TWM440814U - Countercurrent pulse detonation reactor for the abatement of hazardous chemical emissions - Google Patents
Countercurrent pulse detonation reactor for the abatement of hazardous chemical emissions Download PDFInfo
- Publication number
- TWM440814U TWM440814U TW101208896U TW101208896U TWM440814U TW M440814 U TWM440814 U TW M440814U TW 101208896 U TW101208896 U TW 101208896U TW 101208896 U TW101208896 U TW 101208896U TW M440814 U TWM440814 U TW M440814U
- Authority
- TW
- Taiwan
- Prior art keywords
- detonation
- pulse wave
- gas
- temperature pulse
- high temperature
- Prior art date
Links
Landscapes
- Treating Waste Gases (AREA)
Abstract
Description
M440814 器,是利用爆轟技術創造出連續逆流爆轟高溫衝擊波,並利用 爆轟高溫衝擊波的高溫高壓條件下進行化學反應的方法,可以 有效的應用於半導體產業及化工相關產業的全氟化物(PFCs) 及揮發性有機化合物(VOC)廢氣處理。 【先前技術】 半導體製程廣泛地使用CF4、C2F6、NF3等全氟化合物 (PFCs; Per-fluoro compound)做為製程氣體,但是這些氣體僅有少 部分被使用掉,剩餘的大部分則當作廢氣排放,有造成溫室效 應的疑慮。例如,CF4在製程中大約只使用了 5%、C2f6大約只 使用了 30%、C3F8大約只使用了 6〇%、NF3大約只使用了 60%、 CHF3大約只使用了 40%,SF6大約只使用了 20%。 1997年'’聯合國氣候變化綱要公約京都議定書"中,通過管 制二氧化碳C〇2、甲烷CHU、氧化亞氮吣0、六氟化硫SR、氫 氟碳化物HFCs及全氟化物PFCs等六種主要溫室氣體的具體減 量方案及時刻表。在這六種主要管制溫室氣體中,SF6、HFCs 及PFCs等主要為人造的溫室氣體成分;雖然HFCs及PFCs不 會耗損臭氧層’但皆為強效溫室氣體+具有很高的全球溫暖化 潛勢指數值(Global Warming Potential ’ GWP),具極長之生命期, 例如,CF4的生命期可達50,000年、CA的生命期可達1〇〇〇〇 年%的支命期可達3,2〇〇年、㈤的生命期可達2,_年、 NR的生命期可達740年、CHR的生命期可達27〇年、CH2F2的 生命期可達4.9年。這魏化合物雜停留在域層中相當長 3 M44U»14 的間且在大氣中的累積效應為不可逆的。 由於半導體設備元件的製造技術日趨精密,促使全氟化物 的使用量也縣半導體製㈣進步快速增長 ,因此,產業界迫 切而要更有效率的管制與處理技術、採用勒新的廢氣處理系統, 以因應未來更加嚴苛之廢氣排放標準,避免環境公害之產生。 傳統上PFCs、HFCs及VOC的處理,以使用燃燒法最有效, 仁因擔、燃燒控制不當會有衍生火災的風險,乃有改用電熱法 及電漿處理_子;但是電熱法因受操作溫度歧場分佈控制 不易的影響’處理效率通常只能達到9〇%以下,難以達成符合 嚴苛的廢氣排放標準之要求;電漿火炬處理法則有電漿火炬價 格卬貴哥命短的問題;而且以每部機会處理2〇〇 L/mjn的廢氣為 例,這種傳統技藝需使用大約1〇〜15kw的能源;而使用本創 作的方法’只需要使用15〇 W的電力,與傳統技藝能源消耗比 較’利用連續產生氣體逆轉轟高溫鱗波的高溫高壓特性連 續進行化學反應’可以節省99%的能源,就能達成處理目的。 可燃氣體與適量空氣或氧之混合氣在一管狀容器令的某 點著火時,突然增加燃燒傳播速度,使得火焰面非常快速進行 並與其别方壓縮波結合生成衝擊波,且使其速度達音速以上並 趨於安定的現象稱為爆轟(Detonation),而此局部反應區域稱 為爆轟波。爆轟波通過後,其化學組成即發生變化,此爆轟波 若撞到物質,不但在極短時間内給予強烈的衝擊壓力及高溫, 同時也會產生機械的破壞作用。 4 刀有關氣體爆燃(Defl_on)與爆轟(Det〇naii〇n)的研究, 絕大部分著重在爆炸防止 '防哭相關的研究,還有部分是著重 在利用職高溫衝擊波魅超音迷的雜,發展高速飛行器或 武器應用。爆轟過程可以簡化為—個含化學反應的—維定常傳 播的爆轟高溫衝擊波強騎面。對於爆轟高溫衝擊波強間斷面 兩側的混合氣體狀態,可赠立三個味方程,分別為質量守 恆、動量守恆及能量守恆,如下列方程式所示: (1) (2) (3)M440814 is a method for creating a continuous countercurrent detonation high temperature shock wave by detonation technology and using a high temperature and high pressure condition of detonation high temperature shock wave to effectively apply to perfluorination in the semiconductor industry and chemical industry. PFCs) and volatile organic compound (VOC) waste gas treatment. [Prior Art] Perfluoro compounds such as CF4, C2F6, and NF3 are widely used as process gases in semiconductor processes, but only a small part of these gases are used, and most of the remaining are treated as exhaust gases. Emissions have doubts about the greenhouse effect. For example, CF4 uses only about 5% in the process, C2f6 uses only about 30%, C3F8 uses only about 6〇%, NF3 uses only about 60%, and CHF3 uses only about 40%. SF6 is only used. 20%. In the "Kyoto Protocol of the United Nations Framework Convention on Climate Change" in 1997, six kinds of carbon dioxide C2, methane CHU, nitrous oxide 0, sulfur hexafluoride SR, hydrofluorocarbon HFCs and perfluorinated PFCs were regulated. Specific reduction plans and timetables for major greenhouse gases. Among the six main regulated greenhouse gases, SF6, HFCs and PFCs are mainly artificial greenhouse gas components; although HFCs and PFCs do not deplete the ozone layer, they are all powerful greenhouse gases + have a high global warming potential. The Global Warming Potential 'GWP' has a very long life. For example, CF4 has a lifespan of 50,000 years, and CA has a lifespan of up to 1%. The life span can reach 3,2. The life of the leap year and (5) can reach 2, _ years, the life of NR can reach 740 years, the life of CHR can reach 27 years, and the life of CH2F2 can reach 4.9 years. This Wei compound is heterogeneous in the domain layer and is quite long between 3 M44U»14 and the cumulative effect in the atmosphere is irreversible. As the manufacturing technology of semiconductor device components is becoming more and more sophisticated, the use of perfluorinated substances has also led to the rapid growth of the county semiconductor system (4). Therefore, the industry is eager to have more efficient control and processing technologies and adopt new exhaust gas treatment systems. In order to avoid the occurrence of environmental pollution in response to more stringent emission standards in the future. Traditionally, the treatment of PFCs, HFCs and VOCs is most effective in using combustion methods. There is a risk of derivative fires due to improper use of the benevolent and improper combustion control. It is replaced by electrothermal method and plasma treatment. However, the electrothermal method is operated. Temperature field distribution control is not easy to influence 'Processing efficiency can usually only reach less than 9〇%, it is difficult to meet the requirements of meeting the stringent exhaust emission standards; the plasma torch treatment law has the problem that the price of plasma torch is too short; Moreover, taking the opportunity to process 2 〇〇L/mjn of exhaust gas per opportunity, this traditional technique requires about 1 〇 to 15 kW of energy; and using the method of creation, it only requires 15 〇W of electricity, and traditional craftsmanship. Compared with the energy consumption, 'continuous chemical reaction by continuously generating gas to reverse the high temperature and high pressure characteristics of the high temperature scale wave' can save 99% of energy and achieve the treatment purpose. When a mixture of combustible gas and a proper amount of air or oxygen ignites at a certain point in a tubular container, the combustion propagation speed is suddenly increased, so that the flame surface is very fast and combined with the compression wave of the other side to generate a shock wave, and the speed is up to the speed of sound. The phenomenon that tends to be stable above is called detonation, and this local reaction zone is called detonation. When the detonation wave passes, its chemical composition changes. If the detonation wave hits the material, it not only gives a strong impact pressure and high temperature in a very short time, but also causes mechanical damage. 4 knives related to gas detonation (Defl_on) and detonation (Det〇naii〇n), most of the focus on the explosion prevention [anti-cry related research, and some of the emphasis on the use of high-temperature shock wave charm super-sound fans Miscellaneous, developing high-speed aircraft or weapon applications. The detonation process can be simplified as a chemical reaction--the detonation high-temperature shock wave strong riding surface. For the mixed gas state on both sides of the detonation high-temperature shock wave intensity, three flavor equations can be given, namely mass conservation, momentum conservation and energy conservation, as shown in the following equation: (1) (2) (3)
Pl(Dz - ui) = P2(D2-u2)........Pl(Dz - ui) = P2(D2-u2)........
Pi + Pi(D2 - Ul)2 = P2 + p2(D2 - u2y + + (EiZHi)2 _ F , p2 , (d2-u2)2 1 Pi 2 — E2+^ + ~l—~Pi + Pi(D2 - Ul)2 = P2 + p2(D2 - u2y + + (EiZHi)2 _ F , p2 , (d2-u2)2 1 Pi 2 — E2+^ + ~l~~
其中,狀態1為爆轟高溫衝擊波前尚未進行反應的狀態,狀態 2為爆轟高溫衝擊波後已進行反應的狀態。p為氣體壓力、D 為爆轟高溫衝擊波傳遞速度、u為氣體速度、p為氣體密度、E 為氣體能量。 而且,件有化學反應和釋放比能量為Q的理想氣體,其狀 態方程可以寫成: E =六卜的......................:.................(4) 其中’ γ =_,Cp為定壓比熱、Cv為定容比熱。方程式(3)、 (4)中不僅包括物質熱運動的内能,而且還包括化學反應能。 在激波關係中E = E(P,V),而在爆轟高溫衝擊波關係中,由於 M440814 存在化學反應,E = Ε(Ρ,ν,λ)其中λ為化學反應進展度。λ=〇 : 表示未進行化學反應的初始狀態;λ=1 :表示反應終態。 由方程式(1)和(2)可以得到用無因次參數表達的火焰速度 與波面兩側狀態參數的關係式: (5) =:逆2_ui) (6)Among them, the state 1 is a state in which the reaction has not been performed before the detonation high-temperature shock wave, and the state 2 is a state in which the reaction has been performed after the detonation high-temperature shock wave. p is the gas pressure, D is the detonation high-temperature shock wave transmission speed, u is the gas velocity, p is the gas density, and E is the gas energy. Moreover, the piece has a chemical reaction and an ideal gas with a specific energy of Q. The equation of state can be written as: E = six b.....................: .................(4) where 'γ = _, Cp is constant pressure specific heat, Cv is constant volume specific heat. Equations (3) and (4) include not only the internal energy of the thermal motion of the substance but also the chemical reaction energy. In the shock relationship, E = E(P,V), and in the detonation high-temperature shock wave relationship, due to the chemical reaction of M440814, E = Ε(Ρ, ν, λ) where λ is the progress of chemical reaction. λ = 〇 : indicates an initial state in which no chemical reaction is performed; λ = 1: indicates a final state of the reaction. From Equations (1) and (2), the relationship between the flame velocity expressed by the dimensionless parameter and the state parameters on both sides of the wavefront can be obtained: (5) =: inverse 2_ui) (6)
CiCi
其中Μ為火焰面相對於_衝擊波通過後的狀態的馬赫數。 由方私式(3)和(4)可以得卿無因次表示的方程式, (# + α)(» = β....... 其中 (7)Where Μ is the Mach number of the state after the flame surface passes with the _ shock wave. From the private (3) and (4) equations, (# + α) (» = β....... where (7)
.......................β=4(笤+罕)-《]...... 由方私式(5)和方裎式 參數為: ........................(8) ........................(9) (7)聯立’可求得火焰陣面後的.......................β=4(笤+罕)-"]...... by private (5) and square The formula parameters are: ........................(8) ................... .....(9) (7)Lianli' can be found after the flame front
(10) (ID £2 __ YxCYz + l) Ρι Υ2(Υι+ν土A)(10) (ID £2 __ YxCYz + l) Ρι Υ2 (Υι+ν土A)
£2 = yi+v+YiA P1 (Y2 + 1)V . 其中£2 = yi+v+YiA P1 (Y2 + 1)V .
(D2一ul)2 · · · · (12) 6 • (13)M440814(D2 ul) 2 · · · · (12) 6 • (13) M440814
κ 2 |Υι(Υ2-Υι)(Υ2 + 1) , Υι(Υ2~Υι)0] I Y!(Yi-l) vici J· · · 在方程式(10)中的正號『+八對 『 』A對應了爆轟支的弱解,而 負唬-』A對應了爆燃支的強解。 揪义 _ a-G時,在爆轟支和爆κ 2 |Υι(Υ2-Υι)(Υ2 + 1) , Υι(Υ2~Υι)0] IY!(Yi-l) vici J· · · The positive sign "+eight pairs" in equation (10) A corresponds to the weak solution of the detonation branch, while the negative 唬-』A corresponds to the strong solution of the detonation branch.揪义 _ a-G, in the detonation and explosion
燃^各有—個唯—解,這兩個解分別被稱為㈣轟解和CJEach of the combustions has a unique solution, which is called (four) and CJ
(14) 爆燃解。叫轟織者⑴_度值可糊唯 件A=0得出: D = vCj =(14) Detonation solution. Called the bomber (1) _ degree value can be obtained by A = 0: D = vCj =
(15)(15)
Vcj =IliZi±PiD2) (Yl + l) p2D2 (16) (17) (18) ucj (19) D~Mi =—£i2. Yi + l · 對於CJ爆轟解,此時火焰陣面已經趕上前驅衝擊波陣面。 根據CJ理論,只考慮反應的初態和終態,不接觸反應區的參 數,對於CJ爆轟參數,可以通過質量守恆、動量守恆、能量 守恆,再加上CJ爆轟的條件,聯立得出。 氣體爆燃與爆轟與一般的化學反應主要的差異在於爆燃 7 M440814 及爆轟是以反應波的形式按照一定的速度傳播前進、自動進行。 燃燒反應的能量是經由熱傳導、熱輻射及燃燒氣體產物的擴散 作用傳遞到尚未燃燒的反應物;爆轟則是利用爆炸衝擊波的強 大衝擊壓縮作用,將能量傳遞給尚未燃燒的反應物。傳統技藝 使用的燃燒反應的傳遞速度通常低於音速,每秒數毫米到每秒 數公尺;爆轟過程的爆炸衝擊波傳播速度則遠大於聲速,其速 度般南達母秒數千公尺,例如氫氣(2〇%)在空氣中的爆炸 衝擊波速度可達每秒1524公尺。傳統的燃燒過程的傳播,易 丈外界條件尤其是環境壓力的影響;但是爆轟的爆炸衝擊波的 傳遞速度極快,且幾乎不受外界條件的影響,其爆轟速度在一 定條件下是一個固定的常數。 本創作是利用爆轟理論創造出一種使用爆轟技術進行化 學反應的高溫脈衝波反應器,能利用所創作之高溫脈衝波反應 器連續產生氣體逆流爆轟高溫衝擊波,並利用爆轟高溫衝擊波 的咼溫尚壓特性連續進行化學反應的方法,可以有效的應用於 半導體產業的全氟化物(PFCs)及揮發性有機化合物(v〇c) 廢氣處理。 【新型内容】 本創作主要目的在於提供一種用於有害化學廢氣處理的 高溫脈衝波反應器,包含:-高溫脈衝波反應器本體、廢氣進 料管用於將廢氣連續注入高溫脈衝波反應器本體、燃料進料管 用於將燃料連續注入高溫脈衝波反應器本體、空氣/水/助劑進 8 M440814 料管用於將空氣/水/助劑連續注入高溫脈衝波反應器本體、〜 爆轟促進器用於促進燃料、廢氣及空氣/水/助劑的混合並用於 使得混合氣體回火產生逆流爆轟、一點火裝置組,用於將混合 氣體點燃。其運作原理如下: (1) 將需要使用高溫反應或破壞的有害化學廢氣喷注進高 溫脈衝波反應器; (2) 將燃料送入高溫脈衝波反應器’; (3) 將空氣/水/助劑注入高溫脈衝波反應器; (4) 利用爆轟促進器促進燃料、有害化學廢氣及空氣/水/助 劑的混合; (5 )利用安裝於爆轟促進器下游端的點火裝置組將混合氣 體點燃; (6) 利用爆轟促進器使得該混合氣體回火產生逆流爆轟; (7) 當爆轟高溫衝擊波抵達高溫脈衝波反應器進料端時利 用爆雇咼溫衝擊波使得火焰熄焰; (8) 連續重複上述氣體反應物及有害化學廢氣的混合、點 燃、逆流爆轟、熄焰的程序,使得有害化學廢氣能連 績利用爆轟高溫衝擊波的高溫、高壓進行反應或破 壞。 對於氣體爆轟的研究’以往均採用進料與點燃位置屬於同 一方向的同向爆轟(C〇-current Detonation ),因此,為了控制爆 轟的產生,氣體供應需要採用半批次(semj_bafch)進料方式, 9 M440814 2即’進攸量麵完概,需要先行_進糊門,缺後點 成=產生爆A,接細排_拙真空進行排氣,排氣完 成後關__門’錢再啟頓叫重複進料賴、 ^的^批次進料程序。迄今,並無利用連續式爆轟技術作為 挺供化學反應能量的技術報導與研究。Vcj =IliZi±PiD2) (Yl + l) p2D2 (16) (17) (18) ucj (19) D~Mi =—£i2. Yi + l · For CJ detonation, the flame front has already rushed The front drive shock wave front. According to the CJ theory, only the initial and final states of the reaction are considered, and the parameters of the reaction zone are not touched. For the CJ detonation parameters, the mass conservation, momentum conservation, energy conservation, and CJ detonation conditions can be combined. Out. The main difference between gas deflagration and detonation and general chemical reaction is that deflagration 7 M440814 and detonation propagate in a reaction wave at a certain speed and proceed automatically. The energy of the combustion reaction is transferred to the unburned reactants via heat conduction, heat radiation, and diffusion of combustion gas products; detonation is the use of the strong impact compression of the explosion shock wave to transfer energy to the unburned reactants. The speed of the combustion reaction used in traditional techniques is usually lower than the speed of sound, a few millimeters per second to several meters per second; the explosion shock wave propagation speed of the detonation process is much greater than the speed of sound, and its speed is as large as several thousand meters in the mother's second. For example, hydrogen (2〇%) has an explosive shock wave velocity in air of up to 1524 meters per second. The propagation of the traditional combustion process, the external conditions of Yizhang, especially the impact of environmental pressure; but the detonation of the explosion shock wave transmission speed is very fast, and almost unaffected by external conditions, its detonation speed is a fixed under certain conditions Constant. This creation uses the detonation theory to create a high-temperature pulse wave reactor that uses detonation technology for chemical reactions. It can continuously generate gas countercurrent detonation high-temperature shock waves using the created high-temperature pulse wave reactor, and utilizes detonation high-temperature shock waves. The method of continuous chemical reaction of the tempering pressure characteristics can be effectively applied to the exhaust gas treatment of perfluorinated substances (PFCs) and volatile organic compounds (v〇c) in the semiconductor industry. [New content] The main purpose of this creation is to provide a high temperature pulse wave reactor for the treatment of harmful chemical exhaust gas, comprising: - a high temperature pulse wave reactor body, an exhaust gas feed pipe for continuously injecting exhaust gas into the high temperature pulse wave reactor body, The fuel feed pipe is used to continuously inject the fuel into the high temperature pulse wave reactor body, air/water/auxiliary into the 8 M440814 material tube for continuous injection of air/water/auxiliary into the high temperature pulse wave reactor body, ~ detonation booster for Promoting the mixing of fuel, exhaust gas and air/water/auxiliaries and for tempering the mixed gas to produce a countercurrent detonation, a set of ignition devices for igniting the mixed gas. The operation principle is as follows: (1) Injecting harmful chemical waste gas that needs to be reacted or destroyed by high temperature into a high-temperature pulse wave reactor; (2) Feeding the fuel into a high-temperature pulse wave reactor'; (3) Air/water/help Injecting high temperature pulse wave reactor; (4) using a detonation booster to promote mixing of fuel, harmful chemical waste gas and air/water/auxiliary; (5) using a group of ignition devices installed at the downstream end of the detonation booster to mix the gas (6) using a detonation accelerator to cause the mixed gas to temper to generate a countercurrent detonation; (7) when the detonation high temperature shock wave reaches the feed end of the high temperature pulse wave reactor, the flame is extinguished by using a bursting heat shock wave; (8) The process of mixing, igniting, counter-current detonation, and flame-extinguishing of the above-mentioned gaseous reactants and harmful chemical exhaust gas is continuously repeated, so that the harmful chemical exhaust gas can be reacted or destroyed by the high temperature and high pressure of the detonation high-temperature shock wave. For the study of gas detonation, 'C〇-current Detonation' has been used in the same direction as the ignition position. Therefore, in order to control the occurrence of detonation, the gas supply needs to adopt half-batch (semj_bafch). Feeding mode, 9 M440814 2 is the 'into the amount of surface, you need to go ahead _ into the paste door, the point is missing = generate burst A, pick up the thin row _ 拙 vacuum for exhaust, after the exhaust is completed off __ door 'The money is renewed and called the batch feeding procedure of repeated feeds, ^. To date, continuous detonation techniques have not been utilized as a technical report and research for the energy of chemical reactions.
本創作的-_於有害化學廢氣處理的高溫脈衝波反應 裔,則是射酿氣體㈣無合氣位置是在高溫脈衝 波反應器_端相反方向進行’因此,可以連續進料俟可燃 性氣體混合齡_粗火裝[_位置時,被_產生魏 火花的點火裝置雜,驅使火_著逆流方向往補端前進, 將反應器⑽可紐氣體完全轉並產轉轟高溫衝擊波,俟 爆轟高溫衝擊波的高壓波前抵達進料位置時,利用爆爲高溫衝 擊波的瞬間高速震壓將火職滅,此時,進料健可以持續進 行,繼續沿著反應态流動方向前進,抵達點火位置再被點燃,The creation of the high temperature pulse wave reaction of the harmful chemical waste gas treatment is the injection of the gas (4). The non-gas position is carried out in the opposite direction of the high temperature pulse wave reactor _ end. Therefore, the flammable gas can be continuously fed. Mixed age _ rough fire installation [_ position, _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ When the high-pressure wave front of the high-temperature shock wave reaches the feeding position, the fire is extinguished by the instantaneous high-speed vibration of the high-temperature shock wave. At this time, the feed can continue, and continue to flow along the flow direction of the reaction state, and reach the ignition position. Then ignited,
如此重複進料、點燃、爆轟、熄焰的程序,這是爆爲物理 特性進行連續性爆轟,提供高溫高壓反應條件的創新做法;應 用這種方法設計而成的而溫脈衝波反應器,業經創作人開發實 際機台進行重複測5式,確遇爆轟向溫衝擊波頻率、爆震壓及反 應溫度可以成功且有效的調控,而且操作上完全無安全疑廣。 又根據爆轟理論,在管道内由燃燒轉換到爆轟現象,所需 要的管道長度與管徑、管壁粗糙度、阻礙物有關,通常所需管 長約為直徑的60至72倍’使得爆轟應用在反應器設計時有實 質上的困難度。本創作則在高溫脈衝波反應器内,利用溫和的 靜態攪拌設備製作爆轟促進器,增加氣體在反應器内的擾流, 有效的縮短在管道内產生爆轟所需的長度,使得高溫脈衝波反 應器的設計與操作變成簡單而且可控制。 本創作的應用範圍包含:半導體及其他工業製程之全氟化 物、有機化學廢氣、揮發性有機廢氣等有害廢氣之處理,例如: 含有SilVCF4、^、版讯等PFCs氣體或含有苯(Benzene)、 曱笨(Toluene)、二曱笨(Xy丨ene)、苯乙烯(styrene)、12 二氣 乙烯(1,2-Dichloroethane )、三氣乙烯(Trichloroethylene )、乙苯 (Ethylbenzene )、氯仿(chloroform )、四氣乙烯 (Tetrachloroethylene )、二氯曱院(Methylene chlororide )、二甲基 甲酿胺(Dimethyl Formamide)、1,1-二氣乙烧(1,1 -Dichloroethane)、 盼(Phenol)、四氣甲烧(丁etrach|oromethane)、1,1,1-三氣乙院 (1,1’1-Trichloroethane)、曱醇(Methanol)、呋喃(Furans)、甲 紛(Methyl phenol)、甲異丁酮(Methyl isobutyl ketone)、醋酸丁 酯(Butylacetate)、二硫化碳(carb〇n disulfide)、多環芳香烴化 合物(PAHs)、萘(Naphthalene)或其混合物的廢氣處理等用 途。 為使對本創作有較佳之了解,特就下列圖示為例作為本創 作之一較佳實施例說明如下。 【實施方式】 本創作之主要創作目的在於提供一種用於有害化學廢氣 處理的咼溫脈衝波反應态,第1圖所示為使用本創作之方法的 較佳貫^•例’其中’包含·-南溫脈衝波反應器本體印、 一廢氣進料管22用於將有害化學廢氣2G賴注人高溫脈衝波 反應器本體60、一燃料進料管12用於將燃料1〇連續注入高溫 脈衝波反應器本體60、空氣/水/助劑進料管32 H 助劑加連觀以雜誠⑽料義…爆 用於促進騎1G、有害化學廢氣20及蝴水/ 3Q的混合 並用於使得混合氣體回火產生找爆轟、一點火裝置組8〇用 於將混合氣體點燃。 本創作之-_於有魏學練處_高溫脈衝波反應 器的操作程序如第2圖所示,其原理及運作方式說明如下: ⑴將需要使用高溫反應或破壞的含有有害化學廢氣2〇連 續喷注進高溫脈衝波反應器本體6〇内,廢氣進料管22 可以是單-進料管或是為多數個進料管,以利多數種 或多數股有害化學廢氣2〇可以同時進料。 ⑵將燃料10連續經燃料進料管辟入高溫脈衝波反應器 本體60内’燃料進料管12可以是單一進料管或是為多 數個進料官,以利多數種燃料1〇可以同時進料。 ⑴將轉反應所需之空氣3〇、水4〇經由空氣/水/助劑進 ;斗言32 S續;主入南溫脈衝波反應器本體内。空氣/ 水,劑進料管32也可以是單一進料管或是為多數個進 料官’可以接受空氣3〇、惰性氣體、氧氣、水40、催 M440814 化劑等的同時進料。 (4) 利用爆轟促進器促進燃料、有.害化學廢氣及空氣/水/助 劑的混合、 (5) 利用高溫脈衝波反應器本體60内部的爆轟促進器7〇 促進燃料10、有害化學廢氣20、空氣30、水40的混合, 使得氣體混合物在高溫脈衝波反應器本體6〇内,均句 的由高溫脈衝波反應器1入口端往反應產物出口 1〇〇 方向流動,如第2圖所示的進料步驟110至充滿步驟 120。 (6) 當氤體混合物抵達安裝於爆轟促進器70下游端的點火 裝置組80位置時,混合氣體將被點火裝置組8〇點燃, 如第2圖點燃步驟130所示。由於在點火裝置組8〇下 游並無可燃性氣體,因此,火焰會往高溫脈衝波反應 器1的入口端方向回火,產生逆流火焰,如第2圖爆燃 步驟140所示;火焰再經過爆轟促進器7〇提供良好的 混合,使得該可燃性氣體混合物快速燃燒、增溫、增 壓、增速,進而產生逆流爆轟(C〇unte「current Detonation), 如第2圖爆燃加速步驟150所示。爆轟高溫衝擊波2繼 、.’貝壓縮可燃性氣體混合物進行反應,並繼續加速至達 到cj衝擊波速度,如第2圖爆轟步驟16〇所示。 (7) 當爆轟高溫衝擊波2抵達高溫脈衝波反應器本體6〇的 進料端時,利用爆轟高溫衝擊波2的瞬間壓力,使得火 13 M440814 焰熄焰,如第2圖熄焰步驟go所示。 (8) 反應器出口法蘭90與後續設備連接,利用爆轟高溫衝 擊波2的反震波3將反應產物100排出,如第2圖反震 排出步驟180所示。 (9) 進行此過裎時進料可以繼續進行,連續重複燃料1〇、 有害化學廢氣20及空氣/水/助劑30的混合、點燃、逆 流爆爲、總焰的程序,使得有害化學廢氣20能連續利 用爆轟高溫衝擊波的高溫、高壓進行反應或破壞。 在上列高溫脈衝波反應器彳操作程序中,爆轟高溫衝擊波 2的速度通常约為i〇〇0~2〇0〇m/s,在某些操作條件下,甚至可 以達到2500 m/s的高速;目此,高溫脈衝波反應器 1由點燃步 驟130到;):仏步驟17〇的速度極快,所需時間只需幾微秒 U/1000 s)。㈣彳〇、有害化學廢氣2()及空氣/水/助劑的進 料速度,—般流體輪送速度進行,其典度為1〜30 m/Se 且田:H溫衝擊波2抵達高溫脈衝波反應器本體6〇的 、;斗而7如第2圖媳焰步驟i7q所示,要利用爆轟高溫衝擊 、的瞬嶋力,使得火祕鱗,燃料的進料速度應低 於有害化學魏2G及找_㈣的㈣速度。 創作的用於有害化學廢氣處理的高溫脈衝波反應器】, 應用在電子產㈣廢氣處_,高溫脈衝波反細使用的燃 :川可以是氫氣、甲烧、乙院、丙烧、丁院、乙烯、乙快或 -他乳體燃料或其混合物,作為爆轟的基礎燃料。 M440814 有害化學廢氣20可以為含有SiH4、CF4、C2F6、C3F8、SF6 等PFCs氣體或含有笨、甲笨、二曱笨、笨乙烯、彳,2-二氣乙烯、 三氣乙烯、乙笨、氣仿、四氯乙烯、二氣甲烷、二甲基甲醯胺、 1,1-二氣乙烷、酚、四氯甲烷、三氯乙烷、甲醇、呋喃、 曱紛、甲異丁鲷、醋酸丁酯、二硫化碳、多環芳香烴化合物、 秦或其混合物。 空氣30及水40的使用量,可以利用化學平衡式估算之。 以處理有害化學廢氣為例,所需水分可以利用化學反應平衡式 計算求得。舉例說明其反應方程式如下:The procedure of feeding, igniting, detonating, and extinguishing flames is repeated in this way, which is an innovative method of providing continuous detonation for physical properties and providing high temperature and high pressure reaction conditions; a temperature pulse wave reactor designed by using this method The creator developed the actual machine to carry out the repeated measurement type 5, and it can be successfully and effectively controlled by the detonation to the temperature shock wave frequency, the knocking pressure and the reaction temperature, and the operation is completely safe and unquestionable. According to the detonation theory, the conversion from combustion to detonation in the pipeline requires the length of the pipeline to be related to the diameter of the pipe, the roughness of the pipe wall, and the obstruction. Usually, the pipe length is about 60 to 72 times the diameter of the pipe. The bombing application has substantial difficulty in reactor design. In this high-temperature pulse wave reactor, a detonation accelerator is made by a gentle static stirring device, which increases the disturbance of gas in the reactor, effectively shortens the length required for detonation in the pipeline, and makes the high-temperature pulse The design and operation of the wave reactor becomes simple and controllable. The scope of application of this creation includes: treatment of harmful exhaust gases such as perfluorinated organic compounds, organic chemical exhaust gases, and volatile organic waste gases in semiconductor and other industrial processes, such as: containing PFCs such as SilVCF4, ^, and other products, or containing benzene (Benzene), Toluene, Xy丨ene, styrene, 1,2-Dichloroethane, Trichloroethylene, Ethylbenzene, chloroform , Tetrachloroethylene, Methylene chlororide, Dimethyl Formamide, 1,1-Dichloroethane, Phenol, IV Gasoline (butetracho|oromethane), 1,1,1-1,1'1-Trichloroethane, Methanol, Furans, Methyl phenol, Exhaust gas treatment of Methyl isobutyl ketone, Butylacetate, carb〇n disulfide, polycyclic aromatic hydrocarbon compounds (PAHs), naphthalene or mixtures thereof. In order to better understand the present work, the following illustrations are taken as an example of a preferred embodiment of the present invention. [Embodiment] The main purpose of this creation is to provide a temperature pulse wave reaction state for the treatment of harmful chemical exhaust gas. Fig. 1 shows a preferred example of using the method of the present invention. - The south temperature pulse wave reactor body print, an exhaust gas feed pipe 22 is used for the hazardous chemical exhaust gas 2G to be used for the high temperature pulse wave reactor body 60, a fuel feed pipe 12 for continuously injecting the fuel 1 高温 into the high temperature pulse Wave reactor body 60, air/water/auxiliary feeding tube 32 H Additives and Cascades are used to promote the mixing of 1G, harmful chemical waste gas 20 and butterfly water/3Q and are used to make The mixed gas tempering produces a detonation, and an ignition device group 8 is used to ignite the mixed gas. The creation of this work - _ Wei Wei training _ high temperature pulse wave reactor operating procedures as shown in Figure 2, its principle and operation mode are as follows: (1) will need to use high temperature reaction or destruction of hazardous chemical waste gas Injected into the high-temperature pulse wave reactor body 6〇, the exhaust gas feed pipe 22 can be a single-feed pipe or a plurality of feed pipes, so that most or most of the harmful chemical waste gas can be fed simultaneously. (2) The fuel 10 is continuously pumped into the high-temperature pulse wave reactor body 60 through the fuel feed pipe. The fuel feed pipe 12 may be a single feed pipe or a plurality of feeds to facilitate the majority of the fuels. Feeding. (1) The air required for the reaction, 3 〇, and water 4 进 are fed through the air/water/auxiliary; 斗言32 S continued; the main inlet is the south temperature pulse wave reactor body. The air/water, agent feed line 32 can also be a single feed tube or can be fed simultaneously by a plurality of feeds's that can accept air 3, inert gas, oxygen, water 40, catalyzed M440814, and the like. (4) Using a detonation booster to promote the mixing of fuel, harmful chemical exhaust gas and air/water/auxiliary, (5) using the detonation booster 7 inside the high-temperature pulse wave reactor body 60 to promote fuel 10, harmful The chemical exhaust gas 20, the air 30, and the water 40 are mixed so that the gas mixture flows in the high-temperature pulse wave reactor body 6〇, and the flow is from the inlet end of the high-temperature pulse wave reactor 1 to the reaction product outlet 1〇〇, as in the first Feeding step 110 shown in Fig. 2 is filled to step 120. (6) When the carcass mixture reaches the position of the ignition device group 80 installed at the downstream end of the detonation accelerator 70, the mixed gas will be ignited by the ignition device group 8 as shown in the ignition step 130 of Fig. 2. Since there is no flammable gas downstream of the ignition device group 8, the flame will temper in the direction of the inlet end of the high-temperature pulse wave reactor 1 to generate a counter-current flame, as shown in the detonation step 140 of Fig. 2; The bomb booster 7〇 provides good mixing, so that the combustible gas mixture rapidly burns, warms, pressurizes, and accelerates, thereby generating countercurrent detonation (C〇unte “current Detonation”, as shown in FIG. 2, detonation acceleration step 150 As shown, the detonation high-temperature shock wave 2, followed by the compression of the combustible gas mixture, continues to accelerate until the cj shock wave velocity is reached, as shown in Fig. 2, the detonation step 16〇. (7) When the detonation high temperature shock wave 2 When the feed end of the high-temperature pulse wave reactor body 6〇 is reached, the instantaneous pressure of the detonation high-temperature shock wave 2 is used to cause the flame 13 M440814 flame to flame out, as shown in the flame-extinguishing step of Fig. 2 (8) Reactor The outlet flange 90 is connected to a subsequent device, and the reaction product 100 is discharged by the anti-shock wave 3 of the detonation high-temperature shock wave 2, as shown in the shock-discharging discharge step 180 of Fig. 2. (9) The feed can be continued when this overshoot is performed. , The process of continuously repeating the mixing of the fuel, the harmful chemical exhaust gas 20 and the air/water/auxiliary 30, the ignition, the countercurrent explosion, and the total flame, so that the harmful chemical waste gas 20 can continuously react with the high temperature and high pressure of the detonation high temperature shock wave. Or destruction. In the high temperature pulse wave reactor 彳 operating procedure, the speed of the detonation high temperature shock wave 2 is usually about i〇〇0~2〇0〇m/s, and under certain operating conditions, it can even reach 2500. The high speed of m/s; therefore, the high temperature pulse wave reactor 1 is ignited by step 130 to ;): 仏 step 17 〇 is extremely fast, and the required time is only a few microseconds U/1000 s). (d) 彳〇, The feed rate of harmful chemical waste gas 2 () and air / water / auxiliary agent, the general fluid rotation speed is carried out, the degree is 1~30 m / Se and the field: H temperature shock wave 2 arrives at the high temperature pulse wave reactor body 6〇,;斗斗7 as shown in Figure 2, 媳 flame step i7q, to use the high temperature impact of detonation, the instantaneous force, so that the fire secret scale, the fuel feed rate should be lower than the harmful chemical Wei 2G and find _ (four) (four) speed. Created high temperature pulse wave reactor for hazardous chemical exhaust gas treatment] , used in electronic production (four) exhaust gas _, high-temperature pulse wave reverse use of the fuel: Sichuan can be hydrogen, Jiazhu, Yiyuan, C-burn, Dingyuan, ethylene, B fast or - his milk fuel or a mixture thereof, As a base fuel for detonation. M440814 Harmful chemical waste gas 20 can be PFCs containing SiH4, CF4, C2F6, C3F8, SF6, etc. or contain stupid, stupid, dioxane, stupid ethylene, hydrazine, 2-diethylene, three Gas ethylene, B stupid, gas imitation, tetrachloroethylene, di-methane, dimethylformamide, 1,1-dioxaethane, phenol, tetrachloromethane, trichloroethane, methanol, furan, , methyl isobutyl hydrazine, butyl acetate, carbon disulfide, polycyclic aromatic hydrocarbon compounds, Qin or a mixture thereof. The amount of air 30 and water 40 used can be estimated using a chemical equilibrium formula. For example, in the case of treating harmful chemical waste gas, the required water can be calculated by using a chemical reaction equilibrium calculation. An example of its reaction equation is as follows:
SiH4+ 202 -> Si02 + 2H20SiH4+ 202 -> Si02 + 2H20
CF4+2H2O+ C〇2 + 4HF CF4 + 〇2 C〇2 + 2F2CF4+2H2O+ C〇2 + 4HF CF4 + 〇2 C〇2 + 2F2
C2F6 + 4H2O + 1/2 〇2 ^ 6HF + 2C〇2 + H2O C2F6+ 2〇2 2C〇2 + 3F2C2F6 + 4H2O + 1/2 〇2 ^ 6HF + 2C〇2 + H2O C2F6+ 2〇2 2C〇2 + 3F2
C3F8 + 6H2O + O2 8HF + 3C〇2 + 2H2O C3F8+ 3〇2 3C〇2 + 4F2 SF6+ 3H2〇 -> SO2 + 6HF + 1/2 O2C3F8 + 6H2O + O2 8HF + 3C〇2 + 2H2O C3F8+ 3〇2 3C〇2 + 4F2 SF6+ 3H2〇 -> SO2 + 6HF + 1/2 O2
F2+H2+2HF 由於多數含有PFCs的有害化學廢氣在進行反應後,會很 谷易再聚合成最女疋的化合物CF4,因此,在含有pF〇s的有 害化學廢氣2〇由廢氣進料管22進入高溫脈衝波反應器本體6〇 的同時,必須利用空氣/水/助劑進料管32注入有利於進行反應 所需的適量水40及空氣30,同步調節及供應進行反應所需的 M440B14 適當水40含量與氧氣3〇,使PFCs能轉化成HF及C02’才能 得到較好的破壞去除效率。 利用向溫脈衝波反應器1所提供的高溫、高壓及激烈渦流 的作用,最安定的化合物CF4也會在爆轟震波的高溫、高壓波 月'J作用下,很快進行反應而被破壞。又CF4是很安定的化合物, 而且進行OR的熱解與破壞需要供應大量能量,同時需要很高 的活化能才能進行;CF*進行熱解反應的反應式及反應熱ΔΗ 如下: CF4^ C(soot) + F2 ΔΗ = +916 kJ/mol CF*在高溫脈衝波反應器彳内單純與氧氣進行氧化反應仍 為吸熱反應’其反應熱ΔΗ如下: CF4+〇2->C〇2+2F2 ΔΗ = +585 kJ/mol 但是如果在氫氣存在的條件下,CF4與氧氣及氫氣進行氧 化反應,就變成放熱反應,進行反應會釋放反應熱ΔΗ如下: # CF4+〇2+2H2-> C02 + 4HF ΔΗ = -557 kJ/mol 因此,對於含有PFCs的有害化學廢氣2〇的處理,燃料1〇 可以優先考慮使用氫氣,以利化學反應的進行。 安裝在向溫脈衝波反應器本體60内的爆轟促進器70,目 的是促進燃料10、有害化學廢氣20及空氣/水/助劑32的混合, 其次,當混合氣體被點燃後,爆轟促進器7〇則需要能促使混 合氣體的燃燒反應快速的被加速成為爆轟。因此,爆轟促進器 提供細、響的靜_拌裝置方式設計如第3 三:’利用導流式螺旋片71及導流式螺旋片72的組合,進 合及切割而達到勝效果;混合氣體因導流式螺旋片 72的旋轉流動作用’會產生強制授拌混合作用。盆作用 原理係彻絲氣驗_式_ 71_式螺旋片72 組合f的爆轟促進器70後,會使混合氣體形成渦流式旋轉, 並且错由葉片將混合氣體分割、匯流產生混合作用力,因此, 在不使用動力裝置下,可達到強制混合效果。通常導流式螺旋 片71及導流式螺旋片72的葉片可以設計成扭轉⑽度或任意 角度的左旋形態以及右旋形態,組合葉片一片一片相接時,可 以將左方疋葉片、右旋葉片交替組合,或全部使用同一方向的旋 轉葉片’每一葉片間並成9〇度角安裝。當液體流經第一導流 式螺旋葉片71時,若以順時針方式旋轉流動,將被切割成二 等伤,备流動至第二導流式螺旋葉片72時,則可以同方向或 以逆時針方向旋轉流動,再被糊m·並且重複以上 動作’如此’流體流經第n片導流式螺旋片時將切割成2n份 加上流體的旋轉混合,而達到良好混合的效果。 如果高溫反應需要較長的滯留時.間,爆轟促進器7〇也可 以採用能提供較溫和授拌的靜態授拌裝置方式設計如第4圖 所示,以螺旋管73作為提供溫和攪拌的靜態攪拌裝置。 由於火焰往高溫脈衝波反應器本體6〇的入口端方向回火 時’爆轟速度極快’爆轟的頻率主要由燃料、有害化學廢氣及 M440814 空氣/水/助劑混合物的進料率及高溫脈衝波反應器本體6〇的 • 操作溫度及塵力決定,進料速率越快、溫度越高、勤越低, . _轟頻率越高。爆轟高溫衝擊波2的速度、溫度、壓力主要 取決於可紐氣體的濃度、組成、溫度及動,與進料速度無 關。 為了確保設備的操作安全,點火裝置組8〇至少採用二支 點火裝置’如第5圖所示,可以部分或全部使用;或者部分使 • 纽可以線上切換、更換,使得高溫脈衝波反應器本體60 可以全年操作無需停機維修保養。點火裝置組80也可以 採用三支點火裝置,如第6圖所示;也可以採用四支點火裝置, 如第7圖所示,也可以採用任何支數點火裝置,可以部分或全 αΗ吏用’或者σ卩分使用且可以線上切換、更換,使得高溫脈 衝波反應器本體⑼可以全年操作無需停機維修保養。 點火裝置組80以使用火星塞(Spark piug)或加熱火 馨星塞(G10W Plug)最為簡單,但也可以使用其他設備 如電熱器等可以提供氣體局部溫度高於自燃溫度的設 備作為點火器。 氟N性氣體、氧氣、水、催化劑等,可以利用空氣/ 水/助切進料管32送進高溫脈衝波反應器本體6〇。空氣3〇及 水40的進料量主要視所要完成的化學反應而定。 由於问溫脈衝波反應器本體60重複被高溫高壓的爆轟高 溫衝擊波掃過後,會逐漸升溫,當高溫脈衝波反應器本體60 爐腫溫度達到燃料10、有害化學廢氣20的自燃溫度 CAutcngnition Temperature)後,氣體混合物將會自動燃燒。因 此’如第1圖所示,為了有效控制及應用爆轟特性,在高溫脈 衝波反應器本體60外側,設置冷卻夾套62,使冷卻流體由冷 部流體入口 64進入冷卻夾套62 ’與高溫脈衝波反應器本體6〇 的外壁進行熱交換,帶走高溫脈衝波反應器本體6〇外壁的能 I,由冷卻流體出口 65排除。可以使用循環冷卻水或以有害 化學廢氣作為冷卻流體。高溫脈衝波反應器本體6〇 外壁經冷 部後,維持其内部平均溫度低於燃料1〇、有害化學廢氣2〇的 自燃溫度’即可維持高溫脈衝波反應器本體6G的穩定操作。 空氣/水/助劑進料管32可以採用雙流體噴嘴,以利水的充 分霧化,均勻分佈在氣流中。 以一般連接四組廢氣入口的PFCs處理設備而言,單位時 間需要處理200 L/miri的si I既、⑽、%等氣體混 s物作為有害化學廢氣2Q為例,傳統的電聚火炬約需使用1〇 〜15 _功率,使用本創作之高溫脈衝波反應器本體60則只需 ;刀平的點火褒置組8〇即可達成的%以上的破壞效 率處理目標’可節省能源達到約 99%。 以上說明對本創作而言只是說明性的,而非限制性的,本 領域普通技術人員理解,在不脫離申請專利範圍所限定的精神 和範圍的歧下,可作料錄改、變化鱗效,但都將落入 本創作的申請專利範圍可限定的範圍之内。 M440814 【圖式簡單說明】 第1圖.補狀料有害化學廢氣處_高溫脈衝波反應 器的實施例 第2圖:本_之料有雜學純纽的高溫脈衝波反應 器之實施步驟例 第3圖.本卿之用於有害化學純處理的高溫脈衝波反應 器使用之強爆轟促進器的實施例 第4圖:^作之用於有害化學廢氣處理的高溫脈衝波反應 器使用之弱爆轟促進器的實施例 第5圖:本_之祕有害化學純處理的高溫脈衝波反應 器使用之雙支點火裝置組的實施例 第6圖作之祕有害化學純處_高溫脈衝波反應 器使用之三支點火裝置組的實施例 第7圖.本創作之驗有害化學純處輯高溫脈衝波反應 器使用之四支點火裝置組的實施例 【主要元件符號說明】 1 高溫脈衝波反應器 2 爆轟高溫衝擊波 3 反震波 1〇燃料 12 燃料進料管 20有害化學廢氣 22 廢氣進料管 3〇空氣/水/助劑 20 M440814 32 空氣/水/助劑進料管 50 進料端 60 高溫脈衝波反應器本體 62 冷卻設施 64 冷卻流體入口 65 冷卻流體出口 70 爆轟促進器 71 導流式螺旋片 72 導流式螺旋片 73 螺旋管 80 點火裝置組 90 反應器出口法蘭 100反應產物 110進料步驟 120充滿步驟 130點燃步驟 140爆燃步驟 150爆燃加速步驟 160爆轟步驟 170熄焰步驟 180反震排出步驟F2+H2+2HF Since most of the harmful chemical waste gases containing PFCs are reacted, they are easily repolymerized into the most female compound CF4. Therefore, the harmful chemical waste gas containing pF〇s is used in the exhaust gas feed pipe. 22 While entering the high-temperature pulse wave reactor body 6〇, the air/water/auxiliary feed pipe 32 must be used to inject the appropriate amount of water 40 and air 30 required for the reaction, and simultaneously adjust and supply the M440B14 required for the reaction. Appropriate water 40 content and oxygen 3 〇, so that PFCs can be converted into HF and C02' to get better damage removal efficiency. By using the high temperature, high pressure and intense eddy current supplied to the warm pulse wave reactor 1, the most stable compound CF4 is also rapidly destroyed by the high temperature and high pressure of the detonation shock wave. CF4 is a very stable compound, and the pyrolysis and destruction of OR need to supply a large amount of energy, and at the same time, it requires a high activation energy; the reaction formula of CF* for pyrolysis reaction and the heat of reaction ΔΗ are as follows: CF4^ C( Soot) + F2 ΔΗ = +916 kJ/mol CF* in the high-temperature pulse wave reactor, the oxidation reaction with oxygen is still an endothermic reaction. The heat of reaction ΔΗ is as follows: CF4+〇2->C〇2+2F2 ΔΗ = +585 kJ/mol However, if CF4 is oxidized with oxygen and hydrogen in the presence of hydrogen, it becomes an exothermic reaction, and the reaction releases the heat of reaction ΔΗ as follows: # CF4+〇2+2H2-> C02 + 4HF ΔΗ = -557 kJ/mol Therefore, for the treatment of harmful chemical waste gas containing PFCs, it is preferable to use hydrogen gas for the chemical reaction. The detonation booster 70 is mounted in the warm pulse wave reactor body 60 for the purpose of promoting the mixing of the fuel 10, the hazardous chemical exhaust gas 20 and the air/water/auxiliary 32, and secondly, when the mixed gas is ignited, detonation The promoter 7 is required to accelerate the combustion reaction of the mixed gas to rapidly detonate. Therefore, the detonation booster provides a fine, loud static-mixing device design as in the third three: 'using the combination of the deflecting spiral 71 and the guiding spiral 72, the combination and cutting to achieve a winning effect; mixing The gas acts as a forced mixing of the gas due to the swirling flow of the flow guiding vane 72. The principle of basin action is the gas test _ _ _ 71_ type spiral piece 72 After the combination of the detonation accelerator 70 of f, the mixed gas will form a vortex rotation, and the mixed gas will be divided and converged by the blade to generate a mixed force. Therefore, the forced mixing effect can be achieved without using a power unit. Generally, the blades of the flow guiding spiral 71 and the guiding spiral 72 can be designed to be twisted (10) degrees or left-handed and right-handed at any angle. When the combined blades are connected one by one, the left-handed blade and the right-handed can be rotated. The blades are alternately combined, or all of the rotating blades in the same direction are used. Each blade is mounted at a 9 degree angle. When the liquid flows through the first flow guiding spiral blade 71, if it rotates in a clockwise manner, it will be cut into a second injury, and when it flows to the second flow guiding spiral blade 72, it may be in the same direction or in the opposite direction. The flow is rotated in the hour hand direction, and then the paste m is repeated and the above action is repeated. [When the fluid flows through the nth piece of the flow guiding type spiral, it is cut into 2n parts plus the rotation of the fluid to achieve a good mixing effect. If the high temperature reaction requires a long residence time, the detonation promoter 7 can also be designed as a static agitation device that provides a milder mixing, as shown in Fig. 4, with the spiral tube 73 as a gentle agitation. Static stirring device. Due to the flame tempering toward the inlet end of the high-temperature pulse wave reactor body 6〇, the 'detonation speed is extremely fast'. The frequency of detonation is mainly caused by the feed rate and high temperature of fuel, harmful chemical waste gas and M440814 air/water/auxiliary mixture. The operating temperature and dust force of the pulse wave reactor body are determined by the operating temperature and dust force. The faster the feed rate, the higher the temperature and the lower the frequency, the higher the frequency of the _ blast. The speed, temperature and pressure of the detonation high-temperature shock wave 2 mainly depend on the concentration, composition, temperature and movement of the neon gas, regardless of the feed rate. In order to ensure the safety of the operation of the equipment, the ignition unit 8〇 uses at least two ignition devices' as shown in Fig. 5, which may be used in part or in whole; or part of the button can be switched and replaced on the line, so that the high temperature pulse wave reactor body 60 It can be operated year-round without downtime maintenance. The ignition device group 80 can also adopt three ignition devices, as shown in Fig. 6; four ignition devices can also be used, as shown in Fig. 7, any counting ignition device can also be used, which can be partially or fully used. 'Or σ 卩 use and can be switched and replaced on-line, so that the high-temperature pulse wave reactor body (9) can be operated year-round without downtime maintenance. The ignition unit 80 is the simplest to use a spark plug (Spark piug) or a heated spark plug (G10W Plug), but other equipment such as an electric heater can be used as the igniter to provide a gas having a local temperature higher than the auto-ignition temperature. Fluorine N gas, oxygen, water, catalyst, etc., can be fed to the high temperature pulse wave reactor body 6 by air/water/assisted feed tube 32. The amount of air 3 〇 and water 40 fed depends primarily on the chemical reaction to be completed. Since the temperature pulse wave reactor body 60 is repeatedly swept by the high temperature and high pressure detonation high temperature shock wave, the temperature is gradually increased. When the high temperature pulse wave reactor body 60 is swollen, the temperature reaches the fuel 10, and the spontaneous combustion temperature of the chemical exhaust gas 20 is CAutcngnition Temperature) After that, the gas mixture will burn automatically. Therefore, as shown in Fig. 1, in order to effectively control and apply the detonation characteristics, a cooling jacket 62 is disposed outside the high temperature pulse wave reactor body 60 to allow the cooling fluid to enter the cooling jacket 62' from the cold portion fluid inlet 64. The outer wall of the high-temperature pulse wave reactor body 6 is subjected to heat exchange, and the energy I of the outer wall of the high-temperature pulse wave reactor body 6 is taken away, and is excluded by the cooling fluid outlet 65. It is possible to use circulating cooling water or hazardous chemical exhaust gas as the cooling fluid. After the outer wall of the high-temperature pulse wave reactor body 6 is cooled, the internal average temperature is kept lower than the auto-ignition temperature of the fuel 1〇 and the harmful chemical waste gas 2’, and the stable operation of the high-temperature pulse wave reactor body 6G can be maintained. The air/water/auxiliary feed tube 32 can be a two-fluid nozzle for adequate atomization of water and even distribution throughout the gas stream. For PFCs processing equipment that normally connects four sets of exhaust gas inlets, it is necessary to treat 200 L/miri of Si I, (10), % and other gas mixed materials as harmful chemical waste 2Q per unit time. The traditional electro-grouting torch is required. Using 1〇~15 _ power, the high-temperature pulse wave reactor body 60 of this creation is only needed; the knife-level ignition set group 8〇 can achieve more than % destruction efficiency treatment target 'can save energy to reach about 99 %. The above description is intended to be illustrative, and not restrictive, and it is understood by those of ordinary skill in the art that the invention can be modified and changed without departing from the spirit and scope of the invention. All of them will fall within the limits of the scope of the patent application of this creation. M440814 [Simplified description of the drawing] Fig. 1: The harmful chemical waste gas in the feed material_Example of the high-temperature pulse wave reactorFig. 2: Example of the implementation procedure of the high-temperature pulse wave reactor with the hybrid material Figure 3. Example of a strong detonation accelerator for use in a high temperature pulse wave reactor for hazardous chemically pure treatment. Figure 4: High temperature pulse wave reactor for hazardous chemical exhaust gas treatment. Example of Weak Detonation Promoter Fig. 5: Example of the double-ignition device group used in the high-temperature pulse wave reactor of the harmful chemical pure treatment of the present invention. Figure 6 shows the harmful chemical pureness _ high temperature pulse wave Example of three sets of ignition devices used in the reactor. Figure 7. Example of four ignition devices used in the high-temperature pulse wave reactor of the test. [High-frequency pulse wave] 1 High-temperature pulse wave Reactor 2 Detonation High-temperature shock wave 3 Anti-shock wave 1〇 Fuel 12 Fuel feed pipe 20 Harmful chemical waste gas 22 Exhaust gas feed pipe 3〇 Air/water/auxiliary 20 M440814 32 Air/water/auxiliary feed pipe 50 Feed End 60 high temperature pulse Wave reactor body 62 Cooling facility 64 Cooling fluid inlet 65 Cooling fluid outlet 70 Detonation booster 71 Flow-through coil 72 Flow-through coil 73 Spiral tube 80 Ignition unit 90 Reactor outlet flange 100 reaction product 110 Material step 120 full step 130 ignition step 140 detonation step 150 deflagration acceleration step 160 detonation step 170 flameout step 180 anti-vibration discharge step
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101208896U TWM440814U (en) | 2012-05-11 | 2012-05-11 | Countercurrent pulse detonation reactor for the abatement of hazardous chemical emissions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101208896U TWM440814U (en) | 2012-05-11 | 2012-05-11 | Countercurrent pulse detonation reactor for the abatement of hazardous chemical emissions |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM440814U true TWM440814U (en) | 2012-11-11 |
Family
ID=47717191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101208896U TWM440814U (en) | 2012-05-11 | 2012-05-11 | Countercurrent pulse detonation reactor for the abatement of hazardous chemical emissions |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM440814U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103868081A (en) * | 2012-12-17 | 2014-06-18 | 张荣兴 | Method and device for treating volatile organic chemical waste gases and recovering energy sources |
-
2012
- 2012-05-11 TW TW101208896U patent/TWM440814U/en unknown
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103868081A (en) * | 2012-12-17 | 2014-06-18 | 张荣兴 | Method and device for treating volatile organic chemical waste gases and recovering energy sources |
CN103868081B (en) * | 2012-12-17 | 2016-08-10 | 张荣兴 | A kind of volatile organic chemical exhaust-gas treatment also reclaims the method and device of the energy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kailasanath | Liquid-fueled detonations in tubes | |
Sun et al. | Nonequilibrium plasma-assisted combustion: a review of recent progress | |
Zhang et al. | On the detonation propagation behavior in hydrogen-oxygen mixture under the effect of spiral obstacles | |
Liu et al. | Thrust vectoring of a continuous rotating detonation engine by changing the local injection pressure | |
CN205779304U (en) | A kind of pulse-knocking engine booster based on jet | |
Chen et al. | Experimental study of dielectric barrier discharge plasma-assisted combustion in an aero-engine combustor | |
Ye-Tao et al. | Change in continuous detonation wave propagation mode from rotating detonation to standing detonation | |
Liu et al. | Deflagration-to-detonation transition in nitromethane mist/aluminum dust/air mixtures | |
Chao et al. | An experimental investigation of the onset of detonation | |
Kichatov et al. | Combustion of heptane-in-water emulsion foamed with hydrogen-oxygen mixture | |
CN102679374B (en) | Device and method for burning residual organic fluorine liquid by using plasmas | |
TWM440814U (en) | Countercurrent pulse detonation reactor for the abatement of hazardous chemical emissions | |
CN103386279B (en) | Continuous chemical reaction method and detonation reactor using continuous chemical reaction method | |
US20050138933A1 (en) | Pulse detonation engine and method for initiating detonations | |
Li et al. | Detonation initiation in pulse detonation engines | |
TWI448657B (en) | A method of continuous chemical reaction by using countercurrent gas detonation wave and a detonation reactor using the method | |
Vasil′ ev | The principal aspects of application of detonation in propulsion systems | |
Baigmohammadi et al. | A numerical study on the effects of hydrogen addition levels, wall thermal conductivity and inlet velocity on methane/air pre-mixed flame in a micro reactor | |
Teng | The Effect of Hydrogen Concentration on the Flame Stability and Laminar Burning Velocity of Hydrogen-Hydrocarbon-Carbon Dioxide Mixtures | |
Plavnik | Pulse combustion technology | |
RU2550209C1 (en) | Method of ignition and combustion of fuel in athodyd | |
Wang et al. | Study on plasma combustion process in aero engine combustor | |
Vasil’ev | Monofuel as a source of bifurcation properties of multifuel systems | |
Kundu et al. | A simplified reaction mechanism for calculation of emissions in hydrocarbon (Jet-A) combustion | |
Zhang et al. | A direct simulation of continuous detonation engine with the Navier-Stokes equations |