M430767 五、新型說明: 【新型所屬之技術領域】 本創作係有關-種雙向切換式電源供應器及其控制電 路,特別是指-種於供電模式中偵測輪人端電流以調整輸出 端電流之雙向切換式電源供應器及其控制電路。 【先前技術】 第1圖係示歧前技術之雙向切換式電源供應器之示 意圖。雙向切換式電源供應器10可工作於供電模式或充 電模式’於供電模式中’雙向切換式電源供應請將一 輸入電壓Vin升壓轉換為一輸出電壓v〇ut,即將較低的輸 入電壓轉換成較高的輸出電壓。連接輸入電壓vin之一^ 與一電池Bat連接,又產生輸出電壓v〇ut之一端可連接系 統負載。若將削以產生輸出電壓VGUt之—端自系統負載 改連接至-電源(圖未示)’則成為充電模式,第i圖中相 同電路會成為-降壓切換式電源供應器,該電源會經由一 功率級13將較高的輸出電廢轉換成較低的輸入電壓,並 對電池Bat進行充電。 功率級13包括一上橋開關M2、下橋開關M1及電感 L’該三個元件共同連接於一切換節點LX。電池Bat供應 之電流會經過電阻RS、電感L及上橋開關M2,再由節點 向輪出電壓Vout所在之輸出端。若將節點νχ直接 作為輸出端(即無負载開關M3、驅動電路^及誤差放大器 =),則當輸出端發生短路(sh〇rt)或過負載(—)時,功 。級13將會不斷工作而造成整個電源供應器崩潰 )’且過量電流可能燒毁電路。為避免電路崩潰之產 M430767 生,升壓切換式電源供應器一般會設置輸出短路防護電 路,亦即可如第1圖所示增加一負載開關M3於節點νχ 和輸出電壓Vout之間,並控制通過負載開關M3的電流。 在圖示先前技術中,該負載開關M3由一驅動電路11控 制’以調整輸出端之輸出電流。根據誤差放大器12輸出 之誤差訊號Comp,驅動電路η從而產生控制負載開關 M3之開關訊號。誤差放大器12係比較節點VX之電壓及 輸出電壓Vout之差值,而產生誤差訊號c〇mp。 參見第2圖,然當負載開關M3之操作由線性模式 (linear mode)轉為飽和模式(saturation mode),若過負載或 過衝(overshoot)之問題發生’則負載開關M3亦無法有效 控制輸出電流lout或避免整個電路之崩潰發生。縱使負載 開關M3可以立即限制輸出電流i〇ut,而開始抑制電流過 衝之問題,但輸入端之電池Bat仍可能會持續過度放電 (over discharge) ’而造成電池Bat之損毀。電池之輸出電流 Ibat的最大限制是很重要的規格要求,且該電池電流Ibat 需要嚴格控制低於該最大限制電流。傳統之雙向切換式電 源供應器10或可以直接控制輸出電流I〇ut,但由電池Bat 供應之輸入電流Ibat卻被動及延遲處理,故無法有效保護 供應電源(電池Bat)之輸出電流低於該最大限制電流。 有鑑於以上所述,本創作即針對先前技術之不足,提 出一種能避免供應電源之輸入電流超過規格中上限之雙 向切換式電源供應器及其控制電路,以改善電流過大而毀 損電路元件或電池之問題。 【新型内容】 4 型目的之一在提供—種雙向切換式電源供應器。 丨型的另—目的在提供—種雙向切換式電源供應 窃之控制電路。 供雁:上述之目的’本_提供了—種雙向切換式電源 二.’於供賴式中將―輸人電壓轉換為一輸出電壓, 二、鱼拉功岸級包括一上橋開關、一下橋開關及-電感’ 问連接於—切換節點,其中該電感電性連接於該輸入電 ·’、負載開關’電連接於該輸出電壓與該上橋開關之 二’以及-驅動電路,根魏輸人電壓所在輸人端之電流 貝訊控制負載_以調整通職負細關之輸出電 流。 在一機佳實施型態中,該雙向切換式電源供應器另 包括-電阻,輕接於該電感與該輸入之間,其中該電 流資訊係該電阻兩端之電壓差。 在-種較佳實施型態中,該雙向切換式電源供應器另 包含-誤差放大|§,其中該誤差放A|i比較該電阻兩端之 電壓差,並產生輸出訊號提供給該驅動電路。 在一種較佳實施型態中,該上橋開關及該下橋開關皆 係電晶體。 在充電模式中,該雙向切換式電源供應器自與該輸出 電壓連接的一端對與該輸入電壓連接的一端充電。 就另一個觀點言’本新型提供了 一種雙向切換式電源 供應器之控制電路,於供電模式中調整自一輸入端而來通 過一電感之輸入電流而產生一輸出電流供應給一輸出 端,包含:一誤差放大器,偵測因該輸入電流產生之電壓 差,以產生一誤差訊號;一下橋開關;一上橋開關,與該 電感及該下橋開關共同連接於-切換節點;-貞賴關, 電連接於該輸^端與該上橋開關之間 ;以及一驅動電路, 根據該誤差職,控繼負細關以調整通過該負載開關 之輸出電流。 底下藉由具體實施例詳加說明,當更容易瞭解本創作 之目的、技術内容、特點及其所達成之功效。 【實施方式】 第3圖不出本創作雙向切換式電源供應器的一個實施 例。如圖所示’於供電模式中,雙向切換式電源供應器 3〇將一輸入電壓Vin升壓轉換為一輸出電壓v〇ut ,即將較 低的輸入電墨轉換成較高的輸出電壓。連接輸人電壓Vin 之厂輸入端與-電池Bat連接,又輸出電壓伽之另一端 可連接系統負載。在充電模式巾,可將雙向切換式電源供 應器30與輸出電壓vout連接的一端與電源連接,就可自 該電源對電池Bat充電。 雙向切換式電源供應器30包含一驅動電路31、一誤 差放大器32、-功率級33、-負載開關M3及一電阻RS。 功,級33包括一上橋開關μ2、下橋開關mi及電感l, 該三個元件共同連接於一切換節點Lx。電池灿供應之 電流會經過電阻RS、« L及上橋_ M2,再由節點 νχ流向輸出電壓vout所在之輸出端。又負載開關M3係 由驅動電路31控制,以調整輸出端之輸出電流。 當輸出端短路或過負載時,則輸出電流_會變得很 大,亦即輸入端之輸入電流(即電池電流)_也會隨之 秋。此時誤差放大器32會伽i到電阻Rs兩端之麼差, 此麼差可代表輸人端之電流麵。驅㈣路Μ會根據誤 差放大器32之誤差訊號comp或電流資訊,以控制負載開 關M3 ’從而調整輸出電流lout。如此電源供應器30可直 接反應電池Bat之輸入電流Ibat,而達到控制輸出電流I〇ut 之目的,並能有效保護電池Bat。驅動電路31可藉由改變 作用於負載開關1之閘極電壓Vgate以調整輪出電流 lout,或改變控制負載開關M3之開關的脈衝寬度調變 (PWM)訊號之工作週期而同樣達到電流調整。 食兄第3圖’驅動電路31、誤差放大器32、上橋開 關M2、下橋開關M1及負載開關M3可以整合至一控制電 路34之積體電路晶片,如此可容易和其他被動元件(例 如.電感L等)組合而成電源供應器3〇。 參見第4圖,當負載開關奶之操作由線性模式轉為 飽和模式,負載開關M3可有效控制輸出電流,以避免負 載或過衝之問題發生。 ' 如果雙向切換式電源供應器3〇不必須雙向工作時, 亦即不需要自與輸出電壓Vout連接的一端對電池细充電 時第3圖中之功率級33可以用第5圖中功率級^取代, 亦即原上橋開關M2之電晶體改為上橋開關〇ι之二極 體,該功率級53亦為一升壓型轉換器。 以上已針職佳實施例來說明本創作,唯以上所述 ,僅係為錢悉本麟者易於了解摘作的内容而已, =來限定本創作之權利範圍。在本創作之相同精神 了,I本技術者可以思及各種等效變化。例如本新型例 ===以為P型或㈣元件;再如,各實施例中圖 的、2接的兩電路或元件間,可插置不影響主要功能 的其他電路或元件’ ·再如,在誤差放大器中正負輸入端可 M430767 以互換’只要相關電路相應修改即可。因此,所有各種等 效變化,均應包含在本創作的範圍之内。 【圖式簡單說明】 第1圖係示出先前技術之雙向切換式電源供應器 意圖。 第2圖示出傳統雙向切換式電源供應器之輸出電流Iout 之波形圖。 第3圖示出本創作雙向切換式電源供應器的一個實施 輪出電流 第4圖示出本創作雙向切換式電源供應器之 lout之波形圖。 第5圖示出本創作之功率級的另一個實施例 【主要元件符號說明】 10雙向切換式電源供應器 lout輸出電流 11驅動電路 L電感 12誤差放大器 LX切換節點 30雙向切換式電源供應器 Ml下橋開關 31驅動電路 M2上橋開關 32誤差放大器 M3負載開關 33功率級 RS電阻 34控制電路 Vin輸入電壓 53功率級 Vout輸出電壓 Comp誤差訊號 VX節點 CX,Cout 電容 Bat電池 Ibat電池電流,輸入電流M430767 V. New description: [New technical field] This creation is related to a kind of bidirectional switching power supply and its control circuit, especially the detection of the human current of the wheel in the power supply mode to adjust the output current. The bidirectional switching power supply and its control circuit. [Prior Art] Fig. 1 is a schematic diagram showing a two-way switching power supply of the prior art. The bidirectional switched power supply 10 can operate in a power supply mode or a charging mode 'in the power supply mode'. The bidirectional switched power supply converts an input voltage Vin into an output voltage v〇ut, ie, a lower input voltage conversion. A higher output voltage. Connect one of the input voltages vin^ to a battery Bat, and generate one of the output voltages v〇ut to connect to the system load. If the terminal is cut to generate the output voltage VGUt, the connection from the system load to the power supply (not shown) becomes the charging mode. In the figure i, the same circuit will become the -buck switching power supply. The higher output electrical waste is converted to a lower input voltage via a power stage 13 and the battery Bat is charged. The power stage 13 includes an upper bridge switch M2, a lower bridge switch M1, and an inductor L'. The three components are commonly connected to a switching node LX. The current supplied by the battery Bat will pass through the resistor RS, the inductor L and the upper bridge switch M2, and then the output terminal of the voltage Vout at the node. If the node νχ is directly used as the output (ie, no load switch M3, drive circuit ^ and error amplifier =), then when the output terminal is short-circuited (sh〇rt) or over-loaded (-), the work. Stage 13 will continue to operate causing the entire power supply to collapse) and excessive current can burn the circuit. In order to avoid the circuit crash, the M430767 is generated. The boost switching power supply generally sets the output short-circuit protection circuit. It can also add a load switch M3 between the node νχ and the output voltage Vout as shown in Figure 1 and control it. The current through the load switch M3. In the prior art shown, the load switch M3 is controlled by a drive circuit 11 to adjust the output current of the output. According to the error signal Comp outputted by the error amplifier 12, the circuit η is driven to generate a switching signal for controlling the load switch M3. The error amplifier 12 compares the difference between the voltage of the node VX and the output voltage Vout to generate an error signal c 〇 mp. Referring to Fig. 2, when the operation of the load switch M3 is changed from a linear mode to a saturation mode, if an overload or overshoot problem occurs, the load switch M3 cannot effectively control the output. The current lout or avoid the collapse of the entire circuit. Even if the load switch M3 can immediately limit the output current i〇ut and start to suppress the current overshoot, the battery Bat at the input may continue to over discharge and cause the battery Bat to be destroyed. Battery Output Current The maximum limit of Ibat is a very important specification and the battery current Ibat needs to be tightly controlled below this maximum limit current. The traditional two-way switching power supply 10 can directly control the output current I〇ut, but the input current Ibat supplied by the battery Bat is passive and delayed, so the output current of the supply power (battery Bat) cannot be effectively protected. Maximum current limit. In view of the above, this creation is aimed at the deficiencies of the prior art, and proposes a bidirectional switching power supply and a control circuit thereof, which can avoid the input current of the power supply exceeding the upper limit of the specification, to improve the current excessively and damage the circuit components or the battery. The problem. [New content] One of the four types of purposes is to provide a two-way switching power supply. Another purpose of the 丨 type is to provide a two-way switching power supply stealing control circuit. For the geese: the above purpose 'this _ provides a kind of two-way switching power supply two.' In the supply of the "input" conversion of the input voltage into an output voltage, two, the fish pull power level includes an upper bridge switch, the next The bridge switch and the inductor are connected to the switching node, wherein the inductor is electrically connected to the input power, and the load switch is electrically connected to the output voltage and the second bridge of the upper bridge and the driving circuit. The input voltage is at the input end of the input terminal, and the current is controlled by the load _ to adjust the output current of the negative duty switch. In a preferred embodiment, the bidirectional switched power supply further includes a resistor coupled between the inductor and the input, wherein the current information is a voltage difference across the resistor. In a preferred embodiment, the bidirectional switched power supply further includes an error amplification |§, wherein the error A|i compares the voltage difference across the resistor and generates an output signal for the driving circuit . In a preferred embodiment, the upper bridge switch and the lower bridge switch are both transistors. In the charging mode, the bidirectional switched power supply charges one end connected to the output voltage from an end connected to the output voltage. According to another point of view, the present invention provides a control circuit for a bidirectional switching power supply, which adjusts an input current from an input to generate an output current to an output through an input terminal, including An error amplifier detects a voltage difference generated by the input current to generate an error signal; a bridge switch; an upper bridge switch, and the inductor and the lower bridge switch are connected to the -switch node; And electrically connected between the input end and the upper bridge switch; and a driving circuit, according to the error, controlling the negative fine closing to adjust the output current through the load switch. By the detailed description of the specific embodiments, it is easier to understand the purpose, technical content, characteristics and effects of the creation. [Embodiment] Fig. 3 shows an embodiment of the bidirectional switching power supply of the present invention. As shown in the figure, in the power supply mode, the bidirectional switched power supply 3〇 converts an input voltage Vin into an output voltage v〇ut , that is, converts the lower input ink into a higher output voltage. The factory input connected to the input voltage Vin is connected to the battery Bat, and the other end of the output voltage is connected to the system load. In the charging mode towel, the end of the bidirectional switching power supply 30 connected to the output voltage vout can be connected to the power source, and the battery Bat can be charged from the power source. The bidirectional switched power supply 30 includes a drive circuit 31, an error amplifier 32, a power stage 33, a load switch M3, and a resistor RS. The power stage 33 includes an upper bridge switch μ2, a lower bridge switch mi, and an inductor 1, which are commonly connected to a switching node Lx. The current supplied by the battery can pass through the resistors RS, «L and the upper bridge _ M2, and then the node ν χ flows to the output of the output voltage vout. Further, the load switch M3 is controlled by the drive circuit 31 to adjust the output current of the output terminal. When the output is short-circuited or overloaded, the output current _ becomes very large, that is, the input current at the input (ie, battery current) _ will also fall. At this time, the error amplifier 32 will illuminate the difference between the two ends of the resistor Rs, which may represent the current plane of the input terminal. The drive (4) switch adjusts the output current lout according to the error signal comp or current information of the error amplifier 32 to control the load switch M3'. Thus, the power supply 30 can directly react to the input current Ibat of the battery Bat to achieve the purpose of controlling the output current I〇ut, and can effectively protect the battery Bat. The drive circuit 31 can also achieve current adjustment by changing the gate voltage Vgate acting on the load switch 1 to adjust the wheel current lout, or changing the duty cycle of the pulse width modulation (PWM) signal of the switch controlling the load switch M3. Figure 3 'Drive circuit 31, error amplifier 32, upper bridge switch M2, lower bridge switch M1 and load switch M3 can be integrated into the integrated circuit of a control circuit 34, so that it can be easily and other passive components (for example. Inductor L, etc.) is combined into a power supply unit 3〇. Referring to Figure 4, when the operation of the load switch milk is changed from linear mode to saturation mode, the load switch M3 can effectively control the output current to avoid the problem of load or overshoot. ' If the bidirectional switching power supply 3〇 does not have to work in both directions, that is, when the battery is not required to be charged from the end connected to the output voltage Vout, the power stage 33 in Fig. 3 can use the power level in Fig. 5 Instead, the transistor of the original upper bridge switch M2 is changed to the diode of the upper bridge switch ,ι, and the power stage 53 is also a boost converter. The above has been used to illustrate the creation of the original, only the above, only for the content of the money is easy to understand the abstract, = to limit the scope of this creation. In the same spirit of this creation, I can think of various equivalent changes. For example, the present example === is considered to be a P-type or (four) component; as in another embodiment, between the two circuits or components connected to the two terminals, other circuits or components that do not affect the main function can be inserted. In the error amplifier, the positive and negative inputs can be interchanged with M430767 as long as the relevant circuit is modified accordingly. Therefore, all kinds of equivalent changes should be included in the scope of this creation. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing the intention of the prior art bidirectional switched power supply. Fig. 2 is a waveform diagram showing the output current Iout of the conventional bidirectional switching power supply. Fig. 3 shows an implementation of the bidirectional switched power supply of the present invention. The output current is shown in Fig. 4, which shows the waveform of lout of the bidirectional switched power supply of the present invention. Figure 5 shows another embodiment of the power stage of the present invention. [Main component symbol description] 10 bidirectional switching power supply lout output current 11 drive circuit L inductance 12 error amplifier LX switching node 30 bidirectional switching power supply Ml Lower bridge switch 31 drive circuit M2 upper bridge switch 32 error amplifier M3 load switch 33 power stage RS resistor 34 control circuit Vin input voltage 53 power stage Vout output voltage Comp error signal VX node CX, Cout capacitor Bat battery Ibat battery current, input current