TWM435530U - Geared drive system with load sharing - Google Patents

Geared drive system with load sharing Download PDF

Info

Publication number
TWM435530U
TWM435530U TW101203024U TW101203024U TWM435530U TW M435530 U TWM435530 U TW M435530U TW 101203024 U TW101203024 U TW 101203024U TW 101203024 U TW101203024 U TW 101203024U TW M435530 U TWM435530 U TW M435530U
Authority
TW
Taiwan
Prior art keywords
gear
input
shaft
output
drive system
Prior art date
Application number
TW101203024U
Other languages
Chinese (zh)
Inventor
Chang-Xiu Zhou
Original Assignee
Smart Mfg Technology Shanghai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smart Mfg Technology Shanghai Ltd filed Critical Smart Mfg Technology Shanghai Ltd
Priority to TW101203024U priority Critical patent/TWM435530U/en
Publication of TWM435530U publication Critical patent/TWM435530U/en

Links

Landscapes

  • Gear Transmission (AREA)

Abstract

The utility model relates to a geared drive system having load sharing between multiple lay shafts. Exemplary embodiments of the invention include a geared drive system (300) comprising: an input shaft (301) having an input herringbone gear (305); three lay shafts (321, 322, 323) each having respective input herringbone gears (331, 332, 333) and output gears (371, 372, 373), the input gears (331, 332, 333) engaged with the input gear (305) of the input shaft (301) for transmission of rotation from the input shaft (301) to the lay shafts (321, 322, 333); and an output shaft (311) having an output gear (315) engaged with the output gears (371, 372, 373) on each of the lay shafts (321, 322, 323) for transmission of rotation from the lay shafts to the output shaft (311), wherein the input gear (305) of the input shaft (301) is radially moveable to allow for load sharing of an input rotational load among the lay shafts (321, 322, 323).

Description

M435530 五、新型說明: 【新型所屬之技術領域】 本創作係有關於一種齒輪驅動系統,其中旋轉負载的 分擔負載係透過使用複數個中間軸(1 ay shaf t)將一輪入 軸(input shaft)連接至一輸出軸(output shaft)所達成。 【先前技術】 為了增進預設尺寸的固定軸齒輪驅動系統内的荷重負 載(load bearing)能力,在輸入轴上的輸入旋轉負載可透 過複數個中介轴(intermediate shaft)(也被稱為中間轴 或副軸(countershaft))被傳達到輸出轴,而非使用一個較 大的軸。這有助於縮小齒輪箱的整體尺寸,因為比起一個 較大的軸,兩個較小的軸可更有效率地傳達負載。然而, 齒輪的缺陷(imperfection)可能造成其中一個齒輪在其他 齒輪之前先嚆合,而造成在單一中間軸上有更大比率的負 载被損耗。這導致了中間轴必需以更高的安全係數(safety factor)來設計,從而減低了使用此類複數軸的優勢。 由於有兩個中間軸,故使用例如美國專利US 1759689 中所揭露的組構,可確保負載被平均地分配於中間軸之 間,其中透過在輸入軸上的一對螺旋狀齒輪(helical gear) 的軸向移動(axial movement),兩個中間軸之間的負載不 平衡能自動地受到反制。 為了進一步改進分擔負載’可使用兩個以上的中間軸。 然而這讓平均地分擔輸入負載變得更加困難,以致不能再 運用使用在兩個中間軸的同樣的技術。 M435530 在預期有高軸向力(axial force)結合高負载之應用 中,例如風力渦輪(wind turbine)、船舶應用及其他重荷 (heavy duty)工業應用,對於在多個中間轴之間的分擔負 荷之習知解決方案可能會導致元件的損耗增加及過早的損 害(premature failure)。這大部分歸咎於高轴向力會對轴 承元件施加過度的損耗負載。這個問題可藉由過度設計 (over-engineering)驅動系統來解決,但是這會容易增加 使用的齒輪裝置的尺寸並導致成本的增加。 • 本創作之目的係克服現存齒輪驅動系統的缺失,尤指 那些當維護这類#向維度(radial —on)縮減的齒輪 驅動系統時,高軸向力導致軸承元件的使用壽命縮短者。 【新型内容】 依據本創作’提供一種齒輪驅動系統包括: 輸軸,、有輪入人字形齒輪(herringb〇ne gear); 三個中間軸,各具有分別的輸入人字形齒輪及輸出齒 _輪,輸入齒輪與該輪入轴的輸入齒輪續合,用以將來自該 輸入軸的轉動傳輸到中間轴;以及 輸出轴,、有與在各個該中間轴上的輸出齒輪餐合的 輸出齒輪,用以將來自該中間轴的轉動傳輸到輸出軸,其 中, 輸入轴的輸入齒輪係可經向地移動,以允許對該中間 軸之間的輸入旋轉負載進行分擔負載。 本創作的優點係因為軸向負載沒有從輸人軸透過驅 動系統傳遞’所以當驅動系統的轴向負載保持為低時,達 5 M435530 成三個中間軸之間的分擔負載。故該驅動系統係在牽涉到 高轉矩負載(例如風力渦輪)時特別有用。 一般而言,齒輪驅動系統係經過組構使得輸入人字形 齒輪的徑向移動能減低任何中間軸之間的分擔負載不平 衡。 該輸入人字形齒輪較佳係裝設於輸入軸上以能相對於 輸入轴的轴向及徑向移動,並緊密地裝設成傳遞旋轉運 動。輸入人字形齒輪的裝設手段較佳係在輸入軸上為拾槽 的形式。 當與其他齒輪嚙合時,能軸向地移動的人字形齒輪能 平衡其相對側所遭受的軸向力(axia 1 force)。使用相對側 的平均的螺旋角(he 1 ix angle)可得到平均的分擔負載。 接附於輸入轴的輸入人字形齒輪係為一内部齒輪或一 外部齒輪。 接附於輸入轴的輸入人字形齒輪可包括:位於第一側 之第一螺旋狀齒輪,以及位於相對於該第一側的第二側之 第二螺旋狀齒輪,該第一及第二螺旋狀齒輪係以單一元件 的方式形成,或者為藉由焊接或其它接附手段而互相緊密 地連結的分離的元件。 三個中間轴的長度軸之相對位置較佳係為固定,使得 輸入人字形齒輪之相對的徑向移動改變施加於每個中間軸 的負載。 本創作的優點係增進了施加於齒輪的驅動負載的能 力,以減少或消除在此齒輪驅動系統中的轴向力並增進此 M435530 驅動系統中軸承的工作條件(working condition)。本劍作 係特別適於例如船舶及風力渦輪的重荷驅動系統。 【實施方式】 對本創作之齒輪驅動系統來說,驅動力(power)係透過 一輪入(或主(master))軸輸入。人字形輸入齒輪 (herringbone input gear)緊密地與該輸入軸連接。三個 • 中間軸分別地與在輸出轴上的輸出齒輪連接,且每個都具 有一輪入人字形齒輪以同時與輸入齒輪嚙合。三個中間軸 鲁的幾何軸線的位置係固定。驅動力係透過該三個中間轴傳 遞至輪出轴。該三個中間軸輸入齒輪可透過轴向調整後被 固定,或可自由地軸向移動。輸入人字形齒輪可徑向地移 動以達成在裝置中每個中間轴上的分擔負載的效果。 在輸入軸上的人字形輸入齒輪可為内部齒輪或外部齒 ,。人字齒可製作為有溝槽或沒有溝槽。人字形齒輪可為 單件結構的形式,或被分開製造並透過彼此緊密地結合而 • 组'合為單件結構。人字形齒輪兩側螺旋角的方向係相反。 …、阳’該角度可為相同或相異。也可為可變螺旋角。 輪入及輸出驅動力的方向可與申請專利範圍中所定義 者為相反,亦即,輸入及輸出可被反向。 人字形齒輪的使用提供減少或消除在此驅動系統中作 =於轴承的軸向力,從而改善軸承使用壽命。分擔負載可 由輪入人字形齒輪在輸入軸上的徑向運動以及藉由在中 間轴齒輪上的轴向調整或移動來達成。此類的設計增進了 齒輪系統的可靠度並維持了此系統的較小徑向維度 7 M435530 (radial dimension)。 二個示例實施例係在配合的圖式ψ作說明,這些圖式 說明了所挑選出的驅動系統的形式,用以概述本創作的主 要特徵。 第一實施例係顯示於第1圖。第1圖中的齒輪驅動系 冻1〇〇包括:主要輸入軸1〇1 ;輸入内部人字形齒輪1〇5, 附接於該輸入軸1〇1 ;輪出(或中間)軸121、122及123 ; 以及輸出人字形齒輪13卜132及133。輸入軸1〇1係固定 於適备的位置而能與接地轴承1〇2 一起旋轉。人字形環狀 齒輪105係裝設於輸入軸1〇4上,使得該人字形環狀齒輪 此利用栓槽連結(splined c〇nnecti〇n)1〇3相對於輸入 轴101而徑向地浮動。輸出軸121、122及123係固定於適 當的位置並能隨著個別的接地軸承141、142、143、151、 152及153旋轉。三個人字形齒輪對ι31、132及133係分 別與環狀齒輪105嚅合並可依靠栓槽連結161、162及163 於二個輸出轴121、122及123上徑向地浮動。 在此設置中’徑向浮動之人字形齒輪105讓轉矩能平 均地被分配在三個輸出軸121、122及123之間。軸向浮動 人字形齒輪13卜132及133確保每個人字形齒輪對的半邊 能取得其轉矩的分擔部分,並確保沒有轴向力作用於軸承。 於第1圖的本實施例中,輸出軸121、122及123之相 對位置較佳係設置為以120。間距設置於輸入轴的附 近,並於輸出軸121、122及123之間形成等邊三角形。這 種相等間隔所產生的小誤差(例如在1度或2度之間)可被 M435530 容許而不至於實質影響本系統的功能,但是更大的誤差就 可能因為輪入軸101附近負載的不平衡,導致較不平均的 分擔負載。 第2圖係說明第二實施例。於第2圖中的齒輪組200 包括··具有人宇形齒輪204的輸入軸201;三個中間軸221、 222及223 ’係具有分別的人字形齒輪231、232及233 ; 以及輸出正齒輪(output spur gear)26卜262及263,與 具有太陽齒輪(sun gear)2l3的輸出轴211嚙合。輸入軸 • 201係固定於適當的位置並能與接地轴承2〇2 一起旋轉。 人字形齒輪204係裝設於輸入軸201上,使得該人字形齒 輪204利用栓槽連結203而徑向地浮動。中間軸221、222 及223係固定於適當的位置並能與接地軸承241、242及 243 —起旋轉。該三個人字形齒輪231、232及233係與輸 入人字形齒輪204嚅合’並係分別能藉由栓槽連結251、 252及253在軸承241、242及243上軸向地浮動^三個輸 φ 出正齒輪261、262及263係在輸出軸211與太陽齒輪213 嗡合並係固定於三個中間轴221、222及223上。裝設在輪 出轴211上的太陽齒輪213係固定在一位置並能與接地軸 承212 —起旋轉。 於第2圖的配置中,徑向地浮動的人字形齒輪204讓 轉矩能在三個中間轴221、222及223之間被平均地分配。 在各個中間轴221、222及223上經向地浮動的人字形齒輪 231、232及233確保了人字形齒輪對之每個半邊能取得其 轉矩的分擔部分’並且沒有軸向力作用於軸承241、242及 9 243。 243。M435530 如第1圖之第一實施例所示之輪出軸12卜122、123, 第2圖之實施例的中間軸221、222及223較佳係設置為以 均等的間隔裝設於輸入軸201附近,亦即使他們的軸彼此 間隔為120°。 於第3圖說明另一個實施例。在第3圖的齒輪組300 包括:具有人字形環狀齒輪305的輸入軸301 ;三個中間 軸32卜322、323,係具有各自的輸入人字形齒輪331、332、 333與各自的輸出人字形齒輪371、372、373 ;以及有太陽 齒輪315的輸出轴311。輸入軸301係固定於適當的位置 且能與接地轴承302 —起旋轉。内部人字形環狀齒輪305 係裝設於輸入軸301,使得該内部人字形環狀齒輪305藉 由栓槽連結303而相對於輸入軸301徑向地浮動。於所示 實施例中,環狀齒輪305係依靠栓槽連結303裝設於連接 到輸入轴301的環304之中,栓槽連結303係能讓環304 及環狀齒輪305相對於輸入軸徑向地移動。 中間軸321、322、323係固定於適當的位置並能與接 地軸承34卜342、343、351、352及353 —起旋轉。三個 人字形輸入齒輪對331、332及333係與人字形環狀齒輪 305嚅合,並藉由各自的栓槽連結361、362及363而能在 三個中間軸321、322及323上轴向地浮動。三個人字形輸 出齒輪對371、372、373.係與人字形太陽齒輪315嚅合, 並藉由拴槽連結381、382及383能在三個中間軸32卜322、 323上軸向地浮動。輸出軸311係固定於適當的位置並能 M435530 與接地軸承312及313 —起旋轉。人字形太陽齒輪315係 被裝設在輸出軸311之上,使得該人字形太陽齒輪315能 藉由栓槽連結314徑向地浮動。 於第3圖的配置中’徑向地浮動的人字形齒輪305及 315能讓轉矩在三個中間轴321、322及323之間被平均地 分配°軸向地浮動的人字形齒輪33卜332、333、37卜372 • 及373確保了人字形齒輪對的每個半邊能取得平均的轉 矩’並且沒有軸向力作用於軸承34卜342、343、35卜352 •及 353。 就第1圖的實施例之輸出軸12卜122、123,以及第2 圖的實施例之中間軸221、222、223而言,中間軸321、 322、323較佳係設置為以均等的間隔裝設於輸入軸2〇1附 近’亦即使他們的軸相對於彼此為120。。 另一個齒輪組300的設置係於第4圖中說明,在圖中 栓槽連結303係取而代之設置於輸入軸301的環狀齒輪3Q5 鲁 與環304之間。於本實施例中,栓槽連結303能讓環狀齒 輪305相對於環304徑向的移動,該環304係緊密地連接 至輸入轴301、或為輸入轴3〇1的整體的一部份。—連接 環306係設置於環狀齒輪305與栓槽連結303之間。連接 環306可與環狀齒輪305為一整體,亦即,環狀齒輪3〇5 及連接環306兩者係由單一部件所形成,其中齒輪的齒部 係切割或形成進入環的内側,而外侧栓槽部分的齒部彤成 於外側。無論有無連接環306,環狀齒輪3〇5都可形^為 兩個具有相對左右侧的齒輪的部分,以形成内部人字形齒 M435530 輪。外侧栓槽可在兩個零件被轴向地連接以作成人字形齒 輪之前,或之後,被切割到外側之上。其中這兩側的内部 人字形齒輪係由同一個金屬部件所製成,這可在製作外部 栓槽齒部之前或之後完成。齒輪組300的其他構件係與第 3圖所說明的實施例及上文所述者相同。 關於於此所說明並解釋的實施例,係提供有栓槽連結 以能讓輸入人字形齒輪徑向移動,栓槽較佳係漸開線栓槽 (involute spline),一般會被潤滑以避免在使用中輸入齒 輪及輸入軸的相對運動中所造成的損耗。 在另一種實施例中,接附至輸出軸311的輸出齒輪315 可為内部齒輪,亦即,類似於輸入齒輪305的形式。栓槽 連結314可設置成以環部連接輸出轴,或者將環部連接到 為内部環狀齒輪的形式的輸入齒輪305,如同第3圖及第4 圖所介紹的輸入齒輪設置。 其他實施例係在意圖上在由所附的申請專利範圍所定 義之本創作的範圍。 【圖式簡單說明】 本創作的各態樣及實施例係於上文透過例子並參閱所 附的圖式做進一步的細節描述,其中: 第1圖係本創作之齒輪驅動系統之部分示意圖; 第2圖係另·一種齒輪驅動系統之不意圖, 第3圖係再另一種齒輪驅動系統之示意圖;以及 第4圖係第3圖的齒輪驅動系統的另一種配置之示意 圖。 12 M435530 【主要元件符號說明】 100 齒輪糸統 101、 104、201、301 輸入轴 103、16卜 162、163、203、25卜 252、253 栓槽連結 102、 14卜 142、143、15卜 152、153、212、24卜 242、243、 302、 312、313、34卜 342、343、35卜 352、353 轴承 105、305 環狀齒輪 121、122、123、211、311 輸出轴 • 13卜 132、133、204、23卜 232、233、33卜 332、333、 371、372、373 人字形齒輪 200、300 齒輪組 213 太陽齒輪 22卜 222、223、32卜 322、323 中間轴 261、262、263 輸出正齒輪 303、 314、36卜 362、363、38卜 382、383 栓槽連結 ^ 304 、 環 306 連接環 315 人字形太陽齒輪 13M435530 V. New description: [New technical field] This creation is about a gear drive system in which the distributed load of the rotating load is an input shaft through the use of a plurality of intermediate shafts (1 ay shaf t). Connected to an output shaft. [Prior Art] In order to improve the load bearing capability of a fixed-axis gear drive system of a preset size, the input rotary load on the input shaft can pass through a plurality of intermediate shafts (also referred to as intermediate shafts). Or a countershaft is communicated to the output shaft instead of using a larger shaft. This helps to reduce the overall size of the gearbox because the two smaller shafts communicate the load more efficiently than a larger shaft. However, the imperfection of the gears may cause one of the gears to twist before the other gears, resulting in a greater ratio of losses on a single countershaft being lost. This results in the intermediate shaft having to be designed with a higher safety factor, thereby reducing the advantages of using such a complex shaft. Since there are two intermediate shafts, it is ensured that the load is evenly distributed between the intermediate shafts by a configuration such as that disclosed in US Pat. No. 1,759,689, in which a pair of helical gears are transmitted through the input shaft. The axial movement, the load imbalance between the two intermediate shafts can be automatically countered. In order to further improve the load sharing, more than two intermediate shafts can be used. However, this makes it even more difficult to share the input load evenly, so that the same technique used on the two intermediate axes can no longer be used. M435530 For applications where high axial loads are expected in combination with high loads, such as wind turbines, marine applications and other heavy duty industrial applications, for shared loads between multiple intermediate shafts Conventional solutions may result in increased component loss and premature failure. Much of this is due to the high axial forces exerting excessive loss loads on the bearing elements. This problem can be solved by an over-engineering drive system, but this can easily increase the size of the gear unit used and result in an increase in cost. • The purpose of this creation is to overcome the lack of existing gear drive systems, especially those that maintain this type of radial-on reduction gear drive system, where high axial forces result in reduced service life of the bearing components. [New content] According to the present invention, a gear drive system is provided including: a transmission shaft, a wheeled herringbone gear (herringb〇ne gear); three intermediate shafts, each having a separate input chevron gear and an output tooth _ wheel An input gear retracts from the input gear of the wheel input shaft for transmitting rotation from the input shaft to the intermediate shaft; and an output shaft having an output gear that is combined with an output gear on each of the intermediate shafts, The rotation from the intermediate shaft is transmitted to the output shaft, wherein the input gear train of the input shaft is movable to move to allow load sharing of the input rotary load between the intermediate shafts. The advantage of this creation is that the axial load is not transmitted from the input shaft through the drive system' so when the axial load of the drive system remains low, up to 5 M435530 is the shared load between the three intermediate shafts. This drive system is therefore particularly useful when it comes to high torque loads such as wind turbines. In general, the gear drive system is configured such that the radial movement of the input chevron gear reduces the load imbalance between any intermediate shafts. The input chevron gear is preferably mounted on the input shaft for axial and radial movement relative to the input shaft and is tightly mounted to impart rotational motion. The means for inputting the chevron gear is preferably in the form of a pick-up groove on the input shaft. When meshed with other gears, the axially movable Herringbone gear balances the axial force (axia 1 force) experienced on its opposite side. The average shared load can be obtained using the average helix angle on the opposite side. The input chevron gear attached to the input shaft is an internal gear or an external gear. The input chevron gear attached to the input shaft may include: a first helical gear on the first side, and a second helical gear on a second side relative to the first side, the first and second spirals The gears are formed as a single component or as separate components that are tightly coupled to one another by welding or other attachment means. The relative positions of the length axes of the three intermediate shafts are preferably fixed such that the relative radial movement of the input chevron gear changes the load applied to each intermediate shaft. The advantage of this creation is the increased ability to apply a drive load to the gear to reduce or eliminate axial forces in the gear drive system and to enhance the working conditions of the bearings in the M435530 drive system. This sword is particularly suitable for heavy duty drive systems such as ships and wind turbines. [Embodiment] For the gear drive system of the present invention, the driving force is input through a round-in (or master) axis. A herringbone input gear is tightly coupled to the input shaft. The three intermediate shafts are respectively coupled to the output gears on the output shaft, and each has a wheel-in herringbone gear to simultaneously engage the input gear. The position of the geometric axes of the three intermediate shafts is fixed. The driving force is transmitted to the wheel-out shaft through the three intermediate shafts. The three countershaft input gears can be fixed by axial adjustment or can be freely moved axially. The input chevron gear can be moved radially to achieve the effect of sharing the load on each of the intermediate shafts in the device. The chevron input gear on the input shaft can be an internal gear or an external tooth. Herringbone teeth can be made with or without grooves. The herringbone gears can be in the form of a single piece construction, or they can be manufactured separately and tightly joined to each other. The direction of the helix angle on both sides of the herringbone gear is opposite. ..., yang' the angles may be the same or different. It can also be a variable helix angle. The direction of the wheeling and output driving force can be reversed as defined in the scope of the patent application, that is, the input and output can be reversed. The use of herringbone gears reduces or eliminates the axial forces acting on the bearings in this drive system, thereby improving bearing life. The shared load can be achieved by the radial movement of the wheel-in herringbone gear on the input shaft and by axial adjustment or movement on the intermediate shaft gear. This type of design enhances the reliability of the gear system and maintains the smaller radial dimension of the system 7 M435530 (radial dimension). The two exemplary embodiments are illustrated in conjunction with drawings that illustrate the form of the selected drive system for an overview of the main features of the present. The first embodiment is shown in Fig. 1. The gear drive system 1 in Fig. 1 includes: a main input shaft 1〇1; an input internal herringbone gear 1〇5 attached to the input shaft 1〇1; a wheeled (or intermediate) shaft 121, 122 And 123; and output chevron gears 13 and 132 and 133. The input shaft 1〇1 is fixed in a suitable position to rotate with the grounding bearing 1〇2. The chevron ring gear 105 is mounted on the input shaft 1〇4 such that the chevron ring gear is radially floated relative to the input shaft 101 by a splined connection. . The output shafts 121, 122, and 123 are fixed in position and are rotatable with the individual ground bearings 141, 142, 143, 151, 152, and 153. The three chevron gear pairs ι 31, 132 and 133 are combined with the ring gear 105 可 to be radially floating on the two output shafts 121, 122 and 123 by means of the pinch joints 161, 162 and 163. In this arrangement, the 'radially floating chevron gear 105 allows torque to be evenly distributed between the three output shafts 121, 122 and 123. Axial floating Herringbone gears 13 and 132 ensure that the half of each chevron gear pair can take the share of its torque and ensure that no axial forces are applied to the bearing. In the present embodiment of Fig. 1, the relative positions of the output shafts 121, 122, and 123 are preferably set to 120. The spacing is disposed adjacent the input shaft and forms an equilateral triangle between the output shafts 121, 122, and 123. Small errors due to such equal spacing (eg, between 1 or 2 degrees) may be tolerated by M435530 without substantially affecting the functionality of the system, but larger errors may be due to the load near the axis 101. Balanced, resulting in a less even load sharing. Figure 2 illustrates the second embodiment. The gear set 200 in Fig. 2 includes an input shaft 201 having a human-shaped gear 204; three intermediate shafts 221, 222, and 223' having respective chevron gears 231, 232, and 233; and an output spur gear (output spur gear) 26 262 and 263 mesh with the output shaft 211 having a sun gear 213. Input shaft • The 201 series is fixed in position and can rotate with the grounding bearing 2〇2. The chevron gear 204 is mounted on the input shaft 201 such that the chevron gear 204 floats radially using the pinch joint 203. The intermediate shafts 221, 222, and 223 are fixed in position and are rotatable together with the ground bearings 241, 242, and 243. The three herringbone gears 231, 232, and 233 are coupled to the input chevron gear 204 and are axially floatable on the bearings 241, 242, and 243 by the pinch joints 251, 252, and 253, respectively. The φ spur gears 261, 262, and 263 are fixed to the three intermediate shafts 221, 222, and 223 by the combination of the output shaft 211 and the sun gear 213. The sun gear 213 mounted on the wheel 211 is fixed in a position and rotatable together with the ground bearing 212. In the configuration of Fig. 2, the radially floating chevron gear 204 allows torque to be evenly distributed between the three intermediate shafts 221, 222 and 223. The herringbone gears 231, 232, and 233 that are vertically floated on the respective intermediate shafts 221, 222, and 223 ensure that each half of the chevron gear pair can obtain the shared portion of its torque 'and no axial force acts on the bearing 241, 242 and 9 243. 243. M435530 is the wheel shaft 12 122, 123 shown in the first embodiment of Fig. 1, and the intermediate shafts 221, 222 and 223 of the embodiment of Fig. 2 are preferably arranged at equal intervals on the input shaft. Near 201, even if their axes are 120° apart from each other. Another embodiment is illustrated in Figure 3. The gear set 300 of Fig. 3 includes: an input shaft 301 having a herringbone ring gear 305; three intermediate shafts 32 322, 323 having respective input chevron gears 331, 332, 333 and respective output persons The letter gears 371, 372, 373; and the output shaft 311 of the sun gear 315. The input shaft 301 is fixed in position and rotatable with the ground bearing 302. The inner chevron ring gear 305 is mounted to the input shaft 301 such that the inner chevron ring gear 305 floats radially relative to the input shaft 301 by the pinch joint 303. In the illustrated embodiment, the ring gear 305 is mounted in a ring 304 that is coupled to the input shaft 301 by means of a pinch joint 303 that allows the ring 304 and ring gear 305 to be oriented relative to the input shaft. Move to the ground. The intermediate shafts 321, 322, 323 are fixed in position and are rotatable together with the ground bearings 34, 342, 343, 351, 352 and 353. The three herringbone input gear pairs 331, 332 and 333 are coupled to the herringbone ring gear 305 and can be axially axially coupled to the three intermediate shafts 321, 322 and 323 by respective pinch joints 361, 362 and 363. Floating. The three herringbone output gear pairs 371, 372, 373. are coupled to the herringbone sun gear 315 and are axially floatable on the three intermediate shafts 32 322, 323 by the tongue and groove joints 381, 382 and 383. The output shaft 311 is fixed in position and can be rotated by the M435530 with the ground bearings 312 and 313. A herringbone sun gear 315 is mounted over the output shaft 311 such that the chevron sun gear 315 can float radially by the pinch joint 314. In the configuration of Fig. 3, the 'radially floating chevron gears 305 and 315 allow the torque to be evenly distributed between the three intermediate shafts 321, 322 and 323. The herringbone gear 33 axially floats. 332, 333, 37, 372, and 373 ensure that each half of the chevron gear pair can achieve an average torque 'and no axial force acts on the bearings 34, 342, 343, 35, 352, and 353. With respect to the output shaft 12 122, 123 of the embodiment of Fig. 1 and the intermediate shafts 221, 222, 223 of the embodiment of Fig. 2, the intermediate shafts 321, 322, 323 are preferably arranged at equal intervals. Mounted near the input shaft 2〇1' even if their axes are 120 relative to each other. . The arrangement of the other gear set 300 is illustrated in Fig. 4, in which the pin groove connection 303 is instead placed between the ring gear 3Q5 of the input shaft 301 and the ring 304. In the present embodiment, the pinch joint 303 allows radial movement of the ring gear 305 relative to the ring 304, which is closely coupled to the input shaft 301, or a portion of the input shaft 3〇1 as a whole. . - The connecting ring 306 is disposed between the ring gear 305 and the pinch joint 303. The connecting ring 306 can be integral with the ring gear 305, that is, both the ring gear 3〇5 and the connecting ring 306 are formed by a single component, wherein the teeth of the gear are cut or formed into the inner side of the ring, and The teeth of the outer pin groove portion are formed on the outer side. Regardless of the presence or absence of the connecting ring 306, the ring gear 3〇5 can be shaped as two portions having gears on the left and right sides to form an inner chevron tooth M435530 wheel. The outer pin groove can be cut to the outside before or after the two parts are axially joined to form the adult-shaped gear. The inner chevron gears on both sides are made of the same metal part, which can be done before or after the outer bolt groove is made. Other components of gear set 300 are the same as those described in Figure 3 and described above. With respect to the embodiments illustrated and explained herein, a slotted slot is provided to allow radial movement of the input chevron gear, which is preferably an involute spline that is generally lubricated to avoid Loss caused by the relative motion of the input gear and the input shaft during use. In another embodiment, the output gear 315 attached to the output shaft 311 can be an internal gear, that is, similar to the form of the input gear 305. The pinch joint 314 can be configured to connect the output shaft with a ring or to connect the ring to an input gear 305 in the form of an internal ring gear, as shown in the input gear arrangements illustrated in Figures 3 and 4. Other embodiments are intended to be within the scope of the present invention as defined by the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The various aspects and embodiments of the present invention are further described in detail above by way of example and with reference to the accompanying drawings, wherein: FIG. 1 is a partial schematic view of the gear drive system of the present invention; Fig. 2 is a schematic view of another gear drive system, Fig. 3 is a schematic view showing another gear drive system; and Fig. 4 is a schematic view showing another configuration of the gear drive system of Fig. 3. 12 M435530 [Description of main component symbols] 100 Gear system 101, 104, 201, 301 Input shaft 103, 16 Bu 162, 163, 203, 25 Bu 252, 253 Bolt connection 102, 14 Bu 142, 143, 15 Bu 152 153, 212, 24, 242, 243, 302, 312, 313, 34, 342, 343, 35, 352, 353 bearings 105, 305 ring gears 121, 122, 123, 211, 311 output shaft • 13 Bu 132 , 133, 204, 23 232, 233, 33 332, 333, 371, 372, 373 chevron gear 200, 300 gear set 213 sun gear 22 222, 223, 32 322, 323 intermediate shaft 261, 262, 263 output spur gears 303, 314, 36, 362, 363, 38, 382, 383, bolted joints ^ 304, rings 306, connecting rings 315, herringbone sun gears 13

Claims (1)

M435530 六、申請專利範圍: 1. 一種齒輪驅動系統,包括: 輸入轴,具有輸入人字形齒輪; 三個中間轴,各具有分別的輸入人字形齒輪及輸出 齒輪,輸入齒輪與該輸入軸的輸入齒輪屬合,用以將來 自該輸入轴的轉動傳輸到該中間軸;以及 輸出軸,具有與在各個該中間軸上的該輸出齒輪嚆 合的輸出齒輪,用以將來自該中間軸的轉動傳輸到該輸 出軸,其中, 該輸入軸的該輸入齒輪係可徑向地移動,以允許對 該中間軸之間的輸入旋轉負載進行分擔負載。 2. 如申請專利範圍第1項所述之驅動系統,其中,一個或 多個該中間軸上的該輸入齒輪的軸位置係可調整的,且 該中間軸輸入齒輪係視需要地裝設成能在該中間轴上 軸向地浮動。 3. 如申請專利範圍第1項所述之驅動系統,其中,接附於 該輸入軸的該輸入人字形齒輪係内部齒輪或外部齒輪。 4. 如申請專利範圍第1項所述之驅動系統,其中,接附於 該輸入軸的該輸入人字形齒輪包括:位於第一侧之第一 螺旋狀齒輪,以及位於相對於該第一側的第二侧之第二 螺旋狀齒輪,該第一及第二螺旋狀齒輪係以單一元件的 方式形成,或者為互相緊密地連結的分離元件。 5. 如申請專利範圍第4項所述之驅動系統,其中,該第一 及第二螺旋狀齒輪的角度係相等且相對。 14 M435530 6. 如申請專利範圍第1項所述之驅動系統,其中,該輸入 軸的該輸入齒輪係裝設在栓槽上,以允許相對於該輸入 軸的徑向移動。 7. 如申請專利範圍第1項所述之驅動系統,其中,該輸出 軸的該輸出齒輪係裝設於該輸出軸上的人字形齒輪,該 輸出軸的該輸出齒輪係可相對於該輸出軸而徑向地移 動,以允許對該中間軸之間的輸出旋轉負載進行分擔負 載,該輸出轴的該輸出齒輪係視需要地裝設在拴槽上, 以允許相對於該輸出軸的徑向移動。 8. 如申請專利範圍第7項所述之驅動系統,其中,在該中 間軸上的該輸出齒輪係裝設用以相對於該中間轴作軸 向移動的人字形齒輪。 9. 如申請專利範圍第8項所述之驅動系統,其中,接附於 該輸出轴的該輸出齒輪係内部齒輪或外部齒輪。 10. 如申請專利範圍第8項或第9項所述之驅動系統,其 中,接附於該輸出軸的該輸出人字形齒輪包括:位於第 一侧之第一螺旋狀齒輪,以及位於相對於該第一侧的第 二侧之第二螺旋狀齒輪,該第一及第二螺旋狀齒輪係以 單一元件的方式形成,或者為互相緊密地連結的分離元 件。 15M435530 VI. Patent application scope: 1. A gear drive system comprising: an input shaft having an input chevron gear; three intermediate shafts each having a respective input chevron gear and an output gear, an input gear and an input of the input shaft a gear coupling for transmitting rotation from the input shaft to the intermediate shaft; and an output shaft having an output gear coupled to the output gear on each of the intermediate shafts for rotating the intermediate shaft Transmission to the output shaft, wherein the input gear train of the input shaft is radially movable to allow load sharing of the input rotary load between the intermediate shafts. 2. The drive system of claim 1, wherein the one or more axial positions of the input gear on the intermediate shaft are adjustable, and the intermediate shaft input gear is optionally mounted It can float axially on the intermediate shaft. 3. The drive system of claim 1, wherein the input chevron gear attached to the input shaft is an internal gear or an external gear. 4. The drive system of claim 1, wherein the input chevron gear attached to the input shaft comprises: a first helical gear on a first side, and is located relative to the first side The second helical gear of the second side, the first and second helical gears are formed as a single element or as separate elements that are closely coupled to each other. 5. The drive system of claim 4, wherein the angles of the first and second helical gears are equal and opposite. The drive system of claim 1, wherein the input gear of the input shaft is mounted on a pin groove to permit radial movement relative to the input shaft. 7. The drive system of claim 1, wherein the output gear of the output shaft is a herringbone gear mounted on the output shaft, the output gear of the output shaft being relative to the output The shaft is moved radially to allow load sharing of the output rotary load between the intermediate shafts, the output gear of the output shaft being optionally mounted on the gutter to allow for a diameter relative to the output shaft Move to. 8. The drive system of claim 7, wherein the output gear train on the intermediate shaft is provided with a chevron gear for axial movement relative to the intermediate shaft. 9. The drive system of claim 8, wherein the output gear attached to the output shaft is an internal gear or an external gear. 10. The drive system of claim 8 or 9, wherein the output chevron gear attached to the output shaft comprises: a first helical gear on a first side, and is located opposite to The second helical gear of the second side of the first side, the first and second helical gears are formed as a single element or as separate elements that are closely coupled to each other. 15
TW101203024U 2010-12-13 2010-12-13 Geared drive system with load sharing TWM435530U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101203024U TWM435530U (en) 2010-12-13 2010-12-13 Geared drive system with load sharing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101203024U TWM435530U (en) 2010-12-13 2010-12-13 Geared drive system with load sharing

Publications (1)

Publication Number Publication Date
TWM435530U true TWM435530U (en) 2012-08-11

Family

ID=47048032

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101203024U TWM435530U (en) 2010-12-13 2010-12-13 Geared drive system with load sharing

Country Status (1)

Country Link
TW (1) TWM435530U (en)

Similar Documents

Publication Publication Date Title
JP3075483B2 (en) Gear structure for transmitting torque from the output shaft of the engine
US9243700B1 (en) Coupled worm planetary gear continuously variable ratio transmission
US10948048B2 (en) Thickness-variable transmission structure for robot joint
JP5782528B2 (en) Direct-drive drive module for differential gears for electric vehicles
US8899926B2 (en) Counter rotating facegear gearbox
KR101762693B1 (en) Marine gearbox by using power-split planetary gear-train
JP3799979B2 (en) Infinite gear ratio continuously variable transmission
JPS5914650B2 (en) high speed gear transmission
KR101775300B1 (en) Planetary gear, wind generator comprising a planetary gear and use of a planetary gear
CN110925364A (en) Planetary reducer for coaxial counter-rotating helicopter
US20150068338A1 (en) Mobile vehicle gear unit
US6582338B1 (en) Differential unit with worm gearsets
RU2666482C1 (en) Mechanism for power transmission
EP2884101B1 (en) Planetary gear, wind generator having a planetary gear and use of a planetary gear
CN106536974B (en) Rail-free gear-box
EP4276331A1 (en) Nutation gear reducer
TWM435530U (en) Geared drive system with load sharing
US8550950B2 (en) Planetary reduction gearbox
CN102667237B (en) Gear set
JPH06504837A (en) differential gear assembly
WO2019228262A1 (en) Co-directional transfer differential speed transmitter
US20020043129A1 (en) Drive axle assembly with worm gearset and differential
JP3475843B2 (en) Transmission ratio infinitely variable transmission
WO2011072601A1 (en) Geared drive system with load sharing
RU2554715C2 (en) Planetary coordinating gear box

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model