TWM500814U - Engine control device - Google Patents
Engine control device Download PDFInfo
- Publication number
- TWM500814U TWM500814U TW104201592U TW104201592U TWM500814U TW M500814 U TWM500814 U TW M500814U TW 104201592 U TW104201592 U TW 104201592U TW 104201592 U TW104201592 U TW 104201592U TW M500814 U TWM500814 U TW M500814U
- Authority
- TW
- Taiwan
- Prior art keywords
- cylinder
- combustion point
- control device
- point
- engine control
- Prior art date
Links
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Description
本創作係關於一種控制裝置,特別是指一種引擎控制裝置。This creation relates to a control device, and more particularly to an engine control device.
均質進氣壓燃(Homogeneous Charge Compression Ignition,HCCI)引擎為新一代的車輛動力來源,其具有柴油引擎的高效率及低於一般汽油引擎的廢氣排放量。但相較於一般汽油或柴油引擎是透過火星塞點火的方式來說,均質進氣壓燃引擎是依據汽缸內的油氣混合量、溫度及壓力等因素產生自燃作用。因此,無法像傳統引擎透過點火的方式控制燃燒時間點。是以,如何控制均質進氣壓燃引擎在最佳的燃燒時間點,為目前亟待研究的課題。The Homogeneous Charge Compression Ignition (HCCI) engine is a new generation of vehicle power source with high efficiency of diesel engines and lower emissions than general gasoline engines. However, compared with the general gasoline or diesel engine that is ignited by the spark plug, the homogeneous intake compression ignition engine generates self-ignition according to the oil and gas mixture, temperature and pressure in the cylinder. Therefore, it is impossible to control the burning time point like a conventional engine by means of ignition. Therefore, how to control the optimal combustion time of the homogeneous intake compression ignition engine is the subject of urgent research.
目前對於多個汽缸的均質進氣壓燃引擎來說,大多都是透過單一控制器控制排氣背壓閥開度或改變進氣溫度等方式,以同步對多個汽缸進行調整,使各汽缸能夠運作在最佳的燃燒時間點。然而,此於實際運作的過程中,上述做法可能會因為當下大氣壓力、溫度或濕度等因素,導致各汽缸的燃燒時間點仍有差異,造成均質進氣壓燃引擎在運作上無法獲得平衡之問題 點。At present, for a multi-cylinder homogeneous intake compression ignition engine, most of them are controlled by a single controller to control the exhaust back pressure valve opening or change the intake air temperature, so as to simultaneously adjust multiple cylinders so that each cylinder can Operates at the best burning time point. However, in the actual operation process, the above-mentioned practices may cause differences in the burning time of each cylinder due to current atmospheric pressure, temperature or humidity, etc., resulting in the problem that the homogeneous intake compression ignition engine cannot be balanced in operation. point.
有鑑於上述問題,本發明提供一種引擎控制裝置,用以控制引擎之第一汽缸與第二汽缸。所述引擎可為均質進氣壓燃引擎(Homogeneous Charge Compression Ignition Engine)。In view of the above problems, the present invention provides an engine control device for controlling a first cylinder and a second cylinder of an engine. The engine may be a Homogeneous Charge Compression Ignition Engine.
上述引擎控制裝置包括偵測模組、處理器、第一控制器及第二控制器。偵測模組電連接於第一汽缸與第二汽缸,偵測模組偵測第一汽缸運作並對應輸出第一工作數據,以及偵測第二汽缸運作並對應輸出第二工作數據。處理器電連接於偵測模組,且接收第一工作數據並對應計算出第一汽缸之第一實際燃燒點,以及接收第二工作數據並對應計算出第二汽缸之第二實際燃燒點。第一控制器電連接於處理器、第一汽缸及第二汽缸,第一控制器接收第一實際燃燒點且比對第一理想燃燒點,以及接收第二實際燃燒點且比對第二理想燃燒點,並對應選擇性輸出調整指令,所述調整指令是對應調整第一工作數據與第二工作數據,使第一實際燃燒點趨近於第一理想燃燒點,並使第二實際燃燒點趨近於第二理想燃燒點,處理器接收調整後的第二工作數據並對應計算出更新燃燒點以取代第二實際燃燒點。第二控制器電連接於處理器與第二汽缸,第二控制器接收更新燃燒點且比對第二理想燃燒點並對應輸出油量調整值,以控制第二汽缸的供油量,使第二汽缸的更新燃燒點趨近於第二理想燃燒點。The engine control device includes a detection module, a processor, a first controller, and a second controller. The detection module is electrically connected to the first cylinder and the second cylinder, and the detection module detects the operation of the first cylinder and correspondingly outputs the first working data, and detects the operation of the second cylinder and correspondingly outputs the second working data. The processor is electrically connected to the detecting module, and receives the first working data and correspondingly calculates a first actual burning point of the first cylinder, and receives the second working data and correspondingly calculates a second actual burning point of the second cylinder. The first controller is electrically connected to the processor, the first cylinder and the second cylinder, the first controller receives the first actual combustion point and compares the first ideal combustion point, and receives the second actual combustion point and compares the second ideal a combustion point corresponding to the selective output adjustment command, wherein the adjustment instruction is to adjust the first working data and the second working data to make the first actual combustion point approach the first ideal combustion point, and make the second actual combustion point Approaching the second ideal combustion point, the processor receives the adjusted second operational data and correspondingly calculates an updated combustion point to replace the second actual combustion point. The second controller is electrically connected to the processor and the second cylinder, and the second controller receives the updated combustion point and compares the second ideal combustion point and corresponds to the output oil amount adjustment value to control the oil supply amount of the second cylinder, so that The updated combustion point of the two cylinders approaches the second ideal combustion point.
藉此,本創作第一汽缸與第二汽缸是分別透過第一 控制器與第二控制器作調整,使第一汽缸的第一實際燃燒點趨近於第一理想燃燒點以及第二汽缸的更新燃燒點趨近於第二理想燃燒點。相較於透過一個控制器控制多缸的方式來說,能夠解決因外在因素(如控制當時的大氣壓力、溫度、濕度、進排氣量差異)的影響,而無法使每個汽缸都在理想燃燒點之問題。故本創作能夠達到提升引擎平衡與表現。Thereby, the first cylinder and the second cylinder of the creation are respectively transmitted through the first The controller and the second controller are adjusted such that the first actual combustion point of the first cylinder approaches the first ideal combustion point and the updated combustion point of the second cylinder approaches the second ideal combustion point. Compared with the way of controlling multiple cylinders through one controller, it can solve the influence of external factors (such as controlling atmospheric pressure, temperature, humidity, difference of intake and exhaust), and can not make each cylinder The problem of ideal burning point. Therefore, this creation can achieve improved engine balance and performance.
於一實施例中,第一工作數據包括第一汽缸的第一 缸壓值、第一溫度參數、第一曲軸角度值或至少其中二者之組合,第二工作數據包括第二汽缸的第二缸壓值、第二溫度參數、第二曲軸角度值或至少其中二者之組合。In an embodiment, the first working data includes the first of the first cylinder a cylinder pressure value, a first temperature parameter, a first crank angle value, or a combination of at least two, the second operational data including a second cylinder pressure value of the second cylinder, a second temperature parameter, a second crank angle value, or at least a combination of the two.
於一實施例中,偵測模組可包括二壓力計,分別連 接於第一汽缸與第二汽缸,以偵測第一汽缸的第一缸壓值與第二汽缸的一第二缸壓值,第一工作數據包括第一缸壓值,第二工作數據包括第二缸壓值。In an embodiment, the detection module can include two pressure gauges, respectively Connected to the first cylinder and the second cylinder to detect a first cylinder pressure value of the first cylinder and a second cylinder pressure value of the second cylinder, the first working data includes a first cylinder pressure value, and the second working data includes The second cylinder pressure value.
於一實施例中,該偵測模組可包括二曲軸角度偵測 器,分別連接於第一汽缸與第二汽缸,以偵測第一汽缸的第一曲軸角度值與第二汽缸的第二曲軸角度值,第一工作數據包括第一曲軸角度值,第二工作數據包括第二曲軸角度值。In one embodiment, the detection module can include two crank angle detections. And respectively connected to the first cylinder and the second cylinder to detect a first crank angle value of the first cylinder and a second crank angle value of the second cylinder, the first working data including the first crank angle value, the second work The data includes a second crank angle value.
於一實施例中,第一汽缸與第二汽缸連接排氣背壓閥,上述調整指令為控制排氣背壓閥的開度。In one embodiment, the first cylinder and the second cylinder are connected to the exhaust back pressure valve, and the adjustment command is to control the opening degree of the exhaust back pressure valve.
於一實施例中,引擎控制裝置可包括連通於第二汽缸內部之噴油嘴,所述噴油嘴可對應油量調整值調整開度。In an embodiment, the engine control device may include a fuel injector connected to the interior of the second cylinder, and the fuel injector may adjust the opening degree corresponding to the oil amount adjustment value.
100‧‧‧引擎控制裝置100‧‧‧Engine Controls
10‧‧‧引擎10‧‧‧ engine
11‧‧‧第一汽缸11‧‧‧First cylinder
12‧‧‧第二汽缸12‧‧‧Second cylinder
13‧‧‧排氣背壓閥13‧‧‧Exhaust back pressure valve
14‧‧‧噴油嘴14‧‧‧Injector
15‧‧‧排氣管15‧‧‧Exhaust pipe
20‧‧‧偵測模組20‧‧‧Detection module
21‧‧‧壓力計21‧‧‧ pressure gauge
22‧‧‧曲軸角度偵測器22‧‧‧Crankshaft angle detector
23‧‧‧溫度感知器23‧‧‧Temperature Sensor
30‧‧‧處理器30‧‧‧ Processor
40‧‧‧第一控制器40‧‧‧First controller
50‧‧‧第二控制器50‧‧‧second controller
B‧‧‧缸徑B‧‧‧ bore
Vc‧‧‧餘隙容積Vc‧‧‧ clearance volume
Vd‧‧‧位移容積Vd‧‧‧ displacement volume
a‧‧‧曲軸半徑a‧‧‧Crankshaft radius
L‧‧‧衝程L‧‧‧ stroke
l‧‧‧連桿長度l‧‧‧Link length
θ‧‧‧曲軸角度Θ‧‧‧ crank angle
TDC‧‧‧活塞上死點TDC‧‧‧Pistons top dead center
BDC‧‧‧活塞下死點BDC‧‧‧Piston bottom dead point
S‧‧‧距離S‧‧‧ distance
S1‧‧‧第一工作數據S1‧‧‧ first work data
S2‧‧‧第二工作數據S2‧‧‧ second work data
S3‧‧‧第一實際燃燒點S3‧‧‧First actual burning point
S4‧‧‧更新燃燒點S4‧‧‧Update Burning Point
S5‧‧‧調整指令S5‧‧‧ adjustment instructions
S6‧‧‧油量調整值S6‧‧‧ oil quantity adjustment value
S7‧‧‧第二實際燃燒點S7‧‧‧ second actual burning point
第1圖係本創作引擎控制裝置之裝置方塊圖。Figure 1 is a block diagram of the device of the authoring engine control device.
第2圖係本創作引擎控制裝置之控制方塊圖。Figure 2 is a control block diagram of the authoring engine control device.
第3圖係本創作引擎控制裝置另一實施例之裝置方塊圖。Figure 3 is a block diagram of another embodiment of the present authoring engine control apparatus.
第4圖係本創作引擎之局部平面示意圖。Figure 4 is a partial plan view of the authoring engine.
第5圖係本創作第一汽缸之平面示意圖。Figure 5 is a schematic plan view of the first cylinder of the present creation.
第6A圖係習知無本創作第二控制器之點火角-循環數曲線圖。Fig. 6A is a graph showing the ignition angle-cycle number of the second controller of the conventional creation.
第6B圖係本創作引擎控制裝置控制後之點火角-循環數曲線圖。Figure 6B is a graph of the firing angle-cycle number after the control of the authoring engine control device.
如第1、2圖所示,本創作提供一種引擎控制裝置100,用以控制引擎10(引擎10表示於第4圖)之第一汽缸11與第二汽缸12。其中所述引擎10較佳可為均質進氣壓燃引擎(Homogeneous Charge Compression Ignition Engine)而可由火星塞點火模式切換為均質進氣壓燃模式。As shown in Figures 1 and 2, the present disclosure provides an engine control device 100 for controlling a first cylinder 11 and a second cylinder 12 of an engine 10 (engine 10 is shown in Figure 4). The engine 10 is preferably a Homogeneous Charge Compression Ignition Engine and can be switched from a spark plug ignition mode to a homogeneous intake compression ignition mode.
上述均質進氣壓燃模式是一種自行著火燃燒模式,可於進氣過程中讓燃料與空氣混合,再利用汽缸內部活塞的壓縮行程提高壓力與溫度,而達到自行燃燒的目的與效果。而本創作是透過上述引擎控制裝置100控制引擎10的第一汽缸11與第二汽缸12都能夠在最佳理想燃燒時間點燃燒,提升引擎10引擎平 衡與表現。The above-mentioned homogeneous intake compression ignition mode is a self-ignition combustion mode, which can mix fuel and air during the intake process, and then use the compression stroke of the internal piston of the cylinder to increase the pressure and temperature to achieve the purpose and effect of self-combustion. The present invention is to control the first cylinder 11 and the second cylinder 12 of the engine 10 to be combusted at the optimal ideal combustion time point by the above-described engine control device 100, and the engine 10 is upgraded. Balance and performance.
上述引擎控制裝置100包括偵測模組20、處理器 30、第一控制器40及第二控制器50。所述偵測模組20電連接於第一汽缸11與第二汽缸12,以偵測第一汽缸11運作並對應輸出第一工作數據S1,以及偵測第二汽缸12運作並對應輸出第二工作數據S2。所述第一工作數據S1較佳可包括有第一汽缸11的第一缸壓值(如50bar)、第一溫度參數(如1400K)、第一曲軸角度值(如370度)。換言之,第一工作數據S1是第一汽缸11運作時的缸內壓力、溫度及曲軸角度,但並不以此局限,第一工作數據S1也可更包括有第一汽缸11運作時的進、排氣量。而第二工作數據S2較佳可包括第二汽缸12的第二缸壓值(如55bar)、第二溫度參數(如1300K)及第二曲軸角度值(如350度)。換言之,第二工作數據S2是第二汽缸12運作時的缸內壓力、溫度及曲軸角度,但並不以此局限。 第二工作數據S2可更包括第二汽缸12運作時的進、排氣量。The engine control device 100 includes a detection module 20 and a processor. 30. The first controller 40 and the second controller 50. The detecting module 20 is electrically connected to the first cylinder 11 and the second cylinder 12 to detect the operation of the first cylinder 11 and correspondingly output the first working data S1, and detect the operation of the second cylinder 12 and correspondingly output the second Work data S2. The first working data S1 may preferably include a first cylinder pressure value (such as 50 bar) of the first cylinder 11, a first temperature parameter (such as 1400K), and a first crank angle value (such as 370 degrees). In other words, the first working data S1 is the in-cylinder pressure, the temperature, and the crank angle when the first cylinder 11 is in operation, but is not limited thereto. The first working data S1 may further include the first cylinder 11 when the first cylinder 11 is operated. The amount of exhaust. The second operational data S2 preferably includes a second cylinder pressure value (e.g., 55 bar) of the second cylinder 12, a second temperature parameter (e.g., 1300 K), and a second crank angle value (e.g., 350 degrees). In other words, the second operational data S2 is the in-cylinder pressure, temperature, and crank angle at which the second cylinder 12 operates, but is not limited thereto. The second operational data S2 may further include the amount of intake and exhaust when the second cylinder 12 is in operation.
請配合參閱第3圖所示,上述偵測模組20可包括二 壓力計21、二曲軸角度偵測器22及二溫度感知器23,二壓力計21是分別連接於第一汽缸11與第二汽缸12,以偵測取得上述第一缸壓值與第二缸壓值。如第4圖所示,於此實施例中,各壓力計21為火星塞式壓力計,以量測汽缸內部壓力。二曲軸角度偵測器22則是分別連接第一汽缸11與第二汽缸12的曲軸,以偵測取得上述第一曲軸角度值與第二曲軸角度值。各曲軸角度偵測器22可為曲軸角度編碼器、磁電式角度感測器或光學式角度感測器。二溫度 感知器23則是連接於第一汽缸11與第二汽缸12內部,以偵測取得上述第一溫度參數與第二溫度參數。Please refer to FIG. 3, the detection module 20 can include two The pressure gauge 21, the two crank angle detectors 22 and the two temperature sensors 23 are connected to the first cylinder 11 and the second cylinder 12 respectively to detect the first cylinder pressure value and the second cylinder. Pressure value. As shown in Fig. 4, in this embodiment, each of the pressure gauges 21 is a Mars plug gauge to measure the internal pressure of the cylinder. The two crank angle detectors 22 respectively connect the crankshafts of the first cylinder 11 and the second cylinder 12 to detect the first crank angle value and the second crank angle value. Each crank angle detector 22 can be a crank angle encoder, a magnetoelectric angle sensor, or an optical angle sensor. Two temperature The sensor 23 is connected to the inside of the first cylinder 11 and the second cylinder 12 to detect the first temperature parameter and the second temperature parameter.
處理器30可為電控單元(Electronic Control Unit)、 微控制器(MCU)或中央控制單元(CPU),且處理器30是電連接於偵測模組20,處理器30接收上述第一工作數據S1(即第一汽缸11的缸內壓力、溫度與曲軸角度)並對應計算出第一汽缸11之第一實際燃燒點S3(也可以說是第一實際點火角),以及接收第二工作數據S2(即第二汽缸12的缸內壓力、溫度與曲軸角度)並對應計算出第二汽缸12之第二實際燃燒點S7(也可以說是第二實際點火角)。The processor 30 can be an electronic control unit (Electronic Control Unit), a microcontroller (MCU) or a central control unit (CPU), and the processor 30 is electrically connected to the detection module 20, and the processor 30 receives the first working data S1 (ie, the in-cylinder pressure and temperature of the first cylinder 11) Corresponding to the crankshaft angle), the first actual combustion point S3 of the first cylinder 11 (also referred to as the first actual firing angle) is calculated, and the second working data S2 is received (ie, the in-cylinder pressure and temperature of the second cylinder 12) The second actual combustion point S7 of the second cylinder 12 (which can also be said to be the second actual ignition angle) is calculated corresponding to the crank angle.
上述第一實際燃燒點S3與第二實際燃燒點S7的計算可透過Matlab中的Simulink編寫建立。舉實例來說,可利用將熱釋放率積分而取得熱釋放能以分析燃燒時間點。其中熱釋放率主要是由汽缸壓力與汽缸體積計算。此如第5圖所示,為引擎10第一汽缸11的幾何構造,其中可從引擎10的行為推導出體積方程式,如圖中顯示的參數有缸徑B、餘隙容積Vc(clearance volume)、位移容積Vd(displaced volume)、曲軸半徑a、衝程L、連桿長度l、曲軸角度θ、活塞上死點TDC(Top Dead Center)、活塞下死點BDC(Bottom Dead Center)及曲軸中心到活塞銷的距離S。其中汽缸體積公式可為,而將汽缸體積公式微分 即可得到汽缸體積變化率。而熱釋放率主要是由汽缸壓力與汽缸體積作計算,且根據能量守衡推算燃油燃燒的放熱過程以分析燃油熱釋放率。The calculation of the first actual combustion point S3 and the second actual combustion point S7 described above can be established by Simulink in Matlab. By way of example, the heat release rate can be obtained by integrating the heat release rate to analyze the point in time of combustion. The heat release rate is mainly calculated from the cylinder pressure and the cylinder volume. This is the geometry of the first cylinder 11 of the engine 10 as shown in FIG. 5, in which the volume equation can be derived from the behavior of the engine 10, and the parameters shown in the figure are the bore B, the clearance volume Vc, Displacement volume Vd (displaced volume), crankshaft radius a, stroke L, link length l, crank angle θ, piston top dead center TDC (Top Dead Center), piston bottom dead center BDC (Bottom Dead Center) and crankshaft center to piston The distance S of the pin. The cylinder volume formula can be The cylinder volume change rate can be obtained by differentiating the cylinder volume formula. The heat release rate is mainly calculated from the cylinder pressure and the cylinder volume, and the heat release process of the fuel combustion is calculated according to the energy balance to analyze the fuel heat release rate.
於一實施例中,假設在引擎10壓縮、燃燒及膨脹過程中,各汽缸為封閉系統而不考慮流功變化,則根據熱力學第一定律可寫成dQhr =dU+dW+dQht ,其中dU為內能變化,dW為功,dQht 為熱傳。在推導過程中利用將理想氣體方程式pV=mRT兩邊微分可得到d(pV)=d(mRT),由上式可知壓力、體積及溫度都是關鍵的變數,假設汽缸質量為常數可推導成為mdT=1/R(pdV+Vdp),內能變化可為dU=Cv /R(pdV+Vdp),接著用γ=CP /CV 及CP -CV =R代入,加上時間的變化,並且不考慮熱傳影 響dQht =0,則熱釋放率,最後將熱釋放 率即可分析出燃燒時間點。In an embodiment, it is assumed that in the process of compression, combustion and expansion of the engine 10, each cylinder is a closed system without considering the change of flow work, according to the first law of thermodynamics, dQ hr =dU+dW+dQ ht can be written, wherein dU For internal energy changes, dW is work, and dQ ht is heat transfer. In the derivation process, the differential equation of the ideal gas equation pV=mRT can be used to obtain d(pV)=d(mRT). From the above formula, the pressure, volume and temperature are all key variables. It is assumed that the cylinder mass is constant and can be deduced to become mdT. =1/R(pdV+Vdp), the internal energy change can be dU=C v /R(pdV+Vdp), followed by γ=C P /C V and C P -C V =R, plus time Change, and regardless of heat transfer effect dQ ht =0, the heat release rate Finally, the heat release rate can be used to analyze the burning time point.
由上述說明可知,在計算燃燒時間點的過程中,汽缸的壓力、溫度及曲軸角度等等,都是影像燃燒時間點的關鍵因素。It can be seen from the above description that during the calculation of the combustion time point, the pressure, temperature and crank angle of the cylinder are the key factors of the image burning time point.
上述第一控制器40較佳為PI控制器(Proportional integral controller),但亦可為P控制器(Proportional controller)或PID控制器(Proportional integration differentiation controller),此並不侷限。所述第一控制器40內部可預設有第一理想燃燒點(也可以說是第一汽缸11理想的點火角)且電連接於 處理器30、第一汽缸11及第二汽缸12、第一控制器40接收上述第一實際燃燒點S3且比對第一理想燃燒點並,以及接收第二實際燃燒點S7且比對第二理想燃燒點,判斷是否要輸出調整指令S5,於一實施例中,當第一實際燃燒點S3與第一理想燃燒點相同時,第一控制器40不輸出調整指令S5,當第一實際燃燒點S3與第一理想燃燒點不同時,則第一控制器40輸出調整指令S5,第一控制器40亦可同時在第二實際燃燒點S7與第二理想燃燒點不同時才輸出調整指令S5,此並不侷限。所述調整指令S5是對應調整上述第一工作數據S1與第二工作數據S2,使第一實際燃燒點S3於第一理想燃燒點以及第二實際燃燒點S7趨近於第二理想燃燒點。處理器30接收調整後的第二工作數據S2計算出一更新燃燒點S4以取代第二實際燃燒點S7,換言之,第二汽缸12的第二實際燃燒點S7會變成上述更新燃燒點S4。也就是說,上述更新燃燒點S4是經過第一控制器40控制完後,第二汽缸12的實際燃燒點。The first controller 40 is preferably a PI (Proportional integral controller), but may be a Proportional controller or a PID (Proportional integration differentiation controller). The first controller 40 may be internally provided with a first ideal combustion point (which may also be said to be an ideal ignition angle of the first cylinder 11) and electrically connected to The processor 30, the first cylinder 11 and the second cylinder 12, and the first controller 40 receive the first actual combustion point S3 and compare the first ideal combustion point, and receive the second actual combustion point S7 and compare the second The ideal combustion point determines whether the adjustment command S5 is to be output. In an embodiment, when the first actual combustion point S3 is the same as the first ideal combustion point, the first controller 40 does not output the adjustment command S5 when the first actual combustion When the point S3 is different from the first ideal combustion point, the first controller 40 outputs an adjustment command S5, and the first controller 40 can also output the adjustment command S5 when the second actual combustion point S7 is different from the second ideal combustion point. This is not limited. The adjustment command S5 is to adjust the first working data S1 and the second working data S2 correspondingly, so that the first actual combustion point S3 approaches the second ideal combustion point at the first ideal combustion point and the second actual combustion point S7. The processor 30 receives the adjusted second operational data S2 to calculate an updated combustion point S4 to replace the second actual combustion point S7. In other words, the second actual combustion point S7 of the second cylinder 12 becomes the updated combustion point S4. That is, the above-described updated combustion point S4 is the actual combustion point of the second cylinder 12 after being controlled by the first controller 40.
如第3圖所示,於此實施例中,第一控制器40是連 接一排氣背壓閥13,所述排氣背壓閥13是用以設置在連通於第一汽缸11及第二汽缸12的排氣管15上,而上述調整指令S5是用以控制排氣背壓閥13的開度,以改變第一汽缸11及第二汽缸12回收廢氣的比例,而調整第一汽缸11及第二汽缸12內部的第一工作數據S1中的第一缸壓值與第一溫度參數,使第一實際燃燒點S3於第一理想燃燒點,由於排氣管15也連通第二汽缸12,因此也會同時調整第二工作數據S2。舉例來說,若第一實際燃燒點S3晚於第一理 想燃燒點,可將排氣背壓閥13的開度變小,使回收廢氣的比例增加而提升第一汽缸11及第二汽缸12中的壓力與溫度,使第一實際燃燒點S3提早而能夠與第一理想燃燒點相同。於一些實施例中,上述調整指令S5也可以是控制進氣閥開度以調整第一工作數據S1中的第一缸壓值與第一溫度參數以及上述第二工作數據S2的第二缸壓值與第二溫度參數,此並不侷限。As shown in FIG. 3, in this embodiment, the first controller 40 is connected An exhaust back pressure valve 13 is disposed on the exhaust pipe 15 connected to the first cylinder 11 and the second cylinder 12, and the adjustment command S5 is used to control the row The opening degree of the gas back pressure valve 13 adjusts the ratio of the exhaust gas recovered by the first cylinder 11 and the second cylinder 12, and adjusts the first cylinder pressure value in the first working data S1 inside the first cylinder 11 and the second cylinder 12. With the first temperature parameter, the first actual combustion point S3 is at the first ideal combustion point, and since the exhaust pipe 15 also communicates with the second cylinder 12, the second operational data S2 is also adjusted at the same time. For example, if the first actual combustion point S3 is later than the first reason When the combustion point is desired, the opening degree of the exhaust back pressure valve 13 can be made small, the proportion of the recovered exhaust gas is increased, and the pressure and temperature in the first cylinder 11 and the second cylinder 12 are increased, so that the first actual combustion point S3 is advanced. Can be the same as the first ideal combustion point. In some embodiments, the adjustment command S5 may also be to control the intake valve opening degree to adjust the first cylinder pressure value and the first temperature parameter in the first working data S1 and the second cylinder pressure of the second working data S2. The value and the second temperature parameter are not limited.
上述第二控制器50較佳為P控制器(Proportional controller),但亦可為PI控制器(Proportional integral controller)或PID控制器(Proportional integration differentiation controller),此並不侷限。第二控制器50可預設有一第二理想燃燒點(也可以說是第二汽缸12理想的點火角)且電連接於處理器40與第二汽缸12,第二控制器50接收上述更新燃燒點S4且比對第二理想燃燒點並輸出一油量調整值S6,以控制第二汽缸12的供油量,使第二汽缸12的更新燃燒點S4於第二理想燃燒點。The second controller 50 is preferably a P controller (Proportional) Controller), but can also be a PI controller (Proportional integral controller) or a PID controller (Proportional integration differentiation controller), which is not limited. The second controller 50 can preset a second ideal combustion point (also arguably the ideal ignition angle of the second cylinder 12) and is electrically connected to the processor 40 and the second cylinder 12, and the second controller 50 receives the above-mentioned update combustion. Point S4 and aligning the second ideal combustion point and outputting an oil amount adjustment value S6 to control the oil supply amount of the second cylinder 12 such that the updated combustion point S4 of the second cylinder 12 is at the second ideal combustion point.
於一些實施例中,當更新燃燒點S4與第二理想燃燒 點相同時,輸出的油量調整值S6為0mg/cycle,也就是不需要調整第二汽缸12的供油量。當更新燃燒點S4與第二理想燃燒點不同時,第二控制器50輸出的油量調整值S6可為最終供油值(如20mg/cycle)或者為油量變化值(如-2mg/cycle或+3mg/cycle)。另外,由於上述第一控制器40透過改變排氣背壓閥13開度使第一汽缸11的第一實際燃燒點S3在第一理想燃燒點後,第二汽缸12的更新燃燒點S4仍會因為外在因素(如控制當時的大氣壓力、溫度、 濕度、進排氣量差異)而無法在第二理想燃燒點。因此,可進一步透過第二控制器50改變第二汽缸12的供油量,以單獨調整第二汽缸12之第二工作數據S2中的第二溫度參數(如增加油量以提升第二汽缸12中的溫度,而減少油量則降低第二汽缸12中的溫度),以調整第二汽缸12的更新燃燒點S4趨近於第二理想燃燒點。也就是說,上述處理器30是接收第一控制器40調整後的第二工作數據S2變更第二實際燃燒點S7為一更新燃燒點S4,而第二控制器50接收更新燃燒點S4再比對第二理想燃燒點而輸出油量調整值S6。In some embodiments, when the combustion point S4 is updated with the second ideal combustion When the points are the same, the output oil amount adjustment value S6 is 0 mg/cycle, that is, it is not necessary to adjust the oil supply amount of the second cylinder 12. When the updated combustion point S4 is different from the second ideal combustion point, the oil quantity adjustment value S6 output by the second controller 50 may be the final oil supply value (eg, 20 mg/cycle) or the oil quantity change value (eg, -2 mg/cycle) Or +3mg/cycle). In addition, since the first controller 40 changes the opening degree of the exhaust back pressure valve 13 so that the first actual combustion point S3 of the first cylinder 11 is at the first ideal combustion point, the updated combustion point S4 of the second cylinder 12 still Because of external factors (such as controlling atmospheric pressure, temperature, Humidity, difference in intake and exhaust volume) and not at the second ideal combustion point. Therefore, the oil supply amount of the second cylinder 12 can be further changed by the second controller 50 to separately adjust the second temperature parameter in the second working data S2 of the second cylinder 12 (eg, increasing the oil amount to raise the second cylinder 12) The medium temperature, while reducing the amount of oil, lowers the temperature in the second cylinder 12) to adjust the updated combustion point S4 of the second cylinder 12 to approach the second ideal combustion point. That is, the processor 30 receives the second operational data S2 adjusted by the first controller 40 to change the second actual combustion point S7 to an updated combustion point S4, and the second controller 50 receives the updated combustion point S4. The oil amount adjustment value S6 is outputted to the second ideal combustion point.
如第4圖所示,於此實施例中,上述油量調整值S6 是用以控制連通於第二汽缸12內部之噴油嘴14的開度,以調整第二汽缸12的供油量。As shown in FIG. 4, in this embodiment, the above oil amount adjustment value S6 It is for controlling the opening degree of the fuel injector 14 connected to the inside of the second cylinder 12 to adjust the oil supply amount of the second cylinder 12.
如第6A圖所示,為習知無本創作第二控制器50之點 火角-循環數曲線圖。由於在切換為均質進氣壓燃模式後會降低噴油量使燃燒時間點延後,並使汽缸壓力降低,而習知在無本創作第二控制器50的情況下,無法僅透過改變排氣背壓閥13方式使實際燃燒點回到理想燃燒點(也就是實際點火角無法回到理想點火角)。As shown in FIG. 6A, the point of creating the second controller 50 is not known. Fire angle - cycle number graph. Since the fuel injection amount is decreased after switching to the homogeneous intake compression ignition mode, the combustion time is delayed, and the cylinder pressure is lowered. However, in the case where the second controller 50 is not created, it is impossible to change only the exhaust gas. The back pressure valve 13 mode returns the actual combustion point to the desired point of combustion (ie, the actual firing angle cannot return to the desired firing angle).
如第6B圖所示,為本創作引擎控制裝置控制後之點 火角-循環數曲線圖。相較於第6A圖,本創作加入第二控制器50後配合排氣背壓閥13的改變能夠使實際燃燒點回到理想燃燒點(也就是實際點火角回到理想點火角)。As shown in Figure 6B, after the control of the authoring engine control device Fire angle - cycle number graph. Compared to Fig. 6A, the creation of the second controller 50 in conjunction with the change of the exhaust backpressure valve 13 enables the actual combustion point to return to the desired point of combustion (i.e., the actual firing angle returns to the desired firing angle).
綜上所述,本創作第一汽缸與第二汽缸是分別透過 第一控制器與第二控制器作調整,使第一汽缸的第一實際燃燒點於第一理想燃燒點以及第二汽缸的更新燃燒點於第二理想燃燒點。相較於透過一個控制器控制多缸的方式來說,能夠解決因外在因素(如控制當時的大氣壓力、溫度、濕度、進排氣量差異)的影響,而無法使每個汽缸都在理想燃燒點之問題。故本創作能夠達到提升引擎平衡與表現。In summary, the first cylinder and the second cylinder of the creation are respectively transmitted through The first controller and the second controller are adjusted such that the first actual combustion point of the first cylinder is at the first ideal combustion point and the updated combustion point of the second cylinder is at the second ideal combustion point. Compared with the way of controlling multiple cylinders through one controller, it can solve the influence of external factors (such as controlling atmospheric pressure, temperature, humidity, difference of intake and exhaust), and can not make each cylinder The problem of ideal burning point. Therefore, this creation can achieve improved engine balance and performance.
雖然本創作的技術內容已經以較佳實施例揭露如上,然其並非用以限定本創作,任何熟習此技藝者,在不脫離本創作之精神所作些許之更動與潤飾,皆應涵蓋於本創作的範疇內,因此本創作之保護範圍當視後附之申請專利範圍所界定者為準。Although the technical content of the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the present invention. Anyone who is familiar with the art, and some modifications and refinements that do not depart from the spirit of the present invention should be included in the creation. Therefore, the scope of protection of this creation is subject to the definition of the scope of the patent application.
100‧‧‧引擎控制裝置100‧‧‧Engine Controls
11‧‧‧第一汽缸11‧‧‧First cylinder
12‧‧‧第二汽缸12‧‧‧Second cylinder
20‧‧‧偵測模組20‧‧‧Detection module
30‧‧‧處理器30‧‧‧ Processor
40‧‧‧第一控制器40‧‧‧First controller
50‧‧‧第二控制器50‧‧‧second controller
S1‧‧‧第一工作數據S1‧‧‧ first work data
S2‧‧‧第二工作數據S2‧‧‧ second work data
S3‧‧‧第一實際燃燒點S3‧‧‧First actual burning point
S4‧‧‧更新燃燒點S4‧‧‧Update Burning Point
S6‧‧‧油量調整值S6‧‧‧ oil quantity adjustment value
S7‧‧‧第二實際燃燒點S7‧‧‧ second actual burning point
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104201592U TWM500814U (en) | 2015-01-30 | 2015-01-30 | Engine control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104201592U TWM500814U (en) | 2015-01-30 | 2015-01-30 | Engine control device |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM500814U true TWM500814U (en) | 2015-05-11 |
Family
ID=53722592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104201592U TWM500814U (en) | 2015-01-30 | 2015-01-30 | Engine control device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM500814U (en) |
-
2015
- 2015-01-30 TW TW104201592U patent/TWM500814U/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11384700B2 (en) | Spark ignition engine control with exhaust manifold pressure sensor | |
JP6262957B2 (en) | Operation method of internal combustion engine | |
CN105840326B (en) | System and method for model-based and map-based throttle position derivation and monitoring | |
JP2014037835A (en) | Operation method for internal combustion engine | |
US9605602B2 (en) | Gas or dual fuel engine | |
KR20110008176A (en) | An adjustment system for balancing the cylinders of a gas-burning internal combustion engine | |
KR20160075309A (en) | Method for operating a spark ignited engine | |
JP2017141693A (en) | Control device of internal combustion engine | |
US11384699B2 (en) | Method of operating a gaseous fuel internal combustion engine | |
US11125180B2 (en) | Auto-ignition control in a combustion engine | |
JP2012172657A (en) | Auxiliary-combustion-chamber type spark-ignition gas-engine | |
KR20140138052A (en) | Method of operating a gas or dual fuel engine | |
JP2007162527A (en) | Premixed compression ignition engine | |
FI121030B (en) | System and method for controlling pilot fuel supply to an internal combustion engine | |
JP2014118899A (en) | Internal egr amount calculation device of internal combustion engine | |
EP3336337B1 (en) | Method of operating a gaseous fuel internal combustion engine | |
JP2006009720A (en) | Ignition timing controller of internal combustion engine | |
JP6536613B2 (en) | Control device for internal combustion engine | |
TWM500814U (en) | Engine control device | |
Adomeit et al. | Operation strategies for controlled auto ignition gasoline engines | |
CN204511744U (en) | Engine controller | |
Thor et al. | Estimation of combustion phasing using the combustion net torque method | |
JP7238459B2 (en) | engine controller | |
Oh et al. | Influence of MFB50 control on emission dispersions according to engine parameter changes for passenger diesel engines | |
Ivansson | Estimation of the Residual Gas Fraction in an HCCI-engine using Cylinder Pressure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4K | Annulment or lapse of a utility model due to non-payment of fees |