TWM438644U - Thin and high-resolution lens structure - Google Patents

Thin and high-resolution lens structure Download PDF

Info

Publication number
TWM438644U
TWM438644U TW100219432U TW100219432U TWM438644U TW M438644 U TWM438644 U TW M438644U TW 100219432 U TW100219432 U TW 100219432U TW 100219432 U TW100219432 U TW 100219432U TW M438644 U TWM438644 U TW M438644U
Authority
TW
Taiwan
Prior art keywords
lens
mirror surface
mirror
thin high
high resolution
Prior art date
Application number
TW100219432U
Other languages
Chinese (zh)
Inventor
jian-xun Lai
Original Assignee
jian-xun Lai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by jian-xun Lai filed Critical jian-xun Lai
Priority to TW100219432U priority Critical patent/TWM438644U/en
Publication of TWM438644U publication Critical patent/TWM438644U/en

Links

Landscapes

  • Lenses (AREA)

Description

五、新型說明·· 【新型所屬之技術領威】 本創作係有關於一種薄型高解像力透鏡結構,特別 係藉由各透鏡之間的曲率、間距及光學參數所達成之具有 高解像力的透鏡結構。 【先前技術】 習知透鏡結構係使用於行動電話、筆記型電腦以及 攝像頭(webcam)等電子產品中的顯像鏡頭組。隨著此類電 子產品不斷地發展為更輕、薄、短、小且同時又必須具有 更局的效能’前述顯像鏡頭組中的影像感測器,如CCD 是電荷耦合元件或是CMOS互補金屬氧化物導體等,不 斷朝像咼畫素,這類透鏡結構也因而不斷地朝緊密化且更 高高解像力的方向發展。因此本創作係依據這類顯像鏡頭 組的發展需要,針對多片式透鏡結構,尤其是至少包括五 片透鏡之透鏡結構的薄型高解像力透鏡結構進行創作。 【新型内容】 本創作係有關於一種薄型高解像力透鏡結構,其主 要目的在於透過一至少包括五片透鏡之透鏡結構,提供一 結構緊密化且具高解像力之薄型透鏡結構。 本創作之薄型高解像力透鏡結構的次一目的係可提 供一透鏡結構’並可在緊密化結構中,具有較佳的成像效 果0 "v1!正 本創作之薄型高解像力透鏡結構的再^ -透鏡結構’並可應用於成像光學裝置,包括電 =智慧型手機、PC CAM、手提電腦料式電子產 οσ或視訊設備之微型顯像鏡頭組中。 一山本創作係有關於一種薄型高解像力透鏡結構,其係 :端定義為一物侧且另一端定義為一像側,並包括一透 鏡^其係包括一第一透鏡、一第二透鏡、一第三透鏡、 鏡以及-第五透鏡,且該些透鏡分別係自該物側 亥像侧依序排列而構成一光學結構;其中該第-透鏡係 2 5度且包括一第一鏡面以及-第二鏡面,該第-鏡面 第二鏡面分別係朝向該物側以及該像側的-弧面;該 第二透鏡係負屈光度且包括一第三鏡面以及一第四鏡 δ第一鏡面以及5玄第四鏡面分別係朝向該物側以及該 像側的-弧面’·該第三透鏡係負屈光度且包括一第五鏡面 以及-第六鏡面,該第五鏡面以及該第六鏡面分別係朝向 該物側以及該像側的一弧面;該第四透鏡係包括一第七鏡 面以及-第八鏡面,該第七鏡面以及第八鏡面分別係朝向 該物側以及该像側的一弧面;以及該第五透鏡係包括一第 九鏡面以及-第十鏡面’該第九鏡面以及第十鏡面分別係 朝向該物側以及該像側的—弧面。 前述之第-it鏡中的第一鏡面與第二鏡面進一步分 別係選擇為-凸面’且該第_鏡面與該第二鏡面的曲率半 徑係配合使得該第—透鏡為正屈光度。 前述之第—透鏡中的第-鏡面與第二鏡面進-步係 刀別選擇為一凸面以及一凹面,且該第一鏡面與該第二鏡 面的曲率半彳㈣配合使㈣第一透鏡為正屈光度。 刖述之第二透鏡中的第三鏡面盥 別係選擇為-凹面,且該第三鏡面與該第一步分 挫係配合使得該第二透料負屈光度。“的曲率半 前述之第二透鏡中的第三鏡面與第 分別選擇為-凹面以及-凸面,且該第三鏡=進—步係 面的曲率半録配合使得該第二透鏡為負屈光=第四鏡 前述之第二透鏡令的第三鏡面與第四 分別選擇為一凸面以及一凹面,且該第三面 V係 ”曲率半㈣配合使得該第二透鏡為—負屈光度= 則述之第二透鏡可以進一步係一負彎月透鏡。 2之第四透鏡與該第五透鏡可以係分別選擇為負 屈先度,、正屈光度。其中該第四透鏡中的該第七鏡面愈該 第八鏡面可以分別係選擇—凹面以及—凸面。另外,該第〆 四透鏡可以進一步係一負彎月透鏡。 ^ 前述之第五透鏡中的該第九鏡面可以係波浪狀且在 義近光軸附近為凸面,以及該第五透鏡中的該第十鏡面係 對應之波浪狀且在靠近光軸附近為凹面。 前述之第四透鏡中的該第七鏡面與該第八鏡面分別 係一凹面以及一凸面;以及該第五透鏡中的該第九鏡面與 5玄第十鏡面分別係一凸面以及一凹面。 前述之第五透鏡中的該第九鏡面係波浪狀以及在靠 近光軸附近為凸面,該第十鏡面係波浪狀以及在靠近光軸 附近為凹面。 前述之第四透鏡與該第五透鏡分別選擇為正屈光 M438644V. New Description·· 【New Technology Alliance】 This creation is about a thin high-resolution lens structure, especially a lens structure with high resolution achieved by the curvature, spacing and optical parameters between the lenses. . [Prior Art] A conventional lens structure is used for a developing lens group in an electronic product such as a mobile phone, a notebook computer, and a webcam. As such electronic products continue to evolve into lighter, thinner, shorter, smaller, and at the same time must have more performance, the image sensors in the aforementioned imaging lens group, such as CCD is a charge coupled component or CMOS complementary Metal oxide conductors, etc., continue to move toward the like, and such lens structures are thus constantly moving toward a tighter and higher resolution. Therefore, this creation is based on the development of such a development lens group, and is aimed at a multi-piece lens structure, particularly a thin high-resolution lens structure including a lens structure of at least five lenses. [New content] This creation relates to a thin high-resolution lens structure whose main purpose is to provide a thin lens structure with a compact structure and high resolution through a lens structure including at least five lenses. The second purpose of the thin high-resolution lens structure of the present invention is to provide a lens structure' and to have a better imaging effect in a compact structure. 0 "v1! The thin high-resolution lens structure of the original creation ^ The lens structure' can be applied to imaging optics, including the group of miniature imaging lenses, such as electric phones, smart phones, PC CAMs, laptop-based electronic products, or video devices. A Yamamoto creation system relates to a thin high-resolution lens structure, wherein the end is defined as an object side and the other end is defined as an image side, and includes a lens comprising a first lens, a second lens, and a a third lens, a mirror, and a fifth lens, wherein the lenses are sequentially arranged from the object side image side to form an optical structure; wherein the first lens system is 25 degrees and includes a first mirror surface and a second mirror surface, the second mirror surface of the first mirror surface is opposite to the object side and the arc surface of the image side; the second lens is negative diopter and includes a third mirror surface and a fourth mirror δ first mirror surface and 5 The fourth mirror surface is opposite to the object side and the image side of the arc surface. The third lens system has a negative refracting power and includes a fifth mirror surface and a sixth mirror surface. The fifth mirror surface and the sixth mirror surface are respectively a curved surface facing the object side and the image side; the fourth lens system includes a seventh mirror surface and an eighth mirror surface, wherein the seventh mirror surface and the eighth mirror surface are respectively an arc facing the object side and the image side And the fifth lens system includes a ninth Surface and - a tenth mirror 'the ninth and tenth specular mirror system respectively towards the object side and the image side - arc. The first mirror surface and the second mirror surface in the first-th mirror are further selected as a convex surface, and the first mirror surface is matched with the curvature radius of the second mirror surface such that the first lens has a positive refractive power. The first mirror surface and the second mirror surface step in the first lens are selected as a convex surface and a concave surface, and the first mirror surface and the second mirror surface are half-twisted (four) so that the (four) first lens is Positive diopter. The third mirror surface in the second lens is selected to be a concave surface, and the third mirror surface cooperates with the first step to cause the second lens to have a negative refracting power. "The third mirror surface of the second lens having the curvature half is selected as a concave surface and a convex surface, respectively, and the curvature of the third mirror = the step surface is semi-combined such that the second lens is negatively refractive. = the third mirror surface of the second lens of the fourth mirror is selected as a convex surface and a concave surface, respectively, and the third surface V system "curvature half (four) fits so that the second lens is - negative diopter = The second lens can be further a negative meniscus lens. The fourth lens of the second lens and the fifth lens may be selected as a negative refractive power and a positive refractive power, respectively. Wherein the seventh mirror surface of the fourth lens is selected to be a concave surface and a convex surface, respectively. Alternatively, the fourth lens may be further a negative meniscus lens. ^ The ninth mirror surface in the fifth lens may be wavy and convex in the vicinity of the near-optical optical axis, and the tenth mirror surface in the fifth lens is wavy and concave near the optical axis . The seventh mirror surface and the eighth mirror surface of the fourth lens are respectively a concave surface and a convex surface; and the ninth mirror surface and the fifth tenth mirror surface of the fifth lens are respectively a convex surface and a concave surface. The ninth mirror surface of the fifth lens is wavy and has a convex surface near the optical axis, and the tenth mirror surface is wavy and concave near the optical axis. The fourth lens and the fifth lens are respectively selected as positive refraction M438644

\°\ S 度。 -- 一. —- 前述之第四透鏡中的該第七鏡面與該第八鏡面可分 別係選擇一凸面以及一凹面。 前述之第四透鏡進一步係一正彎月透鏡。 前述之第五透鏡中的該第九鏡面與該第十鏡面分別 係一凸面以及一凹面。 前述之第五透鏡中的該第九鏡面可以係波浪狀且在 靠近光軸附近為凸面,以及該第十鏡面係對應之波浪狀且 在靠近光軸附近為凹面。 前述之薄形高解像力透鏡結構中進一步包括一固定 光圈,該固定光圈係一不可調的光圈結構,該固定光圈之 設置選自該第一透鏡朝向該物側處、該第一透鏡與該第二 透鏡之間、該第二透鏡與該第三透鏡之間、該第三透鏡與 該第四透鏡之間、該第四透鏡與該第五透鏡之間、該第五 透鏡與該濾透鏡之間以及該濾透鏡與該像側之間中的任 一位置。 前述之固定光圈係設置於該第一透鏡之第一鏡面 上〇 前述之薄形高解像力透鏡結構,其中進一步包括一 濾透鏡,該濾透鏡係一帶通的光學透鏡且設置於該第五透 鏡朝向該像側之一側處。 前述之第一透鏡之第一鏡面與第二鏡面、該第二透 鏡之第三鏡面與第四鏡面、該第三透鏡之第五鏡面與第六 鏡面、該第四透鏡之第七鏡面與第八鏡面以及該第五透鏡 7 M438644\°\ S degrees. - The fourth mirror surface of the fourth lens and the eighth mirror surface may be selected as a convex surface and a concave surface, respectively. The aforementioned fourth lens is further a positive meniscus lens. The ninth mirror surface and the tenth mirror surface of the fifth lens are respectively a convex surface and a concave surface. The ninth mirror surface of the fifth lens may be wavy and convex in the vicinity of the optical axis, and the tenth mirror surface corresponds to a wave shape and is concave near the optical axis. The thin high-definition lens structure further includes a fixed aperture, the fixed aperture being an unadjustable aperture structure, the fixed aperture being disposed from the first lens toward the object side, the first lens and the first Between the two lenses, between the second lens and the third lens, between the third lens and the fourth lens, between the fourth lens and the fifth lens, the fifth lens and the filter lens And any position between the filter lens and the image side. The fixed aperture is disposed on the first mirror surface of the first lens, the thin high-resolution lens structure, and further includes a filter lens, the filter lens is a band-passing optical lens and is disposed on the fifth lens. One side of the image side. The first mirror surface and the second mirror surface of the first lens, the third mirror surface and the fourth mirror surface of the second lens, the fifth mirror surface and the sixth mirror surface of the third lens, and the seventh mirror surface of the fourth lens Eight mirror surface and the fifth lens 7 M438644

之第九鏡面與第十鏡面皆可以係選擇為球 面曲面。 基於前述本創作薄形高解像力透鏡結構之具體實施 例中,該非球面曲面之定義係滿足下列公式: 2 = —-~~~+ Ah4 + Bh6 + Ch% + Dh10 + Ehn + Fhu + Gh16 l + [l-(k + \)c h ] 其中z為沿光軸方向在高度為h的位置以表面頂點作參考 的位置值,k為錐常度量,c為曲率半徑的倒數,且A、B、 C、D、E、F以及G為高階非球面係數。The ninth mirror surface and the tenth mirror surface can be selected as spherical surfaces. In the specific embodiment of the above-described thin-form high-resolution lens structure, the definition of the aspherical surface satisfies the following formula: 2 = —-~~~+ Ah4 + Bh6 + Ch% + Dh10 + Ehn + Fhu + Gh16 l + [l-(k + \)ch ] where z is the position value with reference to the surface apex at the position of height h in the optical axis direction, k is the cone constant metric, c is the reciprocal of the radius of curvature, and A, B, C, D, E, F, and G are high-order aspheric coefficients.

基於前述本創作薄形高解像力透鏡結構之具體實施 例中,定義Vdl係該第一透鏡之阿貝數,定義fl係該第 一透鏡焦距,以及定義f係該透鏡組之鏡頭整體的焦距, 且可以選擇Vdl>40以及0<fl/f<2。 基於前述本創作薄形高解像力透鏡結構之具體實施 例中,定義Vd2係該第二透鏡之阿貝數,定義f2係該第 二透鏡焦距,以及定義f係該透鏡組之鏡頭整體的焦距, 且可以選擇Vd2<30以及-5<f2/f<0。In a specific embodiment of the above-described thin-form high-resolution lens structure, Vdl is defined as the Abbe number of the first lens, fl is defined as the focal length of the first lens, and f is the focal length of the lens of the lens group. And you can choose Vdl > 40 and 0 <fl/f<2. In a specific embodiment of the above-described thin-form high-resolution lens structure, Vd2 is defined as the Abbe number of the second lens, f2 is defined as the focal length of the second lens, and f is the focal length of the lens of the lens group. And Vd2 < 30 and -5 < f2 / f < 0 can be selected.

基於前述本創作薄形高解像力透鏡結構之具體實施 例中,定義f3係該第三透鏡焦距,以及定義f係該透鏡 組之鏡頭整體的焦距,且可以選擇-500<f3/f<0。 基於前述本創作薄形高解像力透鏡結構之具體實施 例中,其中該像側進一步係一影像感測器,並係一光學影 像感應裝置,定義TTL係該透鏡組之總長度,以及定義 ImagH係該像側進一步係一影像感測器影之對角線半 長,且可以進一步選擇TTL/ImagH<2.5。 為使熟悉該項技藝人士瞭解本創作之目的、特徵及 8 功效 說明如i藉由下述具體實施例,並配合所附 pW·制克丨 乏圖式,· 【實施方式】 ,本創作能被更清楚的了解,以下將以—且 力透=Γ=。圖1係顯示本劍作薄型高解像 (5〇〇, 0 ^ ^ *间解像力透鏡結構係包括一透鏡組 -物侧n、nm 1作^型1^解像力透鏡結構—端係定義為 (5〇〇)係a、g ί㈣係定義為一像側(2GG) ’該透鏡組 =由複,個光學透鏡所構成,並至少包括一第一透 鏡(51〇) 一第二透鏡⑽)、—第三透鏡_、-第四透 ,(::以及一第五透鏡(55〇),且該些透鏡係分別自該物 側(_至該像側(200)依序排列形成一光學結構。因此, 該物側⑽)之物像光線經過該透鏡組(5⑽),並於 (200)處成像^ 再次參考® 1所顯*,摘作薄型高解像力透鏡結 構係進一步包括一固定光圈(300),該固定光圈(3〇〇)係一 不可調的光圈結構,並係設置於該物側(1〇〇)與該像側(細) 之間。 另外,本創作薄型高解像力透鏡結構可以係進一步 包括一濾透鏡(400),該濾透鏡(4〇〇)係一帶通的光學透 鏡,並係設置於該第五透鏡(550)朝向該像側(2〇〇)之一側 因此,基於前述本創作薄型高解像力透鏡結構,該 物側(100)之物像光線經過該透鏡組(500)時 定光圈(300)與該滤透鏡(400)而於該像側(200)處成像 前述本創作薄型高解像力透鏡結構之具體實施例的 透鏡組(500)中,該第一透鏡(510)係正屈光度且包括一第 一鏡面(511)以及一第二鏡面(512),該第一鏡面(511)與該 第一鏡面(512)分別係朝向該物侧(1 〇〇)以及該像侧(2〇〇) 的一弧面;該第二透鏡(520)係負屈光度且包括一第三鏡 面(521)以及一第四鏡面(522) ’該第三鏡面(521)以及該第 四鏡面(522)分別係朝向該物側(1 〇〇)以及該像側(2〇〇)的 一弧面;該第三透鏡(530)係負屈光度且包括一第五鏡面 (531)以及一第六鏡面(532),該第五鏡面(531)以及該第六 鏡面(532)分別係朝向該物側(1 〇〇)以及該像側(2〇〇)的— 弧面;該第四透鏡(540)係包括一第七鏡面(541)以及一第 八鏡面(542) ’該第七鏡面(541)以及第八鏡面(542)分別係 朝向該物側(100)以及該像側(200)的一弧面;以及該第五 透鏡(550)係包括一第九鏡面(551)以及一第十鏡面 (552),該第九鏡面(551)以及第十鏡面(552)分別係朝向該 物側(100)以及該像側(200)的一弧面。 前述本創作薄型高解像力透鏡結構之具體實施例 中,該固定光圈(300)之設置可以係選自該第一透鏡(51〇) 朝向該物側(100)處、該第一透鏡(510)與該第二透鏡(520) 之間、該第二透鏡(520)與該第三透鏡(53〇)之間、該第三 透鏡(530)與該第四透鏡(540)之間、該第四透鏡(540)與該 第五透鏡(550)之間、該第五透鏡(550)與該濾透鏡(400)之 間以及該濾透鏡(400)與該像側(200)之間中的任一位置。 表1係顯示本創作薄型高解像力透鏡結構之第一較 佳實施例的透鏡參數表及相關性能指數;圖2係顯示本創 作依據表1參數之較佳實施例的光學畸變圖;圖3係顯示 本創作依據表1參數之較佳實施例的光學場曲圖;以及圖 4係顯示本創作依據表1參數之較佳實施例的光學像差 圖。參考表1所顯示,且再次參考圖1所顯示,基於前述 本創作之技術内容,前述本創作薄型高解像力透鏡結構的 進一步具體實施例中,該固定光圈(300)可以進一步係設 置於該第一透鏡(510)之第一鏡面(511)的表面上;該第一 透鏡(510)中的第一鏡面(511)係選擇為一凸面,且該第二 鏡面(512)係選擇為一凸面,使得該第一透鏡(510)為正屈 光度;該第二透鏡(520)中的第三鏡面(521)係選擇為一凹 面,且該第二透鏡(520)中的第四鏡面(522)係選擇為一凹 面,使得該第二透鏡(520)係負屈光度;以及該第三透鏡 (530)中的第五鏡面(531)係選擇為一凹面,且該第三透鏡 (530)中的第六鏡面(532)係選擇為一凸面,使得該第三透 鏡(530)係負屈光度。另外,該第四透鏡(540)可以係選擇 為負屈光度且該第七鏡面(541)與該第八鏡面(542)分別係 一凹面以及一凸面;以及該第五透鏡(550)可以係選擇為 正屈光度且該第九鏡面(551)與該第十鏡面(552)分別係一 凸面以及一凹面。再者,基於本創作薄型高解像力透鏡結 構之第一較佳實施例,該些透鏡之鏡面所對應的曲率半 徑、厚度/間隔、折射率以及阿貝數可以係進一步如表1 所顯示。 【表1】 表面 曲率半徑 (Radius) 厚度/間隔 (Thickness) 折射率 _ 阿貝數 (Vd) 第一透鏡 (510) 第一鏡面 (511) 1.4342 0.6669 1.531000 56.0000 M438644 第二鏡面 (512) -6.4804 0.0456 - 第二透鏡 (520) 第三鏡面 (521) -4.5686 0.3500 1.631919 23.4160 第四鏡面 (522) 8.3634 0.1738 第三透鏡 (530) 第五鏡面 (531) -1.2610 0.3500 1.514000 57.0000 第六鏡面 (532) -1.4147 0.0554 第四透鏡 (540) 第七鏡面 (541) -2.1717 0.2725 1.531000 56.0000 第八鏡面 (542) -1.6696 0.2223 第五透鏡 (550) 第九鏡面 (551) 77.0741 1.3162 1.531000 56.0000 第十鏡面 (552) 2.8812 0.1968In the specific embodiment of the above-described thin-form high-resolution lens structure, f3 is defined as the focal length of the third lens, and f is the focal length of the lens of the lens group, and -500<f3/f<0 can be selected. In the embodiment of the present invention, the image side is further an image sensor, and is an optical image sensing device, which defines TTL as the total length of the lens group, and defines an ImagH system. The image side is further a diagonal half length of an image sensor shadow, and TTL/ImagH < 2.5 can be further selected. In order to familiarize the person skilled in the art, the purpose, characteristics and 8 function descriptions of the present invention are as follows, i, by the following specific embodiments, and with the accompanying pW·Knacking pattern, [Embodiment] To be more clearly understood, the following will be - and force = Γ =. Figure 1 shows that the sword is made into a thin high resolution (5〇〇, 0 ^ ^ * between the resolution lens structure includes a lens group - the object side n, nm 1 is the type 1 ^ resolution lens structure - the end system is defined as ( 5〇〇) is a, g ί (4) is defined as an image side (2GG) 'The lens group = consists of a complex optical lens, and includes at least a first lens (51 〇) a second lens (10), a third lens _, a fourth through, (:: and a fifth lens (55 〇), and the lens systems are sequentially arranged from the object side (_ to the image side (200) to form an optical structure Therefore, the object side (10) of the object image light passes through the lens group (5 (10)), and is imaged at (200). Referring again to the reference 1 , the thin high-resolution lens structure further includes a fixed aperture ( 300), the fixed aperture (3〇〇) is an unadjustable aperture structure, and is disposed between the object side (1〇〇) and the image side (fine). In addition, the present invention is a thin high resolution lens structure. The filter lens (400) may further include a band pass optical lens and is disposed on the fifth lens (550). On the side of the image side (2〇〇), therefore, based on the aforementioned thin-type high-resolution lens structure, the object-side (100) object image light passes through the lens group (500), the aperture (300) and the filter The lens (400) is imaged at the image side (200) in a lens group (500) of a specific embodiment of the aforementioned thin-type high resolution lens structure, the first lens (510) being positive diopter and including a first mirror (511) and a second mirror surface (512), the first mirror surface (511) and the first mirror surface (512) are respectively oriented toward the object side (1 〇〇) and an arc of the image side (2 〇〇) The second lens (520) is negatively refracting and includes a third mirror surface (521) and a fourth mirror surface (522) 'the third mirror surface (521) and the fourth mirror surface (522) are respectively facing the object a side (1 〇〇) and a curved surface of the image side (2 ;); the third lens (530) is negative diopter and includes a fifth mirror surface (531) and a sixth mirror surface (532), the first a five-mirror surface (531) and the sixth mirror surface (532) are respectively facing the object side (1 〇〇) and the image side (2 〇〇)-arc surface; The four lens (540) includes a seventh mirror surface (541) and an eighth mirror surface (542) 'the seventh mirror surface (541) and the eighth mirror surface (542) are respectively facing the object side (100) and the image side a curved surface of (200); and the fifth lens (550) includes a ninth mirror surface (551) and a tenth mirror surface (552), the ninth mirror surface (551) and the tenth mirror surface (552) are respectively a specific surface of the object side (100) and the image side (200). In the specific embodiment of the present invention, the fixed aperture (300) may be selected from the first lens ( 51〇) toward the object side (100), between the first lens (510) and the second lens (520), between the second lens (520) and the third lens (53〇), Between the third lens (530) and the fourth lens (540), between the fourth lens (540) and the fifth lens (550), the fifth lens (550) and the filter lens (400) And any position between the filter lens (400) and the image side (200). 1 is a lens parameter table and a related performance index of the first preferred embodiment of the present invention, and FIG. 2 is an optical distortion diagram showing a preferred embodiment of the parameters according to Table 1; The optical field curvature map of the preferred embodiment of the present invention in accordance with the parameters of Table 1 is shown; and FIG. 4 is an optical aberration diagram showing the preferred embodiment of the present document in accordance with the parameters of Table 1. Referring to Table 1, and referring again to FIG. 1, based on the foregoing technical content of the present invention, in a further specific embodiment of the present thin-type high-resolution lens structure, the fixed aperture (300) may be further disposed on the first a surface of the first mirror surface (511) of a lens (510); a first mirror surface (511) of the first lens (510) is selected to be a convex surface, and the second mirror surface (512) is selected to be a convex surface The first lens (510) is a positive refracting power; the third mirror surface (521) of the second lens (520) is selected to be a concave surface, and the fourth mirror surface (522) of the second lens (520) is selected. Selecting a concave surface such that the second lens (520) is negatively diffracted; and the fifth mirror surface (531) of the third lens (530) is selected to be a concave surface, and the third lens (530) is in the third lens (530) The sixth mirror surface (532) is selected to be a convex surface such that the third lens (530) is negatively diffracted. In addition, the fourth lens (540) may be selected as a negative refracting power and the seventh mirror surface (541) and the eighth mirror surface (542) are respectively a concave surface and a convex surface; and the fifth lens (550) may be selected. It is a positive refracting power and the ninth mirror surface (551) and the tenth mirror surface (552) are respectively convex and concave. Furthermore, based on the first preferred embodiment of the present invention, the curvature radius, thickness/interval, refractive index, and Abbe number of the mirror surfaces of the lenses can be further shown in Table 1. [Table 1] Surface radius of curvature (Radius) Thickness/Thickness Refractive index _ Abbe number (Vd) First lens (510) First mirror surface (511) 1.4342 0.6669 1.531000 56.0000 M438644 Second mirror surface (512) -6.4804 0.0456 - Second lens (520) Third mirror surface (521) -4.5686 0.3500 1.631919 23.4160 Fourth mirror surface (522) 8.3634 0.1738 Third lens (530) Fifth mirror surface (531) -1.2610 0.3500 1.514000 57.0000 Sixth mirror surface (532) -1.4147 0.0554 Fourth lens (540) Seventh mirror surface (541) -2.1717 0.2725 1.531000 56.0000 Eighth mirror surface (542) -1.6696 0.2223 Fifth lens (550) Ninth mirror surface (551) 77.0741 1.3162 1.531000 56.0000 Tenth mirror surface (552 ) 2.8812 0.1968

基於前述的各個實施例,該第一透鏡(510)之第一鏡 面(511)與第二鏡面(512)、該第二透鏡(520)之第三鏡面 (521)與第四鏡面(522)、該第三透鏡(530)之第五鏡面(531) 與第六鏡面(532)、該第四透鏡(540)之第七鏡面(541)與第 八鏡面(542)以及該第五透鏡(550)之第九鏡面(551)與第 十鏡面(552)皆可以係選擇為球面曲面或非球面曲面,且 該非球面曲面之定義係滿足下列公式: ru2 -—~~+ J/24 + 5/z6 + 〇28 + D/ζ10 + 五/212 + F/z14 + G/216 + … l + [l-(A: + l)c2^2]05 其中z為沿光軸方向在高度為h的位置以表面頂點作 參考的位置值,k為錐常度量,c為曲率半徑的倒數,且 A、B、C、D、E、F以及G為高階非球面係數。 表2係顯示本創作對應表1之較佳實施例的曲面參 數表。參考表2所顯示,其係基於前述本創作薄型高解像 力透鏡結構之非球面曲面定義,且更具體來說,該非球面 係數係選擇16次項為最高項次,而使得本創作薄型高解 12 M438644 像力透鏡結構之透鏡組得以實施前述表1之較奋實施例。 【表2】 表面 k A B c D E F G 第一 第_銳面 (511) 0 -8.59357E-03 1.95742E-02 -5.89844E-02 -1.42566E-02 5.14937E-02 1.738J2E-02 -9.56208E-02 (510) 第二鏡面 (512) 0 5.44916E-02 -3.91713E-02 -8.00415E-02 -1.94186E-02 1.87975E-02 -4.41829E-02 4.41740E-02 第二 透鏡 (520) 第三鏡面 (521) 0 1.50192E-01 -7.97305E-02 2.37141E-02 -5.49937E-02 -2.38279E-02 4.29720E-02 4.64489E-02 第四鏡面 (522) 0 1.20912E-01 6.6399 IE-02 -1.34743E-01 2.68420E-01 -2.55686E-01 1.55657E-01 4.00898E-09 第三 透鏡 第五鏡面 (531) 0 0 0 0 0 0 0 0 (530) 第六鏡面 (532) 0 -1.58662E-01 8.77846E-02 1.69925E-01 -1.21876E-01 -5.50308E-02 -7.06197E-02 1.12665E-01 第四 透鏡 第七鏡面 (541) 0 -2.88876E-01 4.09695E-01 •1.92677E-01 7.21293 E-02 -1.09261E-0I 8.95859E-03 2.75957E-02 (540) 第八鏡面 (542) 0 -1.54128E-03 1.25810E-01 1.00246E-02 -4.29912E.02 •7.30450E-03 1.57914E-02 -3.58498E-03 第五 透銳 第九鏡面 (551) 0 -2.22988E-02 2.01139E-02 -4.15395E-03 -5.31722E-04 3.41343E-04 -4.70379E-05 1.46657E-06 (550) 第十銳面 _(552)— 0 -7.20059E-02 1.55728E-02 -2.81467E-03 2.I8738E-04 4.6442 IE-06 -1.32368E-06 -1.9782 IE-08Based on the foregoing embodiments, the first mirror surface (511) and the second mirror surface (512) of the first lens (510), the third mirror surface (521) and the fourth mirror surface (522) of the second lens (520) a fifth mirror surface (531) and a sixth mirror surface (532) of the third lens (530), a seventh mirror surface (541) and an eighth mirror surface (542) of the fourth lens (540), and the fifth lens ( The ninth mirror surface (551) and the tenth mirror surface (552) of 550) may be selected as a spherical surface or an aspheric surface, and the definition of the aspheric surface satisfies the following formula: ru2 -—~~+ J/24 + 5 /z6 + 〇28 + D/ζ10 + five/212 + F/z14 + G/216 + ... l + [l-(A: + l)c2^2]05 where z is at height h in the direction of the optical axis The position is the position value with reference to the surface vertex, k is the cone constant metric, c is the reciprocal of the radius of curvature, and A, B, C, D, E, F, and G are high-order aspheric coefficients. Table 2 is a table showing the curved surface parameters of the preferred embodiment of Table 1 of the present creation. Referring to Table 2, it is based on the aspheric surface definition of the aforementioned thin-type high-resolution lens structure, and more specifically, the aspheric coefficient selects the 16th item as the highest order, and makes the creation thin high solution 12 M438644 A lens group of the force lens structure is capable of implementing the above-described comparative example of Table 1. [Table 2] Surface k AB c DEFG First _ sharp surface (511) 0 -8.59357E-03 1.95742E-02 -5.89844E-02 -1.42566E-02 5.14937E-02 1.738J2E-02 -9.56208E- 02 (510) Second mirror (512) 0 5.44916E-02 -3.91713E-02 -8.00415E-02 -1.94186E-02 1.87975E-02 -4.41829E-02 4.41740E-02 Second lens (520) Three mirrors (521) 0 1.50192E-01 -7.97305E-02 2.37141E-02 -5.49937E-02 -2.38279E-02 4.29720E-02 4.64489E-02 Fourth mirror (522) 0 1.20912E-01 6.6399 IE -02 -1.34743E-01 2.68420E-01 -2.55686E-01 1.55657E-01 4.00898E-09 Third lens Fifth mirror (531) 0 0 0 0 0 0 0 0 (530) Sixth mirror (532) 0 -1.58662E-01 8.77846E-02 1.69925E-01 -1.21876E-01 -5.50308E-02 -7.06197E-02 1.12665E-01 Fourth lens seventh mirror (541) 0 -2.88876E-01 4.09695E -01 •1.92677E-01 7.21293 E-02 -1.09261E-0I 8.95859E-03 2.75957E-02 (540) Eighth Mirror (542) 0 -1.54128E-03 1.25810E-01 1.00246E-02 -4.29912E .02 •7.30450E-03 1.57914E-02 -3.58498E-03 Fifth transparent ninth mirror surface (551) 0 -2.22988E-02 2.01139E-02 -4.15395E-03 -5.31722E-04 3.41343E-04 -4.70379E-05 1.46657E-06 (550) Tenth Face _(552)— 0 -7.20059E-02 1.55728E-02 -2.81467E-03 2.I8738E-04 4.6442 IE-06 - 1.32368E-06 -1.9782 IE-08

因此’參考圖2、圖3以及圖4所顯示,基於表1以 及表2參數之較佳實施例,本創作之薄型高解像力透鏡結 構可得到較佳的光學畸變、光學場曲以及光學像差。 前述木創作薄型高解像力透鏡結構之具體實施例 中’該第四透鏡(54〇)與該第五透鏡(550)可以係分別選擇 為負屈光度與正屈光度。另外,該第四透鏡(540)中的該 第七鏡面(541)與該第八鏡面(542)可分別係選擇一凹面以 及—凸面且進一步使得該第四透鏡(540)成為一負彎月透 鏡。再者’在該第五透鏡(550)係正屈光度的具體實施例 中’該第九鏡面(551)可以係波浪狀且在靠近光軸附近為 13 凸面’以及該第十鏡面(552)係對應之波浪狀且i靠遶光 軸附近為凹面。 再次參考圖1所顯示,本創作薄型高解像力透鏡結 構進一步具體實施例的透鏡組(500)中,定義Vdl係該第 一透鏡(510)之阿貝數,定義vd2係該第二透鏡(520)之阿 貝數,定義fl係該第一透鏡(51〇)焦距,定義f2係該第二 透鏡(520)焦距’定義β係該第三透鏡(530)焦距,定義f 係該透鏡組(500)之鏡頭整體的焦距。其中,該第一透鏡 (510)係一正屈光度的透鏡,且該第一透鏡(51〇)之參數可 以係選擇為Vdl>40,〇<fi/f<2 ;該第二透鏡(520)係一負 屈光度的透鏡’且該第二透鏡(520)之參數可以係選擇為 Vd2<30,-5<f2/f<0 ;以及該第三透鏡(530)係一負屈光度 的透鏡,且該第三透鏡(530)之參數可以係選擇為 -500<f3/f<0。 另外,前述之像側(200)進一步係一影像感測器且該 影像感測器係一光學影像感應裝置,用以感測該透鏡組 (500)所傳輸之光學影像訊號,並可以係選擇電荷耦合元 件(CCD)以及互補金屬氧化物導體(CMOS)中的任一光學 影像感應裝置。其中,定義TTL係該透鏡組(500)之總長 度,以及定義ImagH係該像側(200)之影像感測器的對角 線半長,X可以係選擇為TTL/ImagH<2.5,使得可進而達 成最佳成像效果。 再者,進一步定義f4係該第4透鏡(540)焦距,定義 f5係該第5透鏡(550)焦距,以及定義F/no係該固定光圈 (300)之光圈數值’並基於前述本創作之薄型高解像力透 鏡結構之表1以及表2參數之較佳實施例,該些參數係分 M438644 別為:Therefore, with reference to FIG. 2, FIG. 3 and FIG. 4, based on the preferred embodiments of the parameters of Table 1 and Table 2, the thin high-resolution lens structure of the present invention can obtain better optical distortion, optical curvature and optical aberration. . In the specific embodiment of the foregoing wood-creating thin high-resolution lens structure, the fourth lens (54〇) and the fifth lens (550) may be selected as negative diopter and positive refracting power, respectively. In addition, the seventh mirror surface (541) and the eighth mirror surface (542) in the fourth lens (540) can respectively select a concave surface and a convex surface and further make the fourth lens (540) become a negative meniscus. lens. Furthermore, in the specific embodiment of the fifth lens (550) positive diopter, the ninth mirror surface (551) may be wavy and has a 13 convex surface near the optical axis and the tenth mirror surface (552). Corresponding to the wave shape and i is concave near the optical axis. Referring again to FIG. 1 , in the lens group (500) of the further embodiment of the present invention, a VFD is defined as the Abbe number of the first lens (510), and vd2 is defined as the second lens (520). Abbe number, defining fl is the focal length of the first lens (51〇), defining f2 is the second lens (520) focal length 'defining β is the focal length of the third lens (530), defining f is the lens group ( 500) The overall focal length of the lens. Wherein, the first lens (510) is a positive diopter lens, and the parameter of the first lens (51〇) may be selected as Vdl>40, 〇<fi/f<2; the second lens (520) a negative diopter lens ' and a parameter of the second lens (520) may be selected as Vd2 < 30, -5 < f2 / f <0; and the third lens (530) is a negative diopter lens, And the parameter of the third lens (530) may be selected as -500 < f3 / f < 0. In addition, the image side (200) is further an image sensor and the image sensor is an optical image sensing device for sensing the optical image signal transmitted by the lens group (500), and can select Any of the optical image sensing devices of a charge coupled device (CCD) and a complementary metal oxide conductor (CMOS). Wherein, the TTL is defined as the total length of the lens group (500), and the diagonal half length of the image sensor of the image side (200) of the ImagH system is defined, and X can be selected as TTL/ImagH<2.5, so that In order to achieve the best imaging results. Furthermore, it is further defined that f4 is the focal length of the fourth lens (540), f5 is the focal length of the fifth lens (550), and F/no is defined as the aperture value of the fixed aperture (300) and is based on the aforementioned creation. A preferred embodiment of the parameters of Table 1 and Table 2 of the thin high resolution lens structure, the parameters of which are M438644 are:

F/no = 2.4 Vdl = 56 Vd2 = 23.416 fl/f= 0.5325 f2/f= -1.075 f3/f= -23.475 f4/f= 2.6737 f5/f=-1.3258 TTL/ImagH = 1.75 因此可透過以上各鏡片其相互間之適切光學參數、 焦距比值以及幾何參數比值,進而達成最佳成像效果。F/no = 2.4 Vdl = 56 Vd2 = 23.416 fl/f = 0.5325 f2/f= -1.075 f3/f= -23.475 f4/f= 2.6737 f5/f=-1.3258 TTL/ImagH = 1.75 Therefore, the above lenses are available The optical parameters, the focal length ratio and the geometric parameter ratio are adapted to each other to achieve the best imaging effect.

表3係顯示本創作薄型高解像力透鏡結構之第二較 佳實施例的透鏡參數表及相關性能指數;圖5係顯示本創 作薄型高解像力透鏡結構之第二較佳實施例的元件結構 示意圖;圖6係顯示本創作依據表3參數之較佳實施例的 光學畸變圖;圖7係顯示本創作依據表3參數之較佳實施 例的光學場曲圖;以及圖8係顯示本創作依據表3參數之 較佳實施例的光學像差圖。參考表3以及圖5所顯示,基 於前述本創作之技術内容,前述本創作薄型高解像力透鏡 結構的進一步具體實施例中,該固定光圈(300)可以進一 步係設置於該第一透鏡(510)之第一鏡面(511)的表面上; 該第一透鏡(510)中的第一鏡面(511)進一步係選擇為一凸 15 M4386443 is a lens parameter table and a related performance index of the second preferred embodiment of the present invention; FIG. 5 is a schematic view showing the structure of the second preferred embodiment of the present invention; 6 is an optical distortion diagram showing a preferred embodiment of the parameters according to Table 3; FIG. 7 is an optical field curvature diagram showing a preferred embodiment of the parameters according to Table 3; and FIG. 8 is a table showing the creation basis. An optical aberration diagram of a preferred embodiment of the 3 parameters. Referring to Table 3 and FIG. 5, based on the technical content of the present invention, in the further specific embodiment of the present invention, the fixed aperture (300) may be further disposed on the first lens (510). On the surface of the first mirror surface (511); the first mirror surface (511) in the first lens (510) is further selected as a convex 15 M438644

修正 面,且該第二鏡面(512)係進一步選擇為一凸得 第一透鏡(510)為正屈光度;該第二透鏡(520)中的第三鏡 面(521)進一步係一凹面,且該第二透鏡(520)中的第四鏡 面(522)進一步係選擇為一凹面,使得該第二透鏡(520)係 負屈光度;以及該第三透鏡(530)中的第五鏡面(531)進一 步係一凹面,且該第三透鏡(530)中的第六鏡面(532)係進 一步選擇為一凸面,使得該第三透鏡(530)係負屈光度。 另外,該第四透鏡(540)可以係選擇為正屈光度且該第七 鏡面(541)與該第八鏡面(542)分別係一凸面以及一凹面; 以及該第五透鏡(550)可以係選擇為正屈光度且該第九鏡 面(551)與該第十鏡面(552)分別係一凸面以及一凹面。其 中在另一具體實施例中,該些透鏡之鏡面所對應的曲率半 徑、厚度/間隔、折射率以及阿貝數係如表3所顯示。 【表3】 表面 曲率半徑 (Radius) 厚度/間隔 (Thickness) 折射率 (Nd) 阿貝數 (Vd) 第一透鏡 (510) 第一鏡面(511) 1.7279 0.6019 1.531000 56.0000 第二鏡面(512) -23.1079 0.1983 第二透鏡 (520) 第三鏡面(521) -16.6003 0.3174 1.632000 23.4000 第四鏡面(522) 4.8410 0.8519 第三透鏡 (530) 第五鏡面(531) -2.0897 0.4000 1.531000 56.0000 第六鏡面(532) -2.2428 0.0400 第四透鏡 (540) 第七鏡面(541) 1.6698 0.7501 1.531000 56.0000 第八鏡面(542) 1.7052 0.5883 第五透鏡 (550) 第九鏡面(551) 9.3180 0.6156 1.583000 30.2000 第十鏡面(552) 3.6215 0.1495 表4係顯示本創作對應表3之較佳實施例的曲面參 M438644 ^mi 數表。參考表4所顯示,其係基於前述本創作薄型高解像 力透鏡結構之非球面曲面定義,且更具體來說,該非球面 係數係選擇16次項為最高項次,而使得本創作薄型高解 像力透鏡結構之透鏡組得以實施前述表3之較佳實施例。 【表4】 表面 k A Β C D Ε F G 第一透鏡 第一鏡面 (511) -0.336023 -6.79753E-03 -1.21825Ε-02 -8.89734Ε-03 -4.77704Ε-02 0 0 0 (510) 第二鏡面 (512) -289.556 -5.62779E-02 -5.01112Ε-02 -1.94701Ε-02 -4.19300Ε-03 -7.78327Ε-05 0 0 第二透鏡 第三鏡面 (521) 189.85 •2.05666E-02 -4.79899Ε-02 2.87048Ε-02 4.13272Ε-02 -6.28976Ε-03 0 0 (520) 第四鏡面 (522) 10.0604 3.06895E-02 -3.32699Ε-02 5.22060Ε-02 1.67415Ε-03 2.02463Ε-04 0 0 第三透鏡 第五鏡面 (531) -17.2027 5.97978E-03 -5.01377Ε-02 2.58889Ε-02 -5.51931Ε-03 -2.79108Ε-03 0 0 (530) 第六鏡面 (532) -0.981773 -1.30298E-02 2.29398Ε-02 -4.57829Ε-03 -1.57451Ε-04 1.67664Ε-04 0 0 第四透鏡 第七鏡面 (541) -8.61296 •5.56938E-02 1.06709Ε-02 3.29966Ε-04 -5.88489Ε-04 6.04532Ε-05 0 0 (540) 第八鏡面 (542) -3.75996 -4.42236Ε·02 8.68929Ε-03 -1.39591Ε-03 9.89145Ε-05 -7.50625Ε-06 0 0 第五透銳 第九鏡面 (551) -175.913 ·1.96092Ε·02 5.24263Ε-03 -4.60817Ε-04 1.44381Ε-05 0 0 0 (550) 第十鏡面 (552) -0.328042 -4.61990Ε-02 1.70211Ε-03 7.83108Ε-04 -8.30973Ε-05 2.30696Ε-06 -5.29238Ε-08 0Correcting the surface, and the second mirror surface (512) is further selected to be a convex first lens (510) having a positive refractive power; the third mirror surface (521) of the second lens (520) is further a concave surface, and the The fourth mirror surface (522) of the second lens (520) is further selected to be a concave surface such that the second lens (520) is negatively diffracted; and the fifth mirror surface (531) of the third lens (530) is further A concave surface is formed, and the sixth mirror surface (532) of the third lens (530) is further selected to be a convex surface such that the third lens (530) is negatively diffracted. In addition, the fourth lens (540) may be selected as a positive refracting power and the seventh mirror surface (541) and the eighth mirror surface (542) are respectively a convex surface and a concave surface; and the fifth lens (550) may be selected. It is a positive refracting power and the ninth mirror surface (551) and the tenth mirror surface (552) are respectively convex and concave. In another embodiment, the curvature radius, thickness/interval, refractive index, and Abbe number corresponding to the mirror faces of the lenses are as shown in Table 3. [Table 3] Surface Radius (Radius) Thickness/Thickness Refractive Index (Nd) Abbe's Number (Vd) First Lens (510) First Mirror (511) 1.7279 0.6019 1.531000 56.0000 Second Mirror (512) - 23.1079 0.1983 Second lens (520) Third mirror surface (521) -16.6003 0.3174 1.632000 23.4000 Fourth mirror surface (522) 4.8410 0.8519 Third lens (530) Fifth mirror surface (531) -2.0897 0.4000 1.531000 56.0000 Sixth mirror surface (532) -2.2428 0.0400 Fourth lens (540) Seventh mirror surface (541) 1.6698 0.7501 1.531000 56.0000 Eighth mirror surface (542) 1.7052 0.5883 Fifth lens (550) Ninth mirror surface (551) 9.3180 0.6156 1.583000 30.2000 Tenth mirror surface (552) 3.6215 0.1495 Table 4 shows the surface parameter M438644^mi number table of the preferred embodiment of this creation corresponding to Table 3. Referring to Table 4, it is based on the aspheric surface definition of the aforementioned thin-type high-resolution lens structure, and more specifically, the aspheric coefficient selects the 16th item as the highest order, and the thin-type high-resolution lens structure is created. The lens group is capable of implementing the preferred embodiment of Table 3 above. [Table 4] Surface k A Β CD Ε FG First lens First mirror surface (511) -0.336023 -6.79753E-03 -1.21825Ε-02 -8.89734Ε-03 -4.77704Ε-02 0 0 0 (510) Second Mirror (512) -289.556 -5.62779E-02 -5.01112Ε-02 -1.94701Ε-02 -4.19300Ε-03 -7.78327Ε-05 0 0 Second lens third mirror (521) 189.85 •2.05666E-02 -4.79899 Ε-02 2.87048Ε-02 4.13272Ε-02 -6.28976Ε-03 0 0 (520) Fourth mirror (522) 10.0604 3.06895E-02 -3.32699Ε-02 5.22060Ε-02 1.67415Ε-03 2.02463Ε-04 0 0 Third lens Fifth mirror surface (531) -17.2027 5.97978E-03 -5.01377Ε-02 2.58889Ε-02 -5.51931Ε-03 -2.79108Ε-03 0 0 (530) Sixth mirror surface (532) -0.981773 -1.30298 E-02 2.29398Ε-02 -4.57829Ε-03 -1.57451Ε-04 1.67664Ε-04 0 0 Fourth lens seventh mirror surface (541) -8.61296 •5.56938E-02 1.06709Ε-02 3.29966Ε-04 -5.88489Ε -04 6.04532Ε-05 0 0 (540) Eighth Mirror (542) -3.75996 -4.42236Ε·02 8.68929Ε-03 -1.39591Ε-03 9.89145Ε-05 -7.50625Ε-06 0 0 Fifth Thorough ninth Mirror (551) -175.913 ·1.96092Ε·02 5.24263Ε-03 -4.60817Ε-04 1.44381Ε -05 0 0 0 (550) Tenth mirror (552) -0.328042 -4.61990Ε-02 1.70211Ε-03 7.83108Ε-04 -8.30973Ε-05 2.30696Ε-06 -5.29238Ε-08 0

因此,參考圖6、圖7以及圖8所顯示,基於表3以 及表4參數之較佳實施例,本創作之薄型高解像力透鏡結 構可得到較佳的光學畸變、光學場曲以及光學像差。 前述本創作薄型高解像力透鏡結構之具體實施例 中’該第四透鏡(540)與該第五透鏡(550)可以皆係選擇為 正屈光度’且該第四透鏡(540)中的該第七鏡面(541)與該 第八鏡面(542)可分別係選擇一凸面以及一凹面且進一步 17 M438644 使得該第四透鏡(540)成為一正彎月透鏡。再者,在該第 五透鏡(550)係正屈光度的具體實施例中,該第九鏡面(mi) 可以係波浪狀且在靠近光轴附近為凸面,以及該第十鏡面 (552)係對應之波浪狀且在靠近光軸附近為凹面。 再次參考圖5所顯示本創作薄型高解像力透鏡結構 的具體實施例’該第一透鏡(510)係一正屈光度的透鏡, 且該第一透鏡(510)之參數可以係選擇為vdl >40, 0<fl/f<2;該第二透鏡(520)係一負屈光度的透鏡,且該第 二透鏡(520)之參數可以係選擇為Vd2<30,-5<f2/f<0 ;該 第三透鏡(530)係一負屈光度的透鏡,且該第三透鏡(530) 之參數可以係選擇為-500<f3/f<0;以及本創作薄型高解像 力透鏡結構係可以選擇TTL/ImagH<2.5,因此,基於前述 本創作之薄型高解像力透鏡結構之表3以及表4參數之較 佳實施例,該些參數係分別為: F/no = 2.85 Vdl = 56 Vd2 = 23.4 fl/f= 0.7209 f2/f= -1.3921 f3/f= -145.2915 f4/f= 4.2823 f5/f= -2.4983 TTL/ImagH = 1.7851 18 M438644 因此可透過以上各鏡片其相互間之適切光學參數、 焦距比值以及幾何參數比值’進而達成最佳成像效果。 表5係顯示本創作薄型高解像力透鏡結構之第三較 佳實施例的透鏡參數表及相關性能指數;圖9係顯示本創 作薄型高解像力透鏡結構之第三較佳實施例的元件結構 示意圖;圖10係顯示本創作依據表5參數之較佳實施例 的光學畸變圖;圖11係顯示本創作依據表5參數之較佳 實施例的光學場曲圖;以及圖12係顯示本創作依據表5 參數之較佳實施例的光學像差圖。參考表5以及圖9所顯 示,基於前述本創作之技術内容,前述本創作薄型高解像 力透鏡結構的進一步具體實施例中,該固定光圈(300)可 以進一步係設置於該第一透鏡(510)之第一鏡面(511)的表 面上;該第一透鏡(51〇)中的第一鏡面(511)進一步係選擇 為一凸面,且該第二鏡面(512)係進一步選擇為一凸面, 使得該第一透鏡(510)為正屈光度;該第二透鏡(52〇)中的 第三鏡面(521)進一步係一凹面,且該第二透鏡(52〇)中的 第四鏡面(522)進一步係選擇為一凹面,使得該第二透鏡 (520)係負屈光度;以及該第三透鏡(53〇)中的第五鏡面 (531) 進一步係一凹面,且該第三透鏡(530)中的第六鏡面 (532) 係進一步選擇為一凸面,使得該第三透鏡(530)係負 屈光度。另外,該第四透鏡(540)可以係選擇為正屈光度 且該第七鏡面(541)與該第八鏡面(542)分別係一凸面以及 一凹面;以及該第五透鏡(550)可以係選擇為正屈光度且 該第九鏡面(551)與該第十鏡面(552)分別係一凸面以及一 凹面。其中在另一具體實施例中,該些透鏡之鏡面所對應 的曲率半徑、厚度/間隔、折射率以及阿貝數係如表5所 19 M438644 顯示。 【表5】 表面 曲率半徑 (Radius) 厚莩/間隔 (Thickness) 折射率 (Nd) 阿貝數 (Vd) 第一透鏡 第一鏡面(511) 1.4792 0.7293 1.531000 (510) 第二鏡面(512) -3.8134 0.0400 56.0000 第二透鏡 第三鏡面(521) -2.9236 0.4000 1.631919 (520) 第四鏡面(522) 21.7236 0.2175 23.4160 第三透鏡 第五鏡面(531) -1.8122 0.4008 1.514000 57.0000 (530) 第六鏡面(532) -2.5440 0.0426 第四透鏡 第七鏡面(541) 18.6682 0.4000 1.531000 56.0000 (540) 第八鏡面(542) 5.7749 0.1322 第五透鏡 第九鏡面(551) 2.8083 1.2500 1.514000 57.0000 (550) 第十鏡面(552) 2.4725 0.1532Therefore, referring to FIG. 6, FIG. 7, and FIG. 8, based on the preferred embodiments of the parameters of Table 3 and Table 4, the thin high resolution lens structure of the present invention can obtain better optical distortion, optical curvature and optical aberration. . In the specific embodiment of the present thin-type high-resolution lens structure, the fourth lens (540) and the fifth lens (550) may both be selected as positive diopter' and the seventh in the fourth lens (540). The mirror surface (541) and the eighth mirror surface (542) can respectively select a convex surface and a concave surface and further 17 M438644 to make the fourth lens (540) a positive meniscus lens. Furthermore, in a specific embodiment in which the fifth lens (550) is positive in diopter, the ninth mirror surface (mi) may be wavy and convex near the optical axis, and the tenth mirror surface (552) corresponds to It is wavy and concave near the optical axis. Referring again to the specific embodiment of the present invention for creating a thin high-resolution lens structure, the first lens (510) is a positive diopter lens, and the parameters of the first lens (510) can be selected as vdl > 40 0<fl/f<2; the second lens (520) is a negative diopter lens, and the parameter of the second lens (520) may be selected as Vd2 < 30, -5 < f2 / f <0; The third lens (530) is a negative diopter lens, and the parameter of the third lens (530) can be selected as -500<f3/f<0; and the thin-type high-resolution lens structure can be selected as TTL/ ImagH < 2.5, therefore, based on the preferred embodiment of Table 3 and Table 4 parameters of the thin high resolution lens structure of the present invention, the parameters are: F / no = 2.85 Vdl = 56 Vd2 = 23.4 fl / f = 0.7209 f2/f= -1.3921 f3/f= -145.2915 f4/f= 4.2823 f5/f= -2.4983 TTL/ImagH = 1.7851 18 M438644 Therefore, the optical parameters, focal length ratio and geometry of the above lenses can be adapted to each other. The parameter ratio 'in order to achieve the best imaging results. 5 is a lens parameter table and a related performance index of the third preferred embodiment of the present invention; FIG. 9 is a schematic view showing the structure of the third preferred embodiment of the present invention; 10 is an optical distortion diagram showing a preferred embodiment of the parameters according to Table 5; FIG. 11 is an optical field curvature diagram showing a preferred embodiment of the parameters according to Table 5; and FIG. 12 is a table showing the creation basis. An optical aberration diagram of a preferred embodiment of the parameters. Referring to Table 5 and FIG. 9, based on the technical content of the present invention, in the further embodiment of the present invention, the fixed aperture (300) may be further disposed on the first lens (510). On the surface of the first mirror surface (511); the first mirror surface (511) of the first lens (51〇) is further selected as a convex surface, and the second mirror surface (512) is further selected as a convex surface, so that The first lens (510) is a positive refracting power; the third mirror surface (521) of the second lens (52 进一步) is further concave, and the fourth mirror surface (522) of the second lens (52 进一步) is further Selecting a concave surface such that the second lens (520) is negative diopter; and the fifth mirror surface (531) of the third lens (53 进一步) is further concave, and the third lens (530) The sixth mirror surface (532) is further selected to be a convex surface such that the third lens (530) is negatively diffracted. In addition, the fourth lens (540) may be selected as a positive refracting power and the seventh mirror surface (541) and the eighth mirror surface (542) are respectively convex and concave; and the fifth lens (550) may be selected. It is a positive refracting power and the ninth mirror surface (551) and the tenth mirror surface (552) are respectively convex and concave. In another embodiment, the radius of curvature, thickness/interval, refractive index, and Abbe number of the mirror faces of the lenses are as shown in Table 5, 19 M438644. [Table 5] Surface Radius (Radius) Thickness/Thickness Refractive Index (Nd) Abbe's Number (Vd) First Lens First Mirror (511) 1.4792 0.7293 1.531000 (510) Second Mirror (512) - 3.8134 0.0400 56.0000 Second lens Third mirror surface (521) -2.9236 0.4000 1.631919 (520) Fourth mirror surface (522) 21.7236 0.2175 23.4160 Third lens Fifth mirror surface (531) -1.8122 0.4008 1.514000 57.0000 (530) Sixth mirror surface (532 ) -2.5440 0.0426 Fourth lens seventh mirror surface (541) 18.6682 0.4000 1.531000 56.0000 (540) Eighth mirror surface (542) 5.7749 0.1322 Fifth lens ninth mirror surface (551) 2.8083 1.2500 1.514000 57.0000 (550) Tenth mirror surface (552) 2.4725 0.1532

【表6】 表 面 k A B C D E F G 第一透鏡 (510) 第一鏡面 (511) 0 -6.8048 IE-03 •5.57676E-03 -2.36887E-03 -5.81068E-02 5.66847E-02 -6.10794E-03 -4.46659E-02 第二鏡面 (512) 0 1.31041E-01 -8.64227E-02 -7.68676E-02 -6.36294E-02 1.08417E-01 -7.51032E-03 -2.16477E-02 第二透鏡 (520) 第三鏡面 (521) 0 2.43295E-01 -1.68842E-01 7.52098E-02 -8.73904E-02 3.68592E-03 1.11543E-01 -4.31225E-02 第四鏡面 (522) 0 1.60867E-01 -2.93170E-02 2.62419E-02 1.57476E-01 -1.97693E-01 1.28192E-01 9.55491 E-07 第三透鏡 (530) 第五鏡面 (531) 0 0 0 0 0 0 0 0 第六鏡面 (532) 0 -1.45293E-01 7.81769E-02 6.82156E-02 -I.55733E-01 8.89174E-02 -2.13916E-02 1.39642E-03 第四透鏡 (540) 第七鏡面 (541) 0 •1.59487E-01 1.07014E-01 •9.4766 IE-02 1.08575E-01 -8.19877E-02 -1.I5766E-03 1.07Π3Ε-02 第八鏡面 (542) 0 •2.72302E-01 1.48429E-01 3.83648E-02 -3.60068E-02 •1.21034E-02 1.09848E-02 -1.80619E-03 第五透鏡 第九銳面 (551) 0 -3.81995E-01 1.82561E-01 -4.92078E-03 -1.1I744E-02 -1.61746E-03 9.91559E-04 -3.92723E-05 20 (550) M438644 第十鏡面 (552) -1.06977E-01 2.15858E-02 •2.I0129E-03 -4.0933 IE-04 3.12030E-05 Ι.90399Ε·05 •2.54387Ε-06 • 表6係顯示本創作對應表5之較佳實施例的曲面參 . 數表。參考表6所顯示,其係基於前述本創作薄型高解像 力透鏡結構之非球面曲面定義,且更具體來說,該非球面 係數係選擇16次項為最高項次,而使得本創作薄型高解 像力透鏡結構之透鏡組得以實施前述表5之較佳實施例。 因此’參考圖1〇、圖U以及圖12所顯示基於表 5以及表6參數之較佳實施例,本創作之薄型高解像力透 • 鏡結構可得到較佳的光學畸變、光學場曲以及光學像差。 前述本創作薄型高解像力透鏡結構之各個具體實施 例中,該第一透鏡(51〇)中的第一鏡面(511)係選擇為一凸 面,且該第二鏡面(512)可以係進一步選擇為一凹面,使 得該第一透鏡(510)係正屈光度。 前述本創作薄型高解像力透鏡結構之各個具體實施 例中,該第二透鏡(520)中的第三鏡面(521)係—凹面,且 該第二透鏡(520)可以係進一步選擇為一凸面,使得該第 二透鏡(520)係負屈光度。 另外’前述本創作薄型高解像力透鏡結構之各個具 體實施例中,該第二透鏡(520)中的第三鏡面(521)可以係 選擇為一凸面,且該第二透鏡(520)可以係進一步選擇為 一凹面,使得該第二透鏡(520)係負屈光度。 前述本創作薄型高解像力透鏡結構之各個具體實施 例中,該第三透鏡(530)中的該第五鏡面(531)與該第六鏡 面(532)可以分別係選擇一凹面以及一凸面且進—步使得 21 M438644 成該第三透鏡(530)為一負彎月透鏡 (530)係負屈光度》[Table 6] Surface k ABCDEFG First lens (510) First mirror surface (511) 0 -6.8048 IE-03 •5.57676E-03 -2.36887E-03 -5.81068E-02 5.66847E-02 -6.10794E-03 - 4.46659E-02 Second Mirror (512) 0 1.31041E-01 -8.64227E-02 -7.68676E-02 -6.36294E-02 1.08417E-01 -7.51032E-03 -2.16477E-02 Second Lens (520) Third mirror (521) 0 2.43295E-01 -1.68842E-01 7.52098E-02 -8.73904E-02 3.68592E-03 1.11543E-01 -4.31225E-02 Fourth mirror (522) 0 1.60867E-01 - 2.93170E-02 2.62419E-02 1.57476E-01 -1.97693E-01 1.28192E-01 9.55491 E-07 Third lens (530) Fifth mirror (531) 0 0 0 0 0 0 0 0 Sixth mirror (532 0 -1.45293E-01 7.81769E-02 6.82156E-02 -I.55733E-01 8.89174E-02 -2.13916E-02 1.39642E-03 Fourth lens (540) Seventh mirror (541) 0 •1.59487E -01 1.07014E-01 • 9.4766 IE-02 1.08575E-01 -8.19877E-02 -1.I5766E-03 1.07Π3Ε-02 Eighth Mirror (542) 0 •2.72302E-01 1.48429E-01 3.83648E-02 -3.60068E-02 •1.21034E-02 1.09848E-02 -1.80619E-03 Fifth lens ninth sharp surface (551) 0 -3.81995E-01 1.82561E-01 -4.92078 E-03 -1.1I744E-02 -1.61746E-03 9.91559E-04 -3.92723E-05 20 (550) M438644 Tenth Mirror (552) -1.06977E-01 2.15858E-02 •2.I0129E-03 -4.0933 IE-04 3.12030E-05 90.90399Ε·05 •2.54387Ε-06 • Table 6 shows the surface parameter table of the preferred embodiment of Table 5 of this creation. Referring to Table 6, it is based on the aspheric surface definition of the aforementioned thin-type high-resolution lens structure, and more specifically, the aspheric coefficient selects the 16th item as the highest order, and the thin-type high-resolution lens structure is created. The lens group is capable of implementing the preferred embodiment of Table 5 above. Therefore, with reference to FIG. 1A, FIG. 9 and FIG. 12, based on the preferred embodiments of the parameters of Table 5 and Table 6, the thin high resolution mirror structure of the present invention can obtain better optical distortion, optical curvature and optics. Aberration. In each of the foregoing embodiments of the present invention, the first mirror surface (511) of the first lens (51A) is selected to be a convex surface, and the second mirror surface (512) can be further selected as A concave surface such that the first lens (510) is positive in diopter. In the foregoing specific embodiments of the present invention, the third mirror surface (521) of the second lens (520) is a concave surface, and the second lens (520) may be further selected as a convex surface. The second lens (520) is made to have a negative refracting power. In addition, in each of the foregoing embodiments of the present invention, the third mirror surface (521) of the second lens (520) may be selected as a convex surface, and the second lens (520) may be further The selection is a concave surface such that the second lens (520) is negatively diffracted. In each of the foregoing embodiments of the present invention, the fifth mirror surface (531) and the sixth mirror surface (532) of the third lens (530) are respectively selected to have a concave surface and a convex surface. Step by step 21 M438644 into the third lens (530) as a negative meniscus lens (530) with negative diopter

前述本創作薄型高解像力透鏡結構之各個夏 例中,該第三透鏡(530)中的第五鏡面(531)係—具體實施 該第六鏡面(532)以係進一步選擇為—凹 面’且 ㈠田,使得該第= 透鏡(530)係負屈光度。 弟一In each of the above-described summer examples of the thin high-resolution lens structure, the fifth mirror surface (531) of the third lens (530) is specifically configured to be further selected as a concave surface and (1) Field, such that the first lens (530) is negative diopter. Brother one

前述本創作薄型高解像力透鏡結構之各個具體實施 例中,該第三透鏡(530)中的第五鏡面(531)可以係選擇= 一凸面,且該第六鏡面(532)以係進一步選擇為一凹面, 使得該第三透鏡(530)係負屈光度。In each of the foregoing embodiments of the present invention, the fifth mirror surface (531) of the third lens (530) may be selected as a convex surface, and the sixth mirror surface (532) is further selected as A concave surface causes the third lens (530) to have a negative refracting power.

再次參考圖9所顯示本創作薄型高解像力透鏡結構 的具體實施例,該第一透鏡(510)係一正屈光度的透鏡, 且該第一透鏡(51〇)之參數可以係選擇為Vdl>4〇, 0<fl/f<2 ;該第二透鏡(52〇)係一負屈光度的透鏡,且該第 二透鏡(520)之參數可以係選擇為vd2<30,-5<f2/f<0 ;該 第三透鏡(530)係一負屈光度的透鏡,且該第三透鏡(530) 之參數可以係選擇為-500<f3/f<0;以及本創作薄型高解像 力透鏡結構係可以選擇TTL/ImagH<2.5,因此,基於前述 本創作之薄型高解像力透鏡結構之表5以及表6參數之較 佳實施例,該些參數係分別為: F/no = 2.4 Vdl = 56Referring again to the specific embodiment of the present invention, the first lens (510) is a positive refracting lens, and the parameters of the first lens (51 〇) can be selected as Vdl>4. 0&, 0<fl/f<2; the second lens (52〇) is a negative diopter lens, and the parameter of the second lens (520) may be selected as vd2 <30, -5<f2/f<0; the third lens (530) is a negative diopter lens, and the parameter of the third lens (530) can be selected as -500<f3/f<0; and the thin-type high-resolution lens structure can be selected. TTL/ImagH<2.5, therefore, based on the preferred embodiment of Table 5 and Table 6 parameters of the thin high resolution lens structure of the present invention, the parameters are: F/no = 2.4 Vdl = 56

Vd2 = 23.416 fl/f = 0.4849 22 M438644 f2/f= -0.9267 f3/f= -3.4652 f4/f= -3.6618 f5/f= 34.6516 TTL/ImagH = 1.75 因此可透過以上各鏡片其相互間之適切光學參數、 焦距比值以及幾何參數比值,進而達成最佳成像效果。 表7係顯示本創作薄型高解像力透鏡結構之第四較 佳實施例的透鏡參數表及相關性能指數;圖13係顯示本 創作薄型高解像力透鏡結構之第四較佳實施例的元件結 構示意圖;圖14係顯示本創作依據表7參數之較佳實施 例的光學畸變圖;圖15係顯示本創作依據表7參數之較 佳實施例的光學場曲圖;以及圖16係顯示本創作依據表 7參數之較佳實施例的光學像差圖。參考表7所顯示,且 再次參考圖13所顯示,基於前述本創作之技術内容,前 述本創作薄型高解像力透鏡結構的進一步具體實施例 中,該固定光圈(300)可以進一步係設置於該該第二透鏡 (520)之第三鏡面(521)的表面上;該第一透鏡(510)中的第 一鏡面(511)係選擇為一凸面,且該第二鏡面(512)係選擇 為一凸面,使得該第一透鏡(510)為正屈光度;該第二透 鏡(520)中的第三鏡面(521)係選擇為一凹面,且該第二透 鏡(520)中的第四鏡面(522)係選擇為一凹面,使得該第二 透鏡(520)係負屈光度;以及該第三透鏡(530)中的第五鏡 面(531)係選擇為一凹面,且該第三透鏡(530)中的第六鏡 面(532)係選擇為一凸面,使得該第三透鏡(530)係負屈光 23 M438644 VI Γ ^ 度。另外,該第四透鏡(540)可以係選擇為負屈先度且該 第七鏡面(541)與該第八鏡面(542)分別係一凹面以及一凸 面;以及该第五透鏡(550)可以係選擇為正屈光度且該第 九鏡面(551)與該第十鏡面(552)分別係一凸面以及一凹 面。再者’基於本創作薄型高解像力透鏡結構之第四較佳 實施例’該些透鏡之鏡面所對應的曲率半徑、厚度/間隔、 折射率以及阿貝數可以係進一步如表7所顯示。 【表7】 表面 曲率半徑 (Radius) 厚度/間隔 (Thickness) 折射率 (Nd) 阿貝數 (Vd) 第一透 鏡(510) 第一鏡面(511) 1.4056 0.6994 1.531000 56.0000 弟二鏡面(512) -5.8405 0.0400 第二透 鏡(520) 第三鏡面(521) -4.1668 0.3500 1.631919 23.4160 淖四鏡:面(522) 7.7190 0.1668 第三透 弟五鏡面(531) -1.2610 0.3500 1.514000 57.0000 鏡(530) 第六鏡面(532) -1.4147 0.0665 第四透 第七鏡面(541) -2.2249 0.3629 1.531000 56.0000 鏡(540) 第八鏡面(542) 1.9231 0.2655 第五透 第九鏡面(551) 9.0130 0.9705 1.531000 56.0000 鏡(550) 第十鏡面(552) 2.7666 0.2922 【表8】 表面 k A B C D E F G 第一 透鏡 (510) 第一銳 面(511) 0 -2.04394E-02 4.37312E-02 -6.77593E-02 -2.68302E-02 5.38952E-02 1.91600E-02 冶.8 丨 383E-02 第二銳 面(512) 0 6.74648E-02 -1.49203E-02 -7.80153E-02 -3.08901 E-02 8.87686E-03 -3.25331 E-02 5.88109E-02 第二 透鏡 (520) 第三銳 面(521) 0 1.69306E-O1 -9.04964E-02 6.I2387E-02 -4.46509E-02 -6.25279E-02 -3.15435E-02 1.42428E-01 第四鏡 面(522) 0 8.99479E-02 1.85524E-01 •3.38260E-01 2.76847E-0! I.22245E-02 2.09652E-07 3.87239E-09 24 M438644 (Hi. 第三 透銳 (530) 第五鏡 面(531) 0 0 0 0 0 0 0 0 第六銳 面(532) 0 -1.250I7E-01 8.48403E-02 2.67820E-01 -2.00300E-OI -1.54786E-0! .9.11812E-02 1.90510E-OI 第四 透鏡 (540) 第七銳 面(54” 0 -2.74445E-0! 5.25354E-01 -3.80680E-01 4.31156E-02 -9.08847E-03 -1.66535E-02 -2.60524E-02 第八銳 面(542) 0 6.29416E-03 I.01630E-OI -I.10517E-02 -4.16989E-02 -3.80295E-03 I.67889E-02 -4.34010E-03 第五 第九銳 面(551) 0 -3.4I510E-02 1.97497E-02 -3.74896E-03 -5.17035E-04 3.28946E-04 -4.86256E-05 2.21619E-06 (550) 第十鏡 面(552) 0 -8.10797E-02 1.74287E-02 -3.02913E-03 2.21370E-04 6.26827E-06 -8.83520E-07 -1.I084IE-07 表8係顯示本創作對應表7之較佳實施例的曲面參 數表。參考表8所顯示,其係基於前述本創作薄型高解像 力透鏡結構之非球面曲面定義,且更具體來說,該非球面 係數係選擇16次項為最高項次,而使得本創作薄型高解 像力透鏡結構之透鏡組得以實施前述表7之較佳實施例。 因此’參考圖14、圖15以及圖16所顯示,基於表 7以及表8參數之較佳實施例,本創作之薄型高解像力透 鏡結構可得到較佳的光學畸變、光學場曲以及光學像差。 前述本創作薄型高解像力透鏡結構之具體實施例 中’該第四透鏡(540)與該第五透鏡(550)可以係分別選擇 為負屈光度與正屈光度,且該第四透鏡(540)中的該第七 鏡面(541)與該第八鏡面(542)可分別係選擇一凹面以及一 凸面且進一步使得該第四透鏡(540)成為一負彎月透鏡。 再者,在該第五透鏡(550)係正屈光度的具體實施例中, 該第九鏡面(551)可以係波浪狀且在靠近光轴附近為凸 面,以及該第十鏡面(552)係對應之波浪狀且在靠近光軸 附近為凹面。 再者,前述本創作薄型高解像力透鏡結構中,該固 25 M438644 定光圈(300)係設置於該第一透鏡(510)之第一 與該第二透鏡(520)之第一鏡面(521)之間。Vd2 = 23.416 fl/f = 0.4849 22 M438644 f2/f= -0.9267 f3/f= -3.4652 f4/f= -3.6618 f5/f= 34.6516 TTL/ImagH = 1.75 Therefore, it is possible to transmit optically to each other through the above lenses. Parameters, focal length ratios, and geometric parameter ratios for optimal imaging results. 7 is a lens parameter table and a related performance index of a fourth preferred embodiment of the present invention; FIG. 13 is a schematic view showing the structure of a fourth preferred embodiment of the present invention; 14 is an optical distortion diagram showing a preferred embodiment of the parameters according to Table 7; FIG. 15 is an optical field curvature diagram showing a preferred embodiment of the parameters according to Table 7; and FIG. 16 is a table showing the creation basis. Optical aberration diagram of the preferred embodiment of the 7 parameter. Referring to Table 7, and referring again to FIG. 13, based on the foregoing technical content of the present invention, in a further specific embodiment of the foregoing thin-type high-resolution lens structure, the fixed aperture (300) may be further disposed on the a surface of the third mirror surface (521) of the second lens (520); a first mirror surface (511) of the first lens (510) is selected as a convex surface, and the second mirror surface (512) is selected as a The convex surface is such that the first lens (510) is positive diopter; the third mirror surface (521) of the second lens (520) is selected as a concave surface, and the fourth mirror surface (522) of the second lens (520) is selected. Selecting a concave surface such that the second lens (520) is negatively diffracted; and the fifth mirror surface (531) of the third lens (530) is selected to be a concave surface, and the third lens (530) is The sixth mirror surface (532) is selected to be a convex surface such that the third lens (530) is negatively diverted by 23 M438644 VI Γ ^ degrees. In addition, the fourth lens (540) may be selected as a negative pre-curvature and the seventh mirror surface (541) and the eighth mirror surface (542) are respectively concave and convex; and the fifth lens (550) may be The refracting power is selected and the ninth mirror surface (551) and the tenth mirror surface (552) are respectively convex and concave. Further, the radius of curvature, thickness/interval, refractive index, and Abbe number corresponding to the mirror surface of the lens may be further shown in Table 7 based on the fourth preferred embodiment of the present thin-type high-resolution lens structure. [Table 7] Surface Radius (Radius) Thickness/Thickness Refractive Index (Nd) Abbe's Number (Vd) First Lens (510) First Mirror (511) 1.4056 0.6994 1.531000 56.0000 Di Er Mirror (512) - 5.8405 0.0400 second lens (520) third mirror (521) -4.1668 0.3500 1.631919 23.4160 four mirror: face (522) 7.7190 0.1668 third transparent five mirror (531) -1.2610 0.3500 1.514000 57.0000 mirror (530) sixth mirror (532) -1.4147 0.0665 Fourth through seventh mirror surface (541) -2.2249 0.3629 1.531000 56.0000 Mirror (540) Eighth mirror surface (542) 1.9231 0.2655 Fifth through ninth mirror surface (551) 9.0130 0.9705 1.531000 56.0000 Mirror (550) Ten mirror surface (552) 2.7666 0.2922 [Table 8] Surface k ABCDEFG First lens (510) First sharp surface (511) 0 -2.04394E-02 4.37312E-02 -6.77593E-02 -2.68302E-02 5.38952E- 02 1.91600E-02 冶.8 丨383E-02 Second sharp surface (512) 0 6.74648E-02 -1.49203E-02 -7.80153E-02 -3.08901 E-02 8.87686E-03 -3.25331 E-02 5.88109E -02 Second lens (520) Third sharp surface (521) 0 1.69306E-O1 -9.04964E-02 6.I2387E-02 -4.46509E-02 - 6.25279E-02 -3.15435E-02 1.42428E-01 Fourth Mirror (522) 0 8.99479E-02 1.85524E-01 •3.38260E-01 2.76847E-0! I.22245E-02 2.09652E-07 3.87239E- 09 24 M438644 (Hi. Third Translucent (530) Fifth Mirror (531) 0 0 0 0 0 0 0 0 Sixth Sharp (532) 0 -1.250I7E-01 8.48403E-02 2.67820E-01 -2.00300 E-OI -1.54786E-0! .9.11812E-02 1.90510E-OI Fourth lens (540) Seventh sharp surface (54" 0 -2.74445E-0! 5.25354E-01 -3.80680E-01 4.31156E- 02 -9.08847E-03 -1.66535E-02 -2.60524E-02 Eighth Face (542) 0 6.29416E-03 I.01630E-OI -I.10517E-02 -4.16989E-02 -3.80295E-03 I .67889E-02 -4.34010E-03 Fifth Ninth Face (551) 0 -3.4I510E-02 1.97497E-02 -3.74896E-03 -5.17035E-04 3.28946E-04 -4.86256E-05 2.21619E- 06 (550) Tenth Mirror (552) 0 -8.10797E-02 1.74287E-02 -3.02913E-03 2.21370E-04 6.26827E-06 -8.83520E-07 -1.I084IE-07 Table 8 shows this creation Corresponding to the surface parameter table of the preferred embodiment of Table 7. Referring to Table 8, it is based on the aspheric surface definition of the aforementioned thin-type high-resolution lens structure, and more specifically, the aspheric coefficient selects the 16th order as the highest order, and the thin-type high-resolution lens structure is created. The lens group is capable of implementing the preferred embodiment of Table 7 above. Therefore, as shown in FIG. 14, FIG. 15, and FIG. 16, based on the preferred embodiments of the parameters of Table 7 and Table 8, the thin high-resolution lens structure of the present invention can obtain better optical distortion, optical curvature and optical aberration. . In the foregoing embodiment of the present invention, the fourth lens (540) and the fifth lens (550) may be selected as negative diopter and positive refracting power, respectively, and in the fourth lens (540). The seventh mirror surface (541) and the eighth mirror surface (542) can respectively select a concave surface and a convex surface and further make the fourth lens (540) a negative meniscus lens. Furthermore, in a specific embodiment in which the fifth lens (550) is positive in diopter, the ninth mirror surface (551) may be wavy and convex near the optical axis, and the tenth mirror surface (552) corresponds to It is wavy and concave near the optical axis. Furthermore, in the above-described thin-type high resolution lens structure, the fixed 25 M438644 fixed aperture (300) is disposed on the first mirror surface of the first lens (510) and the first mirror surface (521) of the second lens (520). between.

再次參考圖13所顯示本創作薄型高解像力透鏡結構 的具體實施例,該第一透鏡(510)係一正屈光度的透鏡, 且該第一透鏡(510)之參數可以係選擇為Vdl>40, 0<fl/f<2 ;該第二透鏡(520)係一負屈光度的透鏡,且該第 二透鏡(520)之參數可以係選擇為Vd2<30 ’ -5<f2/f<0 ;該 第三透鏡(530)係一負屈光度的透鏡,且該第三透鏡(530) 之參數可以係選擇為-500<f3/f<0;以及本創作薄型高解像 力透鏡結構係可以選擇TTL/ImagH<2.5,因此,基於前述 本創作之薄型高解像力透鏡結構之表7以及表8參數之較 佳實施例 ,該些參數係分別為: Vdl =56 Vd2 =23.416 fl/f = =0.5028 f2/f = = -0.9587 f3/f = = -22.8743Referring again to the specific embodiment of the present invention, the first lens (510) is a positive refracting lens, and the parameter of the first lens (510) can be selected as Vdl > 40, 0<fl/f<2; the second lens (520) is a negative diopter lens, and the parameter of the second lens (520) may be selected as Vd2 <30 ' -5<f2/f<0; The third lens (530) is a negative diopter lens, and the parameter of the third lens (530) can be selected as -500<f3/f<0; and the thin-type high-resolution lens structure can be selected as TTL/ImagH< 2.5, therefore, based on the preferred embodiment of the parameters of Table 7 and Table 8 of the thin high resolution lens structure of the present invention, the parameters are: Vdl = 56 Vd2 = 23.416 fl / f = =0.5028 f2 / f = = -0.9587 f3/f = = -22.8743

f4/f= 4.2874 f5/f=-1.8101 TTL/ImagH = 1.7492 因此可透過以上各鏡片其相互間之適切光學參數、 焦距比值以及幾何參數比值,進而達成最佳成像效果。 是以,本創作所提供之一種薄细高解像力透鏡結 26 M438644 構,並已將本創作作一詳細說明,惟以上所述者 創作之一較佳實施例而已,當不能限定本創作實施之範F4/f= 4.2874 f5/f=-1.8101 TTL/ImagH = 1.7492 Therefore, the best optical imaging parameters, focal length ratio and geometric parameter ratio can be obtained through the above lenses to achieve the best imaging effect. Therefore, a thin high-resolution lens unit 26 M438644 is provided by the present invention, and the present invention has been described in detail. However, one of the above embodiments is a preferred embodiment, and the present invention cannot be limited. Fan

圍。即凡依本創作申請範圍所作之均等變化與修飾等,皆 應仍屬本創作之專利涵蓋範圍内。 【圖式簡單說明】 圖1係顯示本創作薄型高解像力透鏡結構之第一具體實施 例的光學結構圖; 圖2係顯示本創作薄型高解像力透鏡結構依據表丨參數之 較佳實施例的光學畸變圖; 圖3係顯示本創作薄型高解像力透鏡結構依據表丨參數之 較佳實施例的光學場曲圖; 圖4係顯示本創作薄型高解像力透鏡結構依據表1參數之 較佳實施例的光學像差圖。 圖5係顯示本創作薄型高解像力透鏡結構之第二具體實施 例的光學結構圖;Wai. That is, all changes and modifications made in accordance with the scope of this creation application shall remain within the scope of the patent of this creation. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an optical structural view showing a first embodiment of the present thin high-resolution lens structure; FIG. 2 is a view showing a preferred embodiment of the present invention for creating a thin high-resolution lens structure according to a preferred embodiment of the parameters. FIG. 3 is a view showing an optical field curvature of a preferred embodiment of the present invention for creating a thin high-resolution lens structure according to a preferred embodiment; FIG. 4 is a view showing a preferred embodiment of the present invention for creating a thin high-resolution lens structure according to the parameters of Table 1. Optical aberration diagram. Figure 5 is a view showing an optical structure of a second embodiment of the present invention for creating a thin high-resolution lens structure;

I 圖6係顯示本創作薄型高解像力透鏡結構依據表3參數之 較佳實施例的光學畸變圖; 圖7係顯示本創作薄型高解像力透鏡結構依據表3參數之 較佳實施例的光學場曲圖; 圖8係顯示本創作薄型高解像力透鏡結構依據表3參數之 較佳實施例的光學像差圖; 27 M438644 日雙正i 圖9係顯示本創作薄型高解像力透鏡結構之第 例的光學結構圖; 圖10係顯示本創作薄型高解像力透鏡結構依據表5參數之 較佳實施例的光學畸變圖; 圖11係顯示本創作薄型高解像力透鏡結構依據表5參數之 較佳實施例的光學場曲圖; 圖12係顯示本創作薄型高解像力透鏡結構依據表5參數之 較佳實施例的光學像差圖; 圖13係顯示本創作薄型高解像力透鏡結構之第四具體實 施例的光學結構圖; 圖14係顯示本創作薄型高解像力透鏡結構依據表7參數之 較佳實施例的光學畸變圖; 圖15係顯示本創作薄型高解像力透鏡結構依據表7參數之 較佳實施例的光學場曲圖;以及 圖16係顯示本創作薄型高解像力透鏡結構依據表7參數之 較佳實施例的光學像差圖。 【主要元件符號說明】 物側(100) 像側(200) 固定光圈(300) 濾透鏡(400) M438644 Μ Γ ι 透鏡組(500) 第一透鏡(510) 第一鏡面(511) 第二鏡面(512) 第二透鏡(520) 第三鏡面(521) 第四鏡面(522) 第三透鏡(530) 第五鏡面(531) 第六鏡面(532) 第四透鏡(540) 第七鏡面(541) 第八鏡面(542) 第五透鏡(550) 第九鏡面(551) 第十鏡面(552) 29Figure 6 is an optical distortion diagram showing a preferred embodiment of the thin high-resolution lens structure according to the parameters of Table 3; Figure 7 is a view showing the optical field curvature of the preferred embodiment of the thin high-resolution lens structure according to the parameters of Table 3. Figure 8 is an optical aberration diagram showing a preferred embodiment of the thin high-resolution lens structure of the present invention according to the parameters of Table 3; 27 M438644 Japanese double positive i Figure 9 shows the optical example of the first example of the thin high-resolution lens structure FIG. 10 is an optical distortion diagram showing a preferred embodiment of the present invention for creating a thin high-resolution lens structure according to the parameters of Table 5. FIG. 11 is a view showing the optical structure of the present preferred thin high-resolution lens structure according to the preferred embodiment of Table 5. FIG. 12 is an optical aberration diagram showing a preferred embodiment of the present invention for creating a thin high-resolution lens structure according to the parameters of Table 5. FIG. 13 is a view showing the optical structure of the fourth embodiment of the present thin-type high-resolution lens structure. Figure 14 is a diagram showing the optical distortion of the preferred embodiment of the thin high-resolution lens structure according to the parameters of Table 7; Figure 15 shows the creation Field curvature of the optical lens structure of a high resolution pattern in accordance with the preferred embodiment 7 of the parameter table; and FIG. 16 show the optical system of the present embodiment aberration diagrams creation high resolution thin lens structure according to the preferred embodiment 7 of the parameter table. [Main component symbol description] Object side (100) Image side (200) Fixed aperture (300) Filter lens (400) M438644 Μ Γ ι Lens group (500) First lens (510) First mirror surface (511) Second mirror surface (512) Second lens (520) Third mirror surface (521) Fourth mirror surface (522) Third lens (530) Fifth mirror surface (531) Sixth mirror surface (532) Fourth lens (540) Seven mirror surface (541 Eighth mirror (542) Fifth lens (550) Ninth mirror (551) Tenth mirror (552) 29

Claims (1)

M438644 Μ Γν 六、申請專利範圍: 1. 一種薄形高解像力透鏡結構,其係一端定義為一物側且另一端 定義為一像侧,並包括: 一透鏡組,其係包括一第一透鏡、一第二透鏡、一第三透鏡、 一第四透鏡以及一第五透鏡,且該些透鏡係分別自該物側至 該像側依序排列而構成一光學結構;以及 一固定光圈,其係設置於該物側與該像側之間; 其中該第一透鏡係正屈光度且包括一第一鏡面以及一第二 鏡面,該第一鏡面與該第二鏡面分別係朝向該物側以及該像 側的一弧面;該第二透鏡係負屈光度且包括一第三鏡面以及 一第四鏡面,該第三鏡面以及該第四鏡面分別係朝向該物側 以及該像側的一弧面;該第三透鏡係負屈光度且包括一第五 鏡面以及一第六鏡面,該第五鏡面以及該第六鏡面分別係朝 向該物側以及該像側的一弧面;該第四透鏡係包括一第七鏡 面以及一第八鏡面,該第七鏡面以及第八鏡面分別係朝向該 物側以及該像侧的一弧面;以及該第五透鏡係包括一第九鏡 面以及一第十鏡面,該第九鏡面以及第十鏡面分別係朝向該 物側以及該像侧的一弧面。 2. 如申請專利範圍第1項所述之薄形高解像力透鏡結構,其中該第一 透鏡中的第一鏡面與第二鏡面進一步分別係選擇為一凸 面,且該第一鏡面與該第二鏡面的曲率半徑係配合使得該第 一透鏡為正屈光度。 30M438644 Μ Γν VI. Patent application scope: 1. A thin high-resolution lens structure, one end of which is defined as an object side and the other end is defined as an image side, and includes: a lens group including a first lens a second lens, a third lens, a fourth lens, and a fifth lens, and the lens systems are sequentially arranged from the object side to the image side to form an optical structure; and a fixed aperture, Between the object side and the image side; wherein the first lens is positive diopter and includes a first mirror surface and a second mirror surface, the first mirror surface and the second mirror surface are respectively facing the object side and the a curved surface of the image side; the second lens is negatively refracting and includes a third mirror surface and a fourth mirror surface, the third mirror surface and the fourth mirror surface are respectively facing a curved surface of the object side and the image side; The third lens is a negative refracting power and includes a fifth mirror surface and a sixth mirror surface, the fifth mirror surface and the sixth mirror surface are respectively facing a curved surface of the object side and the image side; the fourth lens system includes a Seventh mirror And an eighth mirror surface, the seventh mirror surface and the eighth mirror surface are respectively facing a curved surface of the object side and the image side; and the fifth lens system comprises a ninth mirror surface and a tenth mirror surface, the ninth mirror surface And the tenth mirror surface is a curved surface facing the object side and the image side, respectively. 2. The thin high resolution lens structure of claim 1, wherein the first mirror surface and the second mirror surface of the first lens are further selected as a convex surface, and the first mirror surface and the second mirror surface are respectively selected. The radius of curvature of the mirror is matched such that the first lens is positive diopter. 30 M438644 3. 如申請專利範圍第1項所述之薄形高解像力透鏡結構, 透鏡中的第一鏡面與第二鏡面進一步係分別選擇為一凸面 以及一凹面,且該第一鏡面與該第二鏡面的曲率半徑係配合 使得該第一透鏡為正屈光度。M438644. The thin mirror high resolution lens structure according to claim 1, wherein the first mirror surface and the second mirror surface of the lens are further selected as a convex surface and a concave surface, respectively, and the first mirror surface and the second mirror surface are respectively selected The radius of curvature of the mirror is matched such that the first lens is positive diopter. 4. 如申請專利範圍第1項所述之薄形高解像力透鏡結構,其中該第二 透鏡中的第三鏡面與第四鏡面進一步分別係選擇為一凹 面,且該第三鏡面與該第四鏡面的曲率半徑係配合使得該第 二透鏡為負屈光度。 5. 如申請專利範圍第1項所述之薄形高解像力透鏡結構,其中該第二 透鏡中的第三鏡面與第四鏡面進一步係分別選擇為一凹面 以及一凸面,且該第三鏡面與該第四鏡面的曲率半徑係配合 使得該第二透鏡為負屈光度。 6. 如申請專利範圍第1項所述之薄形高解像力透鏡結構,其中該第二 透鏡中的第三鏡面與第四鏡面進一步係分別選擇為一凸面 以及一凹面,且該第三鏡面與該第四鏡面的曲率半徑係配合 使得該第二透鏡為負屈光度。 7. 如申請專利範圍第1項所述之薄形高解像力透鏡結構,其中該 第三透鏡中的第五鏡面係選擇為一凹面,且該第三透鏡中的 第六鏡面係選擇為一凸面,且該第五鏡面與該第六鏡面的曲 率半徑係配合使得該第三透鏡為負屈光度。 8. 如申請專利範圍第7項所述之薄形高解像力透鏡結構,其中該 第三透鏡進一步係一負彎月透鏡。 31 M438644 9. 如申請專利範圍第1項所述之薄形高解像力透鏡結構,其中該_ 第三透鏡中的第五鏡面係選擇為一凸面,且該第三透鏡中的 第六鏡面係選擇為一凹面,且該第五鏡面與該第六鏡面的曲 率半徑係配合使得該第三透鏡為負屈光度。 10. 如申請專利範圍第1項所述之薄形高解像力透鏡結構,其中該第四 透鏡與該第五透鏡可以係分別選擇為負屈光度與正屈光度。 11. 如申請專利範圍第10項所述之薄形高解像力透鏡結構,其中該第 四透鏡中的該第七鏡面與該第八鏡面可分別係選擇一凹面 以及一凸面。 12. 如申請專利範圍第11項所述之薄形高解像力透鏡結構,其中該第 四透鏡進一步係一負彎月透鏡。 13. 如申請專利範圍第10項所述之薄形高解像力透鏡結構,其中該第 五透鏡中的該第九鏡面可以係波浪狀且在靠近光軸附近為 凸面,以及該第五透鏡中的該第十鏡面係對應之波浪狀且在 靠近光軸附近為凹面。 14. 如申請專利範圍第10項所述之薄形高解像力透鏡結構,其中該第 四透鏡中的該第七鏡面與該第八鏡面分別係一凹面以及一 凸面;以及該第五透鏡中的該第九鏡面與該第十鏡面分別係 一凸面以及一凹面。 15.如申請專利範圍第14項所述之薄形高解像力透鏡結構,其中該第 五透鏡中的該第九鏡面係波浪狀以及在靠近光軸附近為凸 面,該第十鏡面係波浪狀以及在靠近光軸附近為凹面。 32 M438644 16.如申請專利範圍第1項所述之薄形高解像力透錆蛙梢·其四務]无 透鏡與該第五透鏡分別選擇為正屈光度。 Π.如申請專利範圍第16項所述之薄形高解像力透鏡結構其中該第 四透鏡中的該第七鏡面與該第八鏡面可分別係" ' 1^<5- Ίψ —凸面 以及一凹面 18.如申請專利範圍第17項所述之薄形高解像力透鏡結構,其中該第 四透鏡進一步係一正彎月透鏡。 # 19,如申請專利範圍第16項所述之薄形高解像力透鏡結構其中該第 五透鏡中的該第九鏡面與該第十鏡面分別係一凸面以及一 凹面。 20. 如申請專利範圍第19項所述之薄形高解像力透鏡結構,其中該第 五透鏡中的該第九鏡面可以係波浪狀且在靠近光軸附近為凸面:以 及該第十鏡面係對應之波浪狀且在靠近光軸附近為凹面。 21. 如申請專利麵第!項所述之薄形高解像力透鏡結構,其中該固定 33 1 光圈係一不可調的光圈結構,該固定光圈之設置選自該第一透鏡朝 向該物側處、該第-透鏡與該第二透鏡之間、該第二透鏡與該第三 透鏡之間、該第三透鏡與該第四透鏡之間、該第四透鏡與該第五透 鏡之間、該第五透鏡與該像侧之間中的任一位置。 22. 如申請專利範圍第1項所述之薄形高解像力透鏡結構,其中進一步 包括-濾透鏡,該濾'透鏡係-帶通的光學透鏡,並該物側與該像侧 之間。 M438644 23. 如申請專利範圍第22項所述之薄形高解像力透鏡結構,其中進一 步包括一濾透鏡,該濾透鏡係一帶通的光學透鏡且設置於該第五透 鏡朝向該像側之一側處。 24. 如申請專利範圍第1項所述之薄形高解像力透鏡結構,其中該第一 透鏡之第一鏡面與第二鏡面、該第二透鏡之第三鏡面與第四 鏡面、該第三透鏡之第五鏡面與第六鏡面、該第四透鏡之第 七鏡面與第八鏡面以及該第五透鏡之第九鏡面與第十鏡面 皆可以係選擇為非球面曲面。 25. 如申請專利範圍第24項所述之薄形高解像力透鏡結構,其中該非 球面曲面之定義係滿足下列公式: ru2 z =-—~~—— + Ah4 + Bh6 + Ch% + Dh10 + Ehn + Fhu + Ght6 +... l + [l-(k + l)c2h2]05 其中Z為沿光軸方向在高度為h的位置以表面頂點作參考的 位置值,k為錐常度量,c為曲率半徑的倒數,且A' B、C、 D、E、F以及G為高階非球面係數。 26. 如申請專利範圍第1項所述之薄形高解像力透鏡結構,其中該第一 透鏡之第一鏡面與第二鏡面、該第二透鏡之第三鏡面與第四 鏡面、該第三透鏡之第五鏡面與第六鏡面、該第四透鏡之第 七鏡面與第八鏡面以及該第五透鏡之第九鏡面與第十鏡面 皆可以係選擇為球面曲面。 34 M438644 \〇ι Γΐ 27. 如申請專利範圍第1項所述之薄形高解像力透鏡結構,其中定義 Vdl係該第一透鏡之阿貝數,定義fl係該第一透鏡焦距,以及定 義f係該透鏡組之鏡頭整體的焦距; 其中,Vdl>40,以及 0<fl/f<2。 28. 如申清專利範圍第1項所述之薄形高解像力透鏡結構,其中定義 Vd2係該第二透鏡之阿貝數,定義β係該第二透鏡焦距,以及定 義f係該透鏡組之鏡頭整體的焦距; 其中,Vd2<30,以及-5<f2/f<0。 29. 如申請專利範圍第1項所述之薄形高解像力透鏡結構,其中定義β 係該第二透鏡焦距,以及定義f係該透鏡組之鏡頭整體的焦距; 其中,-500<fi/f<0。 30. 如申請專利範圍第1項所述之薄形高解像力透鏡結構,其中該像側 進一步係一影像感測器’並係一光學影像感應裝置。 31. 如申請專利範圍第30項所述之薄形高解像力透鏡結構,其中定義 Vdl係該第一透鏡之阿貝數’定義vd2係該第二透鏡之阿貝數定 義fl係該第一透鏡焦距,定義β係該第二透鏡焦距,定義β係 該第三透鏡焦距,定義f係該透鏡組之鏡頭整體的焦距,定義 係該透鏡組之總長度,以及定義ImagH係該像側進一步係一影像感 測器影之對角線半長; 其中,Vdl>40,Vd2<30,0<fl/f<2,-5<f2/f<0,_50〇<f3/f<〇,以及 TTL/ImagH<2,5。 354. The thin high resolution lens structure according to claim 1, wherein the third mirror surface and the fourth mirror surface of the second lens are further selected as a concave surface, and the third mirror surface and the fourth mirror surface are respectively selected. The radius of curvature of the mirror is matched such that the second lens is negatively diffracted. 5. The thin high resolution lens structure according to claim 1, wherein the third mirror surface and the fourth mirror surface of the second lens are further selected as a concave surface and a convex surface, respectively, and the third mirror surface is The radius of curvature of the fourth mirror is matched such that the second lens is negatively dimpled. 6. The thin high resolution lens structure of claim 1, wherein the third mirror surface and the fourth mirror surface of the second lens are further selected as a convex surface and a concave surface, respectively, and the third mirror surface is The radius of curvature of the fourth mirror is matched such that the second lens is negatively dimpled. 7. The thin high resolution lens structure of claim 1, wherein the fifth mirror surface of the third lens is selected to be a concave surface, and the sixth mirror surface of the third lens is selected to be a convex surface. And the fifth mirror surface cooperates with the radius of curvature of the sixth mirror surface such that the third lens has a negative refracting power. 8. The thin high resolution lens structure of claim 7, wherein the third lens is further a negative meniscus lens. The thin high-resolution lens structure of claim 1, wherein the fifth mirror surface of the third lens is selected to be a convex surface, and the sixth mirror surface of the third lens is selected It is a concave surface, and the fifth mirror surface cooperates with the radius of curvature of the sixth mirror surface such that the third lens has a negative refracting power. 10. The thin high resolution lens structure of claim 1, wherein the fourth lens and the fifth lens are selected to be negative diopter and positive refracting, respectively. 11. The thin high resolution lens structure of claim 10, wherein the seventh mirror surface and the eighth mirror surface of the fourth lens are respectively a concave surface and a convex surface. 12. The thin high resolution lens structure of claim 11, wherein the fourth lens is further a negative meniscus lens. 13. The thin high resolution lens structure of claim 10, wherein the ninth mirror surface of the fifth lens is wavy and convex near the optical axis, and the fifth lens The tenth mirror surface corresponds to a wave shape and is concave near the optical axis. The thin high-resolution lens structure of claim 10, wherein the seventh mirror surface and the eighth mirror surface of the fourth lens are concave and convex, respectively; and the fifth lens The ninth mirror surface and the tenth mirror surface are respectively a convex surface and a concave surface. 15. The thin high resolution lens structure of claim 14, wherein the ninth mirror surface of the fifth lens is wavy and convex near the optical axis, the tenth mirror surface is wavy and It is concave near the optical axis. 32 M438644 16. The thin high-definition force of the frog tip described in the first paragraph of the patent application, the fourth lens, and the fifth lens are respectively selected as positive refracting power. The thin high-resolution lens structure of claim 16, wherein the seventh mirror surface and the eighth mirror surface of the fourth lens are respectively "1^<5- Ίψ-convex and A concave high-resolution lens structure as described in claim 17, wherein the fourth lens is further a positive meniscus lens. #19. The thin high resolution lens structure of claim 16, wherein the ninth mirror surface and the tenth mirror surface of the fifth lens are a convex surface and a concave surface, respectively. 20. The thin high resolution lens structure of claim 19, wherein the ninth mirror surface of the fifth lens is wavy and convex near the optical axis: and the tenth mirror corresponds to It is wavy and concave near the optical axis. 21. If you apply for a patent! The thin high-resolution lens structure of the present invention, wherein the fixed 33 1 aperture is an unadjustable aperture structure, and the fixed aperture is disposed from the first lens toward the object side, the first lens and the second Between the lens, between the second lens and the third lens, between the third lens and the fourth lens, between the fourth lens and the fifth lens, between the fifth lens and the image side Any location in . 22. The thin high resolution lens structure of claim 1, further comprising a filter lens, the lens-belt-passing optical lens, and between the object side and the image side. The thin high-resolution lens structure of claim 22, further comprising a filter lens, the filter lens being a band-passing optical lens and disposed on a side of the fifth lens facing the image side At the office. 24. The thin high resolution lens structure of claim 1, wherein the first mirror and the second mirror of the first lens, the third mirror and the fourth mirror of the second lens, and the third lens The fifth mirror surface and the sixth mirror surface, the seventh mirror surface and the eighth mirror surface of the fourth lens, and the ninth mirror surface and the tenth mirror surface of the fifth lens may be selected as an aspherical curved surface. 25. The thin high resolution lens structure of claim 24, wherein the aspheric surface is defined by the following formula: ru2 z =--~~—— + Ah4 + Bh6 + Ch% + Dh10 + Ehn + Fhu + Ght6 +... l + [l-(k + l)c2h2]05 where Z is the position value with reference to the surface apex at the height h position along the optical axis, k is the cone constant metric, c It is the reciprocal of the radius of curvature, and A' B, C, D, E, F, and G are high-order aspheric coefficients. 26. The thin high resolution lens structure of claim 1, wherein the first mirror and the second mirror of the first lens, the third mirror and the fourth mirror of the second lens, and the third lens The fifth mirror surface and the sixth mirror surface, the seventh mirror surface and the eighth mirror surface of the fourth lens, and the ninth mirror surface and the tenth mirror surface of the fifth lens may be selected as a spherical curved surface. The thin high-resolution lens structure of claim 1, wherein Vdl is defined as the Abbe number of the first lens, f is the first lens focal length, and f is defined The focal length of the lens of the lens group; wherein, Vdl > 40, and 0 < fl / f < 28. The thin high resolution lens structure of claim 1, wherein Vd2 is the Abbe number of the second lens, β is the second lens focal length, and f is the lens group. The focal length of the lens as a whole; where, Vd2 < 30, and -5 < f2 / f < 0. 29. The thin high resolution lens structure of claim 1, wherein β is the focal length of the second lens, and f is the focal length of the lens of the lens group; wherein, -500<fi/f<;0. 30. The thin high resolution lens structure of claim 1, wherein the image side is further an image sensor and is an optical image sensing device. 31. The thin high resolution lens structure according to claim 30, wherein Vdl is defined as an Abbe number of the first lens' definition vd2 is an Abbe number definition of the second lens, the first lens is The focal length defines the focal length of the second lens, defines the focal length of the third lens, defines the focal length of the lens of the lens group, defines the total length of the lens group, and defines the ImagH system. The diagonal of the image sensor is half length; wherein, Vdl > 40, Vd2 < 30, 0 < fl / f < 2, -5 < f2 / f < 0, _50 〇 < f3 / f < And TTL/ImagH<2,5. 35
TW100219432U 2011-10-18 2011-10-18 Thin and high-resolution lens structure TWM438644U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100219432U TWM438644U (en) 2011-10-18 2011-10-18 Thin and high-resolution lens structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100219432U TWM438644U (en) 2011-10-18 2011-10-18 Thin and high-resolution lens structure

Publications (1)

Publication Number Publication Date
TWM438644U true TWM438644U (en) 2012-10-01

Family

ID=47718878

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100219432U TWM438644U (en) 2011-10-18 2011-10-18 Thin and high-resolution lens structure

Country Status (1)

Country Link
TW (1) TWM438644U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9323028B2 (en) 2013-05-14 2016-04-26 Largan Precision Co., Ltd. Optical image capturing system
US10852514B2 (en) 2018-09-26 2020-12-01 Largan Precision Co., Ltd. Photographing optical system, image capturing unit and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9323028B2 (en) 2013-05-14 2016-04-26 Largan Precision Co., Ltd. Optical image capturing system
US10852514B2 (en) 2018-09-26 2020-12-01 Largan Precision Co., Ltd. Photographing optical system, image capturing unit and electronic device

Similar Documents

Publication Publication Date Title
TWI472826B (en) Optical image lens system
TWM357610U (en) Photography lens and photography device
TWM364864U (en) Camera lens and camera device with a 3-set structure
TW201213926A (en) Optical imaging lens system
TW201514534A (en) Wide angle optical lens system
TW201235695A (en) Imaging optical lens system
TW200944861A (en) Image picking-up lens system and image picking-up device using the same
TW201245800A (en) Image capturing optical lens system
TW201232088A (en) Photographing optical lens assembly
TW201250284A (en) Image capturing lens system
TWM369460U (en) Photographic lens and photographing apparatus
TW201222060A (en) Optical lens system
TW201235696A (en) Optical image capturing lens system
TWM498884U (en) Imaging lens and imaging device provided with the same
TW200540452A (en) Single focus wide-angle lens
TWI796312B (en) Lens and fabrication method thereof
TWM496770U (en) Imaging lens and imaging device provided with the same
TW200831977A (en) Miniature lens
TW201207462A (en) Optical photographing lens assembly
TWM462376U (en) Three sheets type imaging mirror head module
TW201229611A (en) Imaging lens system
WO2021114782A1 (en) Compact telephoto lens
TW201403118A (en) Four-piece ultra-thin imaging lens structure
TWM438644U (en) Thin and high-resolution lens structure
TWI805241B (en) Optical imaging system

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model