1, wherein the weight percentage of the electromagnetic wave absorbing powder structure in the composite sintered powder structure is between 2% and 30%. 如申請專利範圍第1項所述的複合燒結粉體結構,其中該電磁波吸收粉末結構的中心粒徑介於20奈米至800奈米之間。 The composite sintered powder structure according to claim 1, wherein the electromagnetic wave absorbing powder structure has a center particle diameter of between 20 nm and 800 nm. 如申請專利範圍第1項所述的複合燒結粉體結構,其中該電磁波吸收粉末結構的主要成份包括碳化矽、鐵氧體、碳化矽纖維、碳黑、碳纖維、氮化矽、羰基鐵粉、氧化鋅或上述的組合。 The composite sintered powder structure according to claim 1, wherein the main components of the electromagnetic wave absorbing powder structure include tantalum carbide, ferrite, tantalum carbide fiber, carbon black, carbon fiber, tantalum nitride, carbonyl iron powder, Zinc oxide or a combination of the above. 如申請專利範圍第1項所述的複合燒結粉體結構,其中該電磁波為一微波。 The composite sintered powder structure according to claim 1, wherein the electromagnetic wave is a microwave.
TW105203418U 2015-03-11 2015-03-11 Composite sintering powder TWM527439U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105203418U TWM527439U (en) 2015-03-11 2015-03-11 Composite sintering powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105203418U TWM527439U (en) 2015-03-11 2015-03-11 Composite sintering powder

Publications (1)

Publication Number Publication Date
TWM527439U true TWM527439U (en) 2016-08-21

Family

ID=57183395

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105203418U TWM527439U (en) 2015-03-11 2015-03-11 Composite sintering powder

Country Status (1)

Country Link
TW (1) TWM527439U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI686185B (en) * 2018-11-23 2020-03-01 遠東科技大學 Microwave warm pack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI686185B (en) * 2018-11-23 2020-03-01 遠東科技大學 Microwave warm pack

Similar Documents

Publication Publication Date Title
CN110944824B (en) Process and apparatus for making 3D molded articles including a spectral converter
WO2017092713A1 (en) Method for additive manufacturing of 3d-printed articles
US10376957B2 (en) Three-dimensional forming apparatus and three-dimensional forming method
CN108602726B (en) Method for producing ceramic sintered body, and method and apparatus for producing ceramic molded body
CN105711104A (en) Laser 3d printing system and printing method thereof
TW201627256A (en) Selective sintering method and sintering powder
TWM527439U (en) Composite sintering powder
WO2021172128A1 (en) Method for manufacturing sintered body
TWI546272B (en) Ceramic powder and method for manufacturing the same and laser sinter molding
US20230286871A1 (en) Laser assisted flash sintering
TWM501354U (en) Electromagnetic wave-assisted three dimensional printing device
JP6956489B2 (en) Sintering method and manufacturing method of sintered product
KR101766970B1 (en) Functional Coating Film Manufacturing Method and Functional Coating Film
WO2022224759A1 (en) Method for manufacturing porous ceramics sintered body and porous ceramics sintered body
Egorov et al. Application of Millimeter-Wave Radiation for Manufacture of Ceramic Items Using Additive Methods.
US20220219230A1 (en) Powder for laser sintering, and use
US20230319956A1 (en) Apparatus And Methods For Non-Resonant Microwave Thermal Processing
JP6959790B2 (en) Sintering method and manufacturing method of sintered product
Egorov et al. ADDITIVE FABRICATION OF HYDROXYAPATITE CERAMICS USING MILLIMETER-WAVE AND SUB-TERAHERTZ RADIATION
JP2023029060A (en) Method for producing sintered alumina
Bykov et al. High temperature processing of materials using millimeter-wave radiation

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees