M431439 五、新型說明: 【新型所屬之技術領域】 , 本創作係關於一種太陽能電池及太陽能電池模組,尤其 • 關於—種包含間隔式匯流排條配線的太陽能電池及太陽能 “ 電池模組。 【先前技術】 圖1顯示習知太能電池之剖面圖。如圖1所示,習知 太IW能電池100包含有·一碎晶基板11〇、·一抗反射層120及 一電極結構130。 矽晶基板110可為一 P型多晶矽基板(亦可以為一單晶 矽基板或一類晶矽基板),且於其一表面上摻雜N型雜質, 例如鱗或砷’使其擴散進入P型多晶矽基板,形成一 N型雜 質擴散區,使得石夕晶基板110包含有互相連接之一 N型區域 111及一 P型區域112,亦即前述^[型雜質擴散區形成\型 • 區域ill;而矽晶基板11〇的其餘部分則形成p型區域112。 - 抗反射層120可以包含有—氮化矽(Si3N4)層或其他介電 : 層。電極結構130包含有第一電極131及第二電極132。第 一電極131設於N型區域1Π的第一表面113上且接觸^^型 區域111 ’第二電極132設於p型區域112的第二表面114 上且接觸P型區域112。而第一電極131與第二電極132可 3 M431439 以透過-負載15〇互相電連接,以形成—電流狀態,供給負 載150電能。 ' • 目2A顯示習知形成有第-電極基板的俯視圖。 • ® 2B顯示習知形成有第二電極的石夕晶基板的仰視圖。如圖 t 2A所示,第一電極131包含有手指電極ma及匯流排條配 線131b。如圖2輯示,第二電極132包含有背電場電極⑽ 及匯流排條配線㈣。手指電極ma為細長結構分佈於太 • 陽能電池100的大致上整個第—表面m,用以收集電流, 減少第-表面113上的電子移動至第一電極131的距離。背 電場電極1似’纽積-層_所形成,用崎低少數載流 子在背面表面復合的概率。 圖3顯示習知太陽能電池模組之剖面圖。如圖3所示, 太1¼旎電池模組200包含多數的太陽能電池2〇1、202及 203,以及多數的金屬條帶(metaiiicr^bb〇n) 221及222。金 屬條帶221電連接於太陽能電池2〇1正面的匯流排條配線 , 131b及太陽能電池202背面的匯流排條配線132b ;金屬條 :帶222電連接於太陽能電池202正面的匯流排條配線131b 及太陽能電池203背面的匯流排條配線丨32b。 【新型内容】 依據本創作一實施例,提供一種太陽能電池及太陽能電 4 M431439 池模組’尤鶴於-種包含舰式隨麟配_太陽能電 池及太陽能電池模組。 依據本創作-實補,—敎陽麟池包含_半導體基 板、-抗反射膚及-電極結構。半導體基板具有互相連接之 ^第型區域及-第二型區域i反射層設於半導體基板的 第-型區域上。電極結構電連接第—寵域及第二型區域, 藉以產生-電流^路,其中電極結構包含至少一匯流排條配M431439 V. New description: [New technology field] This series is about a solar cell and solar cell module, especially • About a solar cell and solar “battery module” with spacer bus bar wiring. Prior Art Fig. 1 shows a cross-sectional view of a conventional solar cell. As shown in Fig. 1, a conventional IW energy battery 100 includes a chip substrate 11, an anti-reflection layer 120, and an electrode structure 130. The twinned substrate 110 can be a P-type polycrystalline germanium substrate (which can also be a single crystal germanium substrate or a type of germanium substrate), and is doped with an N-type impurity such as scale or arsenic on one surface thereof to diffuse into the P-type. a polycrystalline germanium substrate, forming an N-type impurity diffusion region, such that the silicon substrate 110 comprises an N-type region 111 and a P-type region 112 interconnected, that is, the above-mentioned impurity diffusion region formation type / region ill; The remaining portion of the germanium substrate 11 turns into a p-type region 112. The anti-reflective layer 120 may comprise a layer of germanium nitride (Si3N4) or other dielectric: layer. The electrode structure 130 includes a first electrode 131 and Second electric 132. The first electrode 131 is disposed on the first surface 113 of the N-type region 1A and contacts the ^1 region 111'. The second electrode 132 is disposed on the second surface 114 of the p-type region 112 and contacts the P-type region 112. The first electrode 131 and the second electrode 132 may be electrically connected to each other through a load-load 15 3 3 M431439 to form a current state, and supply power to the load 150. ' • FIG. 2A shows a top view of a conventionally formed first electrode substrate. ® 2B shows a bottom view of a conventional SiS substrate formed with a second electrode. As shown in FIG. 2 2A, the first electrode 131 includes a finger electrode ma and a bus bar wiring 131b. As shown in FIG. 2, the second The electrode 132 includes a back electric field electrode (10) and a bus bar wiring (4). The finger electrode ma is an elongated structure distributed over substantially the entire first surface m of the solar cell 100 for collecting current and reducing the first surface 113. The distance that the electrons move to the first electrode 131. The back electric field electrode 1 is formed like a 'new product-layer _, which is a probability of recombining the minority carriers on the back surface. FIG. 3 shows a cross-sectional view of a conventional solar cell module. As shown in Figure 3, too 11⁄4 旎 battery The group 200 includes a plurality of solar cells 2, 1, 202, and 203, and a plurality of metal strips (metaiiicr^bb〇n) 221 and 222. The metal strips 221 are electrically connected to the bus bar wiring on the front surface of the solar cell 2〇1. 131b and the bus bar wiring 132b on the back surface of the solar cell 202; the metal strip: the strap 222 is electrically connected to the bus bar wiring 131b on the front surface of the solar cell 202 and the bus bar wiring port 32b on the back surface of the solar cell 203. [New content] In an embodiment of the present invention, a solar cell and a solar power 4 M431439 pool module are provided, which is a type of ship containing a ship type with a solar cell and a solar cell module. According to this creation - the actual complement, - Yuyang Linchi contains _ semiconductor substrate, anti-reflective skin and - electrode structure. The semiconductor substrate has a first type region and a second type region i. The reflective layer is provided on the first type region of the semiconductor substrate. The electrode structure is electrically connected to the first and second regions, thereby generating a current path, wherein the electrode structure comprises at least one bus bar
線,該至少-匯流排條配線包含多個導電圖案,且兩相鄰的 導電圖案間隔一第一預定區域。 於-實施射’該電極結構包含—第—電極及—第二電 極。第-電極包括錄的手指電極及第—驗排條配線。多 數的手指細立於第一型區域上。第一匯流排貌線包含多 個第-導電_,該些第—導電圖案位於第—麵域上並電 連接該些手減極,且_鄰的第—導細案間隔一第一預 定區域。第二電極用以電連接第二型區域且電連接第一電 極。 第二電極包含一背電場電極及一第二匯 於一實施例中 流排條配線。背電場電她於第二型_上。第二匯流排條 配線匕3夕個第—導電酵,該些第二導電_位於背電場 電極上並電連接背電場電極,且兩相鄰的第二導電圖案間隔 一第二預定區域。 5 M431439 於-實施例t,提供-種太陽能電池模組,太陽能電池 模組包含多個太陽能電池及至少一金屬條帶,金屬條帶電連 接於該些太陽能電池間。該些太陽能電池包含一第一太陽能 電池及一弟一太%能電池,而且該至少一金屬條帶的一第一 部分位於第一太陽能電池的該些第一導電圖案上,該至少一 金屬條帶的一第二部分位於第一太陽能電池的兩相鄰的第 一導電圖案間的第一預定區域上。 於一實施例中,該至少一金屬條帶的一第三部分位於第 二太陽能電池的該些第二導電圖案上,該至少一金屬條帶的 一第四部分位於第二太陽能電池的兩相鄰的第二導電圖案 間的第二預定區域上。 依據本創作一實施例,由於至少一匯流排條配線採用間 隔式(或為鍊狀)的匯流排條配線,因此能夠有效提申太陽 能電池的品質。於一實施例,第二匯流排條配線形成間隔式 (或為鍊狀)的匯流排條配線,因此背電場電極露出的面積 較大,能夠減少電子從太陽能電池背面流出的現象,而能夠 有效地增加太陽能電池的電壓。此外,由於採用鍊狀的匯流 排條配線,能夠減少導電漿的使用量,而能夠進一步減少製 造的成本。 【實施方式】 6 圖4顯示本創作一實施例太陽能電池之剖面圖。如圖4 所不,本創作一實施例,太陽能電池3〇〇包含有—矽晶基板 31〇 ' —抗反射層320及一電極結構330。 妙b曰基板310可為一 P型多晶碎基板,且於其一表面上 摻雜N型雜質’例如磷或砷,使其擴散進入.p型多晶矽基板, 形成一 N型雜質擴散區,使得矽晶基板31〇包含有互相連接 之一 N型區域311及一 P型區域312,亦即前述n型雜質擴 散區形成N型區域311 ;而矽晶基板310的其餘部分則形成 P型£域312。抗反射層320可以包含有一氮化石夕(Si3N4) 層或其他介電層。電極結構330包含有第一電極331及第二 電極332。第一電極331設於N型區域311的第一表面313 上且接觸N型區域311,第二電極332設於P型區域312的 第·一表面314上且接觸P型區域312。而第一電極331虚第 二電極332可以透過一負載15〇互相電連接,以形成一電流 狀態,供給負載150電能。 圖5A顯示本創作一實施例形成有第一電極的矽晶基板 的俯視圖。如圖5A所示,於一實施例中第一電極331包含 有多個手指電極331a及至少一第一匯流排條配線331b。多 個手指電極33 la位於N型區域311的第一表面313上。第 一匯流排條配線331b形成間隔式(或為鍊狀)的匯流排條 配線,更具體而言第一匯流排條配線331b包含多個第一導 電圖案31b,該些第一導電圖案31b位於N型區域311的第 一表面313上並電連接對應的手指電極331a,且兩相鄰的第 一導電圖案31b是分離的且間隔一第一預定區域。 圖5B顯示本創作一實施例形成有第二電極的矽晶基板 的仰視圖。如圖5B所示’於一實施例中第二電極332包含 有背電場電極332a及第二匯流排條配線332b。背電場電極 332a位在P型區域312的第二表面314上。第二匯流排條配 線332b形成間隔式(或為鍊狀)的匯流排條配線,更具體 而言第二匯流排條配線332b包含多個第二導電圖案32b,該 些第二導電圖案32b位於背電場電極332a上並電連接背電場 電極332a’且兩相鄰的第二導電圖案32b是分離的且間隔一 第二預定區域。 如上所述,一實施例中由於至少一匯流排條配線331b或 332b採用間隔式(或為鍊狀)的匯流排條配線,因此能夠有 效提申太陽能電池300的品質。更具體而言,第二匯流排條 配線332b形成間隔式(或為鍊狀)的匯流排條配線,因此 背電場電極332a露出的面積較大’能夠有效提申背電場電極 332a的功能,減少電子從太陽能電池300背面流出的現象, 而能夠有效地增加太陽能電池300的電壓。 表一顯示具有直線式匯流排條配線的習知太陽能電池, 及本創作一實施例具有鍊狀式匯流排條配線的太陽能電 池,實際電性測試之結果的數據。 表一 平均VOC 平均ISC 平均RS 平均RSH (電壓) (電流) (阻值) (絕緣效果) 比較例 (直線式匯流 排條配線) 0.621327336 8.506063307 0.003591397 174.2286831 實施例 (鍊狀式匯流 排條配線) 0.622154859 8.646172249 0.003725442 465.9760201 平均FF (輸出輸入比) 平均NCELL (光電轉換效 率) 計數 比較例 (直線式匯流排條配線) 77.59647 16.8523% 12206 實施例 (鍊狀式匯流排條配線) 77.73609 17.1835% 10758 如上表一所示’鍊狀式匯流排條配線之實施例的太陽能 電池300的光電轉換效率17.1835%,優於直線式匯流排條配 線之比較例之太陽能電池100的光電轉換效率16.8523%。此 外,實施例的太陽能電池300的電壓0.622154859 V,優於比 較例之太陽能電池100的電壓0.621327336 V。 於一實施例中,由於第一匯流排條配線331b亦採用間隔 式(或為鍊狀)的匯流排條配線,因此太陽能電池3〇〇受光 的面積較大,能夠產生較多的電子而能夠增加電流量。 一般而言,匯流排條配線331b或332b皆是利用印刷方 式,將例如銀漿等的導電漿,印刷於第一表面313及第二表 面314來加以形成。由於採用了間隔式(或為鍊狀)的匯流 排條配線的設計,因此能夠減少導電漿的使用量,除了如先 前所述能夠提申太陽能電池300的品質外,還能夠減少導電 漿之材料的使用量,而能夠減少製造的成本。依申請人進行 實驗所製得之產品的實際計算結果,比較例之太陽能電池 100的第一匯流排條配線33 lb所使用之銀漿的總重量大約為 0.1926g/pcs (公克/每片),而實施例的太陽能電池300的第 一匯流排條配線331b所使用之銀漿的總重量大約為 0.145lg/pcs (公克/每片)。因此第一匯流排條配線331b的部 分能夠減少大約25%的成本。此外,比較例之太陽能電池1〇〇 的第二匯流排條配線332b所使用之銀漿的總重量大約為 0.0832g/pcs (公克/每片),而實施例的太陽能電池300的第 二匯流排條配線332b所使用之銀漿的總重量大約為 0.0290g/pcs (公克/每片)。因此第二匯流排條配線332b的部 分能夠減少大約65%的成本。 圖6顯示本創作一實施例的太陽能電池模組之剖面圖。 如圖6所示,太陽能電池模組400包含多數的太陽能電池 401、402及403 ;以及多數的金屬條帶(metallic ribbon) 421 及422。金屬條帶421電連接於太陽能電池401正面的第一 M431439 匯流排條配線331b及第二太陽能電池402背面的第二匯流 排條配線332b ;金屬條帶422電連接於第二太陽能電池4〇2 正面的第一匯流排條配線331b及太陽能電池403背面的第 二匯流排條配線332b。 更具體而言,第一匯流排條配線331b包含多個第一導電 圖案31b,該些第一導電圖案31b位於矽晶基板31〇的第一 表面313,且兩相鄰的第一導電圖案間隔一第一預定區域。 金屬條帶421的一部分位於太陽能電池4〇1的該些第一導電 圖案31b上且接觸該些第一導電圖案31b,而金屬條帶421 的一部分位於太陽能電池4〇1的兩相鄰的第一導電圖案31b 間的該預定區域上’並且接觸矽晶基板31〇的第一表面313。 於一實施例中,背電場電極332a位於P型區域312的第 二表面314上。第二匯流排條配線332b包含多個第二導電 圖案32b’該些第二導電圖案32b位於背電場電極332&上並 電連接背電場電極332a,且兩相鄰的第二導電圖案32t>間隔 一第二預定區域。金屬條帶421的一部分位於太陽能電池402 的該些第二導電圖案32b上且接觸該些第二導電圖案32b, 金属條帶421的一部分位於太陽能電池4〇2的兩相鄰的第二 導電圖案32b間的該第二預定區域上且接觸背電場電極 332a。 於本實施例中’金屬條帶421及422可以延伸至橫跨整 M431439 個太陽能電池40卜402或403表面,例如金屬條帶421可 以延伸至橫跨整個太陽能電池401的第一表面313 ;以及延 伸至橫跨整個太陽能電池402的第二表面314,藉此能夠透 過金屬條帶421及422將該些第一導電圖案31b以及該些第 —導電圖案32b加以電連接。因此即使形成間隔式(或為鍊 狀)的匯流排條配線’電流還能夠透過金屬條帶421及422 形成一電流迴路。 【圖式簡單說明】 圖1顯示習知太陽能電池之剖面圖。 圖2A顯示習知形成有第一電極的矽晶基板的俯視圖。 圖2B顯示習知形成有第二電極的矽晶基板的仰視圖。 圖3顯示習知太陽能電池模組之剖面圖。 圖4顯示本創作一實施例太陽能電池之剖面圖。 圖5A顯示本創作一實施例形成有第一電極的石夕晶基板 的俯視圖。 圖5B顯示本創作一實施例形成有第二電極的矽晶基板 的仰視圖。 圖6顯示本創作一實施例的太陽能電池模組之剖面圖。 【主要元件符號說明】 12 M431439 太陽能電池 碎晶基板 N型區域 P型區域 第一表面 第二表面 抗反射層 電極結構 第一電極 手指電極 匯流排條配線 第二電極 背電場電極 匯流排條配線 負載 太陽能電池模組 太陽能電池 太陽能電池 太陽能電池 金屬條帶 金屬條帶 13 M431439 太陽能電池 碎晶基板 N型區域 P型區域 第一表面 第二表面 第一導電圖案 抗反射層 第二導電圖案 電極結構 第一電極 手指電極 匯流排條配線 第二電極 背電場電極 第二匯流排條配線 太陽能電池模組 太陽能電地 太陽能電池 太陽能電池 金屬條帶 14 M431439 422 金屬條帶And the at least-bus bar wiring comprises a plurality of conductive patterns, and the two adjacent conductive patterns are spaced apart by a first predetermined area. The electrode structure comprises - a first electrode and a second electrode. The first electrode includes a recorded finger electrode and a first inspection strip wiring. Most of the fingers are placed on the first type of area. The first bus line comprises a plurality of first conductive layers, wherein the first conductive patterns are located on the first surface region and electrically connected to the hand reducing electrodes, and the first adjacent portion of the adjacent thin film is separated by a first predetermined region . The second electrode is for electrically connecting the second type region and electrically connecting the first electrode. The second electrode includes a back electric field electrode and a second current line strip in one embodiment. Back electric field electricity she is on the second type _. The second bus bar is arranged to be electrically conductive, and the second conductive wires are located on the back electric field electrode and electrically connected to the back electric field electrode, and the two adjacent second conductive patterns are spaced apart by a second predetermined region. 5 M431439, in the embodiment t, provides a solar cell module comprising a plurality of solar cells and at least one metal strip electrically connected between the solar cells. The solar cells comprise a first solar cell and a first solar cell, and a first portion of the at least one metal strip is located on the first conductive patterns of the first solar cell, the at least one metal strip A second portion is located on a first predetermined area between two adjacent first conductive patterns of the first solar cell. In one embodiment, a third portion of the at least one metal strip is located on the second conductive patterns of the second solar cell, and a fourth portion of the at least one metal strip is located in the two phases of the second solar cell On a second predetermined area between the adjacent second conductive patterns. According to an embodiment of the present invention, since at least one bus bar wiring is provided with a spacer (or chain) bus bar wiring, the quality of the solar cell can be effectively improved. In one embodiment, the second bus bar wiring forms a bus bar pattern of a spacer type (or a chain shape), so that the exposed electric field electrode has a large exposed area, which can reduce the phenomenon that electrons flow out from the back surface of the solar cell, and can be effective. Increase the voltage of the solar cell. Further, since the chain-shaped bus bar wiring is used, the amount of the conductive paste can be reduced, and the manufacturing cost can be further reduced. [Embodiment] FIG. 4 is a cross-sectional view showing a solar cell according to an embodiment of the present invention. As shown in FIG. 4, in one embodiment of the present invention, the solar cell 3A includes a - twin crystal substrate 31'', an anti-reflection layer 320, and an electrode structure 330. The substrate b may be a P-type polycrystalline substrate, and an N-type impurity such as phosphorus or arsenic is doped on one surface thereof to diffuse into the p-type polycrystalline germanium substrate to form an N-type impurity diffusion region. The twin substrate 31A includes an N-type region 311 and a P-type region 312 interconnected, that is, the n-type impurity diffusion region forms an N-type region 311; and the remaining portion of the twin substrate 310 forms a P-type. Domain 312. The anti-reflective layer 320 may comprise a layer of nitride (Si3N4) or other dielectric layer. The electrode structure 330 includes a first electrode 331 and a second electrode 332. The first electrode 331 is disposed on the first surface 313 of the N-type region 311 and contacts the N-type region 311. The second electrode 332 is disposed on the first surface 314 of the P-type region 312 and contacts the P-type region 312. The first electrode 331 virtual second electrode 332 can be electrically connected to each other through a load 15 to form a current state to supply the load 150 power. Fig. 5A is a plan view showing a twin crystal substrate in which a first electrode is formed in an embodiment of the present invention. As shown in FIG. 5A, in one embodiment, the first electrode 331 includes a plurality of finger electrodes 331a and at least one first bus bar wiring 331b. A plurality of finger electrodes 33 la are located on the first surface 313 of the N-type region 311. The first bus bar wiring 331b forms a bus bar wiring of a spacer type (or a chain shape), and more specifically, the first bus bar wiring 331b includes a plurality of first conductive patterns 31b, and the first conductive patterns 31b are located The first surface 313 of the N-type region 311 is electrically connected to the corresponding finger electrode 331a, and the two adjacent first conductive patterns 31b are separated and spaced apart by a first predetermined area. Fig. 5B is a bottom plan view showing a twin crystal substrate in which a second electrode is formed in an embodiment of the present invention. As shown in Fig. 5B, in an embodiment, the second electrode 332 includes a back electric field electrode 332a and a second bus bar line 332b. The back electric field electrode 332a is located on the second surface 314 of the P-type region 312. The second bus bar wiring 332b forms a spacer (or chain) bus bar wiring, and more specifically, the second bus bar wiring 332b includes a plurality of second conductive patterns 32b, and the second conductive patterns 32b are located The back electric field electrode 332a is electrically connected to the back electric field electrode 332a' and the two adjacent second conductive patterns 32b are separated and spaced apart by a second predetermined area. As described above, in one embodiment, since at least one bus bar wiring 331b or 332b is provided with a bus bar type of a spacer (or a chain), the quality of the solar cell 300 can be effectively improved. More specifically, the second bus bar wiring 332b forms a bus bar pattern of a spacer type (or a chain shape), so that the exposed area of the back electric field electrode 332a is large, which can effectively improve the function of the back electric field electrode 332a, and reduces The phenomenon that electrons flow out from the back surface of the solar cell 300 can effectively increase the voltage of the solar cell 300. Table 1 shows a conventional solar cell having a linear bus bar wiring, and a solar battery having a chain bus bar wiring according to an embodiment of the present invention, and data of actual electrical test results. Table 1 Average VOC Average ISC Average RS Average RSH (Voltage) (Current) (Resistance) (Insulation Effect) Comparative Example (Linear Bus Bar Wiring) 0.621327336 8.506063307 0.003591397 174.2286831 Example (Chain Bus Bar Wiring) 0.622154859 8.646172249 0.003725442 465.9760201 Average FF (output-to-input ratio) Average NCELL (photoelectric conversion efficiency) Counting comparison example (linear bus bar wiring) 77.59647 16.8523% 12206 Example (chain-type bus bar wiring) 77.73609 17.1835% 10758 The photoelectric conversion efficiency of the solar cell 300 of the embodiment shown in the 'chain-type bus bar wiring is 17.1835%, which is superior to the photoelectric conversion efficiency of the solar cell 100 of the comparative example of the linear bus bar wiring of 16.8523%. Further, the voltage of the solar cell 300 of the embodiment is 0.622154859 V, which is superior to the voltage of the solar cell 100 of the comparative example of 0.621327336 V. In the first embodiment, since the first bus bar wiring 331b is also provided with a spacer (or a chain) bus bar wiring, the solar cell 3 较大 receives a large area of light, and can generate a large amount of electrons. Increase the amount of current. In general, the bus bar wiring 331b or 332b is formed by printing a conductive paste such as silver paste on the first surface 313 and the second surface 314 by a printing method. Since the design of the spacer (or chain) bus bar wiring is adopted, the amount of the conductive paste can be reduced, and in addition to the quality of the solar cell 300 as described above, the material of the conductive paste can be reduced. The amount of use can reduce the cost of manufacturing. According to the actual calculation result of the product obtained by the experiment, the total weight of the silver paste used in the first bus bar wiring 33 lb of the solar cell 100 of the comparative example is about 0.1926 g/pcs (g/d). The total weight of the silver paste used in the first bus bar wiring 331b of the solar cell 300 of the embodiment is about 0.145 lg/pcs (g/d). Therefore, the portion of the first bus bar wiring 331b can be reduced by about 25%. Further, the total weight of the silver paste used in the second bus bar wiring 332b of the solar cell 1 of the comparative example is about 0.0832 g/pcs (g/d), and the second confluence of the solar cell 300 of the embodiment. The total weight of the silver paste used in the row wiring 332b is approximately 0.0290 g/pcs (g/d). Therefore, the portion of the second bus bar wiring 332b can be reduced by about 65%. Figure 6 is a cross-sectional view showing a solar cell module of an embodiment of the present invention. As shown in FIG. 6, the solar cell module 400 includes a plurality of solar cells 401, 402, and 403; and a plurality of metallic ribbons 421 and 422. The metal strip 421 is electrically connected to the first M431439 bus bar wiring 331b on the front surface of the solar cell 401 and the second bus bar wiring 332b on the back surface of the second solar cell 402; the metal strip 422 is electrically connected to the second solar cell 4〇2 The first bus bar wiring 331b on the front side and the second bus bar wiring 332b on the back surface of the solar cell 403. More specifically, the first bus bar wiring 331b includes a plurality of first conductive patterns 31b, and the first conductive patterns 31b are located on the first surface 313 of the twin crystal substrate 31〇, and two adjacent first conductive patterns are spaced apart a first predetermined area. A portion of the metal strip 421 is located on the first conductive patterns 31b of the solar cell 4〇1 and contacts the first conductive patterns 31b, and a portion of the metal strip 421 is located at two adjacent portions of the solar cell 4〇1. The predetermined area between a conductive pattern 31b is 'on and contacts the first surface 313 of the twinned substrate 31'. In one embodiment, the back electric field electrode 332a is located on the second surface 314 of the P-type region 312. The second bus bar wiring 332b includes a plurality of second conductive patterns 32b'. The second conductive patterns 32b are located on the back electric field electrodes 332& and electrically connected to the back electric field electrodes 332a, and the two adjacent second conductive patterns 32t> a second predetermined area. A portion of the metal strip 421 is located on the second conductive patterns 32b of the solar cell 402 and contacts the second conductive patterns 32b. A portion of the metal strip 421 is located at two adjacent second conductive patterns of the solar cell 4〇2. The second predetermined region between 32b is in contact with the back electric field electrode 332a. In the present embodiment, the 'metal strips 421 and 422 may extend across the entire surface of the M431439 solar cells 40 402 or 403, for example, the metal strips 421 may extend across the first surface 313 of the entire solar cell 401; The second surface 314 extends across the entire solar cell 402, thereby electrically connecting the first conductive patterns 31b and the first conductive patterns 32b through the metal strips 421 and 422. Therefore, a current circuit can be formed through the metal strips 421 and 422 even if a bus bar wiring current of a spacer type (or a chain shape) is formed. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows a cross-sectional view of a conventional solar cell. 2A shows a top view of a conventional twinned substrate formed with a first electrode. 2B shows a bottom view of a conventional twinned substrate formed with a second electrode. Figure 3 shows a cross-sectional view of a conventional solar cell module. 4 is a cross-sectional view showing a solar cell of an embodiment of the present invention. Fig. 5A is a plan view showing a lithographic substrate on which a first electrode is formed in an embodiment of the present invention. Fig. 5B is a bottom plan view showing a twin crystal substrate in which a second electrode is formed in an embodiment of the present invention. Figure 6 is a cross-sectional view showing a solar cell module of an embodiment of the present invention. [Main component symbol description] 12 M431439 Solar cell broken crystal substrate N-type region P-type region First surface Second surface anti-reflection layer Electrode structure First electrode Finger electrode Bus bar wiring Second electrode Back electric field electrode Bus bar wiring load Solar cell module solar cell solar cell solar cell metal strip metal strip 13 M431439 solar cell fragmented substrate N-type region P-type region first surface second surface first conductive pattern anti-reflection layer second conductive pattern electrode structure first Electrode finger electrode bus bar wiring second electrode back electric field electrode second bus bar wiring solar cell module solar electric solar cell solar cell metal strip 14 M431439 422 metal strip