TWM520140U - Particle detection apparatus - Google Patents

Particle detection apparatus Download PDF

Info

Publication number
TWM520140U
TWM520140U TW103222228U TW103222228U TWM520140U TW M520140 U TWM520140 U TW M520140U TW 103222228 U TW103222228 U TW 103222228U TW 103222228 U TW103222228 U TW 103222228U TW M520140 U TWM520140 U TW M520140U
Authority
TW
Taiwan
Prior art keywords
particle
detecting device
air
particles
particle detecting
Prior art date
Application number
TW103222228U
Other languages
Chinese (zh)
Inventor
吳佩芬
Original Assignee
大仁科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大仁科技大學 filed Critical 大仁科技大學
Priority to TW103222228U priority Critical patent/TWM520140U/en
Publication of TWM520140U publication Critical patent/TWM520140U/en

Links

Abstract

A particle detection apparatus is used for detecting particle information in the air. The particle detection apparatus may have multiple filter structures, an air pathway, one or more than one laser detectors, a processor circuit and a communication circuit. These filter structure help filter particles with predetermined size. The laser detector is used for detecting particle information in the air pathway. The communication module is used for transmitting collected information to the cloud for further monitoring and analysis.

Description

粒子偵測裝置 Particle detection device

本新型關於一種粒子偵測裝置,且特別關於一種可偵測空氣中粒子信息的粒子偵測裝置。 The present invention relates to a particle detecting device, and more particularly to a particle detecting device capable of detecting particle information in the air.

一般環境與職業環境中,有害性因子入侵人體最主要的途徑為經由呼吸而來。根據統計,90%的工業中毒來自呼吸。因此,勞動部擬修法將生物性因子納入作業環境監測的項目中。 In the general environmental and occupational environment, the most important way for harmful factors to invade the human body is through breathing. According to statistics, 90% of industrial poisoning comes from breathing. Therefore, the Ministry of Labor intends to amend the biological factors into the project of environmental monitoring.

生物氣膠是生物性危害因子(真菌、細菌、病毒等)藉由附著於空氣中的粉塵微粒而來。當這些生物氣膠進入人體肺臟組織及其內不斷地循環時,這些空氣污染物可快速地經由呼吸作用造成人體呼吸器官及全身性的傷害。 Biogas gels are biological hazards (fungi, bacteria, viruses, etc.) that come from dust particles attached to the air. When these biogas gels enter the human lung tissue and circulate continuously, these air pollutants can quickly cause respiratory and systemic damage to the human body through respiration.

決定人體危害程度的主要關鍵因素與生物氣膠之粒徑大小有相當大的關係。當生物氣膠粒徑的大小不同,其在呼吸系統沉積的位置也不同。粒徑大小介於在2.5μm-10μm可以通過鼻腔的過濾而排除。至於可呼吸性與不可呼吸性的粒徑分界通常在5μm,並以重力沉積的方式被吸入而沉積在人體的呼吸道。 The main key factors determining the degree of human hazard have a considerable relationship with the size of the biogas gel. When the size of the biogas gel is different, it is also different in the location of the respiratory system deposition. Particle sizes ranging from 2.5 μm to 10 μm can be excluded by filtration through the nasal cavity. As for the respirability and non-respirability, the particle size boundary is usually 5 μm, and is inhaled by gravity deposition to deposit in the respiratory tract of the human body.

小於5μm的粒子會到達下呼吸道,而大於3μm之氣膠容易於支氣管 沈積。小於3μm之氣膠則容易於肺泡區沈積。由於生物性氣膠具有生物性,且大多數真菌孢子的粒徑大小介於2μm-10μm。換言之,這些粒子容易穿透人類的下呼吸道,進而導致感染,並對人體健康構成威脅。 Particles smaller than 5 μm will reach the lower respiratory tract, while gas gels larger than 3 μm are easier for the bronchus Deposition. A gas gel of less than 3 μm is easy to deposit in the alveolar region. Since bio-gas gels are biological, most fungal spores have a particle size ranging from 2 μm to 10 μm. In other words, these particles easily penetrate the lower respiratory tract of humans, which in turn leads to infection and poses a threat to human health.

因此,如果能夠設計出一種方便偵測空氣中粒子大小的裝置,並且將其偵測結果即時傳送給偵測人員,特別是涉及放在不同地點的多個偵測裝置的資訊整合,將能對於環境狀態監控提供有效積極的貢獻。 Therefore, if it is possible to design a device that can easily detect the particle size in the air and transmit the detection result to the detection personnel in real time, especially the information integration involving multiple detection devices placed in different locations, Environmental status monitoring provides an effective and positive contribution.

根據本創作的一個實施例,提供一種粒子偵測裝置,用於測定一待測空氣中粒子的分佈情況。這個粒子偵測裝置包括至少一過濾結構、空氣導道、至少一雷射探頭,以及一處理電路。 According to an embodiment of the present invention, a particle detecting device for determining the distribution of particles in an air to be tested is provided. The particle detecting device includes at least one filter structure, an air channel, at least one laser probe, and a processing circuit.

這裏提到的至少一過濾結構具有多數預定孔徑的空洞,可供小於該預定孔徑的粒子通過。空氣導道則透過幫浦等方式,將該待測空氣導流經該至少一過濾結構。為了過濾出不同粒徑的粒子,這個粒子偵測裝置可以具有多個不同預定孔徑的過濾結構。舉例來說,這些過濾結構可以是具有均勻孔洞的金屬篩選階層。 The at least one filter structure referred to herein has a plurality of voids of a predetermined pore size for passage of particles smaller than the predetermined pore size. The air channel guides the air to be tested through the at least one filtering structure through a pump or the like. In order to filter out particles of different particle sizes, the particle detecting device may have a plurality of filtering structures of different predetermined pore sizes. For example, these filter structures can be metal screening levels with uniform holes.

例如,每一階具有400個孔洞,而每階的孔徑為0.25mm、0.35mm、0.53mm、0.71mm、0.91mm、1.18mm。在流量28.3公升/分鐘之下之截取之截取粒徑分別7.0、4.7、3.3、2.1、1.1及0.65μm。在實作中,這個粒子偵測裝置可以用慣性衝擊器(inertial impactor)原理來設計。 For example, each step has 400 holes, and the aperture of each step is 0.25 mm, 0.35 mm, 0.53 mm, 0.71 mm, 0.91 mm, 1.18 mm. The intercepted particle sizes taken at a flow rate of 28.3 liters/min were 7.0, 4.7, 3.3, 2.1, 1.1, and 0.65 μm, respectively. In practice, this particle detection device can be designed using the principle of an inertial impactor.

所謂慣性衝擊器的原理,主要是利用微粒的空氣氣動力特性,來收集微粒。當含有微粒的空氣從噴嘴中噴出,碰到下方的收集板或衝擊板等接收器時,進而流線幾乎突然彎曲90度時,氣流中具有足夠慣性的微粒無法跟隨流線彎曲而衝擊在衝擊板上,而慣性較小的微粒比較能跟隨流線 彎曲,不會被衝擊板所收集。藉此,可以在衝擊器上收集不同孔徑的粒子進行進一步的分析。例如,在衝擊器上安置培養皿,對於粒子進行生物培養微生物或是利用顯微鏡、光譜儀等儀器對於所蒐集的樣本進行分析,進而取得相關的粒子信息。 The principle of the so-called inertial impactor is mainly to collect the particles by utilizing the aerodynamic characteristics of the particles. When the air containing the particles is ejected from the nozzle and hits the receiver such as the collecting plate or the impact plate below, and the flow line is almost suddenly bent by 90 degrees, the particles having sufficient inertia in the air flow cannot bend along the flow line and impact the impact. On the board, particles with less inertia can follow the streamline Bent, not collected by the impact plate. Thereby, particles of different pore sizes can be collected on the impactor for further analysis. For example, a culture dish is placed on the impactor, the microorganism is cultured for the particles, or the collected sample is analyzed by an instrument such as a microscope or a spectrometer to obtain related particle information.

除了上面說的元件,這個粒子偵測裝置的雷射探頭可用於偵測通過對應之該至少一過濾結構之該待測空氣中之粒子相關信息。雷射探頭可透過雷射光遮斷效應來計算粒徑與粒子數量。對應的處理電路則與該雷射探頭連接,計算出出該粒子相關信息。為了能即時傳送相關信息,這個粒子偵測裝置也可以配置Wi-Fi等網路介面,將該粒子相關信息傳送到一網路。 進而觀測人員可以直接存取這個粒子偵測裝置的粒子相關信息,或是這個網路介面將信息登載在網路上的資料庫,觀測人員則透過存取此資料庫即時取得所需信息,或進行相關的資料處理與統計分析。 In addition to the elements described above, the laser probe of the particle detecting device can be used to detect particle related information in the air to be tested passing through the corresponding at least one filter structure. The laser probe can calculate the particle size and the number of particles by the laser light blocking effect. A corresponding processing circuit is connected to the laser probe to calculate the particle related information. In order to transmit relevant information in real time, the particle detecting device can also be configured with a network interface such as Wi-Fi to transmit the particle related information to a network. In turn, the observer can directly access the particle-related information of the particle detecting device, or the network interface can display the information in the database on the network, and the observer can obtain the required information by accessing the database, or perform the information. Related data processing and statistical analysis.

除此之外,因應不同的應用需求,例如需要同時檢測許多地點的空氣品質,這些粒子偵測裝置可以設置在不同的地點。並且,在這些粒子偵測裝置中可以設置GPS等定位裝置。處理電路可以將定位電路所定出的地理位置,連同偵測導的粒子相關信息傳送到網路。因此,除了透過接收器上培養皿進行相關的生物檢測培養分析,也可以處理即時大量的信息,做適當即時的回應。 In addition, these particle detection devices can be placed at different locations in response to different application needs, such as the need to simultaneously detect air quality in many locations. Further, a positioning device such as a GPS can be provided in these particle detecting devices. The processing circuit can transmit the geographical location determined by the positioning circuit, together with the detected particle related information, to the network. Therefore, in addition to the relevant bioassay culture analysis through the Petri dish on the receiver, it is also possible to process an instant large amount of information and make an appropriate immediate response.

舉例來說,觀測培養皿並不容易知道上面的微生物是集中在什麼時間點出現。但如果有雷射探頭跟通訊的功能,觀測人員可以檢測何時具有異常狀況,並進而規劃行程,更有效地找出污染源頭的所在。 For example, observing a petri dish is not easy to know at what point in time the above microorganisms are concentrated. However, if there is a laser probe and communication function, the observer can detect when there is an abnormal situation, and then plan the itinerary to find out more effectively the source of the pollution.

這些過濾結構跟對應的雷射探頭可以做成模組,以層層疊接的方式加以組裝。這樣便構成多級的粒子偵測儀器。 These filter structures and corresponding laser probes can be made into modules and assembled in layers. This constitutes a multi-level particle detection instrument.

透過上述的粒子偵測裝置,觀測人員可以快速有效的取得所需的信 息,並即時進行因應,例如發布警報。此外,由於信息可以傳送到雲端進行處理,觀測人員進而可透過各種大數據的資料分析技巧,更有效地找出各種有價值的信息。例如,找出某些位置、某些粒子跟某些疾病之間的關聯。 Through the above particle detection device, the observer can quickly and efficiently obtain the required letter. Interest, and respond immediately, such as issuing an alert. In addition, because information can be transmitted to the cloud for processing, observers can use various data analysis techniques of big data to more effectively find out valuable information. For example, find out the association between certain locations, certain particles, and certain diseases.

因此,這樣的粒子偵測裝置達成了過去沒有的便利性與彈性。除了仍然可以用傳統的方式取得樣本進行進一步的精密分析,使用同一組偵測機器即可達到即時監控的功能,對於空氣污染防治與環境分析提供了重大的助益與貢獻。 Therefore, such a particle detecting device achieves convenience and flexibility that have not been achieved in the past. In addition to the traditional method of obtaining samples for further precision analysis, the same set of detection machines can be used to achieve real-time monitoring functions, which provides significant benefits and contributions to air pollution prevention and environmental analysis.

101‧‧‧過濾結構 101‧‧‧Filter structure

111‧‧‧過濾結構 111‧‧‧Filter structure

121‧‧‧過濾結構 121‧‧‧Filter structure

104‧‧‧雷射探頭 104‧‧‧Laser probe

114‧‧‧雷射探頭 114‧‧‧Laser probe

124‧‧‧雷射探頭 124‧‧‧Laser probe

102‧‧‧接收器 102‧‧‧ Receiver

112‧‧‧接收器 112‧‧‧ Receiver

122‧‧‧接收器 122‧‧‧ Receiver

103‧‧‧培養皿 103‧‧‧ Petri dishes

113‧‧‧培養皿 113‧‧‧ Petri dishes

123‧‧‧培養皿 123‧‧‧ Petri dishes

15‧‧‧處理器 15‧‧‧ processor

16‧‧‧通訊模組 16‧‧‧Communication module

20‧‧‧粒子 20‧‧‧ particles

21‧‧‧雷射探頭 21‧‧‧Laser probe

220‧‧‧感測器 220‧‧‧ sensor

221‧‧‧處理電路 221‧‧‧Processing Circuit

222‧‧‧通訊電路 222‧‧‧Communication circuit

23‧‧‧網路 23‧‧‧Network

24‧‧‧監控系統 24‧‧‧Monitoring system

25‧‧‧終端設備 25‧‧‧ Terminal equipment

301‧‧‧待測空氣 301‧‧‧Air to be tested

31‧‧‧模組 31‧‧‧ modules

32‧‧‧模組 32‧‧‧ modules

33‧‧‧模組 33‧‧‧ modules

34‧‧‧模組 34‧‧‧ modules

35‧‧‧模組 35‧‧‧ modules

36‧‧‧模組 36‧‧‧Module

371‧‧‧雷射探頭 371‧‧‧Laser probe

372‧‧‧雷射探頭 372‧‧‧Laser probe

373‧‧‧雷射探頭 373‧‧‧Laser probe

374‧‧‧雷射探頭 374‧‧‧Laser probe

375‧‧‧雷射探頭 375‧‧‧Laser probe

376‧‧‧雷射探頭 376‧‧‧Laser probe

38‧‧‧導管 38‧‧‧ catheter

39‧‧‧Wi-Fi模組 39‧‧‧Wi-Fi module

圖1例示根據本新型第一實施例粒子偵測裝置元件示意圖。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a block diagram showing the elements of a particle detecting device according to a first embodiment of the present invention.

圖2例示根據本新型第一實施例粒子偵測裝置系統示意圖。 2 is a schematic view showing a system of a particle detecting device according to a first embodiment of the present invention.

圖3例示根據本新型第一實施例粒子偵測裝置結構示意圖。 FIG. 3 is a block diagram showing the structure of a particle detecting device according to a first embodiment of the present invention.

請參照圖1。圖1示範根據本創作的一個實施例,提供一種粒子偵測裝置,用於測定一待測空氣中粒子的分佈情況。這個粒子偵測裝置包括三個過濾結構101、111、121、空氣導道、三個雷射探頭104、114、124,以及一處理電路。在這個例子中,處理電路包括處理器15與通訊模組16。箭頭表示空氣導道造成的空氣流動路徑。空氣導道可以用不同的結構設計,包括提供推力的幫浦,以及導引空氣流過預定路徑的相關管路結構。 Please refer to Figure 1. Figure 1 illustrates an embodiment of the present invention for providing a particle detecting device for determining the distribution of particles in an air to be tested. The particle detecting device includes three filter structures 101, 111, 121, an air channel, three laser probes 104, 114, 124, and a processing circuit. In this example, the processing circuit includes a processor 15 and a communication module 16. The arrows indicate the air flow path caused by the air channel. The air guides can be designed in different configurations, including a pump that provides thrust and associated piping structures that direct air through a predetermined path.

這三個過濾結構101、111、121具有多數預定孔徑的空洞,可供小於該預定孔徑的粒子通過。空氣導道則透過幫浦等方式,將該待測空氣導流經這些過濾結構101、111、121。為了過濾出不同粒徑的粒子,這個粒 子偵測裝置可以具有多個不同預定孔徑的過濾結構。舉例來說,這些過濾結構可以是具有均勻孔洞的金屬篩選階層。 The three filter structures 101, 111, 121 have a plurality of voids of a predetermined pore size through which particles smaller than the predetermined pore size can pass. The air channel guides the air to be tested through the filter structures 101, 111, 121 through a pump or the like. In order to filter out particles of different particle sizes, this grain The sub-detection device can have a plurality of filter structures of different predetermined apertures. For example, these filter structures can be metal screening levels with uniform holes.

例如,每一階具有400個孔洞,而每階的孔徑為0.25mm、0.35mm、0.53mm、0.71mm、0.91mm、1.18mm。在流量28.3公升/分鐘之下之截取之截取粒徑分別7.0、4.7、3.3、2.1、1.1及0.65μm。在實作中,這個粒子偵測裝置可以用慣性衝擊器(inertial impactor)原理來設計。 For example, each step has 400 holes, and the aperture of each step is 0.25 mm, 0.35 mm, 0.53 mm, 0.71 mm, 0.91 mm, 1.18 mm. The intercepted particle sizes taken at a flow rate of 28.3 liters/min were 7.0, 4.7, 3.3, 2.1, 1.1, and 0.65 μm, respectively. In practice, this particle detection device can be designed using the principle of an inertial impactor.

所謂慣性衝擊器的原理,主要是利用微粒的空氣氣動力特性,來收集微粒。當含有微粒的空氣從噴嘴中噴出,碰到下方的收集板或衝擊板等接收器102、112、122時,進而流線幾乎突然彎曲90度時,氣流中具有足夠慣性的微粒無法跟隨流線彎曲而衝擊在衝擊板上,而慣性較小的微粒比較能跟隨流線彎曲,不會被衝擊板所收集。藉此,可以在衝擊器上收集不同孔徑的粒子進行進一步的分析。例如,在衝擊器上安置培養皿103、113、123,對於粒子進行生物培養微生物或是利用顯微鏡、光譜儀等儀器對於所蒐集的樣本進行分析,進而取得相關的粒子信息。 The principle of the so-called inertial impactor is mainly to collect the particles by utilizing the aerodynamic characteristics of the particles. When the air containing the particles is ejected from the nozzle and hits the receivers 102, 112, 122 such as the lower collecting plate or the impact plate, and the flow line is almost suddenly bent by 90 degrees, the particles having sufficient inertia in the air flow cannot follow the flow line. Bending and impacting on the impact plate, while particles with less inertia can follow the streamline and are not collected by the impact plate. Thereby, particles of different pore sizes can be collected on the impactor for further analysis. For example, the culture dishes 103, 113, and 123 are placed on the impactor, the microorganisms are cultured for the particles, or the collected samples are analyzed by instruments such as a microscope or a spectrometer to obtain related particle information.

除了上面說的元件,這個粒子偵測裝置的雷射探頭104、114、124可用於偵測通過對應之該至少一過濾結構之該待測空氣中之粒子相關信息。雷射探頭104、114、124可透過雷射光遮斷效應來計算粒徑與粒子數量。對應的處理電路則與該雷射探頭104、114、124連接,計算出出該粒子相關信息。 In addition to the elements described above, the laser probes 104, 114, 124 of the particle detecting device can be used to detect particle related information in the air to be tested that passes through the at least one filter structure. The laser probes 104, 114, 124 can calculate the particle size and the number of particles by the laser light blocking effect. Corresponding processing circuits are connected to the laser probes 104, 114, and 124 to calculate the particle related information.

請參考圖2,其示範雷射探頭偵測粒子的系統示意圖。首先,雷射探頭21可發射雷射光到具有待測空氣的區域,這些雷射光會被空氣中的粒子20部分遮斷,進而在感測器220上呈現對應的結果。這個結果可以是數位影像,也可以是其他的電子信息。處理電路221對於這些偵測結構進行分析與計算,取得所需的粒子信息。這些粒子信息透過通訊電路222,例如 各種有線或無線網路傳送到網路23,進而觀測人員可透過監控系統24或是電腦、手機或平板等終端設備25即時取得相關的信息,並且進行所需的分析跟因應操作。 Please refer to FIG. 2, which illustrates a system diagram of a laser probe detecting particles. First, the laser probe 21 can emit laser light to an area having air to be tested, which is partially blocked by the particles 20 in the air, thereby presenting corresponding results on the sensor 220. This result can be a digital image or other electronic information. The processing circuit 221 analyzes and calculates these detection structures to obtain desired particle information. These particle information is transmitted through the communication circuit 222, for example Various wired or wireless networks are transmitted to the network 23, so that the observer can instantly obtain relevant information through the monitoring system 24 or the terminal device 25 such as a computer, a mobile phone or a tablet, and perform required analysis and operation.

為了能即時傳送相關信息,這個粒子偵測裝置也可以配置Wi-Fi等網路介面,例如圖1中的通訊模組16,將該粒子相關信息傳送到一網路。進而觀測人員可以直接存取這個粒子偵測裝置的粒子相關信息,或是這個網路介面將信息登載在網路上的資料庫,觀測人員則透過存取此資料庫即時取得所需信息,或進行相關的資料處理與統計分析。 In order to transmit relevant information in real time, the particle detecting device can also be configured with a network interface such as Wi-Fi, such as the communication module 16 in FIG. 1, to transmit the particle related information to a network. In turn, the observer can directly access the particle-related information of the particle detecting device, or the network interface can display the information in the database on the network, and the observer can obtain the required information by accessing the database, or perform the information. Related data processing and statistical analysis.

除此之外,因應不同的應用需求,例如需要同時檢測許多地點的空氣品質,這些粒子偵測裝置可以設置在不同的地點。並且,在這些粒子偵測裝置中可以設置GPS等定位裝置。處理電路可以將定位電路所定出的地理位置,連同偵測導的粒子相關信息傳送到網路。因此,除了透過接收器上培養皿進行相關的生物檢測培養分析,也可以處理即時大量的信息,做適當即時的回應。 In addition, these particle detection devices can be placed at different locations in response to different application needs, such as the need to simultaneously detect air quality in many locations. Further, a positioning device such as a GPS can be provided in these particle detecting devices. The processing circuit can transmit the geographical location determined by the positioning circuit, together with the detected particle related information, to the network. Therefore, in addition to the relevant bioassay culture analysis through the Petri dish on the receiver, it is also possible to process an instant large amount of information and make an appropriate immediate response.

舉例來說,觀測培養皿並不容易知道上面的微生物是集中在什麼時間點出現。但如果有雷射探頭跟通訊的功能,觀測人員可以檢測何時具有異常狀況,並進而規劃行程,更有效地找出污染源頭的所在。 For example, observing a petri dish is not easy to know at what point in time the above microorganisms are concentrated. However, if there is a laser probe and communication function, the observer can detect when there is an abnormal situation, and then plan the itinerary to find out more effectively the source of the pollution.

這些過濾結構跟對應的雷射探頭可以做成模組,以層層疊接的方式加以組裝。這樣便構成多級的粒子偵測儀器。 These filter structures and corresponding laser probes can be made into modules and assembled in layers. This constitutes a multi-level particle detection instrument.

請參照圖3,其例示一種疊接的模組化粒子偵測裝置。在這個粒子偵測裝置中,有六個針對不同粒徑設計的模組31、32、33、34、35、36。這些模組31、32、33、34、35、36有自己的接收器與雷射探頭371、372、373、374、375、376。這些雷射探頭371、372、373、374、375、376取得的信息可以透過Wi-Fi模組39傳送到其他的電子裝置或是本地網路或是網際網 路。待測空氣301依序流經各模組的過濾結構,最後由導管38流出。各個模組的雷射探頭提供對應的粒子信息,整合處理後傳給觀測人員進行處理。 Please refer to FIG. 3, which illustrates a stacked modular particle detecting device. In this particle detecting device, there are six modules 31, 32, 33, 34, 35, 36 designed for different particle sizes. These modules 31, 32, 33, 34, 35, 36 have their own receiver and laser probes 371, 372, 373, 374, 375, 376. The information obtained by these laser probes 371, 372, 373, 374, 375, 376 can be transmitted to other electronic devices through the Wi-Fi module 39 or to the local network or the Internet. road. The air to be tested 301 flows through the filter structure of each module in sequence, and finally flows out through the conduit 38. The laser probes of each module provide corresponding particle information, which is integrated and processed and transmitted to the observer for processing.

透過上述的粒子偵測裝置,觀測人員可以快速有效的取得所需的信息,並即時進行因應,例如發布警報。此外,由於信息可以傳送到雲端進行處理,觀測人員進而可透過各種大數據的資料分析技巧,更有效地找出各種有價值的信息。例如,找出某些位置、某些粒子跟某些疾病之間的關聯。 Through the particle detection device described above, the observer can quickly and efficiently obtain the required information and perform an immediate response, such as issuing an alarm. In addition, because information can be transmitted to the cloud for processing, observers can use various data analysis techniques of big data to more effectively find out valuable information. For example, find out the association between certain locations, certain particles, and certain diseases.

因此,這樣的粒子偵測裝置達成了過去沒有的便利性與彈性。除了仍然可以用傳統的方式取得樣本進行進一步的精密分析,使用同一組偵測機器即可達到即時監控的功能,對於空氣污染防治與環境分析提供了重大的助益與貢獻。 Therefore, such a particle detecting device achieves convenience and flexibility that have not been achieved in the past. In addition to the traditional method of obtaining samples for further precision analysis, the same set of detection machines can be used to achieve real-time monitoring functions, which provides significant benefits and contributions to air pollution prevention and environmental analysis.

雖然本創作以前述之較佳實施例揭露如上,然其並非用以限定本創作,任何熟習相像技藝者,在不脫離本創作之精神和範圍內,當可作些許之更動與潤飾,因此本創作之專利保護範圍須視本說明書所附之申請專利範圍所界定者為準。 Although the present invention has been described above with reference to the preferred embodiments thereof, it is not intended to limit the present invention, and anyone skilled in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of patent protection of the creation shall be subject to the definition of the scope of the patent application attached to this specification.

101‧‧‧過濾結構 101‧‧‧Filter structure

111‧‧‧過濾結構 111‧‧‧Filter structure

121‧‧‧過濾結構 121‧‧‧Filter structure

104‧‧‧雷射探頭 104‧‧‧Laser probe

114‧‧‧雷射探頭 114‧‧‧Laser probe

124‧‧‧雷射探頭 124‧‧‧Laser probe

102‧‧‧接收器 102‧‧‧ Receiver

112‧‧‧接收器 112‧‧‧ Receiver

122‧‧‧接收器 122‧‧‧ Receiver

103‧‧‧培養皿 103‧‧‧ Petri dishes

113‧‧‧培養皿 113‧‧‧ Petri dishes

123‧‧‧培養皿 123‧‧‧ Petri dishes

15‧‧‧處理器 15‧‧‧ processor

16‧‧‧通訊模組 16‧‧‧Communication module

Claims (10)

一種粒子偵測裝置,用於測定一待測空氣中粒子的分佈情況,包含:至少一過濾結構,具有多數預定孔徑的空洞,可供小於該預定孔徑的粒子通過;一空氣導道,導流該待測空氣流經該至少一過濾結構;至少一雷射探頭,用於偵測通過對應之該至少一過濾結構之該待測空氣中之粒子相關信息;以及一處理電路,與該雷射探頭連接,計算出出該粒子相關信息。 A particle detecting device for measuring a distribution of particles in an air to be tested, comprising: at least one filtering structure, a cavity having a plurality of predetermined apertures, for allowing particles smaller than the predetermined aperture to pass; an air channel, diversion The air to be tested flows through the at least one filter structure; at least one laser probe is configured to detect particle related information in the air to be tested passing through the corresponding at least one filter structure; and a processing circuit, and the laser The probe is connected to calculate the particle related information. 如申請專利範圍第1項所述的粒子偵測裝置,更包含一網路介面,將該粒子相關信息傳送到一網路。 The particle detecting device of claim 1, further comprising a network interface for transmitting the particle related information to a network. 如申請專利範圍第2項所述的粒子偵測裝置,其中該網路介面為一Wi-Fi無線通訊協定裝置。 The particle detecting device of claim 2, wherein the network interface is a Wi-Fi wireless communication protocol device. 如申請專利範圍第2項所述的粒子偵測裝置,其中該至少一過濾結構數目為多個,每個過濾結構具有不同的預定孔徑,以過濾該待測空氣中不同孔徑的粒子。 The particle detecting device of claim 2, wherein the number of the at least one filtering structure is plural, and each filtering structure has a different predetermined aperture to filter particles of different pore sizes in the air to be tested. 如申請專利範圍第4項所述的粒子偵測裝置,其中每個過濾結構具有一個對應的雷射探頭,用於取得該粒子相關信息。 The particle detecting device of claim 4, wherein each filter structure has a corresponding laser probe for acquiring the particle related information. 如申請專利範圍第5項所述的粒子偵測裝置,對應每一個過濾結構更包含一接收器,用於攔截沉積該待測空氣中之粒子。 The particle detecting device of claim 5, wherein each of the filtering structures further comprises a receiver for intercepting particles deposited in the air to be tested. 如申請專利範圍第6項所述的粒子偵測裝置,其中該接收器具有一培養皿,以便透過生物培養方式,檢測該待測空氣落入該培養皿粒子的特性。 The particle detecting device according to claim 6, wherein the receiver has a petri dish for detecting a characteristic of the air to be measured falling into the petri dish by a biological culture method. 如申請專利範圍第7項所述的粒子偵測裝置,其中該些雷射探頭透過雷射光遮斷效應來計算粒徑與粒子數量。 The particle detecting device of claim 7, wherein the laser probes calculate the particle size and the number of particles by a laser light blocking effect. 如申請專利範圍第8項所述的粒子偵測裝置,更包含一定位電路,該處理電路將該定位電路所定出的地理位置,連同該粒子相關信息傳送到該網路。 The particle detecting device of claim 8, further comprising a positioning circuit, wherein the processing circuit transmits the geographical position determined by the positioning circuit to the network together with the particle related information. 如申請專利範圍第9項所述的粒子偵測裝置,其中每一個過濾結構與其對應的雷射探頭做成模組,這些模組可以透過疊接組成所需的粒子偵測裝置。 The particle detecting device of claim 9, wherein each of the filtering structures and the corresponding laser probes are formed as modules, and the modules can be stacked to form a desired particle detecting device.
TW103222228U 2014-12-16 2014-12-16 Particle detection apparatus TWM520140U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103222228U TWM520140U (en) 2014-12-16 2014-12-16 Particle detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103222228U TWM520140U (en) 2014-12-16 2014-12-16 Particle detection apparatus

Publications (1)

Publication Number Publication Date
TWM520140U true TWM520140U (en) 2016-04-11

Family

ID=56362244

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103222228U TWM520140U (en) 2014-12-16 2014-12-16 Particle detection apparatus

Country Status (1)

Country Link
TW (1) TWM520140U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI695163B (en) * 2018-12-19 2020-06-01 財團法人工業技術研究院 Particulate matter sensing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI695163B (en) * 2018-12-19 2020-06-01 財團法人工業技術研究院 Particulate matter sensing device
US11047788B2 (en) 2018-12-19 2021-06-29 Industrial Technology Research Institute Particulate matter sensing device

Similar Documents

Publication Publication Date Title
US9726579B2 (en) System and method of conducting particle monitoring using low cost particle sensors
JP6438399B2 (en) Addressability in particle detection
JP6574762B2 (en) Addressability in particle detection
US8949037B2 (en) Method and system for detecting and monitoring emissions
US9940806B2 (en) Fire detection
US6514721B2 (en) Air sampler for pathogens and psychrometrics
US20100094565A1 (en) Method and system for detecting and monitoring emissions
US20060071803A1 (en) Pathogen detector system and method
Rengasamy et al. A comparison of total inward leakage measured using sodium chloride (NaCl) and corn oil aerosol methods for air-purifying respirators
US10843183B2 (en) Isolation device with built-in particle counter
Tang et al. Aerosol-transmitted infections—a new consideration for public health and infection control teams
Su et al. Sensors and analytical technologies for air quality: particulate matters and bioaerosols
JP2012189483A (en) Particle measuring apparatus
KR102157180B1 (en) Dust particle measuring system and measuring method thereof
CN106546524A (en) The method of testing of haze mask strainability
Pourchez et al. New insights into the standard method of assessing bacterial filtration efficiency of medical face masks
Chen et al. Fungal bioaerosol exposure and its effects on the health of mushroom and vegetable farm workers in Taiwan
TWM520140U (en) Particle detection apparatus
US11253347B2 (en) Head-only and/or whole body inhalation exposure chamber
Steele et al. Autonomous, broad-spectrum detection of hazardous aerosols in seconds
EP1980837A1 (en) Particle measuring apparatus
Macher et al. Chamber evaluation of a personal, bioaerosol cyclone sampler
Rando et al. Field Performance of the RespiConTMfor Size-Selective Sampling of Industrial Wood Processing Dust
KR20220061310A (en) Evaluation system and method for performance of removing bioairosol
Michel et al. On the efficiency and correction of vertically oriented blunt bioaerosol samplers in moving air

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees