TWM435629U - System of forming holographic image - Google Patents

System of forming holographic image Download PDF

Info

Publication number
TWM435629U
TWM435629U TW101206950U TW101206950U TWM435629U TW M435629 U TWM435629 U TW M435629U TW 101206950 U TW101206950 U TW 101206950U TW 101206950 U TW101206950 U TW 101206950U TW M435629 U TWM435629 U TW M435629U
Authority
TW
Taiwan
Prior art keywords
image
light
unit
light wave
film
Prior art date
Application number
TW101206950U
Other languages
Chinese (zh)
Inventor
Ming-Tang Yao
Original Assignee
E Lon Optronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Lon Optronics Co Ltd filed Critical E Lon Optronics Co Ltd
Priority to TW101206950U priority Critical patent/TWM435629U/en
Priority to CN 201220221460 priority patent/CN202631968U/en
Publication of TWM435629U publication Critical patent/TWM435629U/en

Links

Landscapes

  • Holo Graphy (AREA)

Abstract

A system of forming holographic image includes a unit of light source, a unit of light splitting, a unit of reference light, a unit of image generation, a unit of objective light and a film of photo resist. A reference light wave derived from the unit of reference light is loaded with image information of a target and is incident onto the film of photo resist, so that multi-exposure is reduced for the film of photo resist and the brightness of a reconstructed holographic image may be enhanced.

Description

M435629 五、新型說明: 【新型所屬之技術領域】 本創作係有關於一種全像片的合成系統,特別是有關於一種光學 全像片的合成系統。 【先前技術】 習知的光學全像片,利用一道同調光照射物體,物體面上的反射 光或直接穿透光即物光會射向感光平板,然後再利用此束同調光的另M435629 V. New description: [New technical field] This creation is about a photographic system, especially a synthetic system for optical photographic film. [Prior Art] A conventional optical hologram uses a dimming light to illuminate an object. The reflected light on the object surface or the direct illuminating light, that is, the object light, is directed to the photosensitive plate, and then the beam is tuned to the other.

一部份作為參考光投射在感光平板上,由於物光及參考光是來自同一 束同調光,所以會在感光平板上形成干涉(lnterference),形成許多明 暗的干涉躲,感光平板會把這些圖加以靖而形成-張全像片,其 中干涉花獅形狀所代表之城為物賴參考光之咖她關係,而 其明暗對比程度,則反映了光束的強度關係。 習知圓盤型複合全像術的光學拍齡統中,包含了 —圓柱透鏡, 因此母认減祕出之全像片是_狹長扇形的小全像片。當觀察者觀 看重建影斜,㈣輯是透過許多小全Μ触_雜影像組合 而成,故不可避免地會產生影像變形。又,«的影像會有-條條的 暗紋重®在其上’即所謂的「栅攔效應」。 又’習知所謂的成像面圓盤型複合全像術不同於圓盤型複合全像 術之處,在於它㈣單的光學系統,去除了圓柱透鏡,將物體影像以 像於—張蝴…賴_複曝光, =建的影像亮度不足,造成全像影像的可觀._,且無 光所造 3 成的問題提出解決的方法_。 【新型内容】 本案的目的之一,在於提供一種全像影像的合成系統,形成帶有 目標物體之景彡像資訊的參考光,減少參考光於底片與物光產生不必要 的干涉條紋’ it而減少底片上重祕光的次數,以提高重建影像的亮 度,並可應用於製作大尺寸的全像片。 本案的目的之一,在於提供一種全像影像的合成系統’形成帶有 目標物體之影像資訊的參考光’配合利用半圓柱鏡設置於物光到達底 片珂的光路徑上’減少物光於底片與參考光產生不必要的干涉條紋, 進而減少底片上重複曝光的次數,以提高重建影像的亮度,並可應用 於製作大尺寸的全像片。 本案的目的之一,在於提供一種全像影像的合成系統,形成帶有 目標物體之影像資訊的參考光,配合利用影像抽離的方式,使得目標 物體的兩幀影像的像素值減少且互補,減少物光於底片與參考光產生 不必要的干涉條紋,進而減少底片上重複曝光的次數,以提高重建影 像的亮度,並可應用於製作大尺寸的全像片。 依據上述,一種全像影像的合成系統,包括:提供一同調光束的 一發光單元;將該同調光束分為一參考光束以及一物光光束的一分光 單元;包括一影像產生器的一參考光單元,該影像產生器接收該參考 光束以輸出帶有一目標物體的一影像資訊的一參考光光波;提供該目 標物體的至少一影像的一影像產生單元;將該物光光束引導至該影像 產生單元以產生—物光光波的—物光料;以及該參考光光波與該物 光光波人射-底片以於舰片上顯複數條干涉條紋。 :實施例中’該發光單元包括—氣體雷射發射器、二氧化 石反田射發射^液態雷射發射器' _雷射發射器或是半導體雷射發 射器。 於一較佳實施例中’該_光朿包括—可見光光束或是—不可見 光光束。 於一較佳實施例中,該分光單元包括一光束分離鏡。 於較佳實施例中’該影像產生單元包括一可處理影像的電子裝 置將該影像分色處理以輸出—第—單色成分像以及一第二單色成分 像3亥第—單色成分像的一第一單色異於該第二單色成分像的-第二 單色。又,該物光單元包括一角度調整元件調整帶有該第一單色成分 像或4第二單色成分像的該物光光波與該參考光光波之間的一夾角 度在一固定入射角的該參考光光波的條件下,對應該第一單色成分 像的4物光光波的該夾角度異於對應該第二單色成分像的該物光光波 的該角度。 於一較佳實施例中’該物光單元包括一半圓柱鏡,該物光單元包 括具有—半圓柱鏡的一物光成像系統,該物光光波通過該半圓柱鏡後 入射6亥底片’且該底片設置於該物光成像系統的一焦平面距離附近的 一景深範圍中但不包括該焦平面距離上。 於—較佳實施例中’該影像產生單元包括以一擷取晝素的設定擷 取該目標物體的一第一影像以及一第二影像,並且以一投影畫素的設 定處理該第一影像以及該第二影像後由該物光光束投射以產生該物光 光波,其中該投影畫素的畫素值少於該擷取畫素的畫素值。又,基於 該投影畫素的該第一影像的該影像資訊互補於基於該投影畫素的該第 二影像的一影像資訊。 於一較佳實施例中,該影像包括該目標物體的複數幀影像,該些 幀影像由不同擷取視角擷取該目標物體得到。 【實施方式】 本案以下所稱的全像影像的合成系統,可以應用於不同成像原理 的全像合成系統,例如彩虹全像片、反射式全像片、多視角全像片、 真衫全像片或是積成式全像片等等。雖然以下所列的圖式中為特定的 全像合成系統,然此僅用以說明本案之技術,並非用以限定本案之應 用範圍。 本案以下所稱的參考光角度,係指參考光與底片法線的夾角當 底片為〜平面時’法線為單…但當底片捲成圓柱狀或圓錐狀時,法 線則有複數條,然本案不限於此,亦可採用參考光與底片七刀面的夹角 作為定義,於本案中,參考光角度為一固定的角度。 圖1為本案之-較佳實施例的系統示意圖。參照圖i,全像影像 的合成系統2包括-發光單元1Q、分光單S 12、參考光單元14、影 像產生單元16、物光單元18以及一底片2〇。 發先單元1〇用以提供-同調光束1〇1,可提供同調光束1〇1者 例如各種f射光發射器,其中雷射若以介質來看,可以是氣體雷射(如 M435629 島 氦氖羞射)、二氧化碳雷射、液態雷射、固態雷射或是半導體雷射等。 又,以波長來看,可以是可見光或不可見光雷射。 分光單元12接收發光單元1〇提供的同調光束1〇1,並將該同調 光束101分為一參考光束121以及_物光光束123。分光單元12可 以包括一光東分離鏡(Beam Splitter, BS)122 ,亦更複數個光學元件組 成,例如反射鏡124設置於適當的位置導引同調光束1〇1,其作用皆 在於將同έ周光束101分成參考光束121以及物光光束123。 參考光單元14接收分光單元的參考光束121 ,並基於參考光 束121輸出一參考光光波141。於一實施例中,參考光單元14可以 包括一空間渡波器(Space Filter, SF)142以去除空間雜訊對於參考光 束121的干擾,例如由共焦點凸透鏡組與針孔所組成,但本案不限於 此0 其次,參考光單元14更包括一影像產生器148,將參考光束121 由光學元件146'引導人射影像產生器148後形成帶有目標影像資訊的 參考光光波141’如此可減少對應目標影像外的區域的參考光光波141 入射至底片20上’進而減少不必要的干涉條紋的產生以及重複曝光的 次數。 參考光單元14亦可包括其他的光學元件以引導或優化參考光束 ⑵以輸出一參考光光波141,例如包括焦距不等的透鏡144等等。 參考光單元14亦可以包括可調變光的部件,例如調變振幅、相位或角 度的部件。參考光單元14處理參考光束121後輸出—參考光光波 141,並且調整參考光光波141入射至—底片2〇的角度,使得參考光 7 M435629 秦 光波141以一參考光角度入射底片2〇。 务像產生單7C 16提供至少-影像。於本案中,一影像可以為被記 錄的-目標物體162的單-角度的影像或多角度的多㈣像。其次, 目標物體162可以是單色或多色或具有灰階。於—實施例中,影像產 生單元16包括-攝像元件164、一可處理影像的電子裝置166以及 -顯像器168。攝就件164,例如CCD攝影機,擷取一目標物體 162的單-角度的影像或多角度的多巾貞影像,其中攝像錯彳64或是 目標物體162可被移動調整,藉以麻所須的角度的影像。可處理影 像的電子裝置166,例如一電腦,接收來自攝像元件164糊取的影像 161 ’並進行影像處理。 其次’此實施例中,由於參考光單元14設置影像產生器⑽以 產生帶有目標影《訊的參考光光波M1,因此,來自攝像藉164 的影像161柯與影像產生請連接,或是可處理影像的電子 裝置166將景遺161進行完影 像產生器说。 後再傳社參考光料14的影 再者,顯像器168,#Hd — 子裝置輯理後的影像脱。Μ幕’可咖可處理影像的電 接著,物光單元18將來自 像產生單元16以產生―物光光波f物先光束123引導至影 若干光學元件,舉物_ 。於梅,物W括 ^的,透鏡182或反射錄π 束123引導至影像產生單元彳6 _ ,將物光光 181。 °。 像成物光光波 8 M435629 ♦ 接著,參考光光波141與物光光波181入射底片2〇以於底片20 上形成複數條干涉條紋。依據上述,帶有影像資訊的參考光光波141 可減少底片重複曝光的次數,可以提高重建全像影像的亮度。 圖2為本案之一第二實施例的系統示意圖。與第一實施例的差 異,在於全像影像的合成系統4的物光單元18包括一半圓柱鏡186 與匹配的透鏡組182,形成適當的物光成像系統。請同時參考圖3 , 所謂的物光單元181包括適當的物光成像系統,即焦平面位於適當的 距離内,於圖上以距離半圓柱鏡186的中心為d1表示,但本案的底 片20並不設置於物光成像系統的焦平面距離⑴上來產生干涉。本案 的底片20係設置於鄰近焦平面的一離焦距離d2或d3的位置,亦可 謂此物光成像系統的一景深(depth of field)範圍(介於d2與d3之間) 内。當底片20設置於此離焦距離上時,物光光波與參考光光波形成的 干涉條紋仍可重建出人眼可辨識的全像影像。 參考圖4 ’本案的物光單元採用半圓柱鏡186與匹配的透鏡組182 所形成適當的物光成像系統’當將底片20置於物光成像系統的景深範 圍中但不包括焦平面的距離上’於底片上曝光的範圍分別為曝羊干涉 區域163a、163b。要說明的是,曝光干涉區域163a、163b分別為 一目標物體之不同視角的第一影像以及第二影像,其可以經過前述的 影像抽離處理或是沒有經過影像抽離處理。然透過本案之半圓柱鏡 186與匹配的透鏡組182,所形成的物光成像系統後,入射至底片2〇 的物光光波之曝光干涉區域163a ' 163b小於未設置半圓柱鏡或圓柱 透鏡的習知系統,因此可以減少底片被重複曝光的次數,進而得到亮 9 M435629 度較高的重建影像。除了減少底片被重複曝光的次數,本案更優於習 知系統者,在於將底片設置於景深範圍,可以消除柵襴效應,使得底 片上所1己錄的干涉條紋能夠重建出人眼可辨識的清晰影像。 又,第一實施例、第二實施例或是後述之全像影像的合成系統的 影像產生單元16之可處理影像的電子裝置166採用的影像處理說明 如後。 參考圖5,在影像包括多料同角度的影像的情形,每幅影像於 擷取後具有相同的二維像素陣列(操取像素)。本案採取減少影像的像 素的方式來減少將來底被重稱光的讀,例如影像純像素的方 式。舉例來說,攝像元件以一擷取像素1〇*1〇的設定擷取目標物體162 的刖後二幀影像,每幀影像經過影像抽離處理後成為影像163,依照 攝像順序’影像163為第-巾貞處理過的影像163彳時,僅保留投影像 素16311、16312 ;影像163為第二幢處理過的影像1632時,僅保留 投影像素16321、16322 ;影像163為第三巾貞處理過的影像1633時, 僅保留投影像素16331、16332。上述投影像素16311、16312、16321、 16322 ' 16331、16332為互補的影像資訊以建構目標物體162的完 整多視角影像。蝴貞影像163(则、1632'1633)經過影像抽離處 理後的投影像韻像魏少於齡像素的像素值,但每巾貞影像都有目 標物體162的全部鱗。是以,本案__的方錢少像素數量並 兼顧互補影像訊,其中每祕像須保留Η數量的投影像素則可視 設計所須。 依據上述f際上,—錢,影像抽轉素的處理並*會造成重 10 M435629 建後的影像會有明顯的不連貫情形,另一方面,每幀影像減少像素, 可減少後續底片重複曝光的次數,因此可以製作出許多傳統全像片因 曝光次數過多而無法呈現的效果或是尺寸過小與亮度不夠的缺點。 參考圖6,底片20上,對應影像1631的物光光波181入射底片 20且與參考光光波141產生干涉的區域為曝光干涉區域 16312’,其中曝光干涉區域16311’為記錄投影像素16311的影像資 訊,曝光干涉區域卿2,為記錄投影像素16312的影像資訊。由於物 光光波181經過影像抽離處理,因此在記錄影像1631日寺,曝光干涉 區域咖’、侧2’以外的區域並不產生干涉。同理,對應影像徽 的物光光波181 ’其產生干涉的區域為曝光干涉區域,咖,、 脱泣;對應影像1633的物光先波181,其產生干涉的區_^ 干涉區域侧,、讎,。因此,±述方法可減少無投影像素的位 置的重複曝先次數。 要說明的是,本案的半鏡鄕的設置或是影像抽離的方式, 皆可減少底片之重《光的次數,對於料影像或_較少_ =以_娜鏡胸設践是編_方式,對於㈣ =烟龜樹,哪邮㈣且清晰的重 下::_處理_及半圓柱鏡減…之重鶴先的優點 -圓盤狀ΓΓΓ像記錄於μ 2Q上特定的位置,够當底片20為 上可包括仏β. ’㈣像麟於狀_鮮“,則料同的半徑 '他的目標物體的料,如此可產生分軌道㈣像,即重建 11 象·^可觀察到不同的軌道所記 像更多變化。 h〜像,使得重建的影 舉例來說,傳統拍攝下與製作全像片, 成繞射Mm f里底片的重獲曝光造 本:因此僅能製作較小尺寸目標物體的鲁 —甚至可二 7作順(m秦eha,嶋,或是製作鳩的影像以產 ❹有她果叫增峨峨I祕者可由㈣ 建影Γ重建的影像’或是位於底片前的不同觀察者觀察到不同的重 圖7為本案之-第三實施例的系統示意圖。對於彩色的目標物體 ’第三實施例的全像影像的合成系統6中的影像處理可包括將影 像⑹分色處理,以分離影像中的各色像素,進而集成影像⑻的一 弟-單色成分像以及-第二單色成分像,其中該第—單色成分像的一 第-單色異於該第二單色成分像H單色。舉例來說,將影像分 成紅色、聽錢藍色的二維影像以分別作為第—單色成分像、第二 單色成分像以及第三單色成分像。影像163可以是不同視角纏經 過影像柚離的影像’或是經過分色處理㈣—單色成分像、第二單色 成分像以及第三單色成分像。 對於彩色目標物體來說,物光單元18 π⑽角度_元件 188,例如搭配驅動模組來調整的—或多反射鏡,藉關整物光光波 181入射至底片20的角度。舉例來說’前述第—單色成分像、第二單 色成分像分別為紅色成分像’綠色成分像時,則角度調整元件調整物 12 M435629 光光波181入射至底片20的角度’使得對應紅色成分像的物光光波 181與參考光光波141的夾角度為—第—夾度對應綠色成分像的物 光光波181與參考光光波141的夾角度為一第二央角度;同理,對應 監光成分像的物光光波181與參考光光波141的夹角度為一第三夹角 度其中參考光光波141入射底片2〇的角度並未改變,因此被調整 者為對應不同色光成分㈣物絲波181,且對應三色成分像入射至 底片20的曝光區域可以相同、部分重疊或是不重疊。 ^ 蓋因全像拍攝的光學系統調整不易,-旦固定後欲調整其中之一 光干元件時’重建光路相當費時,本案於物光光波進人底片前,利用 角度調整元件188調整物光的人射角度,此種調整方式的優點在於, 成像的光學系統可以保持固定,減少重建光路的時間。再者,根據上 述’改變不同單色成分像與固定入射角度的參考光光波的夹角度物 光光波與參考絲波人射至底片以形成干涉條紋,底片重建目標 # 物體的影像時’參考光源固定,所呈現的重建影像表現彩色的效果。 本案雖藉由上述實施例描述,但仍可變化其職與細部設計於 不脫離本案之創作精神而達成。熟悉此項技藝之人士可以理解的,上 述本案之較佳實施例,僅為藉由本案之原理可以具體實施的方式之 一’但並从此為限制,應依_之申請專利範騎界定為準。 【圖式簡單說明】 圖1為本案之一第一實施例的系統示意圖。 圖2為本案之一第二實施例的系統示意圖。 圊3為本案之-第二實施例的物光單元與底片設置距離的示意圖。 13 M435629 圖4為本案之一第二實施例的底片第一曝光示意圖β 圖5為本案之一投影影像示意圖。 圖β為本案之一底片第二曝光示意圖。 圖7為本案之一第三貫施例的糸統示意圖。 【主要元件符號說明】A part of the light is projected on the photosensitive plate as the reference light. Since the object light and the reference light are from the same beam, the interference is formed on the photosensitive plate, and a lot of light and dark interference is formed. The photosensitive plate will take these pictures. Formed by Jing - Zhang Quan photo, in which the city represented by the shape of the flower lion is the material of the reference light, and the degree of contrast between the light and dark reflects the intensity relationship of the beam. In the optical chronology of the conventional disc-shaped composite hologram, the cylindrical lens is included, so that the holographic image of the mother is reduced to a small holographic image. When the observer observes the reconstructed shadow, the (4) series is formed by a combination of many small and full-touch images, so image distortion will inevitably occur. In addition, the image of «There will be - the dark lines of the strips on it", the so-called "gate barrier effect". Moreover, the so-called imaging surface disc-type composite hologram is different from the disc-type composite hologram. It is a (four) single optical system that removes the cylindrical lens and images the object like a butterfly... Lai _ re-exposure, = the built-in image brightness is insufficient, resulting in a holographic image of considerable. _, and no light caused by the problem of solving the problem of _. [New content] One of the purposes of this case is to provide a holographic image synthesis system that forms reference light with the target image information of the target object, reducing the reference light to produce unnecessary interference fringes on the film and the object light. The number of heavy secrets on the film is reduced to increase the brightness of the reconstructed image, and can be applied to make a large-size full-image. One of the purposes of the present invention is to provide a holographic image synthesis system 'forming reference light with image information of a target object' with a semi-cylindrical mirror disposed on the light path of the object light reaching the negative film ' reducing the light on the negative film Unnecessary interference fringes are generated with the reference light, thereby reducing the number of repeated exposures on the negative film to improve the brightness of the reconstructed image, and can be applied to make a large-sized full-image. One of the purposes of the present invention is to provide a holographic image synthesis system that forms reference light with image information of a target object, and uses the image extraction method to reduce and complement pixel values of two frames of the target object. Reducing the object light to generate unnecessary interference fringes on the film and the reference light, thereby reducing the number of repeated exposures on the film to improve the brightness of the reconstructed image, and can be applied to make a large-size full-image. According to the above, a holographic image synthesis system includes: a light emitting unit that provides a coherent light beam; the same light beam is divided into a reference light beam and a light splitting unit of the object light beam; and a reference light including an image generator a unit, the image generator receives the reference beam to output a reference light wave with an image information of a target object; an image generating unit that provides at least one image of the target object; and directs the object light beam to the image generation The unit generates a light material for the object light wave; and the reference light wave and the light beam of the object are used to form a plurality of interference fringes on the ship sheet. In the embodiment, the light-emitting unit comprises a gas laser emitter, a dioxide anti-field emission, a liquid laser emitter, a laser emitter or a semiconductor laser emitter. In a preferred embodiment, the optical aperture comprises a visible light beam or an invisible light beam. In a preferred embodiment, the beam splitting unit includes a beam splitting mirror. In the preferred embodiment, the image generating unit includes an image processing electronic device that separates the image to output a first-monochromatic component image and a second monochrome component image. A first monochromatic color is different from the second monochromatic image of the second monochromatic composition image. Moreover, the object light unit includes an angle adjusting component for adjusting a sandwich angle between the object light wave with the first monochromatic component image or the fourth second monochromatic component image and the reference light wave at a fixed incident angle Under the condition of the reference light wave, the angle of the incident light wave corresponding to the first monochromatic component image is different from the angle of the object light wave corresponding to the second monochromatic component image. In a preferred embodiment, the object light unit comprises a half cylinder mirror, the object light unit comprising an object light imaging system having a semi-cylindrical mirror through which the light beam passes through the half-cylindrical mirror and The film is disposed in a depth of field range near a focal plane distance of the object light imaging system but does not include the focal plane distance. In the preferred embodiment, the image generating unit includes: capturing a first image and a second image of the target object with a setting of a pixel, and processing the first image with a setting of a projection pixel And the second image is projected by the object light beam to generate the object light wave, wherein the pixel value of the projection pixel is less than the pixel value of the captured pixel. Moreover, the image information of the first image based on the projection pixel is complementary to an image information of the second image based on the projection pixel. In a preferred embodiment, the image includes a plurality of frame images of the target object, and the frame images are obtained by capturing the target object from different capturing angles. [Embodiment] The holographic image synthesis system referred to in the present invention can be applied to a holographic synthesis system of different imaging principles, such as a rainbow hologram, a reflective hologram, a multi-view hologram, and a hologram. The film is either a full-length film and so on. Although the following figures are specific holographic synthesis systems, this is only used to illustrate the technology in this case and is not intended to limit the scope of application of this case. In the present case, the reference light angle refers to the angle between the reference light and the normal of the film. When the film is a flat surface, the 'normal line is a single...but when the film is rolled into a cylindrical shape or a conical shape, the normal line has a plurality of lines. However, the present invention is not limited thereto, and the angle between the reference light and the seven-knife surface of the negative film may be used as a definition. In the present case, the reference light angle is a fixed angle. Figure 1 is a schematic diagram of the system of the preferred embodiment of the present invention. Referring to Figure i, the holographic image synthesis system 2 includes a light-emitting unit 1Q, a light splitting unit S 12, a reference light unit 14, an image generating unit 16, an object light unit 18, and a negative film 2''. The first unit 1 〇 is used to provide a coherent beam 1 〇 1 , and a coherent beam 1 〇 1 can be provided, for example, various f-light emitters, wherein the laser can be a gas laser if viewed from a medium (eg, M435629 island 氦氖Shame), carbon dioxide laser, liquid laser, solid state laser or semiconductor laser. Further, in terms of wavelength, it may be a visible light or an invisible light laser. The beam splitting unit 12 receives the coherent light beam 1〇1 supplied from the light emitting unit 1〇, and divides the same light beam 101 into a reference light beam 121 and an object light beam 123. The beam splitting unit 12 may include a Beam Splitter (BS) 122, which is also composed of a plurality of optical components. For example, the mirror 124 is disposed at an appropriate position to guide the coherent light beam 1〇1, and its function is to be the same. The circumferential beam 101 is divided into a reference beam 121 and an object beam 123. The reference light unit 14 receives the reference beam 121 of the beam splitting unit and outputs a reference light wave 141 based on the reference beam 121. In an embodiment, the reference light unit 14 may include a space filter (SF) 142 to remove interference of the spatial noise to the reference beam 121, for example, by a confocal convex lens group and a pinhole, but the present case does not The reference light unit 14 further includes an image generator 148, and the reference beam 121 is guided by the optical element 146' to the human image generator 148 to form a reference light wave 141' with target image information. The reference light wave 141 of the area outside the target image is incident on the film 20' to reduce the generation of unnecessary interference fringes and the number of repeated exposures. The reference light unit 14 may also include other optical elements to direct or optimize the reference beam (2) to output a reference light wave 141, such as a lens 144 including unequal focal lengths, and the like. Reference light unit 14 may also include components that are dimmable, such as components that modulate amplitude, phase, or angle. The reference light unit 14 processes the reference beam 121 and outputs the reference light wave 141, and adjusts the angle at which the reference light wave 141 is incident on the negative film 2, such that the reference light 7 M435629 is incident on the negative film 2 at a reference light angle. The image generation single 7C 16 provides at least an image. In the present case, an image may be a single-angle image of the recorded object 162 or a multi-angle image of multiple angles. Second, the target object 162 can be monochrome or multi-colored or have grayscale. In the embodiment, the image generating unit 16 includes an image sensing element 164, an image processing electronic device 166, and a display 168. The photographing unit 164, for example, a CCD camera, captures a single-angle image of a target object 162 or a multi-angle multi-frame image, wherein the imaging error 64 or the target object 162 can be moved and adjusted, thereby Angle image. The electronic device 166, which can process the image, such as a computer, receives the image 161' from the image pickup device 164 and performs image processing. Next, in this embodiment, since the reference light unit 14 is provided with the image generator (10) to generate the reference light wave M1 with the target image, the image 161 from the camera 164 is connected to the image generation, or The electronic device 166 processing the image completes the image generator 161. After that, the reference image of the light material 14 is again transmitted, and the image of the imager 168, #Hd — the sub-device is removed. Curtain 'Electrical Processing of Image Power Next, the object light unit 18 directs the image generating unit 16 to generate a "light beam" first beam 123 to a plurality of optical elements, for example. Yumei, the object 144, the lens 182 or the reflective recording π beam 123 is directed to the image generating unit 彳6_, which is light 181. °. The image light wave 8 M435629 ♦ Next, the reference light wave 141 and the object light wave 181 are incident on the film 2 to form a plurality of interference fringes on the film 20. According to the above, the reference light wave 141 with image information can reduce the number of repeated exposures of the film, and can improve the brightness of the reconstructed holographic image. Figure 2 is a schematic diagram of a system in accordance with a second embodiment of the present invention. The difference from the first embodiment is that the object light unit 18 of the holographic image synthesis system 4 includes a half cylinder 186 and a matching lens group 182 to form a suitable object light imaging system. Referring to FIG. 3 at the same time, the so-called object light unit 181 includes a suitable object light imaging system, that is, the focal plane is located within an appropriate distance, and is represented by a distance d1 from the center of the semi-cylindrical mirror 186, but the film 20 of the present case is Interference is not generated by the focal plane distance (1) of the object light imaging system. The film 20 of the present invention is disposed at a position close to the focal plane of a defocusing distance d2 or d3, and may also be referred to as a depth of field range (between d2 and d3) of the object light imaging system. When the film 20 is disposed at this defocus distance, the interference fringes formed by the object light wave and the reference light wave can still reconstruct a holographic image recognizable by the human eye. Referring to Figure 4, the object light unit of the present invention employs a semi-cylindrical mirror 186 and a matched lens group 182 to form a suitable object light imaging system 'when the negative film 20 is placed in the depth of field range of the objective light imaging system but does not include the focal plane distance. The upper exposure range on the negative film is the exposed sheep interference regions 163a, 163b, respectively. It should be noted that the exposure interference regions 163a, 163b are respectively a first image and a second image of different viewing angles of a target object, which may be subjected to the aforementioned image extraction processing or not subjected to image extraction processing. However, after the objective optical imaging system is formed by the semi-cylindrical mirror 186 and the matched lens group 182 of the present case, the exposure interference region 163a' 163b of the incident light wave incident on the negative film 2 is smaller than that of the semi-cylindrical or cylindrical lens. The conventional system can therefore reduce the number of times the film is repeatedly exposed, resulting in a reconstructed image with a brighter 9 M435629 degree. In addition to reducing the number of times the film is repeatedly exposed, the case is better than the conventional system, in that the film is placed in the depth of field range, the grid effect can be eliminated, so that the recorded interference fringes on the film can be reconstructed by the human eye. Clear image. Further, the image processing used by the electronic device 166 of the image processing unit 16 of the image forming unit 16 of the first embodiment, the second embodiment, or the holographic image synthesis system described later is explained later. Referring to Figure 5, in the case where the image includes multiple images of the same angle, each image has the same two-dimensional array of pixels (fetching pixels) after the capture. In this case, the method of reducing the pixels of the image is adopted to reduce the reading of the re-weighing light in the future, for example, the image is pure pixel. For example, the image capturing device captures the next two frames of the target object 162 with a setting of the pixel 1〇*1〇, and each frame of the image is subjected to image extraction processing to become the image 163, according to the imaging sequence 'image 163 When the image-processed image 163彳 is processed, only the projection pixels 16311 and 16312 are retained; when the image 163 is the second processed image 1632, only the projection pixels 16321 and 16322 are retained; the image 163 is processed by the third frame. At the time of image 1633, only the projected pixels 16331 and 16332 are retained. The projection pixels 16311, 16312, 16321, 16322 '16331, 16332 are complementary image information to construct a complete multi-view image of the target object 162. The image of the projection image 163 (then, 1632'1633) after the image is extracted is less than the pixel value of the pixel of the age, but each frame image has the entire scale of the target object 162. Therefore, in this case, the amount of pixels in the __ is less than the number of pixels and the complementary image is taken into account. Each of the secret images must have a number of projection pixels to be visually designed. According to the above-mentioned f, - money, the processing of image transfer factor and * will cause heavy 10 M435629 image after construction will have obvious inconsistency, on the other hand, each frame of image reduction pixels, can reduce the repeated exposure of subsequent films The number of times, so that many traditional holograms can not be rendered due to too many exposures or the disadvantages of too small size and insufficient brightness. Referring to FIG. 6, on the negative film 20, a region where the object light wave 181 corresponding to the image 1631 is incident on the film 20 and interferes with the reference light wave 141 is an exposure interference region 16312', wherein the exposure interference region 16311' is the image information of the recording projection pixel 16311. The exposure interference area 2 is for recording the image information of the projection pixel 16312. Since the object light wave 181 is subjected to image extraction processing, no interference occurs in the area other than the exposure interference area coffee side and the side 2' in the recorded image 1631. Similarly, the object light beam 181' corresponding to the image emblem is the area of the interference interference, the coffee, and the weeping; the object wave first wave 181 corresponding to the image 1633, which produces the interference area _^ the interference area side, feud,. Therefore, the method described can reduce the number of repeated exposures without the position of the projected pixel. It should be noted that the setting of the half mirror in this case or the way of image extraction can reduce the weight of the film. The number of times of light, for the material image or _ less _ = _ Na Mirror is designed to be _ Way, for (4) = Tobacco Tree, which post (four) and clear weight:: _ treatment _ and semi-cylindrical mirror reduction ... the advantage of the heavy crane - disc-shaped ΓΓΓ image recorded in a specific position on μ 2Q, enough When the film 20 is upper, it may include 仏β. '(4) is like a lining_fresh, and then the radius of the same object is the material of the target object, so that the sub-track (four) image can be generated, that is, the reconstructed image 11 can be observed. Different tracks record more changes. h~images, for example, the reconstructed shadows, for example, the traditional filming and the production of a full-image film, into a refraction of the Mm f film in the re-exposure: therefore only Lu of a small-sized target object can even be a shun (m Qin eha, 嶋, or make an image of 鸠 ❹ ❹ 她 她 她 她 她 她 她 她 她 她 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' Different observers located in front of the film observed different re-images 7 of the present invention - a schematic diagram of the system of the third embodiment. The image processing in the holistic image synthesis system 6 of the third embodiment may include color separation processing of the image (6) to separate pixels of each color in the image, thereby integrating a younger-monochromatic component image of the image (8) and a second monochromatic composition image, wherein a first-monochromatic color of the first-monochromatic component image is different from the second monochromatic component image H. For example, the image is divided into two colors, red and blue. The dimensional images are respectively used as the first-monochromatic component image, the second monochromatic component image, and the third monochromatic component image. The image 163 may be an image of different viewing angles wrapped around the image grapefruit' or subjected to color separation processing (4) - monochrome The component image, the second monochromatic component image, and the third monochromatic component image. For a color target object, the object light unit 18 π(10) angle_element 188, for example, adjusted with a driving module, or a multi-mirror, The angle at which the whole object light wave 181 is incident on the film 20. For example, when the aforementioned first-monochromatic component image and the second monochromatic component image are respectively red component images of the green component image, the angle adjusting element adjuster 12 M435629 light Light wave 181 The angle 'to the negative film 20' is such that the angle between the object light wave 181 corresponding to the red component image and the reference light wave 141 is - the angle between the object light wave 181 corresponding to the green component image and the reference light wave 141 is one. The second central angle; similarly, the angle between the object light wave 181 corresponding to the light-intensifying component image and the reference light wave 141 is a third clamping angle, wherein the angle at which the reference light wave 141 enters the negative film 2〇 does not change, and thus is adjusted Corresponding to different color light components (4) the filament wave 181, and the exposure regions corresponding to the three color component images incident on the film 20 may be the same, partially overlapped or not overlapped. ^ The optical system of the cover due to holographic imaging is not easy to adjust, and is fixed. When adjusting one of the optical components, it is quite time-consuming to reconstruct the optical path. In this case, before the incident light wave enters the negative film, the angle adjustment element 188 is used to adjust the angle of the human light of the object light. The advantage of this adjustment mode is that the optical of the imaging is The system can remain fixed, reducing the time it takes to rebuild the light path. Furthermore, according to the above-mentioned 'changing the angle between the different monochromatic component images and the reference light wave of the fixed incident angle, the incident light wave and the reference silk wave are incident on the negative film to form interference fringes, and the negative image reconstructs the image of the target object. Fixed, the reconstructed image presented exhibits a color effect. Although the present invention has been described by the above embodiments, it can be changed by changing the design of its duties and details without departing from the creative spirit of the case. It will be understood by those skilled in the art that the preferred embodiment of the present invention is only one of the ways that can be embodied by the principles of the present invention, but is limited thereto, and should be defined according to the patent application. . BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view of a system according to a first embodiment of the present invention. Figure 2 is a schematic diagram of a system in accordance with a second embodiment of the present invention.圊3 is a schematic diagram of the distance between the objective light unit and the negative film of the second embodiment. 13 M435629 FIG. 4 is a first exposure schematic diagram of a negative film according to a second embodiment of the present invention. FIG. 5 is a schematic view of a projection image of the present invention. Figure β is a second exposure schematic of one of the films of the present invention. Figure 7 is a schematic view of a third embodiment of the present invention. [Main component symbol description]

全像影像的合成系統 2,4,6 發光單元 10 同調光束 101 分光單元 12 參考光朿 121 光束分離鏡 122 物光光束 123 反射鏡 124 參考光單元 14 參考光光波 141 空間濾波器 142 透鏡 144 反射鏡 146 影像產生器 148 光學元件 146’ 影像產生單元 16 影像 161 目標物體 162 影像 163,1631, 1632,1633 投影像素 16311,16312,16321,16322,16331,16332 曝光干涉區域 16311,,16312’,16321’,16322’,16331,,16332’, 163a,163b, 攝像元件 164 可處理影像的電子裝置 166 顯像器 168 物光單元 18 物光光波 181 遷鏡 182 反射鏡 184 14 M435629 半圓柱鏡 底片 186 20 角度調整元件 距離 188 d1,d2,d3Mirror image synthesis system 2, 4, 6 illuminating unit 10 coherent beam 101 splitting unit 12 reference diaphragm 121 beam splitting mirror 122 object light beam 123 mirror 124 reference light unit 14 reference light wave 141 spatial filter 142 lens 144 reflection Mirror 146 Image Generator 148 Optical Element 146' Image Generation Unit 16 Image 161 Target Object 162 Image 163, 1631, 1632, 1633 Projection Pixels 16311, 16312, 16321, 16322, 16331, 16332 Exposure Interference Area 16311,, 16312', 16321 ',16322',16331,,16332', 163a,163b, imaging element 164 electronic device capable of processing image 166 imager 168 object light unit 18 object light wave 181 moving mirror 182 mirror 184 14 M435629 semi-cylindrical film 186 20 angle adjustment component distance 188 d1, d2, d3

Claims (1)

M435629 六、申請專利範圍: 1. 一種全像影像的合成系統,包括: 一發光單元,提供一同調光束; 一分光單元,將該同調光束分為一參考光束以及一物光光束; 一參考光單元,其包括一影像產生器,該影像產生器接收該參考光束以 輸出帶有一目標物體的一影像資訊的一參考光光波; 一影像產生單元,其提供該目標物體的至少一影像; 一物光單元’將該物光光束引導至該影像產生單元以產生一物光光波; 以及 底片 ’該參考光光波以及該物光光波入射該底片上以產生複數條干涉 條紋。 2 .如請求項1所述之全像影像的合成系統’其中該發光單元包括—氣體雷 射發射器、二氧化碳雷射發射器、液態雷射發射器、固態雷射發射器或 是半導體雷射發射器。 3. 如。月求項1所述之全像影像的合成系統,其中該同調光束包括—可見光 光束或是一不可見光光束。 4. 如請求項]所述之全像影像的合成系統,其中該分光單元包括一光束分 離鏡。 如請求項1所述之全像影像的合成系統,其中該影像產生單元包括一可 =影_奸裝置軸影像分色處理以輸出_第一單色成分像以及 早色成刀像H單色成分像的 分像的一第二單色。 早色異㈣弟—早色成 16 5. 如請求項5所述之全像影像的合成线,其中職光單元包括一角度調 正元件5膽帶有該第—單色成分像或該第二單色成分像龍物光光波 與該參考光光波之間的-爽角度,在-固定人射角的該參考光光波的條 件下,對應該第一單色成分像的該物光光波的該夾角度異於對應該第二 單色成分像的該物光光波的該角度。 如請求項1所述之全像影像的合成系統’其中該物光單元包括具有一半 圓柱鏡的一物光成像系統,該物光光波通過該半圓柱鏡後入射該底片, 且έ玄底片設置於該物光成像系統的一焦平面距離附近的一景深範圍中 但不包括該焦平面距離上。 如請求項1所述之全像影像的合成系統’其中該影像產生單元包括以一 擷取畫素的設定擷取該目標物體的一第一影像以及一第二影像,並且以 —投影畫素的設定處理該第一影像以及該第二影像後由該物光光束投 射以產生該物光光波’其中該投影畫素的畫素值少於該擷取畫素的畫素 值。 如請求項8所述之全像影像的合成系統’其中基於該投影畫素的該第一 影像的該影像資訊互補於基於該投影畫素的該第二影像的一影像資訊。 如請求項1所述之全像影像的合成系統’其中該底片為平面狀、圓盤 狀、圓柱狀或是圓錐狀。 如請求項1所述之全像影像的合成系統’其中該影像包括該目標物體的 複數幀影像,該些+貞影像由不同擷取視角糊取該目標物體得到。M435629 VI. Patent Application Range: 1. A holographic image synthesis system, comprising: a light-emitting unit providing a coherent light beam; a light splitting unit dividing the same light beam into a reference light beam and an object light beam; The unit includes an image generator, the image generator receives the reference beam to output a reference light wave with an image information of a target object, and an image generating unit that provides at least one image of the target object; The light unit 'directs the object light beam to the image generating unit to generate an object light wave; and the negative film 'the reference light wave and the object light wave are incident on the film to generate a plurality of interference fringes. 2. The photographic system of claim 1, wherein the illuminating unit comprises a gas laser emitter, a carbon dioxide laser emitter, a liquid laser emitter, a solid state laser emitter or a semiconductor laser launcher. 3. For example. The holographic image synthesis system of claim 1, wherein the coherent beam comprises a visible light beam or an invisible light beam. 4. The holographic image synthesis system of claim 1, wherein the beam splitting unit comprises a beam splitting mirror. The photographic system of claim 1, wherein the image generating unit comprises a color image processing unit for outputting a first monochrome component image and an early color forming image H monochrome. A second monochromatic image of the component image. 5. A composite line of omni-image images as claimed in claim 5, wherein the task light unit includes an angle-aligning element 5 with the first-monochromatic component image or the first The two-color component is like a cool angle between the dragon light wave and the reference light wave, and under the condition of the reference light wave of the fixed human angle, the light wave of the object corresponding to the first monochromatic component image The angle of the clip is different from the angle of the light beam of the object corresponding to the image of the second monochromatic component. The holographic image synthesis system of claim 1, wherein the object light unit comprises an object light imaging system having a half cylinder mirror, the object light wave passing through the half cylinder mirror and incident on the film, and the έ 底 film is set. In the depth of field range near a focal plane distance of the object light imaging system, but not including the focal plane distance. The photographic system of claim 1, wherein the image generating unit comprises: capturing a first image and a second image of the target object with a set of captured pixels, and using the projected pixel The setting processes the first image and the second image and is projected by the object light beam to generate the object light wave 'where the pixel value of the projection pixel is less than the pixel value of the captured pixel. The holographic image synthesis system of claim 8, wherein the image information based on the first image of the projection pixel is complementary to an image information of the second image based on the projection pixel. The holographic image synthesis system of claim 1, wherein the negative film is planar, disc-shaped, cylindrical or conical. The compositing system of the holographic image as claimed in claim 1 wherein the image includes a plurality of frame images of the target object, and the + 贞 images are obtained by fetching the target object from different capturing angles.
TW101206950U 2012-04-13 2012-04-13 System of forming holographic image TWM435629U (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101206950U TWM435629U (en) 2012-04-13 2012-04-13 System of forming holographic image
CN 201220221460 CN202631968U (en) 2012-04-13 2012-05-16 Holographic image synthesis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101206950U TWM435629U (en) 2012-04-13 2012-04-13 System of forming holographic image

Publications (1)

Publication Number Publication Date
TWM435629U true TWM435629U (en) 2012-08-11

Family

ID=47048128

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101206950U TWM435629U (en) 2012-04-13 2012-04-13 System of forming holographic image

Country Status (2)

Country Link
CN (1) CN202631968U (en)
TW (1) TWM435629U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452451B (en) * 2012-04-13 2014-09-11 E Lon Optronics Co Ltd System of forming holographic image

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614671A (en) * 2015-02-02 2015-05-13 苏州市计量测试研究所 Calibration aiding device for time relay and calibration method
CN109119007A (en) * 2018-09-17 2019-01-01 北京唐冠天朗科技开发有限公司 A kind of product multidimensional display systems and method and application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452451B (en) * 2012-04-13 2014-09-11 E Lon Optronics Co Ltd System of forming holographic image

Also Published As

Publication number Publication date
CN202631968U (en) 2012-12-26

Similar Documents

Publication Publication Date Title
Wetzstein et al. Computational plenoptic imaging
TWI452453B (en) System of forming color holographic image
TW201405258A (en) Electronic holographic display device
WO2018055831A1 (en) Imaging device
TWI452451B (en) System of forming holographic image
WO2014204623A1 (en) Full-color incoherent digital holography
US20100265554A1 (en) Hologram reproducing and imaging apparatus, and hologram reproducing and imaging method
JP4905673B2 (en) Screen switching hologram manufacturing method and screen switching hologram manufactured by the method
JP3394149B2 (en) 3D image reproduction device
TWM435629U (en) System of forming holographic image
TWI452452B (en) System of forming holographic image
US9581966B1 (en) Systems and methodologies related to 3-D imaging and viewing
JP2010066558A (en) Stereoscopic video photographing device and stereoscopic video photographing method
TWM437477U (en) System of forming holographic image
TWM435628U (en) System of forming color holographic image
JP2012008252A (en) Image data generation method and its device and holographic stereogram generating system
JP2006129225A (en) Stereoscopic video image display device and method
TWM428387U (en) Holographic imaging apparatus
TWI524335B (en) A Universal Image Recording and Universal Image Reconstruction Method
KR102532302B1 (en) Method and Apparatus for Generating Full-Color Holographic Image
JP4228426B2 (en) Image pickup apparatus and holographic stereogram manufacturing apparatus
JP2023007531A (en) Incoherent digital holography imaging apparatus and imaging method
JP2016100714A (en) Picture data generation method
WO2016106471A1 (en) Holographic image recording and holographic image reconstruction method
Yamamoto et al. A real-time color holography system for live scene