TWM505616U - 3D display layer and 3d display structure thereof - Google Patents

3D display layer and 3d display structure thereof Download PDF

Info

Publication number
TWM505616U
TWM505616U TW103223228U TW103223228U TWM505616U TW M505616 U TWM505616 U TW M505616U TW 103223228 U TW103223228 U TW 103223228U TW 103223228 U TW103223228 U TW 103223228U TW M505616 U TWM505616 U TW M505616U
Authority
TW
Taiwan
Prior art keywords
display
layer
optical
lenticular lenses
discontinuous arc
Prior art date
Application number
TW103223228U
Other languages
Chinese (zh)
Inventor
Ying-Tung Chen
Original Assignee
Ytdiamond Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ytdiamond Co Ltd filed Critical Ytdiamond Co Ltd
Priority to TW103223228U priority Critical patent/TWM505616U/en
Publication of TWM505616U publication Critical patent/TWM505616U/en

Links

Abstract

A 3D display layer uses with a transparent materials layer to form a 3D display structure. The 3D display structure is disposed on a display surface of a display module. The 3D display layer comprises a base construction and a 3D optical construction. The base construction has a first surface and a second surface. The 3D optical construction is formed on the first surface of the base construction. The 3D optical construction has a majority of lenticular lens that top portion of each lenticular lens bulges toward a first direction. Wherein the curved surface of each lenticular lens has a surface area of discontinuous arc structure, the surface area of discontinuous arc structure is a regular or irregular jagged structure surface or a planar surface. The distribution between high and low difference of the jagged structure is 0.01um~1um, the surface area of discontinuous arc structure is arranged at the top portion of each lenticular lens. The arc length of the surface area of discontinuous arc structure is projected to width of the first surface is less than or equal to the 2/3 width of a single lenticular lens.

Description

3D顯示層及3D顯示結構3D display layer and 3D display structure

本創作係有關於一種3D顯示層、3D顯示結構及其製作方法,尤指一種運用於3D影像顯示的3D顯示層、3D顯示結構及其製作方法。The present invention relates to a 3D display layer, a 3D display structure and a manufacturing method thereof, and more particularly to a 3D display layer, a 3D display structure and a manufacturing method thereof for 3D image display.

習知的裸視3D原理係依據聚光及折射原理改變光行進的方向,觀視者左、右眼在影像光線集中的設定區域分別看到不同畫面,以達到3D立體視覺感受。而現有裸視3D液晶顯示器係為一般2D平面顯示的液晶顯示器結合一3D顯示層、3D顯示膜或3D顯示板。其中觀視者在觀視區內雙眼可能會接收到不同的圖像,而這些圖像具有視差,因而可在觀視者的大腦中合成一副3D立體影像。The conventional naked-eye 3D principle changes the direction of light travel according to the principle of concentrating and refracting. The left and right eyes of the viewer see different images in the set regions of the image light concentrating to achieve 3D stereoscopic perception. The conventional naked-view 3D liquid crystal display is a liquid crystal display with a general 2D flat display combined with a 3D display layer, a 3D display film or a 3D display panel. Among them, the viewer may receive different images in the viewing area, and these images have parallax, so that a pair of 3D stereo images can be synthesized in the viewer's brain.

但是,3D顯示層的柱透鏡例如為直條狀,並且柱透鏡之間緊密排列且與RGB像素結構有序排列設置,有序排列的RGB像素與有序排列的柱透鏡之間產生明顯的干涉條紋。其中,當3D顯示層的柱透鏡與顯示模組的RGB像素之間平行排列及對位時,可能會因3D顯示層與顯示模組的週期性排列結構而產生疊紋(Moire)現象。甚至,嚴重影響觀賞效果。However, the cylindrical lens of the 3D display layer is, for example, a straight strip shape, and the cylindrical lenses are closely arranged and arranged in an orderly manner with the RGB pixel structure, and the RGB pixels in the ordered arrangement and the collimated cylindrical lens cause significant interference. stripe. Wherein, when the cylindrical lens of the 3D display layer and the RGB pixels of the display module are arranged in parallel and aligned, a Moire phenomenon may occur due to the periodic arrangement structure of the 3D display layer and the display module. Even, it seriously affects the viewing effect.

本創作在於提供一種3D顯示層、3D顯示結構及其製作方法,透過各柱狀透鏡(即為球面透鏡或非球面透鏡)具有不連續弧曲面(即為鋸齒狀結構曲面、不規則結構曲面或平滑面)的設計,藉此降低顯示模組透過3D顯示結構以輸出一3D影像的疊紋現象,而觀視者可裸視觀看較佳品質的3D影像。The present invention provides a 3D display layer, a 3D display structure, and a manufacturing method thereof, which have a discontinuous curved surface through a cylindrical lens (ie, a spherical lens or an aspheric lens) (ie, a zigzag curved surface, an irregular curved surface, or Smooth surface design, thereby reducing the display module through the 3D display structure to output a 3D image overlay phenomenon, and the viewer can view the better quality 3D image.

本創作提供一種3D顯示層,用於與一透光層形成一3D顯示結構,3D顯示結構配置於一具有一顯示面的顯示模組上,3D顯示層包括:一基底構造及一3D光學構造。基底構造具有一第一面及一第二面。3D光學構造形成於基底構造的第一面,3D光學構造包括多數個柱狀透鏡,各柱狀透鏡的頂部朝向一第一方向凸出,且各柱狀透鏡具有一曲面。其中,各柱狀透鏡的曲面具有一不連續弧結構面區,不連續弧結構面區配置於各柱狀透鏡的頂部,且不連續弧結構面區的弧長投影至第一面的寬度小於或等於為各單根柱狀透鏡寬度的三分之二。The present invention provides a 3D display layer for forming a 3D display structure with a light transmissive layer. The 3D display structure is disposed on a display module having a display surface. The 3D display layer includes: a base structure and a 3D optical structure. . The base structure has a first side and a second side. The 3D optical structure is formed on the first side of the base structure, and the 3D optical structure includes a plurality of cylindrical lenses, the tops of the respective cylindrical lenses are convex toward a first direction, and each of the cylindrical lenses has a curved surface. Wherein, the curved surface of each lenticular lens has a discontinuous arc structure surface area, and the discontinuous arc structure surface area is disposed on the top of each lenticular lens, and the arc length of the discontinuous arc structure surface area is projected to the first surface to be smaller than the width Or equal to two-thirds of the width of each single cylindrical lens.

本創作提供一種3D顯示結構,適用於一具有一顯示面的顯示模組上,3D顯示結構包括:一3D顯示層及一透光層。透光層具有一第一貼合面及相對於第一貼合面的一第二貼合面,第一貼合面連接第二面。The present invention provides a 3D display structure suitable for a display module having a display surface, the 3D display structure comprising: a 3D display layer and a light transmissive layer. The light transmissive layer has a first bonding surface and a second bonding surface with respect to the first bonding surface, and the first bonding surface is connected to the second surface.

本創作提供一種3D顯示層製作方法,包括:提供具有一基底構造,基底構造具有一第一面及一第二面;於基底構造的第一面上塗覆一層紫外線光學樹脂結構層;提供一滾壓模具,利用鑽石刀具加工滾壓模具,使其具有多個凹透鏡成型結構,各凹透鏡成型結構具有一不連續弧曲面成型區;及滾壓模具滾壓紫外線光學樹脂結構層,經紫外線曝光而使紫外線光學樹脂結構層成型為一 3D光學構造,3D光學構造包括多數個柱狀透鏡,各柱狀透鏡具有一曲面,各柱狀透鏡的曲面具有一不連續弧結構面區,不連續弧結構面區係對應不連續弧曲面成型區而形成於各柱狀透鏡,且不連續弧結構面區的弧長投影至第一面的寬度小於或等於為各單根柱狀透鏡寬度的三分之二。The present invention provides a 3D display layer manufacturing method, comprising: providing a substrate structure having a first surface and a second surface; applying a layer of ultraviolet optical resin structure on the first surface of the substrate structure; providing a roll Pressing the mold, processing the rolling mold with a diamond cutter to have a plurality of concave lens forming structures, each concave lens forming structure has a discontinuous curved curved forming region; and rolling the mold to roll the ultraviolet optical resin structural layer, which is exposed by ultraviolet light Ultraviolet optical resin structural layer is formed into one 3D optical structure, the 3D optical structure comprises a plurality of cylindrical lenses, each of the cylindrical lenses has a curved surface, the curved surface of each cylindrical lens has a discontinuous arc structure surface area, and the discontinuous arc structure surface area corresponds to the discontinuous arc surface forming The region is formed in each of the lenticular lenses, and the arc length of the discontinuous arc structure surface region is projected to the first surface to be less than or equal to two-thirds of the width of each of the single lenticular lenses.

本創作的具體手段為利用一種3D顯示層或3D顯示結構,透過各柱狀透鏡頂端具有不連續弧曲面(即為鋸齒狀結構曲面、不規則結構曲面或平滑面)的設計,藉此顯示模組透過3D顯示結構可降低輸出一3D影像的疊紋現象,而觀視者可裸視觀看較佳品質的3D影像。再者,顯示模組輸出的光束經由不連續弧結構面區(即為鋸齒狀結構曲面、不規則結構曲面或平滑面),光束將產生散射光或折射光的狀況,而使觀視者可裸視觀看到降低或不具疊紋現象的3D影像。The specific means of the creation is to use a 3D display layer or a 3D display structure to design a mode by using a discontinuous curved surface (ie, a zigzag curved surface, an irregular curved surface or a smooth surface) through the top of each cylindrical lens. The group can reduce the dullness of the output of a 3D image through the 3D display structure, and the viewer can view the better quality 3D image with the naked viewer. Furthermore, the light beam outputted by the display module passes through the discontinuous arc structure surface area (ie, a zigzag structure curved surface, an irregular structure curved surface or a smooth surface), and the light beam will generate a state of scattered light or refracted light, so that the viewer can Observed 3D images with reduced or no moiré.

以上之概述與接下來的實施例,皆是為了進一步說明本創作之技術手段與達成功效,然所敘述之實施例與圖式僅提供參考說明用,並非用來對本創作加以限制者。The above summary and the following examples are intended to further illustrate the technical means and the efficiencies of the present invention, and the embodiments and drawings are merely provided for reference and are not intended to limit the present invention.

1、1a‧‧‧3D顯示結構1, 1a‧‧3D display structure

90‧‧‧顯示面90‧‧‧ Display surface

9‧‧‧顯示模組9‧‧‧Display module

10‧‧‧3D顯示層10‧‧‧3D display layer

101‧‧‧第一面101‧‧‧ first side

102‧‧‧第二面102‧‧‧ second side

103‧‧‧柱狀透鏡103‧‧‧ lenticular lens

12‧‧‧透光層12‧‧‧Transparent layer

121‧‧‧第一光學層121‧‧‧First optical layer

122‧‧‧第二光學層122‧‧‧Second optical layer

12s1‧‧‧第一貼合面12s1‧‧‧ first fit surface

12s2‧‧‧第二貼合面12s2‧‧‧Second mating surface

A1‧‧‧不連續弧結構面區A1‧‧‧discontinuous arc structure area

A2、A3‧‧‧光滑弧面區A2, A3‧‧‧Smooth curved area

A5‧‧‧平滑面A5‧‧‧ smooth surface

B1‧‧‧基底構造B1‧‧‧Base structure

B2‧‧‧3D光學構造B2‧‧3D optical construction

B2’‧‧‧紫外線光學樹脂結構層B2'‧‧‧ UV optical resin structural layer

B3‧‧‧保護層B3‧‧‧Protective layer

C1‧‧‧曲面C1‧‧‧ surface

D1‧‧‧第一方向D1‧‧‧ first direction

D2‧‧‧第二方向D2‧‧‧ second direction

h1‧‧‧厚度H1‧‧‧ thickness

h2、ht1、ht2‧‧‧高度H2, ht1, ht2‧‧‧ height

ha1‧‧‧距離Ha1‧‧‧ distance

T‧‧‧頂部Top of T‧‧‧

T1‧‧‧第一端T1‧‧‧ first end

T2‧‧‧第二端T2‧‧‧ second end

TP‧‧‧頂點TP‧‧‧ vertex

L、R‧‧‧RGB像素(L:左影像,R:右影像)L, R‧‧‧ RGB pixels (L: left image, R: right image)

M1‧‧‧滾壓模具M1‧‧‧Rolling mould

MF‧‧‧凹透鏡成型結構MF‧‧‧ concave lens forming structure

P1、P2‧‧‧寬度P1, P2‧‧‧ width

i‧‧‧像素間距I‧‧‧pixel spacing

z‧‧‧裸視3D顯示影像的最佳觀賞距離z‧‧‧The best viewing distance for naked-view 3D display images

e‧‧‧眼部間距E‧‧‧ Eye spacing

f‧‧‧焦距長度F‧‧‧focal length

UPL‧‧‧上偏光片UPL‧‧‧Upper Polarizer

CF‧‧‧彩色濾光片CF‧‧‧ color filters

TFT‧‧‧TFT片TFT‧‧‧TFT film

BL‧‧‧背光片BL‧‧‧Backlight

圖1為本創作一實施例之3D顯示層之示意圖。FIG. 1 is a schematic diagram of a 3D display layer according to an embodiment of the present invention.

圖2為根據圖1之本創作另一實施例之3D顯示層之A-A剖面示意圖。2 is a cross-sectional view of the A-A of the 3D display layer according to another embodiment of the present invention.

圖3為本創作另一實施例之3D顯示層之局部放大示意圖。FIG. 3 is a partially enlarged schematic view showing a 3D display layer of another embodiment of the present invention.

圖4為本創作另一實施例之3D顯示層之柱狀透鏡示意圖。4 is a schematic view of a lenticular lens of a 3D display layer of another embodiment of the present invention.

圖5為本創作另一實施例之3D顯示結構顯示3D影像之示意 圖。FIG. 5 is a schematic diagram showing a 3D display structure of a 3D display structure according to another embodiment of the present invention; FIG. Figure.

圖6為本創作另一實施例之3D顯示結構之示意圖。FIG. 6 is a schematic diagram of a 3D display structure of another embodiment of the present invention.

圖7為本創作另一實施例之3D顯示結構之示意圖。FIG. 7 is a schematic diagram of a 3D display structure of another embodiment of the present invention.

圖8為本創作另一實施例之3D顯示層製作過程示意圖。FIG. 8 is a schematic diagram of a 3D display layer manufacturing process according to another embodiment of the present invention.

圖9為本創作另一實施例之3D顯示層製作方法之流程圖。FIG. 9 is a flowchart of a method for fabricating a 3D display layer according to another embodiment of the present invention.

圖10為本創作另一實施例之3D顯示層製作方法之流程圖。FIG. 10 is a flowchart of a method for fabricating a 3D display layer according to another embodiment of the present invention.

圖1為本創作一實施例之3D顯示層之示意圖。圖2為根據圖1之本創作另一實施例之3D顯示層之A-A剖面示意圖。圖3為本創作另一實施例之3D顯示層之局部放大示意圖。請參閱圖1、圖2及圖3。圖1所繪示一種3D顯示層10。3D顯示層10的3D光學構造B2例如為裸視3D的柱狀晶(Lenticular Lens)構造、陣列透鏡(Lens array)或是複眼式(Fly eyes)構造。本實施例不限制3D光學構造B2的態樣。FIG. 1 is a schematic diagram of a 3D display layer according to an embodiment of the present invention. 2 is a cross-sectional view of the A-A of the 3D display layer according to another embodiment of the present invention. FIG. 3 is a partially enlarged schematic view showing a 3D display layer of another embodiment of the present invention. Please refer to Figure 1, Figure 2 and Figure 3. 1 shows a 3D display layer 10. The 3D optical structure B2 of the 3D display layer 10 is, for example, a naked-lens 3D Lenticular Lens structure, an Lens array or a Fly eye structure. . This embodiment does not limit the aspect of the 3D optical configuration B2.

圖2係為圖1之A-A剖面之3D顯示層10示意圖。詳細來說,圖2之3D顯示層10包括一基底構造B1及一3D光學構造B2。在實務上,基底構造B1具有一第一面101及一第二面102。其中,第二面102係用以連接透光層(未繪示)。而3D光學構造B2形成於基底構造B1的第一面101,3D光學構造B2包括多數個柱狀透鏡103,各柱狀透鏡103的頂部T朝向一第一方向D1凸出,且各柱狀透鏡103具有一曲面C1。2 is a schematic view of the 3D display layer 10 of the A-A section of FIG. In detail, the 3D display layer 10 of FIG. 2 includes a base structure B1 and a 3D optical structure B2. In practice, the base structure B1 has a first side 101 and a second side 102. The second surface 102 is used to connect a light transmissive layer (not shown). The 3D optical structure B2 is formed on the first surface 101 of the base structure B1. The 3D optical structure B2 includes a plurality of cylindrical lenses 103. The top T of each of the cylindrical lenses 103 protrudes toward a first direction D1, and each of the lenticular lenses 103 has a curved surface C1.

基底構造B1具有一厚度h1,且基底構造B1例如為一聚對苯二甲酸乙二酯(Polyethylene Terephthalate,PET)。本實施例不限 制基底構造B1的態樣。為了方便說明,本實施例之第一方向D1係以約垂直於顯示模組(未繪示)的顯示面(未繪示)上的方向來說明,而第二方向D2係以約與第一方向D1垂直交錯的方向來說明。本實施例不限制第一方向D1與第二方向D2的態樣。The base structure B1 has a thickness h1, and the base structure B1 is, for example, a polyethylene terephthalate (PET). This embodiment is not limited The aspect of the base structure B1 is made. For convenience of description, the first direction D1 of the embodiment is illustrated by a direction perpendicular to a display surface (not shown) of the display module (not shown), and the second direction D2 is approximately the first The direction D1 is vertically staggered to illustrate. This embodiment does not limit the aspect of the first direction D1 and the second direction D2.

進一步來說,各柱狀透鏡103的曲面C1具有一不連續弧結構面區A1與兩個光滑弧面區A2、A3。在實務上,不連續弧結構面區A1配置於各柱狀透鏡103的頂部T,不連續弧結構面區A1例如為一鋸齒狀結構曲面、一粗糙結構曲面、一不規則結構曲面或一平滑面。而兩個光滑弧面區A2、A3分別配置於各柱狀透鏡103的兩側部。簡單來說,不連續弧結構面區A1位於兩個光滑弧面區A2、A3之間。其中,不連續弧結構面區A1的弧長投影至第一面101的寬度P2小於或等於為單根柱狀透鏡103之寬度P1(Lens Pitch)的三分之二。Further, the curved surface C1 of each of the lenticular lenses 103 has a discontinuous arc structure surface area A1 and two smooth arc surface areas A2, A3. In practice, the discontinuous arc structure surface area A1 is disposed at the top T of each of the lenticular lenses 103, and the discontinuous arc structure surface area A1 is, for example, a sawtooth structure curved surface, a rough structural curved surface, an irregular structural curved surface, or a smooth surface. The two smooth curved surface areas A2 and A3 are respectively disposed on both side portions of each of the lenticular lenses 103. Briefly, the discontinuous arc structure area A1 is located between the two smooth arc areas A2, A3. The arc length of the discontinuous arc structure surface area A1 is projected to the width P2 of the first surface 101 is less than or equal to two-thirds of the width P1 (Lens Pitch) of the single lenticular lens 103.

進一步來說,不連續弧結構面區A1係用以將顯示模組的RGB像素所輸出的光束散射或折射,使RGB像素所輸出的光束能擴散聚焦範圍至觀視者的眼部,藉此達到光能量的平均分布,並降低3D顯示產生的疊紋干擾現象。反之,光滑弧面區A2、A3係用以將顯示模組的RGB像素所輸出的光束聚焦,使RGB像素所輸出的光束能分別聚焦至觀視者的左眼或右眼部,藉此達到3D顯示的功效。Further, the discontinuous arc structure surface area A1 is used to scatter or refract the light beam outputted by the RGB pixels of the display module, so that the light beam output by the RGB pixel can diffuse the focus range to the eye of the viewer. Achieve the average distribution of light energy and reduce the phenomenon of moiré caused by 3D display. Conversely, the smooth arcuate areas A2 and A3 are used to focus the light beams output by the RGB pixels of the display module, so that the light beams output by the RGB pixels can be respectively focused to the left or right eye of the viewer. The efficacy of 3D display.

當不連續弧結構面區A1投影至第一面101的寬度P2大於單根柱狀透鏡103寬度P1的三分之二時,此時2D的顯示效果將大於3D的顯示效果,使觀看者無法清楚觀賞3D的影像,因此不連續弧結構面區A1的投影至第一面101的寬度P2需要小於或等於 三分之二的單根柱狀透鏡103的寬度P1。When the width P2 of the discontinuous arc structure surface area A1 projected to the first surface 101 is greater than two-thirds of the width P1 of the single lenticular lens 103, the display effect of the 2D at this time will be greater than the display effect of the 3D, so that the viewer cannot Clearly viewing the 3D image, so the projection of the discontinuous arc structure area A1 to the width P2 of the first side 101 needs to be less than or equal to Two-thirds of the width of the single cylindrical lens 103 is P1.

一般各柱狀透鏡的曲面或頂部的曲面係為光滑弧面,用以使RGB像素所輸出的光束能分別聚焦至觀視者的左眼及右眼部,藉此觀視者可觀看到3D顯示影像。但是,過多或過少的光束聚焦將使觀視者觀看到具有明顯疊紋現象的3D顯示影像。所以,本實施例係將各柱狀透鏡103的頂部T的曲面設計為不連續弧結構面區A1,藉此擴散光束聚焦至觀視者眼部的範圍,使得投射到眼睛的光能量能更平均分布。Generally, the curved surface of the lenticular lens or the curved surface at the top is a smooth curved surface, so that the light beams output by the RGB pixels can be respectively focused to the left and right eyes of the viewer, thereby allowing the viewer to view the 3D. Display images. However, too much or too little beam focusing will cause the viewer to view a 3D display image with significant moiré. Therefore, in this embodiment, the curved surface of the top portion T of each of the lenticular lenses 103 is designed as a discontinuous arc structure surface area A1, whereby the diffused light beam is focused to the range of the viewer's eyes, so that the light energy projected to the eyes can be more Evenly distributed.

換句話說,各柱狀透鏡103的頂部T的曲面係例如為2D顯示影像的曲面。而各柱狀透鏡103的兩側部的曲面係例如為3D顯示影像的曲面。所以,本實施例透過各柱狀透鏡103具有2D顯示影像的不連續弧結構面區A1以及3D顯示影像的光滑弧面區A2、A3之光學設計,以達到降低3D顯示的疊紋干擾現象,並達到良好的3D顯示效果。In other words, the curved surface of the top portion T of each of the lenticular lenses 103 is, for example, a curved surface of a 2D display image. The curved surfaces of the both side portions of each of the lenticular lenses 103 are, for example, curved surfaces of 3D display images. Therefore, in this embodiment, the optical design of the smooth arc surface areas A2 and A3 of the discontinuous arc structure area A1 and the 3D display image of the lenticular lens 103 through the lenticular lens 103 is achieved, so as to reduce the smear interference phenomenon of the 3D display. And achieve a good 3D display.

當然,不連續弧結構面區A1與光滑弧面區A2、A3分別佔據各柱狀透鏡103的全部曲面C1的比例是可調整的。本實施例係以「不連續弧結構面區A1的弧長投影至第一面101的寬度P2小於或等於單根柱狀透鏡103寬度P1的三分之二」來說明。其中,若不連續弧結構面區A1的弧長投影至第一面101的寬度P2超過單根柱狀透鏡103寬度P1的三分之二時,3D顯示層10反而會降低3D顯示影像的功效。Of course, the ratio of the discontinuous arc structure surface area A1 and the smooth arc surface area A2, A3 occupying the entire curved surface C1 of each of the lenticular lenses 103 is adjustable. This embodiment is explained by "the projection of the arc length of the discontinuous arc structure surface area A1 to the width P2 of the first surface 101 is less than or equal to two-thirds of the width P1 of the single lenticular lens 103". Wherein, if the arc length of the discontinuous arc structure surface area A1 is projected to the width P2 of the first surface 101 exceeds two-thirds of the width P1 of the single cylindrical lens 103, the 3D display layer 10 may reduce the effect of the 3D display image. .

在其他實施例中,不連續弧結構面區A1的弧長投影至第一面101的寬度P2可小於或等於單根柱狀透鏡103寬度P1的二分之一、三分之一、四分之一或其他數值。本實施例不限制「不連續 弧結構面區A1的弧長投影至第一面101的寬度P2佔據單根柱狀透鏡103寬度P1的比例」。In other embodiments, the arc length of the discontinuous arc structure surface area A1 is projected to the width P2 of the first surface 101 may be less than or equal to one-half, one-third, four-minutes of the width P1 of the single lenticular lens 103. One or other value. This embodiment does not limit "discontinuity" The arc length of the arc structure surface area A1 is projected to the width P2 of the first surface 101 to occupy the ratio of the width P1 of the single lenticular lens 103".

值得一提的是,「不連續弧結構面區A1的弧長投影至第一面101的寬度P2小於或等於單根柱狀透鏡103寬度P1的三分之二」即大致相似於「不連續弧結構面區A1的弧長佔據各柱狀透鏡103的全部曲面C1的比例小於或等於二分之一」。也就是說,不連續弧結構面區A1的弧長佔據各柱狀透鏡103的全部曲面C1的比例小於或等於二分之一,即可降低3D顯示的疊紋干擾現象,並達到良好的3D顯示效果。It is worth mentioning that "the arc length of the discontinuous arc structure area A1 is projected to the width P2 of the first surface 101 is less than or equal to two-thirds of the width P1 of the single lenticular lens 103", which is substantially similar to "discontinuity". The arc length of the arc structure surface area A1 occupies less than or equal to one-half of the total curved surface C1 of each of the lenticular lenses 103. That is to say, the arc length of the discontinuous arc structure surface area A1 occupies less than or equal to one-half of the total curved surface C1 of each of the lenticular lenses 103, thereby reducing the hysteresis interference phenomenon of the 3D display and achieving good 3D. display effect.

其中,若不連續弧結構面區A1佔據各柱狀透鏡103的全部曲面C1的比例超過二分之一時,3D顯示層10反而會降低3D顯示影像的功效。所屬技術領域具有通常知識者根據本創作技術手段,可自由設計「不連續弧結構面區A1與光滑弧面區A2、A3分別佔據各柱狀透鏡103的全部曲面C1的比例」。Wherein, if the discontinuous arc structure surface area A1 occupies more than one-half of the total curved surface C1 of each of the lenticular lenses 103, the 3D display layer 10 may reduce the efficiency of the 3D display image. According to the prior art, the person skilled in the art can freely design "the ratio of the discontinuous arc structure surface area A1 and the smooth arc surface area A2, A3 occupying the entire curved surface C1 of each of the lenticular lenses 103, respectively".

圖4為本創作另一實施例之3D顯示層之柱狀透鏡示意圖。請參閱圖4及圖3。圖4與圖3中之3D顯示層10a、10具有相似的3D顯示影像以及降低3D顯示疊紋干擾現象的功效。但是,圖4與圖3中之3D顯示層10a、10之間的差異在於:3D顯示層10a的各柱狀透鏡103具有一平滑面A5。4 is a schematic view of a lenticular lens of a 3D display layer of another embodiment of the present invention. Please refer to Figure 4 and Figure 3. The 3D display layers 10a, 10 in FIG. 4 and FIG. 3 have similar 3D display images and the effect of reducing the 3D display moiré interference phenomenon. However, the difference between the 3D display layers 10a, 10 in FIGS. 4 and 3 is that each of the lenticular lenses 103 of the 3D display layer 10a has a smooth surface A5.

詳細來說,一種3D顯示層10a,用於與一透光層(未顯示)形成一3D顯示結構,3D顯示結構配置於一具有一顯示面的顯示模組上。3D顯示層10a包括一基底構造B1及一3D光學構造B2。其中,3D光學構造B2形成於基底構造B1的第一面101,3D光 學構造B2包括多數個柱狀透鏡103,各柱狀透鏡103的頂部T朝向一第一方向D1凸出。各柱狀透鏡103包括一平滑面A5以及兩光滑弧面區A2、A3。而兩光滑弧面區A2、A3分別配置於各柱狀透鏡103的兩側部,光滑弧面區A2、A3根據一預設中點(即為弧長的中點)以形成弧形曲面,如圖4所繪示。In detail, a 3D display layer 10a is configured to form a 3D display structure with a light transmissive layer (not shown), and the 3D display structure is disposed on a display module having a display surface. The 3D display layer 10a includes a base structure B1 and a 3D optical structure B2. Wherein, the 3D optical structure B2 is formed on the first side 101 of the base structure B1, and the 3D light The learning structure B2 includes a plurality of lenticular lenses 103, and the top portion T of each of the lenticular lenses 103 protrudes toward a first direction D1. Each of the lenticular lenses 103 includes a smooth surface A5 and two smooth curved surface areas A2, A3. The two smooth curved surface areas A2 and A3 are respectively disposed on both sides of each of the lenticular lenses 103, and the smooth curved surface areas A2 and A3 are formed according to a preset midpoint (that is, a midpoint of the arc length) to form a curved curved surface. As shown in Figure 4.

換句話說,本實施例係採用「將各柱狀透鏡103的頂部T刪除聚焦功能」的技術手段,使各柱狀透鏡103的頂部T形成一平滑面A5。當然,顯示模組的RGB像素所輸出的光束經由平滑面A5而折射光束,使RGB像素所輸出的光束能擴散聚焦至觀視者的眼部,藉此達到降低3D顯示的疊紋干擾現象。反之,光滑弧面區A2、A3係用以將顯示模組的RGB像素所輸出的光束聚焦,使RGB像素所輸出的光束能分別聚焦至觀視者的左眼及右眼部,藉此達到3D顯示的功效。In other words, in the present embodiment, the technique of "deleting the focus function of the top portion T of each of the lenticular lenses 103" is employed, so that the top portion T of each of the lenticular lenses 103 forms a smooth surface A5. Of course, the light beam outputted by the RGB pixels of the display module refracts the light beam through the smooth surface A5, so that the light beam output by the RGB pixel can be diffused and focused to the eyes of the viewer, thereby achieving the phenomenon of reducing the aliasing of the 3D display. Conversely, the smooth arcuate areas A2 and A3 are used to focus the light beams output by the RGB pixels of the display module, so that the light beams output by the RGB pixels can be respectively focused to the left and right eyes of the viewer. The efficacy of 3D display.

同理可知,平滑面A5與光滑弧面區A2、A3分別佔據各柱狀透鏡103的投影寬度的比例是可調整的。本實施例係以「平滑面A5投影至第一面101的寬度P2小於或等於單根柱狀透鏡103寬度P1的三分之二」來說明。即為光滑弧面區A2、A3投影至第一面101的寬度大於或等於單根柱狀透鏡103寬度P1的三分之一。其中,若平滑面A5投影至第一面101的寬度P2超過單根柱狀透鏡103寬度P1的三分之二時,3D顯示層10反而會降低3D顯示影像的功效。Similarly, the ratio of the smooth surface A5 and the smooth curved surface areas A2 and A3 occupying the projection width of each of the lenticular lenses 103 can be adjusted. In the present embodiment, "the width P2 projected onto the first surface 101 by the smooth surface A5 is less than or equal to two-thirds of the width P1 of the single lenticular lens 103". That is, the width of the smooth curved surface areas A2, A3 projected to the first surface 101 is greater than or equal to one third of the width P1 of the single cylindrical lens 103. Wherein, if the smooth surface A5 is projected to the width P2 of the first surface 101 by more than two-thirds of the width P1 of the single lenticular lens 103, the 3D display layer 10 may reduce the efficiency of the 3D display image.

在其他實施例中,平滑面A5投影至第一面101的寬度P2可小於或等於單根柱狀透鏡103寬度P1的二分之一、三分之一、四分之一或其他數值。本實施例不限制「平滑面A5投影至第一面 101的寬度P2佔據單根柱狀透鏡103寬度P1的比例」。In other embodiments, the width P2 projected by the smooth surface A5 to the first surface 101 may be less than or equal to one-half, one-third, one-quarter, or other values of the width P1 of the single lenticular lens 103. This embodiment does not limit "the smooth surface A5 is projected to the first side. The width P2 of 101 occupies the ratio of the width P1 of the single lenticular lens 103".

值得一提的是,各柱狀透鏡103的第一端T1與第一面101的最短距離為一第一高度ht1,各柱狀透鏡103的第二端T2與第一面101之間的最短距離為一第二高度ht2,第一高度ht1等於或不等於第二高度ht2。為了方便說明,本實施例之第一高度ht1係等於第二高度ht2來說明。在其他實施例中,第一高度ht1可小於或大於第二高度ht2。即平滑面A5未平行於第一面101,或是平滑面A5相對於第二方向D2傾斜一角度,並自第一端T1延伸至第二端T2。It is worth mentioning that the shortest distance between the first end T1 of the lenticular lens 103 and the first surface 101 is a first height ht1, and the shortest between the second end T2 of each lenticular lens 103 and the first surface 101 The distance is a second height ht2, and the first height ht1 is equal to or not equal to the second height ht2. For convenience of explanation, the first height ht1 of the embodiment is equal to the second height ht2 for explanation. In other embodiments, the first height ht1 can be less than or greater than the second height ht2. That is, the smooth surface A5 is not parallel to the first surface 101, or the smooth surface A5 is inclined at an angle with respect to the second direction D2, and extends from the first end T1 to the second end T2.

圖5為本創作另一實施例之3D顯示結構顯示3D影像之示意圖。圖6為本創作另一實施例之3D顯示結構之示意圖。請參閱圖5及圖6。圖6所繪示一種3D顯示結構1,適用於一具有一顯示面90的顯示模組9。3D顯示結構1包括一3D顯示層10及一透光層12。其中,透光層12連接於3D顯示層10與顯示模組9之間。FIG. 5 is a schematic diagram of displaying a 3D image in a 3D display structure according to another embodiment of the present invention. FIG. 6 is a schematic diagram of a 3D display structure of another embodiment of the present invention. Please refer to Figure 5 and Figure 6. FIG. 6 illustrates a 3D display structure 1 suitable for a display module 9 having a display surface 90. The 3D display structure 1 includes a 3D display layer 10 and a light transmissive layer 12. The light transmissive layer 12 is connected between the 3D display layer 10 and the display module 9 .

為了方便說明,本實施例之顯示模組9係以一液晶顯示模組(LCD Module,LCM)來說明,而3D顯示結構1例如透過一3D顯示面板或一3D顯示膜片來實現。在他實施例中,顯示模組9例如為LCD面板、數位電視的觸控顯示器、筆記型電腦的顯示器或觸控顯示器、ATM提款機的顯示器或觸控顯示器、遊戲機的觸控顯示器、商業廣告機或是其他家用設備的顯示器或觸控顯示器,本實施例不限制3D顯示結構1及顯示模組9的態樣。For convenience of description, the display module 9 of the present embodiment is described by a liquid crystal display module (LCD), and the 3D display structure 1 is realized by, for example, a 3D display panel or a 3D display film. In the embodiment, the display module 9 is, for example, an LCD panel, a touch display of a digital television, a display or a touch display of a notebook computer, a display of a ATM or a touch display, a touch display of a game machine, For the display or touch display of a commercial advertising machine or other household equipment, the embodiment does not limit the aspect of the 3D display structure 1 and the display module 9.

接下來,透光層12具有一第一貼合面12s1及相對於第一貼 合面12s1的一第二貼合面12s2。第一貼合面12s1連接3D顯示層10的第二面102,且第二貼合面12s2連接於顯示模組9的顯示面90。在實務上,透光層12例如為一感壓膠(Pressure Sensitive Adhesives,PSA)或為一光學膠(Optical Clear Adhesive,OCA)。因此,顯示模組9透過RGB像素L、R所輸出的光束經由透光層12而進入3D顯示層10。之後,光束經由3D顯示層10折射、散射而被觀視者的眼睛所接收。所以,觀視者可裸視而看見或欣賞3D影像。Next, the light transmissive layer 12 has a first bonding surface 12s1 and is opposite to the first sticker. A second bonding surface 12s2 of the surface 12s1. The first bonding surface 12s1 is connected to the second surface 102 of the 3D display layer 10, and the second bonding surface 12s2 is connected to the display surface 90 of the display module 9. In practice, the light transmissive layer 12 is, for example, a Pressure Sensitive Adhesive (PSA) or an Optical Clear Adhesive (OCA). Therefore, the light beam output from the display module 9 through the RGB pixels L and R enters the 3D display layer 10 via the light transmissive layer 12. Thereafter, the light beam is refracted and scattered by the 3D display layer 10 and received by the viewer's eyes. Therefore, the viewer can see or enjoy the 3D image with naked eyes.

進一步來說,圖5所繪示為一可裸視3D顯示影像的原理及重要數據參數。其中,觀視者雙眼的間距e、可裸視3D顯示影像的最佳觀賞距離z、3D顯示結構1的焦距長度f、RGB像素L、R的間距i以及兩相鄰柱狀透鏡103之間的間距P1均為顯示3D影像的重要因素。其中,RGB像素L、R所輸出的光束經由3D顯示結構1的不連續弧結構面區A1散射以及光滑弧面區A2、A3折射,而使觀視者左、右雙眼部能接受到對應RGB像素L、R的光束。因此,顯示模組9透過3D顯示結構1以輸出一3D影像,而觀視者可裸視觀看3D影像。Further, FIG. 5 illustrates the principle and important data parameters of a 3D display image that can be viewed naked. The distance e between the eyes of the viewer, the optimal viewing distance z of the 3D display image, the focal length f of the 3D display structure 1, the spacing i of the RGB pixels L and R, and the two adjacent lenticular lenses 103 The spacing P1 between them is an important factor for displaying 3D images. Wherein, the light beams output by the RGB pixels L and R are scattered through the discontinuous arc structure surface area A1 of the 3D display structure 1 and the smooth curved surface areas A2 and A3 are refracted, so that the left and right eyes of the viewer can be correspondingly received. Light beams of RGB pixels L, R. Therefore, the display module 9 transmits the 3D image through the 3D display structure 1, and the viewer can view the 3D image with the naked viewer.

圖7為本創作另一實施例之3D顯示結構之示意圖。請參閱圖7及圖5。圖7與圖6中的3D顯示結構1a、1二者結構相似,例如顯示模組9透過3D顯示結構1以輸出一3D影像,而觀視者可裸視而看見或欣賞3D影像。而3D顯示結構1a、1二者的差異在於:透光層12包括一第一光學層121與一第二光學層122。FIG. 7 is a schematic diagram of a 3D display structure of another embodiment of the present invention. Please refer to Figure 7 and Figure 5. The structure of the 3D display structures 1a and 1 in FIG. 7 and FIG. 6 are similar. For example, the display module 9 can output a 3D image through the 3D display structure 1 , and the viewer can see or enjoy the 3D image by naked eyes. The difference between the 3D display structures 1a and 1 is that the light transmissive layer 12 includes a first optical layer 121 and a second optical layer 122.

詳細來說,圖7所繪示一3D顯示結構1a包括一3D顯示層10及一透光層12。其中,透光層12具有一第一貼合面12s1及相 對於第一貼合面12s1的一第二貼合面12s2。第一貼合面12s1連接3D顯示層10的第二面102。而第一光學層121連接於第二光學層122與3D顯示層10之間。第一光學層121例如為一感壓膠(Pressure Sensitive Adhesives,PSA)或為一透明光學膠(Optical Clear Adhesive,OCA)。第二光學層122例如為一玻璃、一聚酸甲酯(Polymethylmethacrylate,PMMA)、一聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)或一聚碳酸脂(Polycarbonates,PC)。本實施例不限制第一及第二光學層121、122的態樣。此外,本實施例不限制圖6或圖7之3D顯示結構1、1a的態樣。所屬技術領域具有通常知識者可自由設計3D顯示結構1、1a。第二光學層122可與顯示模組9結合或保持一空隙,其中第二光學層122與顯示模組9的顯示面90可利用感壓膠(PSA)或透明光學膠(OCA)或光學透明樹脂(Optical Clear Resin,OCR)結合(未繪示)。In detail, FIG. 7 illustrates a 3D display structure 1a including a 3D display layer 10 and a light transmissive layer 12. The light transmissive layer 12 has a first bonding surface 12s1 and a phase. A second bonding surface 12s2 of the first bonding surface 12s1. The first bonding surface 12s1 is connected to the second surface 102 of the 3D display layer 10. The first optical layer 121 is connected between the second optical layer 122 and the 3D display layer 10. The first optical layer 121 is, for example, a Pressure Sensitive Adhesive (PSA) or an Optical Clear Adhesive (OCA). The second optical layer 122 is, for example, a glass, a polymethylmethacrylate (PMMA), a polyethylene terephthalate (PET) or a polycarbonate (PC). This embodiment does not limit the aspects of the first and second optical layers 121, 122. Further, the present embodiment does not limit the aspect of the 3D display structure 1, 1a of FIG. 6 or FIG. Those skilled in the art can freely design the 3D display structure 1, 1a. The second optical layer 122 can be combined with or maintain a gap with the display module 9. The second optical layer 122 and the display surface 90 of the display module 9 can be made of pressure sensitive adhesive (PSA) or transparent optical adhesive (OCA) or optically transparent. Resin (Optical Clear Resin, OCR) is combined (not shown).

接下來,進一步說明3D顯示層10製作方法、細部流程與步驟。圖8為本創作另一實施例之3D顯示層製作過程示意圖。圖9為本創作另一實施例之3D顯示層製作方法之流程圖。請參閱圖8及圖9。一種3D顯示層10製作方法,包括下列步驟:Next, the method of making the 3D display layer 10, the detailed flow and the steps will be further explained. FIG. 8 is a schematic diagram of a 3D display layer manufacturing process according to another embodiment of the present invention. FIG. 9 is a flowchart of a method for fabricating a 3D display layer according to another embodiment of the present invention. Please refer to Figure 8 and Figure 9. A method for fabricating a 3D display layer 10 includes the following steps:

於步驟S901中,提供具有一基底構造B1,基底構造B1具有一第一面101及一第二面102。在實務上,基底構造B1例如為聚對苯二甲酸乙二酯(PET)。接著,於步驟S903中,於基底構造B1的第一面101上塗覆一層紫外線(UV)光學樹脂結構層B2’。紫外線光學樹脂結構層B2’例如為可形成棱鏡或柱狀透鏡103的光學 材料層。本實施例之3D顯示層10係透過曝光滾壓成型技術,以使紫外線光學樹脂結構層B2’形成於一基底構造B1上。其中,步驟S901及步驟S903係對應於圖8最左區塊的製作過程。In step S901, a base structure B1 is provided, and the base structure B1 has a first surface 101 and a second surface 102. In practice, the base structure B1 is, for example, polyethylene terephthalate (PET). Next, in step S903, a layer of ultraviolet (UV) optical resin structural layer B2' is coated on the first side 101 of the base structure B1. The ultraviolet optical resin structural layer B2' is, for example, an optical which can form the prism or the lenticular lens 103. Material layer. The 3D display layer 10 of the present embodiment is subjected to an exposure roll forming technique so that the ultraviolet optical resin structural layer B2' is formed on a base structure B1. Step S901 and step S903 correspond to the process of making the leftmost block of FIG.

於步驟S905中,提供一滾壓模具M1,利用鑽石刀具在滾壓模具M1加工,使其具有多個凹透鏡成型結構MF,各凹透鏡成型結構MF具有一不連續弧結構面成型區。在實務上,各凹透鏡成型結構MF係用以滾壓紫外線光學樹脂結構層B2’,以使紫外線光學樹脂結構層B2’成型為一3D光學構造B2。其中,各凹透鏡成型結構MF的不連續弧結構面成型區可透過鑽石刀具刻紋技術來實現。本實施例不限制滾壓模具M1、各凹透鏡成型結構MF及不連續弧結構面成型區的態樣。In step S905, a rolling die M1 is provided, which is processed by the rolling die M1 using a diamond cutter to have a plurality of concave lens forming structures MF, each concave lens forming structure MF having a discontinuous arc structural surface forming zone. In practice, each of the concave lens molding structures MF is used to roll the ultraviolet optical resin structural layer B2' so that the ultraviolet optical resin structural layer B2' is formed into a 3D optical structure B2. Wherein, the discontinuous arc structure surface forming area of each concave lens forming structure MF can be realized by a diamond tool engraving technique. This embodiment does not limit the aspects of the rolling mold M1, the concave lens forming structures MF, and the discontinuous arc structural surface forming regions.

於步驟S907中,滾壓模具M1滾壓紫外線光學樹脂結構層B2’,經紫外線曝光而使紫外線光學樹脂結構層B2’成型為一3D光學構造B2,3D光學構造B2包括多數個柱狀透鏡103,各柱狀透鏡103具有一曲面,各柱狀透鏡103的曲面具有一不連續弧結構面區A1,不連續弧結構面區A1係對應不連續弧結構面成型區而形成於各柱狀透鏡103,且不連續弧結構面區A1的弧長投影至第一面101的寬度小於或等於為各單根柱狀透鏡103寬度的三分之二,其中各柱狀透鏡103的不連續弧結構面區A1為一鋸齒狀結構曲面或一不規則結構曲面。而各柱狀透鏡103的曲面具有兩個光滑弧面區A2、A3,分別配置於各柱狀透鏡103的兩側部。其中,步驟S905及步驟S907係對應於圖8之左二區塊的製作過程。In step S907, the rolling mold M1 rolls the ultraviolet optical resin structural layer B2', and the ultraviolet optical resin structural layer B2' is molded into a 3D optical structure B2 by ultraviolet exposure, and the 3D optical structure B2 includes a plurality of cylindrical lenses 103. Each of the lenticular lenses 103 has a curved surface, and the curved surface of each of the cylindrical lenses 103 has a discontinuous arc structure surface area A1, and the discontinuous arc structure surface area A1 is formed on each of the lenticular lenses corresponding to the discontinuous arc structure surface forming area. 103, and the arc length of the discontinuous arc structure surface area A1 is projected to the first surface 101 to be less than or equal to two-thirds of the width of each of the single cylindrical lenses 103, wherein the discontinuous arc structure of each of the lenticular lenses 103 The face area A1 is a sawtooth structure curved surface or an irregular structural curved surface. The curved surface of each of the lenticular lenses 103 has two smooth curved surface areas A2 and A3 which are respectively disposed on both side portions of each of the lenticular lenses 103. Step S905 and step S907 correspond to the manufacturing process of the left two blocks of FIG.

於步驟S909中,以紫外線曝光3D光學構造B2,以固化3D光學構造B2。在實務上,紫外線固化、乾燥、接著技術(UV Curing) 上係使用「紫外線(UV)固化樹脂」等光固化型材料。而紫外線(UV)固化樹脂等光固化材料,依據固化機構的不同,可分成游離基化合型與陽離子化合型二大類。本實施例不限制紫外線固化、乾燥、接著技術(UV Curing)及其使用的光固化材料的態樣。其中,步驟S909係對應於圖8之左三區塊的製作過程。In step S909, the 3D optical configuration B2 is exposed to ultraviolet light to cure the 3D optical structure B2. In practice, UV curing, drying, and UV Curing A photocurable material such as "ultraviolet (UV) curable resin" is used for the upper layer. The photocurable materials such as ultraviolet (UV) curable resins can be classified into two types, a free radical combination and a cationic combination, depending on the curing mechanism. This embodiment does not limit the ultraviolet curing, drying, UV Curing, and the state of the photocurable material used. Wherein, step S909 corresponds to the manufacturing process of the left three blocks of FIG.

之後,於步驟S911中,於基底構造B1的第二面102提供一離型層B4,及3D光學構造B2提供一保護層B3。在實務上,離型層B4及保護層B3例如分別為保護3D顯示層10的離型膜或保護膜。本實施例不限制離型層B4及保護層B3的態樣。其中,步驟S911係對應於圖8之最右區塊的製作過程。本實施例不限制圖9之步驟流程。Thereafter, in step S911, a release layer B4 is provided on the second side 102 of the base structure B1, and the 3D optical structure B2 provides a protective layer B3. In practice, the release layer B4 and the protective layer B3 are, for example, a release film or a protective film that protects the 3D display layer 10, respectively. This embodiment does not limit the aspects of the release layer B4 and the protective layer B3. Wherein, step S911 corresponds to the production process of the rightmost block of FIG. This embodiment does not limit the flow of the steps of FIG.

圖10為本創作另一實施例之3D顯示結構製作方法之流程圖。請參閱圖10。一種3D顯示層10製作方法,包括下列步驟:FIG. 10 is a flowchart of a method for fabricating a 3D display structure according to another embodiment of the present invention. Please refer to Figure 10. A method for fabricating a 3D display layer 10 includes the following steps:

於步驟S1001中,提供具有一基底構造B1,基底構造B1具有一第一面101及一第二面102。並於步驟S1003中,於基底構造B1的第一面101上塗覆一層紫外線光學樹脂結構層B2’。其中,步驟S1001及步驟S1003係對應於圖8之最左區塊的製作過程。In step S1001, a base structure B1 having a first surface 101 and a second surface 102 is provided. In step S1003, a layer of ultraviolet optical resin structural layer B2' is coated on the first side 101 of the base structure B1. Step S1001 and step S1003 correspond to the production process of the leftmost block of FIG.

於步驟S1005中,提供一滾壓模具M1,利用鑽石刀具加工滾壓模具M1,使其具有多個凹透鏡成型結構MF,各凹透鏡成型結構MF具有一不連續弧結構面成型區,其中不連續弧結構面成型區係為平滑面成型區。在實務上,各凹透鏡成型結構MF的平滑面成型區可透過鑽石刀具刻紋技術來實現。接著,於步驟S1007中,滾壓模具M1滾壓紫外線光學樹脂結構層B2’,經紫外線曝光 而使紫外線光學樹脂結構層B2’成型為一3D光學構造B2,3D光學構造B2包括多數個柱狀透鏡103,各柱狀透鏡103的曲面具有一不連續弧結構面區,不連續弧結構面區係對應不連續弧結構面成型區而形成於各柱狀透鏡103,且不連續弧結構面區的弧長投影至第一面101的寬度小於或等於為各單根柱狀透鏡103寬度的三分之二,其中各柱狀透鏡103的頂部T自一第一端T1延伸至一第二端T2以形成不連續弧結構面區,而各柱狀透鏡103的不連續弧結構面區為一平滑面A5,平滑面A5係對應平滑面成型區而形成於各柱狀透鏡103。其中,步驟S1003及步驟S1005係對應於圖8之左二區塊的製作過程。In step S1005, a rolling die M1 is provided, and the rolling die M1 is processed by a diamond cutter to have a plurality of concave lens forming structures MF, and each concave lens forming structure MF has a discontinuous arc structural surface forming zone, wherein the discontinuous arc The structural surface forming zone is a smooth surface forming zone. In practice, the smooth surface forming area of each concave lens forming structure MF can be realized by diamond tool engraving technology. Next, in step S1007, the rolling mold M1 rolls the ultraviolet optical resin structural layer B2', and is exposed to ultraviolet rays. The ultraviolet optical resin structural layer B2' is formed into a 3D optical structure B2, and the 3D optical structure B2 includes a plurality of cylindrical lenses 103. The curved surface of each of the cylindrical lenses 103 has a discontinuous arc structure surface area, and the discontinuous arc structure surface The façade is formed on each of the lenticular lenses 103 corresponding to the discontinuous arc structure surface forming region, and the arc length of the discontinuous arc structure surface region is projected to the first surface 101 to have a width less than or equal to the width of each of the single lenticular lenses 103. Two-thirds, wherein the top portion T of each of the lenticular lenses 103 extends from a first end T1 to a second end T2 to form a discontinuous arc-structured surface area, and the discontinuous arc-structured area of each of the lenticular lenses 103 is A smooth surface A5 is formed on each of the lenticular lenses 103 corresponding to the smooth surface forming region. Step S1003 and step S1005 correspond to the manufacturing process of the left two blocks of FIG.

於步驟S1009中,以紫外光曝光3D光學構造B2,以固化3D光學構造B2。其中,步驟S1009係對應於圖8之左三區塊的製作過程。於步驟S1011中,於基底構造B1的第二面102提供一離型層B4,以及於3D光學構造B2提供一保護層B3。其中,步驟S1011係對應於圖8之最右區塊的製作過程。本實施例不限制圖10之步驟流程。In step S1009, the 3D optical structure B2 is exposed to ultraviolet light to cure the 3D optical structure B2. Step S1009 corresponds to the process of making the left three blocks of FIG. In step S1011, a release layer B4 is provided on the second side 102 of the base structure B1, and a protective layer B3 is provided on the 3D optical structure B2. Wherein, step S1011 corresponds to the production process of the rightmost block of FIG. This embodiment does not limit the flow of the steps of FIG.

綜上所述,本創作係利用一種3D顯示層,透過各柱狀透鏡具有不連續弧結構面區(即為鋸齒狀結構曲面、不規則結構曲面或平滑面)的光學設計,藉此顯示模組透過3D顯示結構可降低輸出一3D影像的疊紋干擾現象,而觀視者可裸視觀看較佳品質的3D影像。再者,顯示模組輸出的光束經由不連續弧結構面區,光束將產生散射光或折射光的狀況,而使觀視者可裸視觀看到降低或不具疊紋現象的3D影像。值得一提的是,本創作以不連續弧結構面區投影至第一面的寬度佔據各單根柱狀透鏡寬度的比例、或是「將 各柱狀透鏡的頂部刪除聚焦功能之部分」佔據各單根柱狀透鏡寬度的比例,來降低3D顯示層產生3D影像的疊紋以及達到良好的3D視覺效果。In summary, the present invention utilizes a 3D display layer to optically design a discontinuous arc structure surface region (ie, a zigzag structure curved surface, an irregular structure curved surface, or a smooth surface) through each lenticular lens. The group can reduce the aliasing interference of the output of a 3D image through the 3D display structure, and the viewer can view the better quality 3D image with the naked viewer. Moreover, the light beam outputted by the display module passes through the discontinuous arc structure surface area, and the light beam will generate a state of scattered light or refracted light, so that the viewer can view the 3D image with reduced or no moiré. It is worth mentioning that the width of the projection of the discontinuous arc structure into the first surface occupies the ratio of the width of each single cylindrical lens, or The portion of the top of each lenticular lens that removes the focus function "occupies a ratio of the width of each of the individual lenticular lenses to reduce the 3D image of the 3D display layer and achieve a good 3D visual effect.

以上之概述與接下來的實施例,皆是為了進一步說明本創作之技術手段與達成功效,然所敘述之實施例與圖式僅提供參考說明用,並非用來對本創作加以限制者。The above summary and the following examples are intended to further illustrate the technical means and the efficiencies of the present invention, and the embodiments and drawings are merely provided for reference and are not intended to limit the present invention.

101‧‧‧第一面101‧‧‧ first side

102‧‧‧第二面102‧‧‧ second side

103‧‧‧柱狀透鏡103‧‧‧ lenticular lens

A1‧‧‧不連續弧結構面區A1‧‧‧discontinuous arc structure area

A2、A3‧‧‧光滑弧面區A2, A3‧‧‧Smooth curved area

B1‧‧‧基底構造B1‧‧‧Base structure

B2‧‧‧3D光學構造B2‧‧3D optical construction

C1‧‧‧曲面C1‧‧‧ surface

D1‧‧‧第一方向D1‧‧‧ first direction

D2‧‧‧第二方向D2‧‧‧ second direction

h1‧‧‧厚度H1‧‧‧ thickness

h2‧‧‧高度H2‧‧‧ height

P1、P2‧‧‧寬度P1, P2‧‧‧ width

T‧‧‧頂部Top of T‧‧‧

TP‧‧‧頂點TP‧‧‧ vertex

Claims (8)

一種3D顯示層,用於與一透光層形成一3D顯示結構,該3D顯示結構配置於一具有一顯示面的顯示模組上,該3D顯示層包括:一基底構造,具有一第一面及一第二面;及一3D光學構造,形成於該基底構造的該第一面,該3D光學構造包括多數個柱狀透鏡,各該柱狀透鏡的頂部朝向一第一方向凸出,且各該柱狀透鏡具有一曲面;其中,各該柱狀透鏡的該曲面具有一不連續弧結構面區,該不連續弧結構面區配置於各該柱狀透鏡的頂部,且該不連續弧結構面區的弧長投影至該第一面的寬度小於或等於為各該單根柱狀透鏡寬度的三分之二。A 3D display layer is configured to form a 3D display structure with a light transmissive layer. The 3D display structure is disposed on a display module having a display surface. The 3D display layer comprises: a base structure having a first surface And a second surface; and a 3D optical structure formed on the first surface of the base structure, the 3D optical structure includes a plurality of cylindrical lenses, each of the tops of the cylindrical lenses protruding toward a first direction, and Each of the lenticular lenses has a curved surface; wherein the curved surface of each of the lenticular lenses has a discontinuous arc structure surface area, the discontinuous arc structure surface area is disposed at the top of each of the lenticular lenses, and the discontinuous arc The arc length of the structural face region is projected to the first face to have a width less than or equal to two-thirds of the width of each of the single cylindrical lenses. 如請求項第1項所述之3D顯示層,其中該基底構造具有一厚度,且該基底構造為一聚對苯二甲酸乙二酯(Polyethylene Terephthalate,PET)。The 3D display layer of claim 1, wherein the substrate structure has a thickness, and the substrate is configured as a polyethylene terephthalate (PET). 如請求項第1項所述之3D顯示層,其中各該柱狀透鏡的該曲面具有兩個光滑弧面區,分別配置於各該柱狀透鏡的兩側部,而各該柱狀透鏡的該不連續弧結構面區為一鋸齒狀結構曲面或一不規則結構曲面,該鋸齒狀結構曲面上的鋸齒結構的高低差值分佈為0.01um~1um。The 3D display layer of claim 1, wherein the curved surface of each of the lenticular lenses has two smooth arcuate regions disposed on both sides of each of the lenticular lenses, and each of the lenticular lenses The discontinuous arc structure surface area is a sawtooth structure surface or an irregular structure surface, and the height difference distribution of the sawtooth structure on the sawtooth structure surface is 0.01 um~1 um. 如請求項第1項所述之3D顯示層,其中各該柱狀透鏡的該曲面具有兩個光滑弧面區,分別配置於各該柱狀透鏡的兩側部,且 各該柱狀透鏡的頂部自一第一端延伸至一第二端以形成該不連續弧結構面區,而各該柱狀透鏡的該不連續弧結構面區為一平滑面。The 3D display layer of claim 1, wherein the curved surface of each of the lenticular lenses has two smooth arcuate regions disposed on both sides of each of the lenticular lenses, and The top of each of the lenticular lenses extends from a first end to a second end to form the discontinuous arc structure surface area, and the discontinuous arc structure surface area of each of the lenticular lenses is a smooth surface. 如請求項第4項所述之3D顯示層,其中各該柱狀透鏡的該第一端與該第一面的最短距離為一第一高度,各該柱狀透鏡的該第二端與該第一面之間的最短距離為一第二高度,該第一高度等於或不等於該第二高度。The 3D display layer of claim 4, wherein a shortest distance between the first end of the lenticular lens and the first surface is a first height, the second end of each of the lenticular lenses The shortest distance between the first faces is a second height that is equal to or not equal to the second height. 一種3D顯示結構,適用於一具有一顯示面的顯示模組上,該3D顯示結構包括:一如請求項1至5其中之一所述之3D顯示層;及一透光層,具有一第一貼合面及相對於該第一貼合面的一第二貼合面,該第一貼合面連接該第二面。A 3D display structure is applicable to a display module having a display surface, the 3D display structure comprising: a 3D display layer as described in one of claims 1 to 5; and a light transmissive layer having a first a bonding surface and a second bonding surface relative to the first bonding surface, the first bonding surface connecting the second surface. 如請求項第6項所述之3D顯示結構,其中該透光層為一感壓膠(Pressure Sensitive Adhesives,PSA)或透明光學膠(Optical Clear Adhesive,OCA),該透光層的該第二貼合面連接於該顯示模組的該顯示面。The 3D display structure of claim 6, wherein the light transmissive layer is a Pressure Sensitive Adhesives (PSA) or an Optical Clear Adhesive (OCA), the second of the light transmissive layers. The bonding surface is connected to the display surface of the display module. 如請求項第6項所述之3D顯示結構,其中該透光層包括一第一光學層與一第二光學層,該第一光學層連接於該第二光學層與該3D顯示層之間,該第一光學層為一感壓膠(Pressure Sensitive Adhesives,PSA)或透明光學膠(Optical Clear Adhesive,OCA),該第二光學層為一玻璃、一聚酸甲酯(Polymethylmethacrylate,PMMA)、一聚對苯二甲酸乙二酯 (Polyethylene Terephthalate,PET)或一聚碳酸脂(Polycarbonates,PC)。The 3D display structure of claim 6, wherein the light transmissive layer comprises a first optical layer and a second optical layer, the first optical layer being connected between the second optical layer and the 3D display layer The first optical layer is a Pressure Sensitive Adhesives (PSA) or an Optical Clear Adhesive (OCA), and the second optical layer is a glass, a polymethylmethacrylate (PMMA), Polyethylene terephthalate (Polyethylene Terephthalate, PET) or Polycarbonate (PC).
TW103223228U 2014-12-29 2014-12-29 3D display layer and 3d display structure thereof TWM505616U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103223228U TWM505616U (en) 2014-12-29 2014-12-29 3D display layer and 3d display structure thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103223228U TWM505616U (en) 2014-12-29 2014-12-29 3D display layer and 3d display structure thereof

Publications (1)

Publication Number Publication Date
TWM505616U true TWM505616U (en) 2015-07-21

Family

ID=54153410

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103223228U TWM505616U (en) 2014-12-29 2014-12-29 3D display layer and 3d display structure thereof

Country Status (1)

Country Link
TW (1) TWM505616U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI579594B (en) * 2014-12-29 2017-04-21 詠巨科技有限公司 3d display layer, 3d display structure and manufacturing method thereof
CN114815289A (en) * 2022-04-29 2022-07-29 深圳奇屏科技有限公司 Naked eye 3D display processing method and naked eye 3D display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI579594B (en) * 2014-12-29 2017-04-21 詠巨科技有限公司 3d display layer, 3d display structure and manufacturing method thereof
CN114815289A (en) * 2022-04-29 2022-07-29 深圳奇屏科技有限公司 Naked eye 3D display processing method and naked eye 3D display

Similar Documents

Publication Publication Date Title
KR101032170B1 (en) A lens sheet for both micro-lens and lenticular-lens
JP4283339B2 (en) Stereoscopic image display device
TWI381191B (en) Three-dimensional display device and fabricating method thereof
RU2507550C2 (en) Optical assembly and autostereoscopic display device based thereon
KR101396612B1 (en) Optical sheet and liquid crystal display device
JP5539545B2 (en) Lens array sheet manufacturing method
CN1989450A (en) Back projection-type screen and back projection-type projection device
TWI417583B (en) A microstructure light phase shifting film and lens
US9557454B2 (en) Laminated diffraction optical element and production method therefor
CN110832381A (en) Virtual and augmented reality device with structured surface
CN104614864A (en) Three-dimensional display device
JP2010068202A (en) Image display device
CN113302550A (en) Lens with gradient
TWM505616U (en) 3D display layer and 3d display structure thereof
JP2018136525A (en) Lenticular lens sheet for naked eye 3D and liquid crystal display module for naked eye 3D
CN104238127A (en) Naked-eye three-dimensional display device
JP5659660B2 (en) Stereoscopic image display optical member and liquid crystal display device using the same
WO2023201945A1 (en) Naked-eye 3d display optical device
JPH07104271A (en) Liquid crystal display device
JP2012185500A (en) Microstructure optical phase shifting film and lens
TWI579594B (en) 3d display layer, 3d display structure and manufacturing method thereof
JP2012181221A (en) Columnar lens sheet for displaying stereoscopic image and liquid crystal display device using the same
JP5310268B2 (en) Optical sheet, backlight unit and display device
JP5066957B2 (en) Optical sheet, backlight unit using the same, and display device
CN104597607A (en) 3D display layer, 3D display structure and manufacturing method thereof