TWM524175U - A determination system of cervical strain - Google Patents

A determination system of cervical strain Download PDF

Info

Publication number
TWM524175U
TWM524175U TW105200501U TW105200501U TWM524175U TW M524175 U TWM524175 U TW M524175U TW 105200501 U TW105200501 U TW 105200501U TW 105200501 U TW105200501 U TW 105200501U TW M524175 U TWM524175 U TW M524175U
Authority
TW
Taiwan
Prior art keywords
microprocessor
angular
vibration
data
strain
Prior art date
Application number
TW105200501U
Other languages
Chinese (zh)
Inventor
邱靖華
Original Assignee
邱靖華
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 邱靖華 filed Critical 邱靖華
Priority to TW105200501U priority Critical patent/TWM524175U/en
Publication of TWM524175U publication Critical patent/TWM524175U/en

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A determination system of cervicalstrain comprises a cervical monitoring device which can be worn like a necklace. The cervical monitoring device can detect a neck's rotation and bending then outputs a record of the rotation and bending to a cloud database and a receiving device. Furthermore, a magnetical connecting part can make user wearing the cervical monitoring device easily. This invention solves the drawbacks of prior art which needs to estimate the cervical bending by skiagraph. Besides that, this invention also performs a revising method which can detect an exercise statement of the cervical to get a precaution.

Description

人體頸椎勞損判定系統 Human cervical spine strain determination system

本新型是關於一種頸椎勞損判斷系統,尤其是一種可隨身穿戴的頸椎勞損判斷系統。 The present invention relates to a cervical vertebra strain judgment system, and in particular to a cervical vertebra strain judgment system that can be worn with the body.

隨著科技的進步,筆記型電腦、平板電腦、智慧型手機等改變了我們的生活,但是隨之而來的頸椎疾病卻如影隨形的影響日常生活。現代人的工作繁重,為達績效不惜長期伏案作戰,數小時維持同一坐姿使用電腦,並且頭部不期然愈傾愈前;在忙碌過後,便會發覺為頸部因長時間未活動及維持同一姿勢而產生的頸部疼痛。這些疼痛可能是頸椎錯位所致,長時間的不良姿勢及垂頭使用電腦,是都市人導致頸椎錯位的主要成因。頸椎是由7節脊椎骨所組成,頸椎上部是由第一和第二節所組成,負責頭部左右旋轉活動,而頸椎下部則由第三至第七節組合而成,負責頭部前後擺動。頸椎是支撐著約12磅重的頭部,假如頭向前傾,頸椎所承受的重量會隨之增加,可高達30至40磅,如此重量容易導致頸椎第一及第二節錯位。頸椎錯位不但頸痛、頭痛,亦會引致暈眩、耳鳴、失眠及精神不集中,假如錯位的脊骨把手部神經線壓著,更會出現肩痛、手臂肌肉痛、手指麻痺,尤其是尾指, 麻痹感覺會特別強烈。 With the advancement of technology, notebook computers, tablet computers, and smart phones have changed our lives, but the accompanying cervical diseases have affected daily life. Modern people work hard, do not hesitate to fight for long-term performance, maintain the same sitting position for several hours to use the computer, and the head is not getting better before the head; after busy, they will find that the neck is not active and maintained for a long time. Neck pain caused by the same posture. These pains may be caused by cervical dislocations. Long-term bad postures and the use of computers for the head are the main causes of cervical dislocations caused by urban people. The cervical vertebra is composed of 7 vertebrae. The upper part of the cervical vertebra is composed of the first and second sections. It is responsible for the left and right rotation of the head, while the lower part of the cervical vertebra is composed of the third to seventh sections. The cervical vertebra supports a head that weighs about 12 pounds. If the head is tilted forward, the weight of the cervical vertebra will increase, which can be as high as 30 to 40 pounds. This weight can easily lead to the first and second sections of the cervical spine. Cervical dislocation not only neck pain, headache, but also cause dizziness, tinnitus, insomnia and mental discomfort. If the dislocation of the spine is pressed against the nerve line, there will be shoulder pain, arm muscle pain, finger paralysis, especially the tail. Means, Paralysis feels particularly strong.

目前大部分用於判斷頸椎勞損的方法是透過X光照片判斷頸椎是否變形。這樣的方式不僅會產生誤差,因為不同的醫師或照片的效果與照片的拍攝角度均會產生檢測結果都會產生不必要的檢測誤差,而且最主要的是如此檢測方法無法隨時即時提供判斷,難以達到預防的效果。 At present, most of the methods used to determine cervical strain are to determine whether the cervical vertebrae are deformed by X-ray photographs. This method not only produces errors, because the effect of different doctors or photos and the angle of shooting of the photos will produce unnecessary detection errors, and the most important method is that the detection method cannot provide judgment at any time, which is difficult to achieve. The effect of prevention.

為了解決現有的頸椎勞損判斷方法之誤差問題與無法提供即時檢測而達到預防效果的技術問題,本新型提供一種頸椎勞損判斷系統,其包含一頸椎監測裝置以及可與該頸椎監測裝置10訊號傳遞連接之一雲端資料庫及一接收裝置,其中,該頸椎監測裝置包含一頸圈以及分別固定在頸圈表面之一監測本體及一結合件,該監測本體可監測一使用者的頸部轉動與彎曲狀態,並將彎曲與轉動運動狀態記錄後輸出至該雲端資料庫及該接收裝置,該結合件連結於該頸圈之間。 In order to solve the error problem of the existing cervical vertebra strain judgment method and the technical problem that the preventive effect can not be provided by the instant detection, the present invention provides a cervical vertebra strain judgment system, which comprises a cervical vertebra monitoring device and can be connected with the cervical vertebra monitoring device 10 A cloud database and a receiving device, wherein the cervical vertebra monitoring device comprises a collar and a monitoring body and a joint member respectively fixed on the surface of the collar, the monitoring body can monitor a user's neck rotation and bending The state is recorded and outputted to the cloud database and the receiving device, and the coupling member is coupled between the collars.

其中,該頸圈為軟質可撓曲之彎管體。 Wherein, the collar is a soft flexible bend body.

其中,該結合件設於該頸圈,其包含兩個對結合之連接器,兩個該連接器具有一L型切面的圓柱狀體,且兩個該連接器之該L型切面分別設有一端子及一插座,兩個該連接器之該L型切面對應結合時產生電性連接。 Wherein, the coupling member is disposed on the collar, and comprises two pairs of coupled connectors, two of the connectors having a cylindrical shape with an L-shaped cut surface, and the L-shaped cut surfaces of the two connectors are respectively provided with a terminal And a socket, the L-shaped cut surfaces of the two connectors are electrically connected when correspondingly combined.

其中,該L型切面表面可帶有磁性。 Wherein, the surface of the L-shaped section may be magnetic.

其中,該監測本體包含一外殼、一微處理器以及分別與該微 處理器連接的一儲存器、一振動馬達模組、一陀螺儀傳感器模組、一三軸加速傳感器模組、一無線傳輸器模組、一電池,其中:該儲存器用於儲存資料,供該微處理器運算或存取資料的記憶裝置;該振動馬達模組接受該微處理器之控制產生振動;該陀螺儀傳感器模組受該微處理器之控制量測一地理位置、方位角度資訊並將感測結果輸出至該微處理器;該三軸加速傳感器模組感測一移動速度、一加速度資訊,輸出至該微處理器;該無線傳輸器模組受該微處理器之控制接收或發送無線訊號;該電池提供實施例各零組件所需的電力;及該微處理器依據移動速度、加速度與方位角度資訊,計算使用者的頸部關節之作功量及振動量,藉以定義頸部關節勞損。 Wherein, the monitoring body comprises a casing, a microprocessor, and the micro a memory connected to the processor, a vibration motor module, a gyro sensor module, a three-axis acceleration sensor module, a wireless transmitter module, and a battery, wherein: the storage device is configured to store data for the a memory device for computing or accessing data; the vibration motor module is controlled by the microprocessor to generate vibration; the gyro sensor module is controlled by the microprocessor to measure a geographic location and azimuth angle information and Outputting the sensing result to the microprocessor; the three-axis acceleration sensor module senses a moving speed, an acceleration information, and outputs the data to the microprocessor; the wireless transmitter module is controlled by the microprocessor or Sending a wireless signal; the battery provides power required by each component of the embodiment; and the microprocessor calculates the amount of work and vibration of the neck joint of the user according to the moving speed, acceleration, and azimuth angle information, thereby defining the neck Joint strain.

藉此,本新型具備下列優點: Thereby, the present invention has the following advantages:

1.可透過穿戴裝置,即時監控使用者的頸部運動狀況,解決現有必須透過X光照片判斷頸椎是否變形之既有技術限制問題。 1. Through the wearable device, the user's neck movement condition can be monitored in real time, and the existing technical limitation problem that the cervical vertebra must be deformed through the X-ray photograph can be solved.

2.提供校正方法,可相對精確測量頸部運度狀況。 2. Provide a calibration method to measure the condition of the neck relatively accurately.

3.提供統計與警示輸出,讓使用者可以隨時掌控頸椎運動狀況,藉此可以達到預防功效。 3. Provide statistical and warning output, so that users can control the movement of the cervical spine at any time, thereby achieving preventive effects.

10‧‧‧頸椎監測裝置 10‧‧‧ cervical vertebra monitoring device

11‧‧‧頸圈 11‧‧‧ collar

13‧‧‧監測本體 13‧‧‧Monitor ontologies

131‧‧‧微處理器 131‧‧‧Microprocessor

133‧‧‧儲存器 133‧‧‧Storage

134‧‧‧振動馬達模組 134‧‧‧Vibration motor module

135‧‧‧陀螺儀傳感器模組 135‧‧‧Gyro sensor module

136‧‧‧三軸加速傳感器模組 136‧‧‧Three-axis acceleration sensor module

137‧‧‧無線傳輸器模組 137‧‧‧Wireless transmitter module

138‧‧‧電池 138‧‧‧Battery

15‧‧‧結合件 15‧‧‧Connected parts

151‧‧‧連接器 151‧‧‧Connector

1511‧‧‧L型切面 1511‧‧‧L-shaped cut surface

1512‧‧‧端子 1512‧‧‧ Terminal

1513‧‧‧插座 1513‧‧‧ socket

20‧‧‧雲端資料庫 20‧‧‧Cloud database

30a、30b‧‧‧接收裝置 30a, 30b‧‧‧ receiving devices

51‧‧‧監測點 51‧‧‧Monitoring points

52‧‧‧攝影裝置 52‧‧‧Photographing device

60‧‧‧使用者 60‧‧‧Users

圖1為本新型較佳實施例之立體示意及局部放大圖。 1 is a perspective view and a partial enlarged view of a preferred embodiment of the present invention.

圖2為本新型較佳實施例之硬體結構圖。 2 is a view showing a hardware structure of a preferred embodiment of the present invention.

圖3為本新型較佳實施例之使用方式示意圖。 Figure 3 is a schematic view of the manner of use of the preferred embodiment of the present invention.

圖4為本新型較佳實施例之頸椎動作攝影示意圖。 4 is a schematic view of a cervical vertebra motion photography according to a preferred embodiment of the present invention.

圖5為本新型較佳實施例之頸椎動作之直角座標系示意圖。 FIG. 5 is a schematic diagram of a right angle coordinate system of a cervical vertebra motion according to a preferred embodiment of the present invention.

圖6為本新型較佳實施例之頸椎勞損資訊運算流程圖。 FIG. 6 is a flow chart of the operation of the cervical vertebra strain information according to the preferred embodiment of the present invention.

圖7為本新型較佳實施例之三軸角校正流程圖。 Figure 7 is a flow chart of the triaxial angle correction of the preferred embodiment of the present invention.

圖8為本新型較佳實施例之雲端資料庫讀取及存入流程圖。 FIG. 8 is a flow chart of reading and storing a cloud database according to a preferred embodiment of the present invention.

圖9為本新型較佳實施例之勞損指標演算結果示意圖。 FIG. 9 is a schematic diagram showing the calculation result of the strain loss index according to the preferred embodiment of the present invention.

圖10為本新型較佳實施例之勞損指標運算流程圖圖11為本新型較佳實施例之訊息回饋訊號處理流程圖。 FIG. 10 is a flow chart of the operation of the strain loss index according to the preferred embodiment of the present invention. FIG. 11 is a flow chart of the message feedback signal processing according to the preferred embodiment of the present invention.

圖12為本新型較佳實施例之勞損量判定流程圖。 Figure 12 is a flow chart for determining the amount of strain loss in accordance with a preferred embodiment of the present invention.

圖13為本新型較佳實施例之一天及一週勞損報表顯示示意圖。 FIG. 13 is a schematic diagram showing the display of a day and a week strain loss report according to a preferred embodiment of the present invention.

圖14為本新型較佳實施例之頸關節roll、pitch及yaw三軸振動角度曲線示意圖。 FIG. 14 is a schematic view showing the three-axis vibration angle curves of the neck joints roll, pitch and yaw according to the preferred embodiment of the present invention.

圖15為本新型較佳實施例之角度曲線振動分析示意圖。 Figure 15 is a schematic view showing the vibration analysis of the angle curve of the preferred embodiment of the present invention.

圖16為本新型較佳實施例之頸椎振動流程圖圖17為本新型較佳實施例之頸關節振動量判定流程圖。 16 is a flow chart of cervical vertebra vibration according to a preferred embodiment of the present invention. FIG. 17 is a flow chart for determining the vibration amount of a neck joint according to a preferred embodiment of the present invention.

圖18為本新型較佳實施例之一天及一週振動報表顯示示意圖。 Figure 18 is a schematic view showing the display of a day and week vibration report according to a preferred embodiment of the present invention.

圖19為本新型較佳實施例之頭部三軸直角座標系示意圖。 Figure 19 is a schematic view of a three-axis orthogonal coordinate system of the head of the preferred embodiment of the present invention.

請參考圖1~3,其為本新型人體頸椎勞損判定系統之較佳實施例,其包含一頸椎監測裝置10以及可與該頸椎監測裝置10訊號傳遞連接之一雲端資料庫20及一接收裝置30a、30b。該頸椎監測裝置10包含一頸圈11以及分別固定在頸圈11表面之一監測本體13及一結合件15。該頸圈11為環狀而可套設於人體頸部位置,該監測本體13包含具有防水效能的一外殼、一微處理器131以及分別與該微處理器連接的一儲存器133、一振動馬達模組134、一陀螺儀傳感器模組135、一三軸加速傳感器模組136、一無線傳輸器模組137、一電池138。該儲存器133用於儲存資料,供該微處理器131運算或存取資料的記憶裝置;該振動馬達模組134接受該微處理器131之控制產生振動;該陀螺儀傳感器模組135受該微處理器131之控制量測一地理位置、方位角度資訊並將感測結果輸出至該微處理器131,該三軸加速傳感器模組136感測該頸椎監測裝置10所感測之移動速度、加速度資訊,輸出至該微處理器131。該無線傳輸器模組137受該微處理器131之控制接收或發送無線訊號。該電池138提供實施例各零組件所需的電力。該頸圈11為軟質可撓曲之彎管體。 Please refer to FIG. 1 to FIG. 3 , which are a preferred embodiment of a human cervical spine strain determination system, which includes a cervical vertebra monitoring device 10 and a cloud data base 20 and a receiving device that can be connected to the cervical vertebra monitoring device 10 . 30a, 30b. The cervical vertebra monitoring device 10 includes a collar 11 and a monitoring body 13 and a coupling member 15 respectively fixed to the surface of the collar 11. The collar 11 is annular and can be sleeved at a neck position of the human body. The monitoring body 13 includes a housing having waterproof performance, a microprocessor 131, and a reservoir 133 and a vibration respectively connected to the microprocessor. The motor module 134, a gyro sensor module 135, a three-axis acceleration sensor module 136, a wireless transmitter module 137, and a battery 138. The memory 133 is configured to store data for the microprocessor 131 to operate or access the data storage device; the vibration motor module 134 receives the control of the microprocessor 131 to generate vibration; the gyro sensor module 135 is subjected to the The control of the microprocessor 131 measures a geographic location and azimuth angle information and outputs the sensing result to the microprocessor 131. The triaxial acceleration sensor module 136 senses the moving speed and acceleration sensed by the cervical vertebra monitoring device 10. Information is output to the microprocessor 131. The wireless transmitter module 137 receives or transmits wireless signals under the control of the microprocessor 131. The battery 138 provides the power required by the various components of the embodiment. The collar 11 is a soft flexible bend body.

該結合件15設於該頸圈,其包含兩個對結合之連接器151,本實施例之兩個該連接器151具有一L型切面1511的圓柱狀體,且兩個該連接器151之該L型切面1511分別設有一端子1512及一插座1513,兩個該連接器151之該L型切面1511對應結合時使該端子 1512插入該插座1513後產生電性連接,使本實施例之該頸椎監測裝置10產生導通效果,而可開始正常工作。.進一步地,該L型切面1511表面可帶有磁性,如此,使該連接器151可快速結合而形成導通路性,降低對準或連接所需之時間。使用時,該頸椎監測裝置10套設於一使用者60之頸部,感測該使用者60之頸部之運動狀況。 The coupling member 15 is disposed on the collar, and comprises two pairs of connectors 151. The two connectors 151 of the embodiment have a cylindrical shape with an L-shaped section 1511, and two of the connectors 151 The L-shaped cut surface 1511 is respectively provided with a terminal 1512 and a socket 1513. When the two L-shaped cut surfaces 1511 of the connector 151 are combined, the terminal is connected. The electrical connection is made after the 1512 is inserted into the socket 1513, so that the cervical vertebra monitoring device 10 of the embodiment can achieve a conduction effect, and normal operation can be started. Further, the surface of the L-shaped cut surface 1511 may be magnetic, so that the connector 151 can be quickly joined to form a conductive path, reducing the time required for alignment or connection. In use, the cervical vertebra monitoring device 10 is sleeved on the neck of a user 60 to sense the movement of the neck of the user 60.

請參考圖3~5,該使用者60之頭部及頸椎運動之關係,可定義於圖4、5所示。使用者60頭部以直角座標系統表示,使用者60頭、頸可對x軸產生擺頭轉動(roll),對z軸產生前傾或後仰轉動(pitch),以及對y軸進行轉頭轉動(yaw),分如圖5(a)~(c)所示。為了更進一步實際監測前述各種頭部與頸部運動的精確角度,可於該使用者60之頭部表面設有複數個監測點51,並以複數個攝影裝置52於該使用者進行各種角度運動時,依據分析各監測點51之影像動作、位移與角度。 Referring to Figures 3 to 5, the relationship between the head and cervical vertebra motion of the user 60 can be defined as shown in Figs. The head of the user 60 is represented by a right angle coordinate system. The user's 60 head and neck can produce a roll for the x-axis, a forward or backward pitch to the z-axis, and a turn for the y-axis. The yaw is divided as shown in Figures 5(a) to (c). In order to further accurately monitor the precise angles of the various head and neck movements described above, a plurality of monitoring points 51 may be disposed on the surface of the head of the user 60, and various angular movements may be performed on the user by the plurality of imaging devices 52. At the time, the image motion, displacement and angle of each monitoring point 51 are analyzed.

本實施例所提供的該頸椎監測裝置10係直接量測該使用者60之頸部與頭部動作,藉以判斷使用者60之頸部勞損。然而,此一量測方式,該頸椎監測裝置10僅能間接取得該使用者60之頸椎、脊椎的運動狀況,因此可能產生判斷與演算上的落差,因此,透過前述攝影裝置52同步配合拍攝使用者60運動時的頭部各種運動角度變化,並同時搭配該頸椎監測裝置10所測得的數據,可以得知本實施例之該頸椎監測裝置10與實際拍攝角度之間的落差;此一落差可透過校正而大幅改善,其中,校正公式可如下表 一所示,其中αi、βi、γi代表透過攝影所量測到的角度值(角位置),代表該頸椎監測裝置10所量測的結果,參數k1、k2、k3、C1、C2、C3代表該頸椎監測裝置10之量測結果與實際攝影結果之間的校正參數。 The cervical vertebra monitoring device 10 provided in this embodiment directly measures the neck and head movements of the user 60, thereby determining the neck strain of the user 60. However, in the measurement method, the cervical vertebra monitoring device 10 can only indirectly obtain the movement state of the cervical vertebrae and the spine of the user 60, and thus the judgment and the calculation result may be generated. Therefore, the photographing device 52 is used in synchronization with the photographing device. When the movement angle of the head of the person 60 is changed, and the data measured by the cervical vertebra monitoring device 10 is simultaneously matched, the difference between the cervical vertebra monitoring device 10 of the embodiment and the actual shooting angle can be known; It can be greatly improved by correction. The correction formula can be as shown in Table 1 below, where α i , β i , γ i represent the angle value (angular position) measured by photography. , , On behalf of the results measured by the cervical vertebra monitoring device 10, the parameters k 1 , k 2 , k 3 , C 1 , C 2 , C 3 represent the correction parameters between the measurement results of the cervical vertebra monitoring device 10 and the actual photographic results.

請參考圖6,使用時該頸椎監測裝置10可依據下列步驟,取得頸椎勞損相關資訊: Please refer to FIG. 6. In use, the cervical vertebra monitoring device 10 can obtain information about cervical strain according to the following steps:

(1)鏈結控制器呼叫及回應:該微處理器131呼叫相連的各相連元件,並取得回應後確定連線狀態正確。 (1) Link controller call and response: The microprocessor 131 calls each connected connected component and obtains a response to determine that the connection state is correct.

(2)驗證配對成功暨鏈結完成確認:該微處理器131控制相 應相連的各電子元件,分別自我檢測其功能正確性,並驅使與外部連接之該無線傳輸器模組137與外部該雲端資料庫20及該接收裝置30a、30b進行配對連接,並確認連結成功。 (2) Verify the pairing success and the completion of the link confirmation: the microprocessor 131 controls the phase Each of the connected electronic components independently detects its functional correctness, and drives the externally connected wireless transmitter module 137 to be paired with the external cloud database 20 and the receiving devices 30a, 30b, and confirms the successful connection. .

(3)設定數據取樣頻率:設定該微處理器131與所連結之各電子元件的訊號、數據取樣頻率。 (3) Setting the data sampling frequency: setting the signal and data sampling frequency of the microprocessor 131 and the connected electronic components.

(4)依時序ti(i=0、1、2、3、...、n)讀取該陀螺儀傳感器模組135及該三軸加速傳感器模組136於代表roll、pitch、yaw運動之三軸角位置、角速度、角加速度及X、Y、Z三軸之位置、速度及加速度資料。 (4) Reading the gyro sensor module 135 and the three-axis acceleration sensor module 136 according to the timing ti (i=0, 1, 2, 3, . . . , n) to represent the roll, pitch, and yaw motions. Triaxial angular position, angular velocity, angular acceleration, and position, velocity, and acceleration data for the X, Y, and Z axes.

(5)進行所讀取之代表roll、pitch、yaw三軸角位置、角速度、及角加速度校正轉換。 (5) Perform the read roll, pitch, yaw triaxial angular position, angular velocity, and angular acceleration correction conversion.

(6)設定分析選擇:該微處理器131接受外部之輸入控制,接受設定所欲分析的數據,例如依據roll、pitch、yaw運動之三軸角位置、角速度、角加速度及X、Y、Z三軸之位置、速度及加速度資料之資料執行下列之分析計算。 (6) Setting analysis selection: The microprocessor 131 accepts external input control and accepts data to be analyzed, for example, according to roll, pitch, yaw motion, triaxial angular position, angular velocity, angular acceleration, and X, Y, Z. The data of the position, velocity and acceleration of the three axes is analyzed by the following analysis.

(7)頸關節三軸作功量演算(勞損分析):該微處理器131依據所量測的roll、pitch、yaw運動之三軸角位置、角速度、角加速度及X、Y、Z三軸之位置、速度及加速度資料之資料推估計算使用者60的頸關節之一作功量,亦即可換算為頸關節的疲勞(肌肉疲勞);其中,本步驟計算頸關節勞損所需參與計算的輸出入參數或所需儲存的資訊,可由一雲端資料庫或一資料庫連接存取。 (7) Three-axis power calculation of the neck joint (strain analysis): The microprocessor 131 is based on the measured three-axis angular position of the roll, pitch, and yaw motion, angular velocity, angular acceleration, and X, Y, and Z axes. The data of position, velocity and acceleration data is estimated to calculate the amount of work of one of the neck joints of the user 60, and can also be converted into fatigue of the neck joint (muscle fatigue); wherein, this step calculates the calculation of the neck joint strain required to participate in the calculation. The input parameters or the information to be stored can be accessed by a cloud database or a database connection.

(8)頸關節振動量演算:該微處理器131依據所量測的roll、pitch、yaw運動之三軸角位置、角速度、角加速度及X、Y、Z三軸之位置、速度及加速度資料之資料推估計算使用者60的頸關節之一振動量,亦即可推估計算執行該些運動對於頸關節之損傷(關節損耗)。 (8) Calculation of the vibration of the neck joint: the microprocessor 131 is based on the measured three-axis angular position of the roll, pitch, and yaw motion, the angular velocity, the angular acceleration, and the position, velocity, and acceleration data of the X, Y, and Z axes. The data is estimated to estimate the amount of vibration of the neck joint of the user 60, and the damage to the neck joint (joint loss) can be estimated by performing the exercises.

(9)資料處理:該微處理器131驅使該儲存器133由雲端資料庫存取計算所需資料或儲存計算結果。與資料庫、雲端資料庫的溝通,可透過該無線傳輸器模組137完成。 (9) Data processing: The microprocessor 131 drives the storage unit 133 to calculate the required data from the cloud data inventory or store the calculation result. Communication with the database and the cloud database can be accomplished through the wireless transmitter module 137.

(10)傳出回饋控制指令及分類資料:該微處理器131依據計算結果輸出對應的回饋控制指令並將結果予以分類。 (10) Outgoing feedback control command and classification data: The microprocessor 131 outputs a corresponding feedback control command according to the calculation result and classifies the result.

(11)驅動回饋訊息:該微處理器131依據計算結果,產生回饋訊號給使用者60,藉此提醒其頸關節之使用狀態,其中回饋訊號包含:1.振動回饋2.語音回饋3.顯示分析資訊。振動回饋可為該微處理器131驅動振動馬達模組134產生振動而完成,而語音、顯示則可由與該微處理器131連接的使用者人機介面完成(例如顯示器、揚聲器等)。 (11) driving feedback message: the microprocessor 131 generates a feedback signal to the user 60 according to the calculation result, thereby reminding the use state of the neck joint, wherein the feedback signal includes: 1. vibration feedback 2. voice feedback 3. display Analyze information. The vibration feedback can be completed by the microprocessor 131 driving the vibration motor module 134 to generate vibration, and the voice and display can be completed by a user human interface (such as a display, a speaker, etc.) connected to the microprocessor 131.

前述三軸校正程序演算處理(利用影像量測之輔助,協助本實施例更精確取得使用者之頸部運動狀況)之步驟可包含: The foregoing three-axis calibration program calculation process (using the aid of image measurement to assist the embodiment to more accurately obtain the neck motion condition of the user) may include:

(1)輸入校正係數k1、k2、k3及C1、C2、C3至資料庫; (1) input correction coefficients k 1 , k 2 , k 3 and C 1 , C 2 , C 3 to the database;

(2)依時間序列讀取roll、pitch、yaw三軸角位置參數,角位置αi、βi、γi及其對應的角速度、角加速度等。 (2) Read the roll, pitch, and yaw triaxial angular position parameters in time series, angular positions α i , β i , γ i and their corresponding angular velocities, angular accelerations, and the like.

(3)三軸角位置校正轉換演算:依據校正係數,以如表一 換算角位置;(4)三軸角速度校正轉換演算:依據校正係數,以如表一換算角速度;(5)三軸角加速度轉換演算:依據校正係數,以如表一換算角加速度;(6)輸出下列參數:校正後的角位置αi、βi、γi、、角速度、及角加速度(3) Three-axis angular position correction conversion calculation: according to the correction coefficient, the angle position is converted as shown in Table 1; (4) Three-axis angular velocity correction conversion calculation: according to the correction coefficient, the angular velocity is converted as shown in Table 1; (5) Three-axis angle Acceleration conversion calculation: according to the correction coefficient, the angular acceleration is converted as shown in Table 1; (6) The following parameters are output: the corrected angular position α i , β i , γ i , and angular velocity , , And angular acceleration , , .

前述有關雲端資料庫的存取,可依據下列步驟完成: The aforementioned access to the cloud database can be accomplished according to the following steps:

(1)雲端身分驗證:依據該微處理器131之個資或認證資訊,該雲端資料庫驗證是否正確。 (1) Cloud identity verification: According to the personal information or authentication information of the microprocessor 131, the cloud database verification is correct.

(2)依據時序ti(i=0、1、...、n)將ti、αi、βi、γi寫入資料庫,如下表二。 (2) According to the timing t i (i = 0, 1, ..., n), t i , α i , β i , γ i , , , , , , Write the database, as shown in Table 2 below.

請參考圖9、10及圖19,前述勞損之計算,該微處理器131可依據勞損指標運算程序完成,其步驟包含: Referring to FIG. 9, 10 and FIG. 19, in the calculation of the strain loss, the microprocessor 131 can be completed according to the strain index calculation program, and the steps include:

(1)依時間序列(i=2、1、...、n)讀取ti參數 (1) Read t i according to time series (i=2, 1, ..., n), , , parameter

(2)輸入Ix、Iy、Iz參數 (2) Input I x , I y , I z parameters

(3)計算roll軸動能△Wx(i) (3) Calculate the roll axis kinetic energy △ W x (i)

(4)計算pitch軸動能△Wy(i) (4) Calculate the pitch axis kinetic energy △W y(i)

(5)計算yaw軸動能△Wz(i) (5) Calculate the yaw axis kinetic energy ΔW z(i)

(6)輸出:△Wx(i)、△Wy(i)、△Wz(i)、△Wi (6) Output: ΔW x(i) , △W y(i) , △W z(i) , △W i

其中, among them,

Wx、Wy、Wz:頭部roll、pitch、yaw三軸分別的總作軸動能 W x , W y , W z : total axis kinetic energy of the head roll, pitch, and yaw

Ix、Iy、Iz:頭部對重心之轉動慣量; I x , I y , I z : the moment of inertia of the head to the center of gravity;

W: W:

△Wi:單位時間作轉動能(i=0,1,...,n) △W i : rotation energy per unit time (i=0,1,...,n)

△Wx(i)、△Wy(i)、△Wz(i):單位時間roll、pitch、yaw三軸作動量 △W x(i) , △W y(i) , △W z(i) : three-axis momentum per unit time roll, pitch, and yaw

△t:單位時間 △t: unit time

其中, among them,

請參考圖11,前述驅動回饋訊息步驟,該微處理器131可以下列步驟完成: Referring to FIG. 11, the foregoing step of driving feedback message, the microprocessor 131 can be completed in the following steps:

(1)讀取運算結果及回饋控制指令 (1) Read operation result and feedback control instruction

(2)依據控制指令將運算法傳送至控制介面。 (2) The algorithm is transmitted to the control interface according to the control command.

(3)驅動振動馬達模組,產生振動。 (3) Drive the vibration motor module to generate vibration.

(4)驅動語音回饋控制模組,產生聲音輸出。 (4) Driving the voice feedback control module to generate a sound output.

(5)驅動螢幕顯示模組產生數據、圖表、動畫等顯示效果。 (5) Driving the screen display module to generate display effects such as data, charts, and animations.

請參考圖12~15,勞損之計算與產生分析結果之步驟,可包含下列: Please refer to Figures 12~15. The calculation of strain and the steps to produce the analysis results can include the following:

(1)登入雲端資料庫、完成驗證並讀出雲端資料; (1) Log in to the cloud database, complete verification and read the cloud data;

(2)輸入勞損參數值至資料庫包括:M1、M2、N1、N2、D1、D2、D3、D4、E1、E2、E3、E4 (2) Entering the strain parameter value to the database includes: M 1 , M 2 , N 1 , N 2 , D 1 , D 2 , D 3 , D 4 , E 1 , E 2 , E 3 , E 4

(3)執行每週勞損量演算(由資料庫擷取資料):W.R>N2時,產生回饋訊號;W.P>N2時,產生回饋訊號;W.Y>N2時,產生回饋訊號;W.W>N2時,產生回饋訊號;顯示分析週報表(如圖13),係可顯示於行動裝置30b上。 (3) Perform weekly damage calculation (from the database): When WR>N 2 , feedback signal is generated; when WP>N 2 , feedback signal is generated; when WY>N 2 , feedback signal is generated; WW> At N 2 , a feedback signal is generated; an analysis weekly report ( FIG. 13 ) is displayed, which can be displayed on the mobile device 30b.

(4)執行每日勞損量演算,包含:D.R>M2時,驅動語音或振動回饋訊息D.P>M2時,驅動語音或振動回饋訊息D.Y>M2時,驅動語音或振動回饋訊息D.W>M2時,驅動語音或振動回饋訊息 (4) Perform the daily strain loss calculation, including: when DR>M 2 , when driving the voice or vibration feedback message DP>M 2 , drive the voice or vibration feedback message DW when driving the voice or vibration feedback message DY>M 2 > Drive voice or vibration feedback messages when M 2

顯示分析日報表(如圖14(b)),係可顯示於行動裝置30b上。 The analysis analysis day report (as shown in FIG. 14(b)) can be displayed on the mobile device 30b.

其中,前述各參數代表意義如下: Among them, the above parameters represent the following meanings:

請參考圖14~16,該微處理器131可依據下列步驟執行頸關節振動之次數計數:(1)依據時序ti(i=0、1、...、n)讀取roll、pitch、yaw三軸角度αi、βi、γi...數據;(2)依時序搜尋演算找出三軸每一波峰值、波谷值及所對應的時間ti;(3)輸出Roll、pitch、yaw三軸每一波峰值、波谷值及對應時間ti;其演算結果可如圖14、16所示。 Referring to FIGS. 14-16, the microprocessor 131 can perform the counting of the number of neck joint vibrations according to the following steps: (1) reading the roll, pitch, according to the timing t i (i=0, 1, . . . , n) Yaw triaxial angle α i , β i , γ i ... data; (2) find the peak value of each of the three axes, the trough value and the corresponding time t i according to the time series search calculus; (3) output Roll, pitch The peak of each wave of the yaw triaxial, the trough value and the corresponding time t i ; the calculation result can be as shown in Figs.

請配合參考圖15,計算波鋒、波谷係計算角位置等參數之數值在特定區間內之數值微最大者,定義為波峰,反之則定義波 谷,以程式演算判斷條件自動計算振動最大值及最小值搜尋,可如下表四。 Please refer to FIG. 15 to calculate the numerical value of the parameter such as the wave front and the valley position calculated by the angular position in a specific interval, which is defined as a wave peak, and vice versa. Valley, automatically calculates the vibration maximum and minimum search by program calculus conditions, as shown in Table 4 below.

找到波峰與波谷時,則對應記錄波峰與波谷的對應時間。 When the peaks and troughs are found, the corresponding time between the peak and the trough is recorded.

請參考圖17,該微處理器131可依據下列步驟執行頸關節振動判定程序: Referring to FIG. 17, the microprocessor 131 can perform a neck joint vibration determination procedure according to the following steps:

(1)登入雲端資料庫、完成驗證及讀取雲端資料; (1) Log in to the cloud database, complete verification and read cloud data;

(2)輸振動參數值包括O1、O2、Q1、Q2、F1、F2、F3、F4、G1、G2、G3、G4 (2) Transmission vibration parameter values include O 1 , O 2 , Q 1 , Q 2 , F 1 , F 2 , F 3 , F 4 , G 1 , G 2 , G 3 , G 4

(3)執行每週振動量演算,係執行下列判斷程序:當W.F.R>Q2時,驅動語音或振動回饋訊息;當W.F.P>Q2時,驅動語音或振動回饋訊息;當W.F.Y>Q2時,驅動語音或振動回饋訊息;當W.F.T>Q2時,驅動語音或振動回饋訊息;及顯示分析週報表,係於完成判斷後,將結果顯示於行動裝置,如圖18。 (3) Execute the weekly vibration amount calculation, the following judgment procedure is executed: when WFR>Q 2 , the voice or vibration feedback message is driven; when WFP>Q 2 , the voice or vibration feedback message is driven; when WFY>Q 2 Drive the voice or vibration feedback message; when WFT>Q 2 , drive the voice or vibration feedback message; and display the analysis week report, after completing the judgment, display the result on the mobile device, as shown in Figure 18.

(4)執行每日振動量演算,係執行下列判斷程序:當D.F.R>O2時,驅動語音或振動回饋訊息; 當D.F.P>O2時,驅動語音或振動回饋訊息;當D.F.Y>O2時,驅動語音或振動回饋訊息;當D.F.F>O2時,驅動語音或振動回饋訊息;及顯示分析日報表,係於完成判斷後,將結果顯示於行動裝置,如圖18。 (4) Execute the daily vibration amount calculation, the following judgment procedure is executed: when DFR>O 2 , the voice or vibration feedback message is driven; when DFP>O 2 , the voice or vibration feedback message is driven; when DFY>O 2 Drive the voice or vibration feedback message; when DFF>O 2 , drive the voice or vibration feedback message; and display the analysis date report, after the judgment is completed, the result is displayed on the mobile device, as shown in Figure 18.

前述的關節振動一次,定義為波峰與波峰間來回一次。 The aforementioned joint vibration is once defined as a round trip between the peak and the peak.

其中, among them,

FR=頸關節roll軸累計之振動次數 F R = cumulative number of vibrations of the neck joint roll axis

FP=頸關節pitch軸累計之振動次數 F P = cumulative number of vibrations of the neck joint pitch axis

Fy=頸關節yaw軸累計之振動次數 F y = cumulative number of vibrations of the neck joint yaw axis

F=頸關節三軸累計之總振動次數 F=the total number of vibrations accumulated by the three axes of the neck joint

由前述說明可知,本新型具備下列優點: As can be seen from the foregoing description, the present invention has the following advantages:

1. 可透過穿戴裝置,即時監控使用者的頸部運動狀況,解決現有必須透過X光照片判斷頸椎是否變形之既有技術限制問題。 1. Through the wearable device, the user's neck movement can be monitored in real time, and the existing technical limitations that must be determined by X-ray photos to determine whether the cervical vertebrae are deformed can be solved.

2. 提供校正方法,可相對精確測量頸部運度狀況。 2. Provide a calibration method to measure the condition of the neck with relative accuracy.

3. 提供統計與警示輸出,讓使用者可以隨時掌控頸椎運動狀況,藉此可以達到預防功效。 3. Provide statistical and warning output, so that users can control the movement of the cervical spine at any time, so as to achieve preventive effects.

10‧‧‧頸椎監測裝置 10‧‧‧ cervical vertebra monitoring device

11‧‧‧頸圈 11‧‧‧ collar

13‧‧‧監測本體 13‧‧‧Monitor ontologies

15‧‧‧結合件 15‧‧‧Connected parts

15‧‧‧結合件 15‧‧‧Connected parts

151‧‧‧連接器 151‧‧‧Connector

1511‧‧‧L型切面 1511‧‧‧L-shaped cut surface

1512‧‧‧端子 1512‧‧‧ Terminal

1513‧‧‧插座 1513‧‧‧ socket

Claims (10)

一種人體頸椎勞損判定系統,其包含一頸椎監測裝置以及可與該頸椎監測裝置訊號傳遞連接之一雲端資料庫及一接收裝置,其中,該頸椎監測裝置包含一頸圈以及分別固定在頸圈表面之一監測本體及一結合件,該監測本體可監測一使用者的頸部轉動與彎曲狀態,並將彎曲與轉動運動狀態記錄後輸出至該雲端資料庫及該接收裝置,該結合件連結於該頸圈之間。 A human cervical spine strain determination system comprises a cervical vertebra monitoring device and a cloud data base and a receiving device connectable to the cervical vertebra monitoring device, wherein the cervical vertebra monitoring device comprises a collar and is respectively fixed on the collar surface One of the monitoring body and a joint member, the monitoring body can monitor a user's neck rotation and bending state, and record the bending and rotational motion state and output to the cloud database and the receiving device, the binding member is coupled to Between the collars. 如申請專利範圍第1項所述的人體頸椎勞損判定系統,該頸圈為軟質可撓曲之彎管體。 The human cervical spine strain determination system according to claim 1, wherein the collar is a flexible flexible bend body. 如申請專利範圍第1或2項所述的人體頸椎勞損判定系統,該結合件設於該頸圈,其包含兩個對結合之連接器,兩個該連接器具有一L型切面的圓柱狀體,且兩個該連接器之該L型切面分別設有一端子及一插座,兩個該連接器之該L型切面對應結合時產生電性連接。 The human cervical spine strain determination system according to claim 1 or 2, wherein the coupling member is disposed on the collar, and comprises two pairs of coupled connectors, and the two connectors have an L-shaped cut surface cylindrical body. And the L-shaped cut surfaces of the two connectors are respectively provided with a terminal and a socket, and the L-shaped cut surfaces of the two connectors are electrically connected when correspondingly combined. 如申請專利範圍第3項所述的人體頸椎勞損判定系統,該L型切面表面可帶有磁性。 The human cervical spine strain determination system according to claim 3, wherein the L-shaped cut surface may be magnetic. 如申請專利範圍第4項所述的人體頸椎勞損判定系統,該監測本體包含一外殼、一微處理器以及分別與該微處理器連接的一儲存器、一振動馬達模組、一陀螺儀傳感器模組、一三軸加速傳感器模組、一無線傳輸器模組、一電池,其中:該儲存器用於儲存資料,供該微處理器運算或存取資料的記憶裝置; 該振動馬達模組接受該微處理器之控制產生振動;該陀螺儀傳感器模組受該微處理器之控制量測一地理位置、方位角度資訊並將感測結果輸出至該微處理器;該三軸加速傳感器模組感測一移動速度、一加速度資訊,輸出至該微處理器;該無線傳輸器模組受該微處理器之控制接收或發送無線訊號;該電池提供實施例各零組件所需的電力;及該微處理器依據移動速度、加速度與方位角度資訊,計算使用者的頸部關節之作功量及振動量,藉以定義頸部關節勞損。 The human body cervical strain determination system according to claim 4, wherein the monitoring body comprises a casing, a microprocessor, and a storage device, a vibration motor module and a gyroscope sensor respectively connected to the microprocessor. a module, a three-axis acceleration sensor module, a wireless transmitter module, a battery, wherein: the memory is used for storing data for the microprocessor to calculate or access data storage device; The vibration motor module is controlled by the microprocessor to generate vibration; the gyro sensor module is controlled by the microprocessor to measure a geographic location and azimuth angle information and output the sensing result to the microprocessor; The three-axis acceleration sensor module senses a moving speed and an acceleration information, and outputs the information to the microprocessor; the wireless transmitter module receives or transmits a wireless signal under the control of the microprocessor; the battery provides the components of the embodiment The required power; and the microprocessor calculates the amount of work and vibration of the neck joint of the user according to the movement speed, acceleration and azimuth angle information, thereby defining the neck joint strain. 如申請專利範圍第5項所述的人體頸椎勞損判定系統,其包含一頸椎勞損資訊的取得方法,其中:該微處理器呼叫相連的各相連元件,並取得回應後確定連線狀態正確;該微處理器控制相應相連的各電子元件,分別自我檢測其功能正確性,並驅使與外部連接之該無線傳輸器模組與外部該雲端資料庫及該接收裝置進行配對連接;設定該微處理器與所連結之各電子元件的訊號、數據取樣頻率;依時序ti(i=0、1、2、3、...、n)讀取該陀螺儀傳感器模組及該三軸加速傳感器模組於代表roll、pitch、yaw運動之三軸角位置、角速度、角加速度及X、Y、Z三軸之位置、速度及加速度資 料;進行所讀取之代表roll、pitch、yaw三軸角位置、角速度、及角加速度校正轉換;該微處理器接受外部之輸入控制,接受設定所欲分析的數據;該微處理器依據所量測的roll、pitch、yaw運動之三軸角位置、角速度、角加速度及X、Y、Z三軸之位置、速度及加速度資料之資料推估計算使用者的頸關節之一作功量;該微處理器依據所量測的roll、pitch、yaw運動之三軸角位置、角速度、角加速度及X、Y、Z三軸之位置、速度及加速度資料之資料推估計算使用者的頸關節之一振動量;該微處理器驅使該儲存器由雲端資料庫存取計算所需資料或儲存計算結果;該微處理器依據計算結果輸出對應的回饋控制指令並將結果予以分類;及該微處理器依據計算結果,產生回饋訊號給使用者,提醒其頸關節之使用狀態。 The human cervical spine strain determination system according to claim 5, comprising a method for obtaining cervical cervical strain information, wherein: the microprocessor calls the connected connected components, and obtains a response to determine that the connection state is correct; The microprocessor controls the corresponding connected electronic components to self-detect the correctness of the functions, and drives the externally connected wireless transmitter module to be paired with the external cloud database and the receiving device; setting the microprocessor The signal and data sampling frequency of each connected electronic component; reading the gyro sensor module and the three-axis acceleration sensor module according to timing ti (i=0, 1, 2, 3, ..., n) The position, speed and acceleration of the three axes of the roll, pitch, and yaw movements, angular velocity, angular acceleration, and X, Y, and Z axes. Performing the read roll, pitch, yaw triaxial angular position, angular velocity, and angular acceleration correction conversion; the microprocessor accepts external input control and accepts data to be analyzed; the microprocessor is based on The measured roll, pitch, yaw motion triaxial angular position, angular velocity, angular acceleration and X, Y, Z three-axis position, velocity and acceleration data are estimated to calculate one of the user's neck joints; The microprocessor estimates the user's neck joint based on the measured roll, pitch, yaw motion triaxial angular position, angular velocity, angular acceleration, and the position, velocity, and acceleration data of the X, Y, and Z axes. a vibration amount; the microprocessor drives the storage to calculate the required data from the cloud data inventory or store the calculation result; the microprocessor outputs a corresponding feedback control instruction according to the calculation result and classifies the result; and the microprocessor According to the calculation result, a feedback signal is generated to the user to remind the use state of the neck joint. 如申請專利範圍第6項所述的人體頸椎勞損判定系統,其包含一三軸校正程序演算處理,其中:輸入校正係數k1、k2、k3及C1、C2、C3至資料庫;依時間序列讀取roll、pitch、yaw三軸角位置參數,角位置αi、βi、γi及其對應的角速度、角加速度等; 依據校正係數,換算角位置;依據校正係數,換算角速度;依據校正係數,換算角加速度;及輸出校正後的角位置αi、βi、γi、、角速度、及角加速度The human cervical spine strain determination system according to claim 6, comprising a three-axis calibration program calculation process, wherein: inputting correction coefficients k 1 , k 2 , k 3 and C 1 , C 2 , C 3 to data Library; read the roll, pitch, yaw triaxial angular position parameters, angular positions α i , β i , γ i and their corresponding angular velocities, angular accelerations, etc. according to time series; according to the correction coefficient, the angular position is converted; according to the correction coefficient, Convert angular velocity; convert angular acceleration according to correction coefficient; and output corrected angular position α i , β i , γ i , angular velocity , , And angular acceleration , , . 如申請專利範圍第7項所述的人體頸椎勞損判定系統,其包含一驅動回饋訊息步驟,其中該微處理器讀取運算結果及回饋控制指令;該微處理器驅動振動馬達模組,產生振動;該微處理器驅動語音回饋控制模組,產生聲音輸出;該微處理器驅動螢幕顯示模組產生數據、圖表、動畫等顯示效果。 The human cervical spine strain determination system according to claim 7, comprising a step of driving a feedback message, wherein the microprocessor reads the operation result and the feedback control command; the microprocessor drives the vibration motor module to generate vibration The microprocessor drives the voice feedback control module to generate a sound output; the microprocessor drives the screen display module to generate display effects such as data, graphics, and animation. 如申請專利範圍第8項所述的人體頸椎勞損判定系統,其包含一勞損之計算與產生分析結果之步驟,其中:該微處理器登入雲端資料庫、完成驗證並讀出雲端資料;該微處理器輸入勞損參數值至資料庫;該微處理器執行每週勞損量演算,其中:W.R>N2時,產生回饋訊號;W.P>N2時,產生回饋訊號;W.Y>N2時,產生回饋訊號;W.W>N2時,產生回饋訊號;該微處理器顯示分析週報表;該微處理器執行每日勞損量演算,其中:D.R>M2時,驅動語音或振動回饋訊息; D.P>M2時,驅動語音或振動回饋訊息;D.Y>M2時,驅動語音或振動回饋訊息;以及D.W>M2時,驅動語音或振動回饋訊息。 The human cervical spine strain determination system according to claim 8 includes the steps of calculating a strain loss and generating an analysis result, wherein: the microprocessor logs into the cloud database, completes verification, and reads the cloud data; The processor inputs the strain parameter value to the database; the microprocessor performs a weekly strain amount calculation, wherein: WR>N 2 generates a feedback signal; when WP>N 2 , a feedback signal is generated; when WY>N 2 , a generated Feedback signal; when WW>N 2 , a feedback signal is generated; the microprocessor displays an analysis weekly report; the microprocessor performs a daily strain amount calculation, wherein: DR>M 2 , driving a voice or vibration feedback message; DP> When M 2 , the voice or vibration feedback message is driven; when DY>M 2 , the voice or vibration feedback message is driven; and when DW>M 2 , the voice or vibration feedback message is driven. 如申請專利範圍第9項所述的人體頸椎勞損判定系統,其包含頸關節振動之次數計數步驟,其中:該微處理器依據時序ti(i=0、1、...、n)讀取roll、pitch、yaw三軸角度αi、βi、γi...數據;該微處理器依時序搜尋演算找出三軸每一波峰值、波谷值及所對應的時間ti;及該微處理器輸出Roll、pitch、yaw三軸每一波峰值、波谷值及對應時間tiThe human cervical spine strain determination system according to claim 9, comprising the step of counting the number of neck joint vibrations, wherein: the microprocessor reads according to the time sequence t i (i=0, 1, ..., n) Taking the roll, pitch, and yaw triaxial angles α i , β i , γ i ... data; the microprocessor searches for the peak value, the trough value, and the corresponding time t i of each of the three axes according to the time series search calculus; The microprocessor outputs each peak of each of the three axes of Roll, pitch, and yaw, a valley value, and a corresponding time t i .
TW105200501U 2016-01-14 2016-01-14 A determination system of cervical strain TWM524175U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105200501U TWM524175U (en) 2016-01-14 2016-01-14 A determination system of cervical strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105200501U TWM524175U (en) 2016-01-14 2016-01-14 A determination system of cervical strain

Publications (1)

Publication Number Publication Date
TWM524175U true TWM524175U (en) 2016-06-21

Family

ID=56757561

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105200501U TWM524175U (en) 2016-01-14 2016-01-14 A determination system of cervical strain

Country Status (1)

Country Link
TW (1) TWM524175U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106196424A (en) * 2016-06-29 2016-12-07 珠海格力电器股份有限公司 Control method and device of air conditioner
CN106580335A (en) * 2016-12-30 2017-04-26 北京联合大学 Neck mobility monitoring system and method
CN111991002A (en) * 2020-08-24 2020-11-27 四川大学华西医院 Method, device and equipment for measuring neck mobility

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106196424A (en) * 2016-06-29 2016-12-07 珠海格力电器股份有限公司 Control method and device of air conditioner
CN106580335A (en) * 2016-12-30 2017-04-26 北京联合大学 Neck mobility monitoring system and method
CN106580335B (en) * 2016-12-30 2024-04-12 北京联合大学 Neck mobility monitoring system and monitoring method
CN111991002A (en) * 2020-08-24 2020-11-27 四川大学华西医院 Method, device and equipment for measuring neck mobility

Similar Documents

Publication Publication Date Title
US7850574B2 (en) Device for monitoring a user's posture
KR101509472B1 (en) Motion parameter determination method and device and motion auxiliary equipment
US20200205698A1 (en) Systems and methods to assess balance
US20140188499A1 (en) Human action monitor
EP3917405B1 (en) Instrumented ultrasound probes for machine-learning generated real-time sonographer feedback
CN210582487U (en) Cervical vertebra three-dimensional mobility intelligent measuring instrument
TWM524175U (en) A determination system of cervical strain
US20240173018A1 (en) System and apparatus for remote interaction with an object
AU2023216736A1 (en) Methods for sensing and analyzing impacts and performing an assessment
Laurijssen et al. Synchronous wireless body sensor network enabling human body pose estimation
US20220284824A1 (en) Posture and movement improvement systems and methods
WO2019021149A1 (en) Portable virtual reality system for carrying out a subjective visual vertical test
US20210137450A1 (en) Breath monitoring and feedback application and methods
Tsekleves et al. Wii your health: a low-cost wireless system for home rehabilitation after stroke using Wii remotes with its expansions and blender
Shigapov et al. Design and development of a hardware and software system for simulation of feedback tactility
WO2021041632A1 (en) System and method for augmented reality visualization of benign paroxysmal position vertigo (bppv) disorder
CN111267130B (en) Wearable mouth shape capturing device and application method thereof
CN213381582U (en) Wearable mouth type capture equipment
TWM529486U (en) Cervical stress and fatigue rehabilitation device
TWM524174U (en) A device for detecting amounts of activity of human cervical spine
US20230218270A1 (en) System and apparatus for remote interaction with an object
Jatesiktat Data-driven phase extraction for anomaly detection of repetitive human movements
US20220319045A1 (en) System For Posture Detection Using The Camera Of A Hand-Held Device
KR102550820B1 (en) Electronic device providing shoulder joint improvement solutions and program of the same
Xia Body motion capture using multiple inertial sensors

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees