TWM473474U - MEMS infrared source with optical feedback - Google Patents

MEMS infrared source with optical feedback Download PDF

Info

Publication number
TWM473474U
TWM473474U TW102204725U TW102204725U TWM473474U TW M473474 U TWM473474 U TW M473474U TW 102204725 U TW102204725 U TW 102204725U TW 102204725 U TW102204725 U TW 102204725U TW M473474 U TWM473474 U TW M473474U
Authority
TW
Taiwan
Prior art keywords
infrared
light source
light
mems
source
Prior art date
Application number
TW102204725U
Other languages
Chinese (zh)
Inventor
Chen-Tang Huang
Jin-Shown Shie
Chein-Hsun Wang
Original Assignee
Oriental System Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oriental System Technology Inc filed Critical Oriental System Technology Inc
Priority to TW102204725U priority Critical patent/TWM473474U/en
Publication of TWM473474U publication Critical patent/TWM473474U/en

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Traditional non-dispersive infra-red (NDIR) gas sensor uses infra-red lamp that has drift and aging issues. Dual channels thermopile NDIR gas sensor can solve part of the above problems, but its sensor still has temperature effect that limits its application to low concentration gas measurement. The Infrared emitter is an IR source that is fabricated by MEMS (Micro Electro Mechanical Systems) technology. The output of IR emitter varies with ambient temperature and the aging effect of the IR emitter element. An innovated architecture is proposed that uses optical feedback methodology to stabilize the IR source output for NDIR gas sensor.

Description

微機電光迴授紅外線光源 Micro electromechanical light feedback infrared light source

光電應用技術。 Photoelectric application technology.

非色散式紅外線(NDIR)氣體偵測器之原理係運用「畢爾-蘭柏式定律(Beer-Lambert law)。 The principle of a non-dispersive infrared (NDIR) gas detector is to use the Beer-Lambert law.

I(x)=Io exp[-a(λ).x] I( x )=I o exp[- a (λ). x ]

其中,I(x)為光程在x位置餘留的光強度;Io為出發點(x=0)的原始光強度;a為吸收係數,其值與所含氣體的濃度有關,同時也是波長之函數。當a=0時,I(x)恒為Io,即光不被該氣體吸收。總結之,a與氣體譜紋波長及濃度有關。另外,a也與氣體其他物理因素有關,如氣體溫度與壓力,其行為可依理想氣體之查理定律(Charles’s law)歸範並修正之。 Original light intensity I o as the starting point (x = 0) of;; wherein the light intensity I (x) is the optical path the x position remaining a is the absorption coefficient, the concentration value of the gas contained in the related, but also a wavelength The function. When a = 0, I (x) is a constant I o, i.e. light is not absorbed by the gas. In summary, a is related to the wavelength and concentration of the gas spectrum. In addition, a is also related to other physical factors of the gas, such as gas temperature and pressure, and its behavior can be corrected and corrected according to the Charles's law of the ideal gas.

非色散式紅外線(NDIR)氣體偵測器之光源係利用黑體輻射之原理,如第1圖所示,穿透NBF1與NBF2二個狹窄濾波片之輻射能量會隨輻射體溫度增加而增加。NBF1為參考波長濾波片,其穿透率與所欲量測之氣體濃度無關,NBF2為特性波長 濾波片,其穿透率與所欲量測之氣體濃度有關。第2圖所示為常見氣體之紅外線紋譜(特性吸收光譜)圖。 The source of the non-dispersive infrared (NDIR) gas detector uses the principle of blackbody radiation. As shown in Fig. 1, the radiant energy of the two narrow filters penetrating NBF1 and NBF2 increases with the temperature of the radiator. NBF1 is a reference wavelength filter whose transmittance is independent of the gas concentration to be measured. NBF2 is the characteristic wavelength. The filter has a transmittance that is related to the gas concentration to be measured. Figure 2 shows the infrared spectrum (characteristic absorption spectrum) of common gases.

第3圖所示為非色散式紅外線(NDIR)氣體偵測器結構示意圖,它由一個紅外線光源(例如燈泡)、光腔與紅外線感測器所構成。由於燈泡老化或驅動不穩定因素而造成非色散式紅外線氣體偵測器輸出漂移或量測之誤差,所以它時常需要校正。 Figure 3 shows a schematic diagram of the structure of a non-dispersive infrared (NDIR) gas detector consisting of an infrared source (such as a bulb), an optical cavity, and an infrared sensor. It is often necessary to correct the non-dispersive infrared gas detector output drift or measurement error due to aging of the lamp or unstable driving factors.

美國專利5,347,474採用大氣環境之二氧化碳濃度來自動校正非色散式紅外線二氧化碳氣體偵測器之輸出,以克服燈泡老化或漂移之影響。此方法對其它氣體量測則不適用。 U.S. Patent 5,347,474 uses the atmospheric carbon dioxide concentration to automatically correct the output of a non-dispersive infrared carbon dioxide gas detector to overcome the effects of bulb aging or drift. This method does not apply to other gas measurements.

另一方法則是採用雙通道熱電堆感測器配合二個紅外線窄濾波片,一個通道其紅外線穿透波段為所欲量測之氣體的特性吸收波段;另一個通道為參考通道其紅外線穿透波段不受欲量測氣體或其他氣體影響。經由參考通道的輸出迴授來控紅外線光源之穩定度,但是雙通道熱電堆感測器其輸出亦受環境溫度影響,所以它無法做到非常精確之光源輸出控制(例如萬分之一),因此對低濃度之氣體濃度量測(例如一氧化碳在30ppm),雙通道NDIR氣體感測氣器技術無法勝任。 Another method is to use a two-channel thermopile sensor with two infrared narrow filters, one channel whose infrared transmission band is the characteristic absorption band of the gas to be measured; the other channel is the reference channel and its infrared penetration band. Not subject to the measurement of gases or other gases. The stability of the infrared source is controlled via the output feedback of the reference channel, but the output of the dual-channel thermopile sensor is also affected by the ambient temperature, so it cannot achieve very accurate light source output control (for example, one ten thousandth). Therefore, for low concentration gas concentration measurements (eg, carbon monoxide at 30 ppm), dual channel NDIR gas sensing gas technology is not sufficient.

對低濃度之氣體濃度量測,它需要一個能穩定到萬分之一的紅外線光源。對恆功率驅動之紅外線光源而言,其輻射輸出會隨環境溫度變化而改變,第4圖所示為不同黑體溫 度下穿透NBF1濾波片之能量在不同環境溫度下之輻射能量與室溫25度C時之比值。 For low concentration gas concentration measurements, it requires an infrared source that is stable to one ten thousandth. For a constant-power-driven infrared source, the radiation output changes with ambient temperature. Figure 4 shows the different black body temperatures. The ratio of the energy of the energy passing through the NBF1 filter to the ambient temperature of 25 ° C at different ambient temperatures.

對採用紅外線燈泡之非色散式紅外線(NDIR)氣體偵測器而言,當黑體溫度變化控制在0.2℃內時,則其穿透濾波片之黑體輻射能量變化值在0.01%內,此時NDIR氣體偵測器解析度約為2ppm。對溫度比較低的微機電(MEMS)紅外線光源,則要控制在0.05℃才能將光輸出穩定在0.01%(萬分之一)。 For non-dispersive infrared (NDIR) gas detectors using infrared light bulbs, when the black body temperature change is controlled within 0.2 ° C, the black body radiation energy variation value of the penetrating filter is within 0.01%, at this time NDIR The gas detector resolution is approximately 2 ppm. For low-temperature microelectromechanical (MEMS) infrared light sources, it is necessary to control the light output to 0.01% (one ten thousandth) at 0.05 °C.

傳統之紅外線光源驅動方式為採用恆電壓、恆電流或恆電阻驅動方式皆為穩定光源升溫溫度(Tb);Ts=Ta+Tb The traditional infrared light source driving method adopts constant voltage, constant current or constant resistance driving mode to stabilize the light source heating temperature (Tb); Ts=Ta+Tb

Ta為環境溫度,Ts為光源黑體輻射之溫度。如環境溫度變化時則會造成光源黑體輻射之溫度Ts改變,而很難達到光源輸出穩定之目標。此乃因環境溫度感測元(例如熱敏電阻)有時間延遲與精確度問題。同時光源與環境溫度感測元分離,它無法真正反應紅外線光源輻射體之當下的環境溫度。 Ta is the ambient temperature and Ts is the temperature of the black body radiation of the light source. If the ambient temperature changes, the temperature Ts of the black body radiation of the light source changes, and it is difficult to achieve the goal of stable source output. This is due to time delays and accuracy issues with ambient temperature sensing elements such as thermistors. At the same time, the light source is separated from the ambient temperature sensing element, and it cannot truly reflect the current ambient temperature of the infrared source radiator.

因此有必要尋求另一種穩定紅外線光源之創作方式,以提供給非色散式紅外線氣體偵測器使用。 Therefore, it is necessary to find another way to create a stable infrared light source for use in a non-dispersive infrared gas detector.

本創作係採用光迴授方式來達到穩定紅外線光源之目的,其基本原理為黑體輻射在窄波段內與黑體溫度成單調性 (Monotonic)相關。藉由一個光檢知感測元,它可以是可見光波段或是紅外線波段,來提供抽樣之紅外線光源黑體之輻射能量,經由迴授控制電路達到穩定紅外線光源輻射能量(輻射溫度)之目的。 This creation uses the optical feedback method to achieve the purpose of stabilizing the infrared light source. The basic principle is that the black body radiation is monotonous with the black body temperature in a narrow band. (Monotonic) related. The optical sensor detects the sensing element, which can be in the visible light band or the infrared band, to provide the radiant energy of the sampled infrared light source black body, and achieve the purpose of stabilizing the infrared light source radiant energy (radiation temperature) through the feedback control circuit.

它可以應用在採用傳統之紅外線燈泡或是微機電式紅外線光源之非色散式紅外線氣體偵測器。 It can be applied to non-dispersive infrared gas detectors using conventional infrared bulbs or microelectromechanical infrared sources.

[微機電光迴授紅外線光源應用於非色散式紅外線氣體偵測器之示意圖] [Schematic diagram of MEMS light feedback infrared light source applied to non-dispersive infrared gas detector]

101‧‧‧紅外線光源 101‧‧‧Infrared source

102‧‧‧NDIR氣腔 102‧‧‧NDIR air cavity

103‧‧‧熱電堆感測器 103‧‧‧Thermal reactor sensor

104‧‧‧光感測元 104‧‧‧Light sensor

105‧‧‧信號處理單元 105‧‧‧Signal Processing Unit

106‧‧‧燈源控制電路 106‧‧‧Light source control circuit

[光迴授非色散式紅外線氣體偵測器之結構方塊圖] [Structural block diagram of optical feedback non-dispersive infrared gas detector]

101‧‧‧紅外線光源 101‧‧‧Infrared source

102‧‧‧NDIR氣腔 102‧‧‧NDIR air cavity

103‧‧‧熱電堆感測器 103‧‧‧Thermal reactor sensor

104‧‧‧光感測元 104‧‧‧Light sensor

106‧‧‧燈源控制電路 106‧‧‧Light source control circuit

201‧‧‧演算放大器 201‧‧‧ calculus

202‧‧‧迴授電阻 202‧‧‧Responsive resistance

203‧‧‧直流放大器 203‧‧‧DC amplifier

204‧‧‧多工器 204‧‧‧Multiplexer

205‧‧‧類比至數位轉換器 205‧‧‧ analog to digital converter

206‧‧‧微處理器 206‧‧‧Microprocessor

207‧‧‧通訊界面 207‧‧‧Communication interface

208‧‧‧顯示單元 208‧‧‧Display unit

[微機電光迴授紅外線光源之結構圖,(a)側視圖(b)頂視圖] [Structural diagram of MEMS light feedback infrared light source, (a) side view (b) top view]

301‧‧‧紅外線視窗 301‧‧‧Infrared window

302‧‧‧微機電紅外線光源 302‧‧‧Micro-electromechanical infrared light source

303‧‧‧光感測元 303‧‧‧Light sensor

304‧‧‧封蓋 304‧‧‧ Cover

305‧‧‧封裝基座 305‧‧‧Package base

306‧‧‧固晶膠 306‧‧‧Solid glue

307‧‧‧引線 307‧‧‧ lead

308‧‧‧封裝引腳 308‧‧‧Package pins

[採用微機電紅外線光源之光迴授非色散式紅外線氣體偵測器之結構方塊圖] [Structural block diagram of a non-dispersive infrared gas detector using a micro-electromechanical infrared source]

102‧‧‧NDIR氣腔 102‧‧‧NDIR air cavity

103‧‧‧熱電堆感測器 103‧‧‧Thermal reactor sensor

106‧‧‧燈源控制電路 106‧‧‧Light source control circuit

203‧‧‧直流放大器 203‧‧‧DC amplifier

204‧‧‧多工器 204‧‧‧Multiplexer

205‧‧‧類比至數位轉換器 205‧‧‧ analog to digital converter

206‧‧‧微處理器 206‧‧‧Microprocessor

207‧‧‧通訊界面 207‧‧‧Communication interface

208‧‧‧顯示單元 208‧‧‧Display unit

301‧‧‧紅外線視窗 301‧‧‧Infrared window

302‧‧‧微機電紅外線光源 302‧‧‧Micro-electromechanical infrared light source

303‧‧‧光感測元 303‧‧‧Light sensor

第1圖:黑體輻射之光譜密度與黑體溫度關係圖 Figure 1: Relationship between spectral density of blackbody radiation and blackbody temperature

第2圖:常見氣體之紅外線紋譜圖 Figure 2: Infrared spectrogram of common gases

第3圖:非色散式紅外線氣體偵測器結構示意圖 Figure 3: Schematic diagram of a non-dispersive infrared gas detector

第4圖:不同黑體溫度下穿透NBF1濾波片之能量在不同環境溫度下之輻射能量與室溫25度C時之比值圖 Figure 4: Ratio of the radiant energy of the energy passing through the NBF1 filter at different ambient temperatures at room temperature to 25 °C at different ambient temperatures

第5圖:微機電光迴授紅外線光源應用於非色散式紅外線氣體偵測器之示意圖 Figure 5: Schematic diagram of MEMS light feedback infrared light source applied to non-dispersive infrared gas detector

第6圖:光迴授非色散式紅外線氣體偵測器之結構方塊圖 Figure 6: Block diagram of the optical feedback non-dispersive infrared gas detector

第7圖:微機電光迴授紅外線光源之結構圖,(a)側視圖(b)頂視圖 Figure 7: Structure diagram of MEMS optical feedback infrared source, (a) side view (b) top view

第8圖:採用微機電紅外線光源之光迴授非色散式紅外線氣體偵測器之結構方塊圖 Figure 8: Block diagram of a non-dispersive infrared gas detector using a micro-electromechanical infrared source

第5圖所示為本創作之微機電光迴授紅外線光源應用於非色散式紅外線氣體偵測器之示意圖。它包括紅外線光源(101);偵測氣體吸收率之NDIR氣腔(102);熱電堆感測器(103)用來感測特定氣體吸收率之信號;和偵測紅外線光源輻射之光感測元(104),它提供光迴授信號給信號處理單元(105),在比較誤差後信號處理單元輸出控制驅動信號給燈源控制電路(106),以穩定紅外線光源之輻射輸出。 Fig. 5 is a schematic view showing the application of the MEMS optical feedback infrared light source to a non-dispersive infrared gas detector. It includes an infrared light source (101); an NDIR gas chamber (102) for detecting gas absorption rate; a thermopile sensor (103) for sensing a specific gas absorption rate signal; and a light source for detecting infrared light source radiation. The element (104) provides an optical feedback signal to the signal processing unit (105). After comparing the errors, the signal processing unit outputs a control driving signal to the light source control circuit (106) to stabilize the radiation output of the infrared light source.

第6圖所示為本創作應用例之光迴授非色散式紅外線氣體偵測器結構方塊圖,但本創作精神並不侷限於此應用例子。它包括紅外線光源(101);供特性氣體反應吸收之NDIR氣腔(102);偵測紅外線之熱電堆感測器(103),用來感測特定氣體吸收率之信號,其輸出饋至直流放大器(203);光感測元(104)用來偵測紅外線光源輻射之能量,它與迴授電阻(202)及演算放大器(201)構成光電流至電壓轉換器;多工器(204)在微處理器(206)控制下選擇直流放大器(203)或演算放大器(201)的輸出至類比至數位轉換器(205);類比至數位轉換器的輸出饋至微處理器(206)做演算與光源誤差之比較,爾後調節控制燈源控制電路(106)之輸出以達到穩定紅外線光源之目的;通訊界面(207)用來提供非色散式紅外線氣體偵測器之輸出信號;顯示單元(208)則用於在本地顯示非色散式紅外線氣體偵測器之量測值與警示信號。 Fig. 6 is a block diagram showing the structure of the optical feedback non-dispersive infrared gas detector of the application example, but the spirit of the present invention is not limited to this application example. The utility model comprises an infrared light source (101); an NDIR gas chamber (102) for reacting and absorbing the characteristic gas; and a pyroelectric sensor (103) for detecting the infrared light, the signal for sensing the specific gas absorption rate, and the output thereof is fed to the direct current An amplifier (203); the light sensing element (104) is configured to detect the energy radiated by the infrared light source, and the photocurrent to voltage converter is formed by the feedback resistor (202) and the calculation amplifier (201); the multiplexer (204) The output of the DC amplifier (203) or the operational amplifier (201) is selected to analog to digital converter (205) under the control of the microprocessor (206); the analog to digital converter output is fed to the microprocessor (206) for calculation Compared with the light source error, the output of the light source control circuit (106) is controlled to achieve the purpose of stabilizing the infrared light source; the communication interface (207) is used to provide an output signal of the non-dispersive infrared gas detector; and the display unit (208) ) is used to display the measured value and warning signal of the non-dispersive infrared gas detector locally.

由光感測元(104)、演算放大器(201)及迴授電阻(202)所構成之光電流至電壓轉換器亦可以由整合型環境光感知器取代,它可以提供類比電壓或數位式光感知信號至微處理器(206)。此時NDIR氣腔(102)的設計要注意屏蔽環境光之射入,同時要能夠保持氣體之通暢無阻。 The photocurrent to voltage converter composed of the optical sensing element (104), the operational amplifier (201) and the feedback resistor (202) can also be replaced by an integrated ambient light sensor, which can provide analog voltage or digital light. The signal is sensed to the microprocessor (206). At this time, the design of the NDIR air chamber (102) should pay attention to shielding the injection of ambient light, and at the same time be able to keep the gas unobstructed.

第7圖所示為本創作微機電光迴授紅外線光源之結構圖。紅外線視窗(301)只讓紅外線波長的光線透出(例如3-5um之波段),同時它也阻絕環境中之可見光射入;微機電紅外線光源(302),它可以加熱到發出可見光之橘紅光,此時黑體溫度約1200K;光感測元(303),它用來偵測微機電紅外線光源輻射出之可見光成分;封蓋(304)用來固接紅外線視窗(301)與封裝基座(305);封裝基座(305)透過固晶膠(306)用來固定微機電紅外線光源(302)與光感測元(303);引線(307)將紅外線光源(302)與光感測元(303)之電性輸出入信號接到封裝引腳(308)。 Figure 7 shows the structure of the micro-electromechanical light feedback infrared light source. The infrared window (301) only allows the infrared wavelength of light to pass through (for example, the 3-5um band), and it also blocks the visible light in the environment; the micro-electromechanical infrared source (302), which can be heated to emit orange light of visible light. At this time, the black body temperature is about 1200K; the light sensing element (303) is used to detect the visible light component radiated by the MEMS infrared light source; the cover (304) is used to fix the infrared window (301) and the package base ( 305); the package base (305) is used to fix the micro-electromechanical infrared light source (302) and the light sensing element (303) through the solid crystal glue (306); the infrared light source (302) and the light sensing element are connected by the lead wire (307) The electrical input and output signal of (303) is connected to the package pin (308).

第8圖為採用微機電紅外線光源之光迴授非色散式紅外線氣體偵測器之結構方塊圖。它包括微機電紅外線光源(302)與光感測元(303);NDIR氣腔(102);熱電堆感測器(103)用來感測特性氣體之吸收率;熱電堆感測器的輸出經直流放大器(203)放大後,在多工器(204)選擇後送至類比至數位轉換器(205)爾後送至微處理器(206)做特性氣體濃度計算;光感測元(303)的信號經多工器(204)選擇後送至類比至數位轉換器(205); 微處理器(206)之輸入有二組信號,一個是由熱電堆感測器(103)來之偵測特性氣體之吸收信號,另一組是由光感測元(303)來之微機電紅外線光源(302)所產生之光輻射抽樣信號,用來經由燈源控制電路(106)做迴授控制以穩定微機電紅外線光源之輸出;通訊界面(207)用來提供非色散式紅外線氣體偵測器之輸出信號;顯示單元(208)則用於在本地顯示非色散式紅外線氣體偵測器之量測值與警示信號。 Figure 8 is a block diagram showing the structure of a non-dispersive infrared gas detector using a micro-electromechanical infrared source. It includes a micro-electromechanical infrared source (302) and a light sensing element (303); an NDIR air chamber (102); a thermopile sensor (103) for sensing the absorption rate of the characteristic gas; the output of the thermopile sensor After being amplified by the DC amplifier (203), it is sent to the analog-to-digital converter (205) after being selected by the multiplexer (204), and then sent to the microprocessor (206) for characteristic gas concentration calculation; the light sensing element (303) The signal is selected by the multiplexer (204) and sent to the analog to digital converter (205); The input of the microprocessor (206) has two sets of signals, one is the absorption signal of the characteristic gas detected by the thermopile sensor (103), and the other is the MEMS by the light sensing element (303). The optical radiation sampling signal generated by the infrared light source (302) is used for feedback control via the light source control circuit (106) to stabilize the output of the microelectromechanical infrared light source; the communication interface (207) is used to provide non-dispersive infrared gas detection The output signal of the detector; the display unit (208) is used for locally displaying the measured value and the warning signal of the non-dispersive infrared gas detector.

以上應用舉例在於說明如何應用光迴授原理來穩定紅外線光源之輸出而不受環境溫度與光源老化之影響。本創作之精神不受限於以上舉例,凡諸採用光迴授製備之微機電紅外線光源皆屬之。 The above application example is to illustrate how to apply the principle of optical feedback to stabilize the output of the infrared light source without being affected by the ambient temperature and the aging of the light source. The spirit of the present invention is not limited to the above examples, and all of the micro-electromechanical infrared light sources prepared by optical feedback are included.

301‧‧‧紅外線視窗 301‧‧‧Infrared window

302‧‧‧微機電紅外線光源 302‧‧‧Micro-electromechanical infrared light source

303‧‧‧光感測元 303‧‧‧Light sensor

304‧‧‧封蓋 304‧‧‧ Cover

305‧‧‧封裝基座 305‧‧‧Package base

306‧‧‧固晶膠 306‧‧‧Solid glue

307‧‧‧引線 307‧‧‧ lead

308‧‧‧封裝引腳 308‧‧‧Package pins

Claims (6)

一個微機電光迴授紅外線光源,其特徵為包括:一個微機電紅外線光源(302),它可以加熱到發出可見光之橘紅光;一個光感測元(303),它用來偵測微機電紅外線光源輻射出之可見光成分;一個封裝基座(305),它透過固晶膠(306)用來固定微機電紅外線光源(302)與光感測元(303);引線(307)將微機電紅外線光源(302)與光感測元(303)之電性輸出入信號接到封裝引腳(308);封蓋(304)與封裝基座(305)銲接後用來保護微機電紅外線光源(302)與光感測元(303),它具備一個紅外線視窗(301)只讓紅外線波長的光線透出(例如3-5um之波段),同時它也阻絕環境中之可見光射入;本創作利用光迴授控制來穩定微機電紅外線光源之輸出,它可以應用在高精度非色散式氣體感測器。 A micro-electromechanical light feedback infrared light source, comprising: a micro-electromechanical infrared light source (302), which can be heated to emit orange light of visible light; a light sensing element (303) for detecting micro-electromechanical infrared light The visible light component emitted by the light source; a package base (305) for fixing the micro-electromechanical infrared light source (302) and the light sensing element (303) through the solid crystal glue (306); and the micro-electromechanical infrared light source (307) The electrical input and output signals of the light source (302) and the light sensing element (303) are connected to the package pin (308); and the cover (304) is soldered to the package base (305) to protect the MEMS infrared light source (302). And the light sensing element (303), which has an infrared window (301) that only allows the infrared wavelength of light to pass out (for example, a 3-5 um band), and it also blocks the visible light in the environment; this creation uses light Feedback control to stabilize the output of the MEMS infrared source, which can be applied to high precision non-dispersive gas sensors. 如申請專利範圍第1項所述之微機電光迴授紅外線光源,其光感測元(303)可以是可見光光感知二極體或是紅外線光感知元,它亦可以是整合光感知二極體與放大電路於單一晶片之環境光感測器。 For example, in the MEMS optical feedback infrared light source described in claim 1, the light sensing element (303) may be a visible light sensing diode or an infrared light sensing element, and may also be an integrated light sensing diode. The ambient light sensor of the body and the amplifying circuit on a single chip. 如申請專利範圍第1項所述之微機電光迴授紅外線光源,其光感測元(303)與微機電紅外線光源(302)可以同處一晶片內。 The MEMS optical feedback light source (303) and the MEMS infrared light source (302) can be co-located in a wafer as claimed in claim 1. 如申請專利範圍第1項所述之微機電光迴授紅外線光源,其紅外線視窗(301)可以是1-20μm範圍,或是窄波段(例如3-5μm)。 The MEMS window (301) of the MEMS light feedback infrared light source of claim 1 may have a range of 1-20 μm or a narrow band (for example, 3-5 μm). 如申請專利範圍第1項所述之微機電光迴授紅外線光源,其紅外線視窗(301)外可以加一紅外線鏡片以限縮微機電紅外線光源(302)之輸出視角。 For example, in the MEMS optical feedback infrared light source described in claim 1, the infrared window (301) may be additionally provided with an infrared lens to limit the output viewing angle of the MEMS infrared light source (302). 如申請專利範圍第1項所述之微機電光迴授紅外線光源,其封蓋過程可以抽真空以降低微機電紅外線光源(302)之加熱功率。 The MEMS optical feedback infrared light source of claim 1, wherein the capping process can be evacuated to reduce the heating power of the micro-electromechanical infrared source (302).
TW102204725U 2013-03-15 2013-03-15 MEMS infrared source with optical feedback TWM473474U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102204725U TWM473474U (en) 2013-03-15 2013-03-15 MEMS infrared source with optical feedback

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102204725U TWM473474U (en) 2013-03-15 2013-03-15 MEMS infrared source with optical feedback

Publications (1)

Publication Number Publication Date
TWM473474U true TWM473474U (en) 2014-03-01

Family

ID=50822370

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102204725U TWM473474U (en) 2013-03-15 2013-03-15 MEMS infrared source with optical feedback

Country Status (1)

Country Link
TW (1) TWM473474U (en)

Similar Documents

Publication Publication Date Title
US6129673A (en) Infrared thermometer
US9835604B2 (en) Temperature compensation of gas sensors
GB201018418D0 (en) Temperature calibration methods and apparatus for optical absorption gas sensors, and optical absorption gas sensors thereby calibrated
CA2312706C (en) Gas detection apparatus using a combined infrared source and high temperature bolometer
CN110178007B (en) Integrated temperature sensor on lead selenide flat panel detector assembly
US10436647B2 (en) Non-contact temperature measurement sensor
US8003944B2 (en) Saturation filtering NDIR gas sensing methodology
Lee et al. Complete gas sensor circuit using nondispersive infrared (NDIR)
US9228989B2 (en) System and method for performing heater-less lead selenide-based capnometry and/or capnography
Hopper et al. A CMOS-MEMS thermopile with an integrated temperature sensing diode for mid-IR thermometry
US20170322085A1 (en) Optical measurement method and system
CN113758573A (en) Three-wavelength colorimetric infrared temperature measurement system, method and device based on emissivity iteration
TWM473474U (en) MEMS infrared source with optical feedback
Wilson et al. Performance analysis of a novel pyroelectric device for non-dispersive infra-red CO 2 detection
JPH0235322A (en) Radiation clinical thermometer
TWM471585U (en) High precision NDIR gas detector with optical feedback infrared source
TWM467057U (en) Ndir gas detector with optical feedback infrared source
JP6574110B2 (en) Gas sensor circuit, gas sensor device, and gas concentration detection method
JP2017032317A (en) Gas concentration measurement device
CN213779298U (en) Digital thermopile infrared sensor
RU2490609C1 (en) Method of testing pyrometers in working conditions
JPH036530U (en)
Ebert et al. New setup for a real time high resolution UV-LED absorption spectroscopy
KR100693063B1 (en) Ndir gas sensor having compensating means for aging effect
Wiegleb IR Absorption Photometer

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model