TWM438073U - Voltage conversion device and ionic wind radiator using the same - Google Patents

Voltage conversion device and ionic wind radiator using the same Download PDF

Info

Publication number
TWM438073U
TWM438073U TW101207986U TW101207986U TWM438073U TW M438073 U TWM438073 U TW M438073U TW 101207986 U TW101207986 U TW 101207986U TW 101207986 U TW101207986 U TW 101207986U TW M438073 U TWM438073 U TW M438073U
Authority
TW
Taiwan
Prior art keywords
voltage
output voltage
secondary winding
output
conversion unit
Prior art date
Application number
TW101207986U
Other languages
Chinese (zh)
Inventor
Yueh-Ping Yu
Kuan-Lin Chen
Min-Chu Chien
Fu-Yuan Chen
Original Assignee
Noveltek Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noveltek Semiconductor Corp filed Critical Noveltek Semiconductor Corp
Priority to TW101207986U priority Critical patent/TWM438073U/en
Publication of TWM438073U publication Critical patent/TWM438073U/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

A voltage conversion device and an ionic wind radiator using the same are provided. The voltage conversion device includes a DC-AC conversion unit, a transformer and a charge pump circuit. The DC-AC conversion unit is configured to convert a dc input voltage, so as to output an ac output voltage. The transformer has a primary winding and a secondary winding. The charge pump circuit processes a boost process in response to an AC induction voltage of the secondary winding, so as to produce an output voltage to a load, wherein the output voltage is provided the necessary high-voltage of an ion fan module.

Description

M438073 五、新型說明: 【新型所屬之技術領域】 熱裝置。 種在使== 【先前技術】 對於-般的電器用品在使用時,多半會伴隨著教量的 發生’而高溫會導致m或其㈣的電子^ 時累積過大的熱能而導致溫度上升。並且,—般電器用: 的設計會配合使用-散歸置,以利進行散熱。較常 的散熱裝置為風m細_職的方絲進行散熱 作用。,是’此強制對流的散熱裝置在使用時,風扇模組 會產生深音’並且風频組本身會有使用壽命、易積塵、 大體積以及耗能制題,故至今仍令人話病與難解。 另外,在許多的應用場合需要將低電壓升壓至較高電 壓’以提供设備之〶電壓需求,但因受限於元件與控制器 的能ΐ,或ΐ受限於設備本身的空間,因此不可能在配i 變壓盗時’毫無限制地對變壓器提高繞組的匝數比。 【新型内容】 本創作是在提供一種電壓轉換裝置與使用其的離子 風散熱裝置’其得以解決所述及先前技術的問題。 本創作提供一種電壓轉換裝置,其包括直流-交流轉換 4 M438073 單元、變壓器以及電荷幫浦電路。直流-交流轉換單元用以 對直流輸入電壓進行轉換,藉以輸出交流輸出電壓。變壓 器具有一次側繞組與二次侧繞組,其中一次側繞組耦接直 流-交流轉換單元的輸出《電荷幫浦電路耗接二次侧繞組, 用以反應於二次侧繞組上的交流感應電壓而進行一升壓處 理’藉以產生輸出電壓給負载。 從另一觀點來看,本創作另提供一種離子風散熱裝M438073 V. New description: [New technical field] Thermal device. In the case of the use of == [Prior Art] When the general electrical appliance is used, it is likely to be accompanied by the occurrence of the amount of teaching, and the high temperature causes the electrons of m or (4) to accumulate excessively large thermal energy to cause the temperature to rise. And, for general electrical appliances: the design will be used in conjunction with the scatter to facilitate heat dissipation. The more common heat sink is for the heat dissipation of the square wire. It is 'this forced convection heat sink is used, the fan module will produce deep sounds' and the wind frequency group itself will have a long service life, easy to collect dust, large volume and energy consumption, so it still makes people sick And difficult to understand. In addition, in many applications it is necessary to boost the low voltage to a higher voltage' to provide the device's voltage requirements, but due to the limitations of the components and controllers, or the space limitations of the device itself, Therefore, it is impossible to increase the turns ratio of the winding to the transformer without any restrictions. [New content] The present invention is to provide a voltage conversion device and an ion wind heat dissipation device using the same, which solves the problems of the above and the prior art. The present invention provides a voltage conversion device including a DC-AC conversion 4 M438073 unit, a transformer, and a charge pump circuit. The DC-AC conversion unit converts the DC input voltage to output an AC output voltage. The transformer has a primary winding and a secondary winding, wherein the primary winding is coupled to the output of the DC-AC conversion unit. The charge pump circuit consumes the secondary winding to react to the AC induced voltage on the secondary winding. Perform a boost process 'to generate an output voltage to the load. From another point of view, this creation also provides an ion wind cooling device.

置。離子風散熱裝置包括電壓轉換裝置以及離子風扇模 組。電壓轉換裝置包括直流-交流轉換單元、變壓器以及電 荷幫浦電路。直流-交流轉換單元用以對直流輸入電壓進行 轉換’藉以輸出交流輸出電壓。變壓器具有一次侧繞組與 一次側繞組,其中一次側繞組耦接直流_交流轉換單元的輸 出。電荷幫浦電路耦接二次側繞組,用以反應於二次側繞 =上的交流感應電壓而進行一升壓處理,藉以產生輸出電Set. The ion wind heat sink includes a voltage conversion device and an ion fan module. The voltage conversion device includes a DC-AC conversion unit, a transformer, and a charge pump circuit. The DC-AC conversion unit is used to convert the DC input voltage to output an AC output voltage. The transformer has a primary side winding and a primary side winding, wherein the primary side winding is coupled to the output of the DC to AC conversion unit. The charge pump circuit is coupled to the secondary side winding for performing a boosting process in response to the AC induced voltage on the secondary side winding = to generate an output power

$。離子風扇模組耦接電荷幫浦電路’用以操作在輸出電 堅下以進行運轉。 时一在依據本創作的示範性實施例中,所述直流_交流轉換 包括以脈寬調變架構為基礎的控制器以及開關裝置。 置用峨收並切換錢輸人錢,藉讀出交流輸 •,。控制益耦接開關裝置,用以控制開關裝置進行切 、,藉以使開關裝置輸出交流輸出電壓。 ,依據本創作的示範性實施例中,所述電荷幫浦電路 固二極體與N個電容所組成,其中N為正整數。 在依據本創作的示範性實施例中,當負裁為離子風扇 5 M4380V3 時,所述輸出電壓至少為4KV。 、-創作因採用兩階段升壓方式’第-階段 以汊古二二丁、、堅’第二階段以電荷幫浦進行升壓,所以 <以’i轉㈣受限於設備空間而無法提升電 _ °另—方面’本創作_子風散熱裝置可以應用在ί 限空間’離子風扇模組可操作在輸出電壓下並進行運 炎且產生散熱效果。㈣離子風扇以無扇方式製風 不會有傳統風扇噪音、風騎命、風扇積塵或大體積 題。另外,本創作的離子風散熱裝置相較於傳統的風扇散 熱裝置具有體積小、無活動零件與節省能源的優點。 為讓本創作之上述特徵和優點能更明顯易懂,下文特 举實施例,並配合所附圖式,作詳細說明如下。 【實施方式】 本創作的不範性實施例現將以詳細實施方式來作為灸 考,在附圖中說明所述示範性實施例的實例。在可能的情 況下’將在圖式中始終使用相同參考圖式符號來指代相同 鲁 或相似的部分。 在下述諸實施例中,當元件被指為「連接」或「耦接」 至另一元件時,其可為直接連接或輕接至另一元件,或可 能存在介於其間之元件。相對地’當元件被指為「直接連 接」或「直接耦接」至另一元件時,則不存在有介於其間 之元件。 圖1是依據所揭露一實施例之離子風散熱裝置的示意 6 圖。請參閱圖1。離+ 11〇以及離子風錢=熱裝置刚包括電壓轉換裝置 於輸入轉VlN及離子。,電壓轉換裝置11G電性連接 輸入電壓Vw而成&組12G之間’用以提升直流 模組12〇 (負載)來^電壓(高電墨)ν〇υτ給離子風扇 的直流電壓直流輸人電壓VlN可以為一般 述輪咖〜是指電壓值為千樣級: 元換裝置110包括直流-交流轉換單 二:對直,入電壓4進行轉換,藉以輸出-交ί 其中―次侧繞㈣麵接直流·交流轉換單元二 雨▲此電壓轉換裝置110分兩階段進行升壓,第一階段 利,變壓器3G進行升壓’第二階段湘電荷幫浦電路6〇 進行另一次的升壓。 直流-交流轉換單元10包括以脈寬調變架構為基礎的 控制器2 0以及開關裝置2 4。開關裝置2 4接收直流輸入電 壓vin。控制器20耦接至開關裝置24。控制器20藉由脈 寬調變(pulse widA modulation,PWM)的方式控制開關 裝置24進行切換,藉以使開關裝置24輸出交流輸出電壓 Vaco至變壓器30的一次側繞組40上。 變壓器30在第一階段升壓過程中,—次側繞組4〇與 二次側繞組50透過磁耦合到同一個變壓器鐵芯,並且進行 M438073 升壓而產生交流感應龍νΑα。二次側繞組5Q用於提升 原先的輸入電壓Vin的準位,其中交流輸出電壓Va⑺的準 位介於+VJN至^。另外,一次側繞組4〇與二次側繞植 50的,數比可以為ηκ。請注意,本創作的變壓器⑽不 j很高的匝數比進行升壓,所以相較於傳統的 變壓器而 言’電壓轉換裝置110内的變壓器體積不會很大,有助於 將變壓器30配置在有限的設備空間内。另一方面,變壓器 30因不使用非常高的區數比,所以一次側繞組與二次 侧繞組50之間的損耗不會嚴重,甚至可以忽略。 電荷幫浦電路60耦接至變壓|| 3〇的二次側繞組4〇。 在第二階段升壓過程中’電荷幫浦電路6〇用以接收交流感 應,壓Vaci,並且對交流感應電壓VACI升壓以產生一輸出 電壓V〇^T’其中此輸出電壓ν〇υτ為提供離子風扇模組 所需的高電壓,而輸出轉Vqut可以為丨Μ倍的ν·, ^中Ν為大於1的數字。在又一示範例中可以將輸出電 壓v0UT設計為至少4KV或4KV以上,但本創作的輸出電 壓V〇ut的數值不以此為限。 θ當離子風扇模組120施加4KV以上的高電壓時,在強 電%之下將造成電暈現象,使得空氣離子移動而產生電 風,或稱為離子風,帶動空氣經由離子風扇模組120的本 體而進行散熱。因此配置有離子風散熱裝置1〇〇的電子設 備可以因熱對流原理而產生散熱效果。由於離子風扇模組 =0以無扇方式製風,所以不會有傳統的風扇噪音、風扇 可°卩、風扇積塵或大體積等問題。並且,本創作的離子風 散熱裝置1GG她於傳統的風扇散 積小、無活動零件與節魏源的優點 作具有體 另卜叾不品要大風流進行冷卻時,可以么 2〇的脈寬調變控制,來降低所輸出的電壓。、,工“ ^解摘作的電路構造與運作必綱 :==式以便本領域具有通常知識者能夠更進 步的了解本創作的精神,並實施本創作。 凊再參閱圖1。在此實施例巾,開置24可包括開 關25、26、27及28,其中開關25、26可以為P型金氧半 導體(p-type metal oxide semiconductor,PMOS )’ 而開關 27 28可以為n型金氧半導體(n_type metai 〇xide semiconductor,NMOS ) ’但不以此為限。以脈寬調變架 構為基礎的控制器20可以全橋驅動方式控制開關25〜28 以進行切換。全橋驅動方式可以如下:當開關25及28導 通時’開關26及27不導通;而當開關26及27導通時, 開關25及28不導通。因此導通於一次側繞組40的能量會 反應於一次側繞組50上。 上述控制器20與開關裝置24的設計係以全橋驅動方 式。另外,在又一變化實施例中,控制器20可以改為半橋 驅動方式,並且藉由半橋驅動方式來控制開關裝置24内的 各開關的切換。請注意,本創作的驅動方式應當不限制於 上述可能的型態。 針對變壓器3〇的設計,一次側繞組40與二次側繞組 50的匝數比可以為1 ·· κ,用以將一次側繞組40的電壓 M438073 vAC0提升κ倍。例如-次側繞組4〇的弦波在準位至 -VrN之間振盪,而反應於二次側繞組5〇的弦波則在準位 +vP至-vP之間振盪,其中v产κ χ Vin,並且Vaci=k χ Vaco 〇 電荷幫浦電路6〇耦接在變壓器3〇的二次側繞組4〇。 電荷幫浦電路6〇接收交流感應電壓 應電壓VACI升壓並且產生一輸出電壓二 私壓νουτ為提供給離子風扇模組12〇所需的高電壓。因 此,輸出電壓V0UT可以為1至Ν倍的Vaci。 值得一提的是,電荷幫浦電路6〇係由N個二極體與 N個電谷所組成,其中N為正整數。例如,電荷幫浦電路 60包括一極體62以及電容64所組成的電路,利用電壓遞 升原理倍增電壓。 ^圖2繪示圖1的離子風散熱裝置100的各節點電壓隨 著時間變化的波形示意圖。請合併參閱圖丨和圖2。節點 N〇的電壓為VACI,而交流感應電壓Vaci的弦波大約在+Vp 至-VP之間振盪。節點叫的電壓為%,而電壓%的弦波 大約在2Vp至〇之間振盪。節點N2的電壓為V2,而電壓 %的直流電壓大約為2Vp;較精確來說,V2的直流大小= 2 X (K xVjn _ vF) ’ %為二極體的順向電壓。節點沁的 電壓為V3,而電壓V3的弦波大約在3VP至2VP之間振盡。 在節點N,提供-輸出電壓ν·,而此輸出電壓v隱的 直流大小=2 X Ν X (Κ χ Vin · Vf)。故,在本實施例中 V〇UT的數值可以很容易地藉由VIN、K與N等,經計算而 10 M438073 獲得例t ’將輸出電· V°UT設計為4KV或4KV Γί杳以f供後端所需的高電壓與高電場。請注意,可以 L 求來Γ十輸出電壓ν°υτ的數值,從而當離子風 4通以间電壓時’帶動空氣經由離子風扇模組120 的本體—’並使設備m巾的熱量散去。 由作的重要特徵,本創作的離子風散熱裝置 : 、裝置彳木用兩階段升壓方式,第一階段以變壓 器進行=壓,第二階段以電荷幫浦進行升壓,所以可以有 效地解決傳統因纽於設備空間而無法提升電壓的問題。 另^面’本創作的離子風散熱裝置可以應用在有限空 間,離子風扇模組可操作在輸出電壓下並進行運轉,並且 產生3效果。由於離子風顧組以無扇方式製風,所以 不會彳姐扇噪音、風扇壽命、風扇積塵或大體積的問 ^另外’本創作的離子風散熱裝置相較於傳統的風扇散 …裝置具有體積小、紐動零件與節省能源的優點,從而 配置本創作的離子風散熱裝㈣電子賴軌合可以變得 輕巧,增加應用上與使用上的便利性。 ,· 士上述較佳貫施例及電路分析之評價,相對於習用技 術’本創作_難路提供了高效率即可大量製造的替代 方案。 雖然本創作已以實施例揭露如上,然其並非用以限定 本創作任何所屬技術領域中具有通常知識者,在不脫離 本創作之精神和範_,當可作些許之更動與_,故本 創作之保護當視後附之申請專利顧所界定者為準。 11 M438073 【圖式簡單說明】 圖1是依據所揭露一實施例之離子風散熱裝置的電路 示意圖。 圖2繪示圖1的離子風散熱裝置的各節點電壓隨著時 間變化的波形示意圖。 【主要元件符號說明】 10 :直流-交流轉換單元 20 :脈寬調變控制器 24 :開關裝置 25、26、27、28 :開關 30 變壓器 40 一次側繞組 50 二次側繞組 60 電荷幫浦電路 62 二極體 64 電容 100 :離子風散熱裝置 110 :電壓轉換裝置 120 :離子風扇模組 Ν〇、Ν"ι、N2、N3、Ν〇υτ .節點 V"i、V2、V3 .電壓$. The ion fan module is coupled to the charge pump circuit 'for operation at the output to operate. In an exemplary embodiment in accordance with the present teachings, the DC-to-AC conversion includes a controller based on a pulse width modulation architecture and a switching device. Use the levy and switch money to lose money, and read and exchange. The control coupling switch device is configured to control the switching device to perform cutting, so that the switching device outputs an AC output voltage. According to an exemplary embodiment of the present invention, the charge pump circuit solid diode is composed of N capacitors, where N is a positive integer. In an exemplary embodiment in accordance with the present creation, the output voltage is at least 4 kV when the negative cut is the ion fan 5 M4380V3. - The creation uses a two-stage boosting method. The first stage uses the charge pump to boost the second stage of the second and second stages. Therefore, the 'i turn (four) is limited by the device space. Enhance the power _ ° Another side - this creation _ sub-wind heat sink can be used in the 限 limited space 'ion fan module can operate at the output voltage and carry out the heat and heat dissipation effect. (4) The ion fan is fanlessly fanned. There is no traditional fan noise, wind ride, fan dust or large volume. In addition, the ion wind heat sink of the present invention has the advantages of small size, no moving parts and energy saving compared to the conventional fan heat sink. In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following detailed description of the embodiments and the accompanying drawings will be described below. [Embodiment] An exemplary embodiment of the present invention will now be considered as a moxibustion in a detailed embodiment, and an example of the exemplary embodiment will be described in the accompanying drawings. Where possible, the same reference symbols will be used throughout the drawings to refer to the same. In the following embodiments, when an element is referred to as being "connected" or "coupled" to another element, it may be directly connected or spliced to the other element, or there may be intervening elements. Relatively, when an element is referred to as being "directly connected" or "directly coupled" to another element, there is no intervening element. 1 is a schematic 6 view of an ion wind heat sink in accordance with an embodiment of the disclosure. Please refer to Figure 1. From + 11 〇 and ion wind money = thermal device just included voltage conversion device at the input to VlN and ions. The voltage conversion device 11G is electrically connected to the input voltage Vw to form a DC voltage between the group 12G and the group 12G to increase the DC module 12 〇 (load) to the voltage (high ink) ν 〇υ τ to the ion fan. The human voltage VlN can be a general description of the rovers ~ refers to the voltage value of the thousand sample level: the meta-changing device 110 includes a DC-AC conversion single two: the direct, the input voltage 4 is converted, thereby output-crossing (4) Surface-connected DC/AC conversion unit Rainy ▲ This voltage conversion device 110 performs boosting in two stages. In the first stage, the transformer 3G performs boosting. The second stage of the Hunan charge pump circuit 6〇 performs another boost. . The DC-AC conversion unit 10 includes a controller 20 and a switching device 24 based on a pulse width modulation architecture. The switching device 24 receives the DC input voltage vin. The controller 20 is coupled to the switching device 24 . The controller 20 controls the switching device 24 to switch by means of pulse wid A modulation (PWM), whereby the switching device 24 outputs the AC output voltage Vaco to the primary winding 40 of the transformer 30. During the first stage boosting process of the transformer 30, the secondary winding 4〇 and the secondary winding 50 are magnetically coupled to the same transformer core, and M438073 is boosted to generate an AC induction dragon Αα. The secondary side winding 5Q is used to raise the level of the original input voltage Vin, wherein the level of the AC output voltage Va(7) is between +VJN and ^. Further, the primary side winding 4〇 and the secondary side winding 50 may have a numerical ratio of ηκ. Please note that the transformer (10) of this creation does not have a high turns ratio to boost, so the transformer in the voltage conversion device 110 does not have a large volume compared to the conventional transformer, which helps to configure the transformer 30. In a limited space of equipment. On the other hand, since the transformer 30 does not use a very high area ratio, the loss between the primary side winding and the secondary side winding 50 is not serious or even negligible. The charge pump circuit 60 is coupled to the secondary winding 4〇 of the transformer || During the second-stage boosting process, the 'charge pump circuit 6' is configured to receive the AC induction, press Vaci, and boost the AC induced voltage VACI to generate an output voltage V〇^T', wherein the output voltage ν 〇υ τ is The high voltage required for the ion fan module is provided, and the output turn Vqut can be 丨Μ ν·, ^ Ν is a number greater than 1. In another example, the output voltage vOUT can be designed to be at least 4KV or more, but the value of the output voltage V〇ut of the present application is not limited thereto. θ When the ion fan module 120 applies a high voltage of 4KV or more, a corona phenomenon will occur under the strong electricity %, so that the air ions move to generate an electric wind, or ion wind, to drive the air through the ion fan module 120. The body is cooled. Therefore, the electronic device equipped with the ion wind heat dissipating device 1 can generate a heat dissipating effect due to the principle of thermal convection. Since the ion fan module =0 is fanless, there is no problem with conventional fan noise, fan squeaking, fan dust or large volume. Moreover, the ion wind heat dissipating device 1GG of the present invention has a small fan-shaped, non-moving part and a Wei-Wang source, and has the advantages of a body and a small airflow for cooling. Variable control to reduce the output voltage. , "Working" is a must-have circuit construction and operation: == so that those with ordinary knowledge in the field can better understand the spirit of this creation and implement this creation. 凊Refer to Figure 1. Implement here For example, the opening 24 can include switches 25, 26, 27, and 28, wherein the switches 25, 26 can be p-type metal oxide semiconductor (PMOS)' and the switch 27 28 can be n-type gold oxide. The semiconductor (n_type metai 〇xide semiconductor, NMOS ) 'but not limited to this. The controller 20 based on the pulse width modulation architecture can control the switches 25 to 28 in full bridge mode for switching. The full bridge driving mode can be as follows When the switches 25 and 28 are turned on, the switches 26 and 27 are not turned on; and when the switches 26 and 27 are turned on, the switches 25 and 28 are not turned on. Therefore, the energy conducted to the primary winding 40 is reflected on the primary winding 50. The controller 20 and the switching device 24 are designed in a full-bridge driving manner. In addition, in still another modified embodiment, the controller 20 can be changed to a half-bridge driving mode, and the switching device 24 is controlled by a half-bridge driving method. Inside Switching of each switch. Please note that the driving method of this creation should not be limited to the above possible types. For the design of the transformer 3〇, the turns ratio of the primary winding 40 to the secondary winding 50 can be 1 ·· κ For increasing the voltage M438073 vAC0 of the primary winding 40 by a factor of κ. For example, the sine wave of the secondary winding 4 振荡 oscillates between the level and -VrN, and the sine wave of the secondary winding 5 反应 is The oscillation between the levels +vP and -vP, where v produces κ χ Vin, and Vaci=k χ Vaco 〇 charge pump circuit 6〇 is coupled to the secondary winding 4〇 of the transformer 3〇. Charge pump circuit 6 The receiving AC induced voltage should be boosted by the voltage VACI and generate an output voltage. The private voltage νουτ is the high voltage required for the ion fan module 12〇. Therefore, the output voltage VOUT can be 1 to ΝVaci. It is noted that the charge pump circuit 6 is composed of N diodes and N electric valleys, where N is a positive integer. For example, the charge pump circuit 60 includes a circuit body composed of a pole body 62 and a capacitor 64. , using the voltage step-up principle to multiply the voltage. ^ Figure 2 shows the Figure 1 A schematic diagram of the waveform of each node voltage of the sub-winding heat sink 100 as a function of time. Please refer to FIG. 2 and FIG. 2. The voltage of the node N〇 is VACI, and the sine wave of the AC induced voltage Vaci is approximately +Vp to -VP. The oscillation is called. The voltage of the node is %, and the sine wave of voltage % oscillates between 2Vp and 〇. The voltage of node N2 is V2, and the DC voltage of voltage % is about 2Vp; more precisely, the DC of V2 Size = 2 X (K xVjn _ vF) ' % is the forward voltage of the diode. The voltage at node 为 is V3, and the sine wave at voltage V3 is approximately between 3VP and 2VP. At node N, the -output voltage ν· is supplied, and the output voltage v is hidden by the DC size = 2 X Ν X (Κ χ Vin · Vf). Therefore, in this embodiment, the value of V〇UT can be easily calculated by VIN, K and N, etc., and 10 M438073 is obtained. Example t' is designed to output 4VV or 4KV to 4KV. High voltage and high electric field required for the back end. Note that the value of 输出10 output voltage ν°υτ can be obtained by L, so that when the ion wind 4 is applied with a voltage, the air is driven to pass through the body of the ion fan module 120 and the heat of the device m towel is dissipated. The important features of this work, the ion wind cooling device of this creation: The device uses a two-stage boosting method for the rafter, the first stage is controlled by the transformer = pressure, and the second stage is boosted by the charge pump, so it can be effectively solved. The traditional problem is that the voltage cannot be increased due to the device space. The ionic air heat sink of this creation can be applied in a limited space, and the ion fan module can operate at the output voltage and operate, and produces 3 effects. Since the ion wind group is fanless, it does not cause fan noise, fan life, fan dust or large volume. In addition, the original ion wind heat sink is compared to the conventional fan device. With the advantages of small size, moving parts and energy saving, the ion wind cooling device (4) of this creation can be lightened, which increases the convenience of application and use. The evaluation of the above-mentioned preferred embodiments and circuit analysis provides an efficient alternative to mass production in comparison to the conventional technology. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the ordinary knowledge in the technical field of the present invention, and the present invention can be made without any departure from the spirit and scope of the present creation. The protection shall be subject to the definition of the patent application attached to it. 11 M438073 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram of an ion wind heat sink according to an embodiment of the disclosure. 2 is a waveform diagram showing voltages of respective nodes of the ion wind heat dissipating device of FIG. 1 as a function of time. [Main component symbol description] 10: DC-AC conversion unit 20: Pulse width modulation controller 24: Switching device 25, 26, 27, 28: Switch 30 Transformer 40 Primary winding 50 Secondary winding 60 Charge pump circuit 62 Diode 64 Capacitor 100: Ion wind heat sink 110: Voltage converter 120: Ion fan module Ν〇, Ν"ι, N2, N3, Ν〇υτ. Node V"i, V2, V3. Voltage

Vaci :交流感應電壓 VAC0 :交流輸出電壓Vaci : AC induced voltage VAC0 : AC output voltage

Vin :輸入電壓 V〇uT ·輸出電壓 12Vin : input voltage V〇uT · output voltage 12

Claims (1)

6、申請專利範圍: 1. 一種電壓轉換裝置’包括. 〜直流-交流轉換單元,用以對一直流輸入電壓進行轉 換’藉以輸出一交流輸出電壓; 〜變壓器’具有一一次侧繞組與一二次側繞組,其中 d〜次側繞組辆接該直流-交流轉換單元的輸出;以及 〜電荷幫浦電路,耦接該二次側繞組,用以反應於該 二次側繞組上的一交流感應電壓而進行一升壓處理,藉以 產生一輸出電壓給一負載。 2. 如申請專利範圍第1項所述之電壓轉換裳置,其中 該直流-交流轉換單元包括: 一開關裝置,用以接收並切換該直流輸入電壓,藉以 輸出該交流輸出電壓;以及 出該交流輸出電壓 以脈寬5周變架構為基礎的控制器,麵接該開關裝 置’”f制該開關裝置進行切換,藉以使該開關裝置輸 J. 如 請專利範圍第1項所述之電壓轉縣置,里中 由Ν個二極體與Ν個電容所組成,其中Ν 該負載為一離子風2:: /電壓轉換裝置,其中 5· -種離子風散熱裝置,^出電以少為奶。 一電壓轉換裝置,包括: 一直流_交流轉換單元,_對1流輸入電塵進 J 13 M438073 行轉換,藉以輸出一交流輸出電壓; 一變壓器,具有* —次側繞組與一二次側繞組, 其中該一次側繞組耦接該直流-交流轉換單元的輸出;以及 一電荷幫浦電路,耦接該二次側繞組,用以反應 於該二次側繞組上的一交流感應電壓而進行一升壓處理, 藉以產生一輸出電壓;以及 一離子風扇模組,耦接該電荷幫浦電路,用以操作在 該輸出電壓下以進行運轉。 6. 如申請專利範圍第5項所述之離子風散熱裝置,其 中該直流-交流轉換單元包括: 一開關裝置,用以接收並切換該直流輸入電壓,藉以 輸出該交流輸出電壓;以及 一以脈寬調變架構為基礎的控制器,耦接該開關裝 置,用以控制該開關裝置進行切換,藉以使該開關裝置輸 出該交流輸出電壓。 7. 如申請專利範圍第5項所述之離子風散熱裝置,其 中該電荷幫浦電路由N個二極體與N個電容所組成,其中 N為正整數。 8. 如申請專利範圍第5項所述之離子風散熱裝置,其 中該輸出電壓至少為4KV。 146. Patent application scope: 1. A voltage conversion device 'includes ~ DC-AC conversion unit for converting the input current input voltage' to output an AC output voltage; ~ Transformer' has a primary side winding and one a secondary winding, wherein the d to the secondary winding is connected to the output of the DC-AC conversion unit; and a charge pump circuit coupled to the secondary winding for reacting to an AC on the secondary winding A boosting process is performed to induce an output voltage to generate a load. 2. The voltage conversion device according to claim 1, wherein the DC-AC conversion unit comprises: a switching device for receiving and switching the DC input voltage, thereby outputting the AC output voltage; The AC output voltage is based on a 5-cycle variable-width controller, and the switching device is connected to the switching device to switch the switching device, so that the switching device outputs J. The voltage described in the first item of the patent scope is as follows. Turning to the county, the middle consists of a diode and a capacitor, where 负载 the load is an ion wind 2:: / voltage conversion device, where 5 · - ion wind heat sink, ^ power out less For a milk. A voltage conversion device, comprising: a DC_AC conversion unit, _ for a stream input electric dust into J 13 M438073 line conversion, thereby outputting an AC output voltage; a transformer having * - secondary winding and one or two a secondary winding, wherein the primary side winding is coupled to the output of the DC-AC conversion unit; and a charge pump circuit coupled to the secondary winding for reacting with the secondary winding Flow-induced voltage is subjected to a boosting process to generate an output voltage; and an ion fan module coupled to the charge pump circuit for operating at the output voltage for operation. The ion wind heat dissipating device of claim 5, wherein the DC-AC conversion unit comprises: a switching device for receiving and switching the DC input voltage for outputting the AC output voltage; and a pulse width modulation architecture The controller is coupled to the switch device for controlling the switch device to switch, so that the switch device outputs the AC output voltage. 7. The ion wind heat sink according to claim 5, wherein the charge The pump circuit is composed of N diodes and N capacitors, wherein N is a positive integer. 8. The ion wind heat sink according to claim 5, wherein the output voltage is at least 4 kV.
TW101207986U 2012-04-27 2012-04-27 Voltage conversion device and ionic wind radiator using the same TWM438073U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101207986U TWM438073U (en) 2012-04-27 2012-04-27 Voltage conversion device and ionic wind radiator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101207986U TWM438073U (en) 2012-04-27 2012-04-27 Voltage conversion device and ionic wind radiator using the same

Publications (1)

Publication Number Publication Date
TWM438073U true TWM438073U (en) 2012-09-21

Family

ID=47225112

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101207986U TWM438073U (en) 2012-04-27 2012-04-27 Voltage conversion device and ionic wind radiator using the same

Country Status (1)

Country Link
TW (1) TWM438073U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI463773B (en) * 2012-12-05 2014-12-01 Hep Tech Co Ltd Isolated power conversion device and its automatic charge and discharge circuit and power conversion method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI463773B (en) * 2012-12-05 2014-12-01 Hep Tech Co Ltd Isolated power conversion device and its automatic charge and discharge circuit and power conversion method

Similar Documents

Publication Publication Date Title
JP6341386B2 (en) Switching power supply
JP5741558B2 (en) Power converter
US8724356B2 (en) Two-stage isolated DC/AC conversion circuit structure
JP6032393B2 (en) Rectifier circuit
TW201251501A (en) Light emitting diode driving circuit for AC or DC power source
JP2008086053A (en) Converter circuit
TW200822558A (en) Triangular waveform generating circuit, generating method, inverter using them, light emitting device and liquid crystal television
JP7328748B2 (en) power converter
TWI414139B (en) High voltage gain power converter
TW201122794A (en) Power supply circuit capable of reducing power loss and computer device using the same
JP2014068520A (en) Controller with partial resonance mode and current continuous mode, and method of operating the same
TW201724717A (en) High voltage gain power converter
US10998819B2 (en) Method and system for DC voltage converting
TWM438073U (en) Voltage conversion device and ionic wind radiator using the same
TWI314386B (en) Single-stage driving circuit for linear piezoelectric ceramic motor
CN108432110B (en) DC/DC converter
US10517148B2 (en) Induction heat cooking apparatus and method for driving the same
Huang et al. Battery powered high output voltage bidirectional flyback converter for cylindrical DEAP actuator
TW201608807A (en) Single-stage high step-down DC-DC converter
TWI698075B (en) Power supply device
CN202634281U (en) Voltage conversion apparatus and ionic wind heat dissipation device using the same
Altuğ et al. Buck Converter with Optocoupler Based Switching
US8248749B2 (en) Ionic thermal dissipation device
JP6680059B2 (en) Switching power supply device and switching control circuit
CN108183623A (en) A kind of fast rising pulse source of high pressure

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees