TWM429654U - Electrical power driven ducted fan engine - Google Patents

Electrical power driven ducted fan engine Download PDF

Info

Publication number
TWM429654U
TWM429654U TW100214612U TW100214612U TWM429654U TW M429654 U TWM429654 U TW M429654U TW 100214612 U TW100214612 U TW 100214612U TW 100214612 U TW100214612 U TW 100214612U TW M429654 U TWM429654 U TW M429654U
Authority
TW
Taiwan
Prior art keywords
compressor
blade
rotor
array
module
Prior art date
Application number
TW100214612U
Other languages
Chinese (zh)
Inventor
Ray-Yu Lin
Wei-Hsiang Lai
Original Assignee
Ray-Yu Lin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ray-Yu Lin filed Critical Ray-Yu Lin
Priority to TW100214612U priority Critical patent/TWM429654U/en
Publication of TWM429654U publication Critical patent/TWM429654U/en

Links

Classifications

    • Y02T50/62

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

An aerial vehicle mounted propulsion engine which powered electrically mainly , this concept design comprises electric-magnetic stators , permanent magnetic rotors and fan , for all these integrated in an ducted system , it also including compressor and combustion equipment in flow series without turbine , providing high speed flow then the thrust. To fulfill the adequate pressure level for combustion process , the compressor rotors would be single or dual shafts and may having contra-rotating stages to reduce it's weights in limited volumes and stages.

Description

M429654 101年03月1\日修正替換頁M429654 Modified on March 1st, 1st, 2011

五、新型說明: --——_L 【新型所屬之技術領域】 2新型專利相關於航空用飛行發動機領域,*此推進系統 ^習知系統不同在於運用電力為主(非核能或石化燃料)及 對應之能源轉換方式,做為推進系統動力來源。 【先前技術】 近年來全球文明的發展對於環境變遷,以及可用能源的消 耗與時俱增’習用之石化燃料暨藉由燃燒方法來轉換燃料 能源的方式已行之百年,其發展之發動機 ,即内燃機已成 為各種引擎的基礎設計方式,然此種運用燃燒來提取石化 燃料能源的方法,僅能轉換出燃料中三成所含能源,其所 產生之排放物,如二氧化碳(C〇2)、氮氧化合物(Ν〇χ)、氧化 硫(S〇2)則是溫室氣體,對全球溫室效應及氣候的變遷已證 實有相當的影響。 航空用發動機,即航空引擎,目前也是主要藉由石化燃料 的燃燒來釋放其熱能,並經由活塞曲轴或渦輪來帶動引擎 的螺旋槳或扇葉再對流體作功而產生推力,因推力迫使空 氣流體流經機翼表面而產生升力,令飛具得以浮升飛行; 其所排放物及所用燃料,同樣於它種運用石化燃料驅動之 内燃機之交通工具,皆受限於有限儲量之石化燃料,以及 會排放溫室效應氣體。為因應日趨嚴峻之消耗需求及減低 5 M429654 a 101年03月1\日修正替換頁 對環境衝擊’現已有數錢計致力料肖^ ^化燃料「 並嘗試滿足環保的要求。 要取代現有之石化燃料並可作為空用發動機燃料的諸 多選擇中’氫燃料是可考慮的來源之一;已知在同樣的能 量釋放下,液氫重量幾為現有航空燃油的三分之一,且只 放出水及少量的氮氧化物⑴;再回顧航空用發動機的發展 歷史’可得知早期之航空用渦輪噴射發動機,已有使用氫 燃料的紀錄.西元1957年美國空軍已實地改裝一架B_57 轟炸機作為測試並成功試飛[丨],而最近則有波音航太以氫 燃料電池作為能源轉換方式成功試飛一架小型有人飛機 [2],是故以氫燃料做為燃料來源並據此加以發展之航空用 發動機,截至目前公開證實的訊息’大致可分為直接燃燒 產生熱能及先轉為電能後再加以利用兩種。 直接燃燒方式是以習知之現有渦輪扇葉喷射發動機, 加以改裝以便可用來燃燒液氫而輸出熱能,以歐洲空中巴 士航太公司所公佈之 “Liquid Hydrogen Fuelled Aircraft —V. New description: --——_L [New technical field] 2 New patents related to the field of aerospace flight engines, *This propulsion system ^The different systems are based on the use of electricity (non-nuclear or fossil fuels) and Corresponding energy conversion methods are used as a source of power for propulsion systems. [Prior Art] In recent years, the development of global civilization has been increasing the environmental change and the consumption of available energy. The practice of fossil fuels and the conversion of fuel energy by combustion methods has been going on for a hundred years. Internal combustion engines have become the basic design method for various engines. However, this method of extracting fossil fuel energy by combustion can only convert the energy contained in 30% of the fuel, and the emissions it produces, such as carbon dioxide (C〇2), nitrogen. Oxygen compounds (Ν〇χ) and sulfur oxides (S〇2) are greenhouse gases that have been shown to have a considerable impact on global warming and climate change. The aerospace engine, the aero engine, currently releases its thermal energy mainly by the combustion of fossil fuels, and drives the propeller or blades of the engine through the piston crankshaft or turbine to generate work for the fluid, which forces the air fluid. Flowing through the surface of the wing to generate lift, allowing the flying device to fly upwards; its emissions and fuel used, as well as its use of petrochemical fuel-driven internal combustion engines, are limited to limited reserves of fossil fuels, and Will emit greenhouse gases. In response to the increasingly severe consumption demand and reduction of 5 M429654 a March 1st, 101, revised page replacement environment impact on the environment 'now has a lot of money to make efforts to meet the requirements of environmental protection. To replace the existing Hydrogen fuel can be used as one of the many options for air-fueled fuels. Hydrogen fuel is one of the sources of consideration; it is known that under the same energy release, the weight of liquid hydrogen is one-third that of existing aviation fuel, and only released. Water and a small amount of nitrogen oxides (1); reviewing the history of aerospace engines' can be seen as an early record of the use of hydrogen fuel in early aviation turbojet engines. In 1957, the US Air Force had modified a B_57 bomber as a field. Tested and successfully tested [丨], and recently Boeing Aerospace successfully tested a small manned aircraft with hydrogen fuel cells as an energy conversion method [2], which is why aviation fuel is used as a fuel source and developed accordingly. With the engine, the information that has been publicly confirmed so far can be roughly divided into two types: direct combustion to generate heat energy and first to electric energy and then used. Way based on existing turbine blades of a conventional jet engine, to be modified in order to be used to burn liquid hydrogen and heat output to the European Air Bus aerospace company announced the "Liquid Hydrogen Fuelled Aircraft -

System Analysis” [3]此文件為例,内文中提及數種改裝現 役引擎之構想,包括直接用液氫注入燃燒,以及運用液氫 冷卻南壓壓縮器段、冷卻渦輪散熱空氣以提高操作極限, 或是以引擎出口排放廢熱來預熱液氫,以增進燃燒效率; 總合以上之設計’根據計算模擬所得之性能結果皆較使用 現有石化燃料引擎有所增進。 6 M429654 έ> 101年03月日修正替換頁 另一種方式是先轉換成電能,再以馬達驅動螺旋槳或 導風扇做為推進動力。此種電能驅動推進裝置,如以現有 燃料電池的電化學反應做為轉換方式,其轉換效率將優於 上述之現有化學燃燒轉換方式,而此種設計已有實體驗 證’如波音航太所製做之試飛機[2];此外美國航空太空總 • 署 Glenn 研發中心有提出一種 “Levitated Ducted Fan” [4] 之設計概念’若以航空载具推進需求上來發展時’此種設 計運用習知之渦輪扇葉噴射發動機的扇葉模組,並用 • Halbach永磁陣列[5]做為反應轉子裝設結合在扇葉上’而 驅動扇葉的電能則經由外部電源供給到一組電磁鐵定子上 來,以磁力和Halbach永磁陣列轉子互斥而轉動扇葉,再 對流體做功產生質流變化產生推力,並且省略後段之燃燒 及渦輪段。由於採用導管扇葉方式產生推力,估計會比用 螺旋槳推進更有效率,更易於發展更大推力的需求;而發 展中省略渦輪段’相對於傳統構型之發動機則可望減少重 量及體積’唯獨受其發電機之性能規格所限。 【新型内容】 以上習知之各種發動機或推力裝置改量或設計方式, 現多為設計計算階段’作為概念驗證者居多,而這些驗證 設計皆包含以下概念: 1.使用氩燃料這種有效且不會排放溫室氣體之燃料。 7 M429654 "— I· 一·" __ — / 101年03月曰修正替換頁 2·對於航空用發動機’未來仍傾向於運用成熟之渦輪 扇葉喷射發動機來加以改裝或作為新設計的範本。 . 綜合社發展特點,本設計包括有魏機機艮、扇 葉、扇葉轉子軸、壓縮器轉子轴、壓縮段葉片、旁通分 流結構、永磁轉子及電磁定子、支撐架與外流導片、燃 ' 燒器、以及承載軸承;此外,該發動機系統上將支援有 . 燃料箱及傳送系統、燃料電池暨儲電器、潤滑油油箱、 -滑油對燃料熱交換器,以及動力管理控制器,整個電力 '供應、潤滑及控制單元可整合在引擎機匣上,或分散裝 • ,在飛行載具上,之間靠管路及導線連接。電力經動力 警理控制器調節後,經電力纜線輪出電力到固定在機匣 上、以及壓縮器轉子軸上方之電磁定子,此時定子電磁 鐵產生磁場力,相對於固定在扇葉上的永磁轉子,兩者 相互產生磁場吸斥力,進而轉動扇葉來吸入空氣流體, ' 流體經旁通結構後,部份氣流經數組壓縮器葉片,提高 •. 内能後再進入後燃燒器中混合燃料燃燒,再以高速排出 機外;另一部份則由扇葉做功後經外流導片排出機外; 兩版氣流產生氣流速度和流量的改變產生引擎的推力。 在α汁中使用的電磁定子和永磁轉子,其組成上有幾種 設計;對於永磁轉子的排列方式,有以磁極方向相反之 水久磁鐵來組成相臨排列之陣列’或是以海爾貝克陣列 8 έ> 101年03月日修正替換頁 (Helbach Array)方式排序組成;同樣的電磁定子陣列 組成,線圈陣列也以能產生磁極方向是相反之相臨排列 為主,或能產生海爾貝克陣列(Helbach Array)方式來 排列線圈。 另外在設計上’本引擎是以電磁力帶動扇葉來產生大部 份推力,所以燃燒器後段之傳統渦輪段可視狀況與以省 略,但為了喷射引擎推力產生之須求,仍須提供一速度 差’且產生之流體速度差更可增加飛具的速度及升力, 所以引擎設計中仍須配有燃燒器來作為產生高速度氣 體之來源;而為增加進人燃燒器前的空氣所含内能以便 加強燃燒效率,壓縮器也導人設計中,而為了減少 重量的限制下,達成較高的壓縮比,整個壓縮器 =便和習知之設計不同、之系統 ; 動扇葉和低壓壓縮器段,而高壓^ 所帶動,λ太母斗+ η, η & /門輪段 β 中則將兩段壓縮器段整 段,為達成合適之壓縮比命立 、、壓縮 轉之雙轉子葉片鮮所㈣^ 壓鞋設計上改為對 、、’成而非習知之定子、棘j 列設計。㈣結合部份旁通 之排 子葉片,新形成1 且可以轉動知之壓縮器定 之壓縮器轉子葉片群葉片群,同時習知 轉動 101年03月4日修正替換頁 ▲方向相反,有點相似於習知之pr〇p-fanl^^~J^ ~~~ 计[6],對於流經該壓縮器之流體而言,相當於承受— 轉逮更快之壓縮器做功,進而增加其内焓而有利於燃 、現,或兩者可用同一轉動軸驅動,此時則配有一減速 齒輪、纟旦[7]以利協調不同轉速之需求。 【實施方式】 請參閱第1示意圖,本創作係提供一種飛行具推進 單轴弓丨擎’本圖為該發動機半剖面圖示,該引擎組成為 一引擎機匣10,該引擎機匣10相對於d擎剎面示意圖中 ’設置有一環狀電磁定子22及扇葉 u ’扇葉11上附裝有一環狀扇葉永磁轉子21,該扇葉 11和扇葉結構12固定於扇葉轉子軸13,轉子軸13前 方裝有進氣導錐14,扇葉轉子軸13後方則裝有減速齒 輪組35 ’使得扇葉轉子軸13得以延伸成單一軸’ I在 轉子軸上方承載軸承15,16;扇葉轉子轴13上裝有壓 縮段驅動永磁轉子19、以及壓縮器結構π及壓縮器轉 子葉片群18’壓縮器轉子葉片群18相對於扇葉轉子葉 片群23交錯排列,而扇葉轉子葉片群23則固定在轉動 式氣流旁通結構上24,另外轉動式氣流旁通、结構24和 其後方的固定式氣流旁通結構30組成一完整旁通錄 構’兩者間有一氣密缝隙31,固定式氣流旁通结構3〇 内則裝有壓縮氣流旁通通路閥36、壓縮器可變定子導 M429654 101年03月g 片驅動機構37、壓缩器可變定子替換頁 結構24最前方裝有扇葉延伸段25,此延伸旁通 葉11、扇葉結構12結合-起,將屬 旁通通路,通路向後延伸至通路 =空間後進入燃燒段27,並且有出口 ;= :為結尾;燃燒段27結合出口可變排氣導片= 上構29支禮於轴承16而座落於扇葉轉子轴13 通路内支撐架26則固定住壓縮段驅動環狀電磁定 ’此外固定式氣流旁通結構3〇則由支樓架 $並座㈣定在機&1()上,蚊氣料通結構加上 固/卜流導片33,而扇葉1卜轉動式氣流旁通結構24、 ^式氣流旁通結構30、外流導片33、支撐架32共 成氣流次要旁通通路。 來本3丨擎在操作產生推力程序上,該發動機電力產生 A原為外來電源,如燃料電池、鋰電池等,當電力產 生後緩過整流調變,一部份電力經纜線傳輸至裝置於機 1()中的環狀電磁定子22,產生磁力而轉動裝置在扇 ^葉片端的環狀扇葉永磁轉子21、扇葉π,同時一部 73的分配電力經由在支撐架33及通路内支撐架26的電 力傳送碎路34值 日修正替換頁 力傳送官路34,傳至壓㈣環狀電磁 力轉動壓縮器環狀永磁轉子19。#扇葉n轉 磁 弓1空氣流艘經進氣導錐14進入機匣10之中,(時办, 被氣流旁通結構24及30分流,此時扇葉11轉動= 連帶動扇葉延伸段25轉動,將分流出的主要淹路 吸入壓縮段中,並且由壓縮器轉子葉片群18 =— 子葉片群23轉動而對主要旁通氣流做功,由^轉 轉子葉片群18的驅動是由壓縮段環狀永磁轉子19 供’而扇㈣子葉片群23是連動扇葉延伸段25及: U ’此時相對於扇葉轉子葉片群23,壓縮器轉子筆、、 群18會有較向之轉速,故需以一減速齒輪組3说片 同-壓縮轉子軸13上之不同轉速,為了以較少的:調 達成-預定的壓縮比的需求,在設計上將壓縮 片群18、扇葉轉子葉片群23轉動方向設定為對轉予葉 (counter-rotating) ’可在有限壓縮器轉子級數中増加 相對轉速;此時主要氣流再經過壓縮氣流旁通通路日加 36、壓縮器可變定子導片驅動機構37、壓縮器可變= 子38、壓縮器轉子葉片群18之加壓及調節,次第择加 進入燃燒器27前氣體的焓(enthaipy)值,再經過對燃 燒器27直接噴入燃料並混合壓縮後的主要氣流,點火 燃燒產生熱能,經出口可變排氣導片28排出加速氣 體,來提供引擎所需之速度。所需之速度產生同時,扇 葉Π轉動對主要氣流做功’產生氣流質流量差,兩者 M429654 L^1 _ $ K日修正替換頁 生引擎所需之推力,同時轴承15支、 轉子轴13,扇葉η和扇葉結構12之徑向和轴=葉 而壓縮段驅動環狀永磁轉子19及麼縮段驅動環狀 定子20在弓|擎運轉時,也可視為一電磁轴承, 扇葉轉子轴龍縮段驅動環狀電磁定子2〇保 同樣扇葉水磁轉子21及扇葉環狀電磁定子22 ^ 葉U相同有電磁轴承作用。 也對扇 切Γ圖1的扇葉11之葉片尺寸、數量、翼剖面型 '而依實際流場計算而定,對於壓縮器轉子葉片群 =扇葉轉子葉牌23的尺寸、級數、單級葉片數量 疋同樣的狀況考慮,整體壓縮器内的轉子結構、葉片 2位置’葉片角度翼剖面型式等,也依實際流場計算 二’並保留變動位置的可能性。對於壓縮氣流旁通通 變6、壓縮器可變定子導片驅動機構37、壓縮器可 疋子38’魏合壓㈣轉子葉片群18來設計其機 二級數、單㈣片數量,及其翼剖面,而壓縮器轉子 群片^ 18被分為兩群,前-群為對轉於衫轉子葉片 另-群則以同軸同轉速相對壓縮器可變定 :’該群級數及單級葉片量將多於前—對轉群的數量. ;採用對轉壓縮方式時’所產生之次 , ::損失及低動量邊界層之情況,也可望=::: 麵,比如使用aspiration的葉片設計[8]。燃燒 13 M429654 HU年OU 4曰修正替換頁 器使用合適設計之燃料喷嘴總成,能有效燃燒氫燃料並 轉換出潛熱。 請參閱第2示意圖,本創作係提供一種之飛行具推 進雙轴引擎,本圖為該發動機半剖面圖示,該引擎組成 為一引擎機匣10,該引擎機匣10相對於引擎剖面示意圖 中心線41,向心往内設置有一環狀電磁定子22及扇葉 11,扇葉11上附裝有一環狀扇葉永磁轉子21,該扇葉 11和扇葉結構12固定於扇葉轉子軸13,轉子軸13前 方裝有進氣導錐14,扇葉轉子軸13上方承載軸承15、 16、17、18,軸承15承受扇葉11運作產生之轴向力和 徑向力,轴承16、17上方支撐壓縮器轉子軸23,以及 壓縮器結構24及壓縮器轉子葉片群25,壓縮器轉子葉 片群25相對於扇葉轉子葉片群26交錯排列,而扇葉轉 子葉片群26則連接在轉動式氣流旁通結構上27,同時 轉動式氣流旁通結構27最前方裝有扇葉延伸段37,轉 動式氣流旁通結構27和後方固定式氣流旁通結構32組 成一完整旁通結構,兩者間有一氣密縫隙33,固定式 氣流旁通結構32内裝有壓縮氣流旁通通路閥38、壓縮 器可變定子導片驅動機構39及壓縮器可變定子導片 40 ;延伸段37將扇葉11、扇葉結構12結合一起,並 和轉動式氣流旁通結構27、固定式氣流旁通結構32、 壓縮器轉子葉片群25、扇葉轉子葉片群26及壓縮器結 構24、壓縮氣流旁通通路閥38、壓縮器可變定子導片 14 叫日修正替換頁 驅動機構39及壓縮器可變定子導片- 形成主要氣流旁通通路’通路向後延伸至通路内支撐架 28 ,及氣體擴散空間後進入燃燒段29,並且有可變出、 口排氣導片30做為結尾;燃燒段29结合可變出口排氣 導片30由尾端結構31支撐於軸承18上再座落於扇葉 轉子轴13上;通路内支撐架28固定住壓縮段驅動環狀 電磁定子20,相對於壓縮器轉子軸23上則裝有壓縮段 環狀永磁轉子19。固定式氣流旁通結構32本身由支撐 架35所支撐並座落固定在機匣1〇上,其上並裝有外流 導片34,而扇葉11、轉動式氣流旁通結構27、固定式 氣流旁通結構32、外流導片34、支撐架35則共構成氣 流次要旁通通路。 本引擎在操作產生推力程序上,是將產生之電力經 過整流調變後,一部份電力經纜線傳輸至裝置於機匣 10中的環狀電磁定子22,產生磁力來轉動裝置在扇葉 葉片端的環狀扇葉永磁轉子21、扇葉11,同時一部份 的分配電力經由在支撐架35及通路内支撐架28的電力 傳送管路36,傳至壓縮段驅動環狀電磁定子2〇 ,產生 磁力來轉動壓縮段驅動環狀永磁轉子19。當扇葉U轉 動時,吸入空氣流體經進氣導錐14進入機匣1〇之中, 此時空氣被氣流旁通結構27、32分流’此時扇葉丨丨轉 動而接連帶動扇葉延伸段37轉動,將分流出的主要流 路氣體吸入壓縮段中,並且由壓縮器轉子葉片群25、 101年03月$日修正替換頁 ,葉轉子判群26轉動而對主要貪通 2器轉子葉片群25的驅動是由_段驅動環狀永磁 供’而扇葉轉子葉片*26是連動扇葉延伸 葉、U ’此時相對於扇葉轉子葉片群26,壓縮 “片群25會有較高之轉速,並在設計上將轉子 二群25、扇葉轉子葉片群26轉動方向設定為對轉, 可在有限廢縮器轉子級數中增加轉速,達成較高屢縮 比,以增加進入燃燒器29前氣體的給值(Enthalpy), ,時主要氣流再經過壓縮氣流旁通通路閥38、壓縮器 可變,子導片驅動機構39及壓縮器可變定子導片4〇及 轉子葉片群25來次第增壓和調節流量,再進入燃燒器 29直接噴入燃料並混合壓縮後的主要氣流,點火燃燒 產生熱能,經可變出口排氣導片30排出加速氣體,來 提供引擎所需之速度。所需之速度產生同時,扇葉u 轉動對主要氣流做功’產生氣流質流量差,兩者便提供 引擎所需之推力。此時轴承15’ 18支撐並承受扇葉11、 扇葉轉子轴13之徑向和軸向力,軸承16, 17支標並承 受壓縮器轉子軸23之徑向和轴向力’而壓縮段驅動環 狀永磁轉子19及環狀電磁定子20在引擎運轉時也可視 為一電磁軸承,以峰保壓縮器轉子轴23對麗縮器麼縮 段驅動環狀電磁定子20之間隙,同樣扇葉永磁轉子21 及扇葉壤狀電磁定子22也對扇葉11也相同有電磁軸 承作用。 HH年03月4日修正替換頁 對於圖2的扇葉11之葉片數量、翼剖面型式等需依 實際流場計算而定,對於轉子葉片群25、扇葉轉子葉 片群26的級數、單級葉片數量也是同樣的狀況考慮, 整體壓縮器内的轉子結構、葉片相對位置,葉片角度翼 剖面型式等,也依實際流場計算而定,並保留變動位置 的可能性。對於壓縮氣流旁通通路閥38、壓縮器可變 定子導片驅動機構.39、壓縮器可變定子40,則配合壓 縮器轉子葉片群25來設計其機構、級數、單級葉片數 量,及其翼剖面,而壓縮器轉子葉片群25分為兩群, 前一群為對轉於扇葉轉子葉片群26,另一群則以同軸 同轉速相對壓縮器可變定子40轉動,該群級數及單級 葉片量將多於前一對轉群的數量;對於採用對轉壓縮方 式時,所產生之次級葉片相對高馬赫數損失及低動量邊 界層之情況,也可望用其它方式加以減輕,比如使用 aspiration的葉片設計[8]。燃燒器使用合適設計之喷 嘴總成,能有效燃燒燃料並轉換出潛熱。 請參閱第3不意圖*此為驅動扇葉壞狀電磁定子 22,及環狀扇葉永磁轉子21之磁鐵陣列部份分解圖。 本創作中所用之陣列排法預設有三種,如圖中A,B,C 所示;圖A中的驅動扇葉環狀電磁定子22為一環狀電 磁鐵之組合,箭頭方向代表電磁鐵所產生之磁極方向, 電流之方向為垂直流進紙面或流出紙面。其中一之電磁 線圈供應一循環方向電流產生正向磁場,而相鄰之電磁 年03月曰修正替換: 件姓^供^反向電机產生反向磁場,兩個電磁線圈以構 2二一起,如此重覆排列組合成-環狀電磁定子,並 結合在機匣10之内;璟妝荩咎、 疋卞亚 極方向相反之永久磁:葉水磁轉子21則是由兩磁 一 „ 久錢’以構件結合在-起重覆排列成 ,狀轉子’㈣狀騎永磁轉子21用構件結合在扇 圖B設計在驅動扇葉環狀電磁定子22上和圖八相 =,不同在於職騎永磁轉子21之永久顧排法, :水久磁鐵極性方向以⑽度相位差異剩呈現,其排 法即為海㈣克陣列(Halbach Array)排法,該陣列特 點陣列-狀轉軸性分佈為抑絲導致磁場強 ^極小側之磁場週期性分料加成結果,導致每 磁鐵單兀的平均磁場強度極高,有利於磁力推進。圖 c «·又汁則更進一步將驅動扇葉環狀電磁定子22也改為 海爾貝克陣列(Halbach Array)模式。A、B、.C三者在 運作時,對驅動扇葉環狀電磁定子22供電調變控制 後,將使扇葉永磁轉子21相對於驅動扇葉電磁定子& 轉動γ進而帶動扇葉11而造成氣流質流量的變化。對 於扇葉永磁轉子21和扇葉11的結構製造上,在考慮飛 行載具之飛行需求及為了使磁場分佈單純,扇葉Η的 材質除單晶金屬外,可用複合材料做為製造材質。 請參閱第4示意圖,此為壓縮段驅動環狀永磁轉子 19和壓縮段驅動環狀電磁定子2〇之磁鐵陣列部份分解 101年03月日修正替換頁 圖。本創作中所用之陣列排法預設有三種,如圖中A, c所示;圖A中的壓縮段驅動環狀電磁定子20為一 %狀電磁鐵之組合,箭頭方向代表電磁鐵所產生之磁極 方向’電流之方向為垂直流進紙面或流出紙面。其中一 之電磁線圈供應一循環方向電流產生正向磁場,而相鄰 電磁線圈則供應反向電流產生反向磁場,兩個電磁線 圈以構件結合一起,如此重覆排列組合成一環狀電磁定 子並固定在通路内支撐架之内;壓縮段驅動環狀 X磁轉子19則是由兩磁極方向相反之永久磁鐵,以構 牛、、D 5在一起重覆排列成一環狀轉子並固定在扇葉轉 子軸13(圖1〜圖4)或壓縮器轉子軸23(圖2及圖4)上。 圖B設計在壓縮段驅動環狀電磁定子2()上和圖a 相同,不同在於壓縮段驅動環狀永磁轉子19之永久磁 鐵排法,該永久磁鐵極性方向以9〇度相位差異排列呈 %,具排法即為海爾貝克陣列(Halbach Array)排法, 該陣列特點㈣-彳狀磁場週期性分佈為相;肖結果,導 致磁场強度極小’另—側之磁場週期性分佈為加成結 果’導致每—錢單元的平均磁場強度極高,有利於磁 力推進。圖C設計則更進—步將壓縮段驅動環狀電磁 子2〇也改為海爾貝克陣列(Halbach Array)模式。 轉子轴材質和壓縮段驅動環狀永磁轉子19 子2°之間的間隙扇葉環: 子玉衣狀扇葉永磁轉子21之間的間隙以及 M429654 ιοί年03月1糸日修正替換頁 整個電力供應系統之規格依轉速和實際輸出功率而定 【圖式簡單說明】 第1圖係本創作之無渦輪段含減速齒輪之單軸電動式發動機 之上半部剖視圖. 第2圖係本創作之無·段之雙軸電動式發動機之上半部剖 視圖 第3圖係本創作之為驅動扇 之磁鐵陣列部份分解圖 葉電磁定子及扇葉永磁轉子 磁轉子和壓縮段驅動電 第4圖係本創作之壓縮段驅動永 磁定子之磁鐵陣列部份分解圖 以上4圖皆非以比例尺度繪出 【主要元件符號說明】 〔本創作〕 第1圖 10機匣 扇篥 U扇葉結構 13扇葉轉子轴 Η進氣導錐 15軸承 16轴承 20 M429654 HH年03月#日修正替換頁 17壓縮器結構 18壓縮器轉子葉片群 19壓縮段驅動永磁轉子 20壓縮段驅動電磁定子 21扇葉永磁轉子 22驅動扇葉電磁定子 23扇葉轉子葉片群 24轉動式氣流旁通結構 25扇葉延伸段 26通路内支撐架 27燃燒段 28出口可變排氣導片 29尾端結構 30固定式氣流旁通結構 31氣密縫隙 32支撐架 33外流導片 34通路内支撐架電力傳送管路 35 減速齒輪組 36壓縮氣流旁通通路閥 37壓縮器可變定子導片驅動機構 38壓縮器可變定子導片 39引擎剖面示意圖中心線 21 M429654 101年03月日修正替換頁 第2圖 10機匣 11扇葉 12扇葉結構 13扇葉轉子軸 14進氣導錐 15軸承 16轴承 17轴承 18軸承 19壓縮段驅動永磁轉子 20壓縮段驅動電磁定子 21扇葉永磁轉子 22驅動扇葉電磁定子 23扇葉轉子葉片群 24壓縮器結構 25壓縮器轉子葉片群 26扇葉轉子葉片群 27轉動式氣流旁通結構 28通路内支撐架 29燃燒段 30出口可變排氣導片 31 尾端結構 22 M429654 101年03月日修正替換頁 32 固定式氣流旁通結構 33 氣密縫隙 34支撐架 35支撐架 36通路内支撐架電力傳送管路 37扇葉延伸段 38 壓縮氣流旁通通路閥 39壓縮器可變定子導片驅動機構 40壓縮器可變定子導片 41引擎剖面示意圖中心線 第3、4圖 11扇葉 12壓縮段驅動永磁轉子 20壓縮段驅動電磁定子 21扇葉永磁轉子 22驅動扇葉電磁定子 ⑭:電流流進紙面方向 Θ:電流流出紙面方向 DD[=C> 電磁定子磁極方向 23 M429654 ._ 101年03月日修正替換頁 ^ 永磁轉子磁極方向 電磁定子線圈及導通電流方向 . 六、申請專利範圍: 1、一種飛行器用發動機,其構造為水平方向上由前往後 有一電動扇葉模組結合一壓縮器模組,再結合一燃燒 - 排氣模組;電動扇葉模組之構造,最外為一機匣外罩, 於内裝置一環狀電磁鐵定子陣列,該電磁定子陣列產 . 生磁場型態,可為正反磁極相臨,或形成海爾貝克陣 列磁場之型態,又其環狀電磁鐵定子陣列,在該環狀 陣列之徑向上,往軸心方向有一環狀永久磁鐵轉子陣 列,此永久磁鐵轉子陣列和電磁鐵定子陣列隔開一間 隙,而該永久磁鐵轉子陣列其陣列排列組合方式,可 為正反磁極相臨結合,或以海爾貝克陣列方式組合而 成,又此環狀永久磁鐵轉子陣列為裝置結合於一扇葉 組上,而扇葉組則又結合在一轉動式氣流旁通結構上, 該轉動式氣流旁通結構,其内裝有前後間隔排列之扇葉 . 轉子葉片群,且分為數圈,即數個壓縮級,又該轉動式 t 氣流旁通結構為結合在一扇葉延伸段上,而扇葉延伸段 則結合在一扇葉結構上,而扇葉結構則結合在一扇葉轉 子軸上;此外壓縮器模組之構造,其包含了數組壓縮 器轉子葉#群、壓縮器結構、壓縮氣流旁通通路閥、固 定式氣流旁通結構、數組壓縮器可變定子導片、壓縮器 24 M429654 101年03月日修正替換頁 參考 1. Dr. Reinhard FaaB,“CRYO-PLANE Flugzeuge mit Wasserstoffantrieb”,Airbus Deutschland GmbH,2001 ppl4~15 ; ppl8~19, 26 2. http://en.wikipedia.org/wiki/Hydrogen-powered aircra ft. 3. Airbus Deutschland GmbH "Liquid Hydrogen Fuelled Aircraft - CRYOPLANE Final Technical Report", 2003 pp 30-36 4. Dennis J. Eiehenburg , Christopher A. Gailo, Paul A. Solano, William K Thompson, Daniel R Vrnak, “Development of a 32 Inch Diameter Levitated Ducted Fan Conceptual Design NASA-TM-2006-214481, December 2006. 5. http://en.wikipedia.org/wiki/Halbach_array 6. http://en.wikipedia.org/wiki/Propfan 7. http://en.wikipedia.org/wiki/Geared_turbofan 8. David V. Parker,“Design and Operation of a counter-Rotating Aspirated Compressor Blowdown Test Facility ’’ Master Thesis of Aeronautics and Astronautics Science , June 2005, ppl9 28System Analysis” [3] This document is an example. The article mentions several ideas for retrofitting an active engine, including direct injection of liquid hydrogen into the combustion chamber, and the use of liquid hydrogen to cool the south compressor section and cool the turbine cooling air to increase operating limits. , or use the exhaust heat from the engine outlet to preheat the liquid hydrogen to improve the combustion efficiency; the total design above is better than the performance of the existing petrochemical fuel engine. 6 M429654 έ> 101 years 03 Another way to correct the replacement page on the first day is to convert it into electrical energy, and then use the motor to drive the propeller or the guide fan as the propulsion power. This kind of electric energy drives the propulsion device, such as the electrochemical reaction of the existing fuel cell as the conversion mode, and its conversion. The efficiency will be better than the existing chemical combustion conversion method described above, and this design has been physically verified as a test aircraft made by Boeing Aerospace [2]; in addition, the Glenn R&D Center of the US Aerospace Space Agency has proposed a "Levitated" The design concept of Ducted Fan” [4] is used when the propulsion needs of aviation vehicles are developed. The fan blade engine of the fan blade jet engine, and the Halbach permanent magnet array [5] is used as the reaction rotor assembly on the blade. The electric energy for driving the fan blade is supplied to a set of electromagnet stators via an external power source. Rotating the fan blades with the magnetic force and the Halbach permanent magnet array rotor mutually repetitively, and then generating the thrust due to the mass flow change of the fluid work, and omitting the combustion and the turbine section of the rear section. Since the thrust is generated by the duct blade method, it is estimated that it is better than the propeller. The need to promote more efficient and easier to develop greater thrust; while the development of the omission of the turbine section 'relative to the traditional configuration of the engine is expected to reduce weight and volume' is limited by the performance specifications of its generator. Contents] The above-mentioned various engine or thrust device modifications or design methods are mostly in the design calculation phase as the majority of concept verifiers, and these verification designs all contain the following concepts: 1. The use of argon fuel is effective and does not emit Greenhouse gas fuel. 7 M429654 "- I·一·" __ — / 101 March 曰Revised replacement page 2·For aviation use The machine's future will still tend to be modified with a mature turbine blade jet engine or as a model for new designs. The development of the integrated mechanism includes the Wei machine casing, the fan blade, the fan rotor shaft, and the compressor rotor. Shafts, compression section vanes, bypass splitting structures, permanent magnet rotors and electromagnetic stators, support and outer flow guides, burners, and load bearing bearings; in addition, the engine system will support fuel tanks and conveyor systems, Fuel cell and storage appliances, lubricant tanks, oil-to-fuel heat exchangers, and power management controllers, the entire power supply, lubrication and control unit can be integrated on the engine casing, or dispersed, in flight With the pipe, the wire is connected. After the power is adjusted by the power police controller, the power is rotated by the power cable to the electromagnetic stator fixed on the casing and above the rotor shaft of the compressor. At this time, the stator electromagnet generates a magnetic field force, which is fixed on the blade. The permanent magnet rotor generates magnetic field repulsive force between each other, and then rotates the fan blade to suck in the air fluid. After the fluid passes through the bypass structure, part of the airflow passes through the array compressor blade to improve the internal energy and then enter the rear burner. The mixed fuel is burned and then discharged outside the machine at a high speed; the other part is discharged by the fan blade and discharged through the outer flow guide; the two versions of the air flow generate a change in the air velocity and flow to generate the thrust of the engine. The electromagnetic stator and the permanent magnet rotor used in the alpha juice have several designs. For the arrangement of the permanent magnet rotor, there are water-long magnets with opposite magnetic poles to form an array of adjacent arrays. Baker Array 8 έ> March 1987 Helbach Array ordering composition; the same electromagnetic stator array composition, the coil array is also arranged in the opposite direction of the magnetic pole direction, or can produce Haier Baker The array is arranged in a Helbach Array mode. In addition, the design of the engine is based on the electromagnetic force to drive the fan blade to generate most of the thrust, so the traditional turbine section in the rear section of the burner can be omitted. However, in order to generate the thrust of the engine, a speed must be provided. The difference and the resulting fluid velocity difference can increase the speed and lift of the flying gear. Therefore, the engine design must still be equipped with a burner as a source of high-speed gas; and to increase the air before entering the burner. In order to enhance the combustion efficiency, the compressor is also introduced into the design, and in order to reduce the weight limit, a higher compression ratio is achieved, and the entire compressor = a system different from the conventional design; the moving blade and the low pressure compressor Segment, and the high pressure ^ is driven, λ too female bucket + η, η & / door wheel segment β will be the two sections of the compressor section, in order to achieve a suitable compression ratio, the compression of the double rotor blade Fresh (4) ^ The design of the shoe is changed to the right, and the 'synchronous stator, spine and j-column design. (4) Combining the partially bypassed row of blades, the newly formed 1 and can rotate the known compressor to define the compressor rotor blade group blade group, and at the same time, it is known that the rotation of the replacement page ▲ is reversed on March 4, 101, which is somewhat similar to Xi Knowing that pr〇p-fanl^^~J^~~~ [6], for a fluid flowing through the compressor, is equivalent to withstand a faster compressor to do work, thereby increasing its internal hemorrhoids In the case of combustion, now, or both can be driven by the same rotating shaft, at this time there is a reduction gear, 纟 [7] to facilitate the coordination of different speeds. [Embodiment] Please refer to the first schematic diagram. The present invention provides a flying propeller propulsion single-axis bow engine. This figure is a half-section diagram of the engine. The engine is composed of an engine casing 10, and the engine casing 10 is relatively In the schematic diagram of the d engine brake surface, a ring-shaped electromagnetic stator 22 and a fan blade u are disposed on the blade 11 and an annular blade permanent magnet rotor 21 is attached. The blade 11 and the blade structure 12 are fixed to the blade rotor. The shaft 13 is provided with an intake guide cone 14 in front of the rotor shaft 13, and a reduction gear set 35' is disposed behind the blade rotor shaft 13 so that the blade rotor shaft 13 can be extended into a single shaft 'I carries the bearing 15 above the rotor shaft, 16; the blade rotor shaft 13 is provided with a compression section driving permanent magnet rotor 19, and the compressor structure π and the compressor rotor blade group 18' compressor rotor blade group 18 are staggered with respect to the blade rotor blade group 23, and the fan The blade rotor blade group 23 is fixed to the rotary airflow bypass structure 24, and the rotary airflow bypass, the structure 24 and the stationary airflow bypass structure 30 at the rear thereof form a complete bypass structure. Closed gap 31, fixed airflow The through structure 3 is equipped with a compressed air bypass passage valve 36, a compressor variable stator guide M429654, the 101st March g plate drive mechanism 37, and the compressor variable stator replacement page structure 24 is provided with a fan blade extension at the forefront. 25, the extended bypass blade 11 and the blade structure 12 are combined to be a bypass passage, the passage extends backward to the passage=space and enters the combustion section 27, and has an outlet; =: is the end; the combustion section 27 is combined with the outlet Variable Exhaust Guide = Upper Brass 29 is attached to the bearing 16 and is located in the blade rotor shaft 13 The support frame 26 is fixed to the compression section to drive the ring-shaped electromagnetic setting 'In addition to the fixed airflow bypass structure 3〇 The support frame $ parallel seat (four) is set on the machine & 1 (), the mosquito material pass structure plus the solid / Bu flow guide 33, and the fan blade 1 rotary airflow bypass structure 24, ^ type airflow The through structure 30, the outer flow guiding piece 33, and the support frame 32 form a secondary airflow bypass path. In the operation of the thrust generating program, the engine power generation A is originally an external power source, such as a fuel cell, a lithium battery, etc., when the power is generated, the rectification is modulated, and a part of the power is transmitted to the device via the cable. The annular electromagnetic stator 22 in the machine 1() generates a magnetic force to rotate the annular blade permanent magnet rotor 21 and the blade π of the device at the blade end, and the distribution power of a portion 73 passes through the support frame 33 and the passage. The power transmission passage 34 of the inner support frame 26 is corrected to replace the page force transmission official road 34, and is transmitted to the pressure (four) annular electromagnetic force rotary compressor annular permanent magnet rotor 19. #扇叶n转磁弓1Air flow ship enters the casing 10 through the intake guide cone 14 (when it is, it is shunted by the airflow bypass structure 24 and 30, at this time the blade 11 rotates = the fan blade extends The segment 25 rotates to draw the split main flooding path into the compression section, and is rotated by the compressor rotor blade group 18 = - the sub-blade group 23 to work on the main bypass air flow, driven by the rotor blade group 18 From the compression section annular permanent magnet rotor 19, the fan (four) sub-blade group 23 is the interlocking fan blade extension 25 and: U ' at this time with respect to the blade rotor blade group 23, the compressor rotor pen, the group 18 will Relative to the rotational speed, it is necessary to use a reduction gear set 3 to say that the different rotational speeds on the rotor shaft 13 are compressed in order to achieve a predetermined compression ratio with less adjustment, and the compression group 18 is designed. The direction of rotation of the blade rotor blade group 23 is set to counter-rotating, which can increase the relative rotational speed in the finite compressor rotor stage; at this time, the main airflow passes through the compressed airflow bypass passage, and 36 is compressed. Variable stator guide drive mechanism 37, compressor variable = sub 38, compressor The pressurization and adjustment of the sub-blade group 18, secondly, the enthaipy value of the gas before entering the burner 27, and then the fuel is directly injected into the burner 27 and the compressed main gas stream is mixed, and the ignition combustion generates heat energy. The outlet variable exhaust guide 28 exhausts the accelerating gas to provide the speed required by the engine. The required speed is generated while the blade turns to work on the main airflow' to produce a difference in airflow mass flow, both M429654 L^1 _ $ K-day correction replaces the thrust required by the page engine, while the bearing 15, the rotor shaft 13, the blade η and the blade structure 12 are radial and shaft = the blade and the compression section drives the ring-shaped permanent magnet rotor 19 and the contraction section The driving annular stator 20 can also be regarded as an electromagnetic bearing when the bow is in operation, and the fan-rotor shaft is driven by the circular contraction to drive the annular electromagnetic stator 2 to ensure the same blade water-magnetic rotor 21 and the blade-shaped annular electromagnetic stator 22 ^ The leaf U has the same electromagnetic bearing function. It is also determined by the actual flow field calculation for the blade size, number, and wing profile type of the blade 11 of Fig. 1 for the compressor rotor blade group = blade rotor blade 23 size, number of stages, number of single-stage blades疋 The same situation, the rotor structure in the overall compressor, the blade 2 position 'blade angle wing profile type, etc., also calculate the possibility of changing the position according to the actual flow field. For the compressed air flow bypass change 6, compression The variable stator guide driving mechanism 37 and the compressor can be used to design the machine secondary number, the number of single (four) pieces, and the wing profile thereof, and the compressor rotor group ^ 18 is divided into two groups, the front-group is the pair of rotor blades, and the other group is tuned by the same coaxial speed and relative compressor: 'The number of stages and single-stage blades will be more than that of the former-to-transfer group. The number of .. used in the case of the reverse compression method, the following: :: loss and low momentum boundary layer, can also be expected =::: face, such as the use of aspiration blade design [8]. Combustion 13 M429654 HU OU 4曰 Correction Replacement Page The fuel nozzle assembly with a suitable design can effectively burn hydrogen fuel and convert latent heat. Please refer to the second schematic diagram. The present invention provides a flying propulsion twin-shaft engine. The figure is a half-section diagram of the engine. The engine is composed of an engine casing 10, which is opposite to the center of the engine profile. The wire 41 is provided with an annular electromagnetic stator 22 and a fan blade 11 in the center of the center, and an annular blade permanent magnet rotor 21 is attached to the blade 11, and the blade 11 and the blade structure 12 are fixed to the blade rotor shaft. 13. The rotor shaft 13 is provided with an intake guide cone 14 in front of it, and the bearing 15 , 16 , 17 , 18 is carried above the fan rotor shaft 13 . The bearing 15 receives the axial force and the radial force generated by the operation of the blade 11 , and the bearing 16 17 supports the compressor rotor shaft 23, and the compressor structure 24 and the compressor rotor blade group 25, the compressor rotor blade group 25 is staggered with respect to the blade rotor blade group 26, and the blade rotor blade group 26 is connected to the rotation. On the airflow bypass structure 27, the rotary airflow bypass structure 27 is provided with a blade extension 37 at the foremost side, and the rotary airflow bypass structure 27 and the rear fixed airflow bypass structure 32 form a complete bypass structure, two There is an airtight gap between the 33 The fixed airflow bypass structure 32 is provided with a compressed air bypass passage valve 38, a compressor variable stator guide drive mechanism 39 and a compressor variable stator guide 40; the extension 37 has the blade 11 and the blade structure. 12 combined together with a rotary airflow bypass structure 27, a stationary airflow bypass structure 32, a compressor rotor blade group 25, a blade rotor blade group 26 and a compressor structure 24, a compressed air bypass bypass valve 38, compression The variable stator guide 14 is called a daily correction replacement page drive mechanism 39 and a compressor variable stator guide plate - forming a main airflow bypass passage 'the passage extends rearward to the passage inner support frame 28, and the gas diffusion space enters the combustion section 29 And having the variable outlet and outlet exhaust guide 30 as the end; the combustion section 29 in combination with the variable outlet exhaust guide 30 is supported by the end structure 31 on the bearing 18 and seated on the blade rotor shaft 13; The support bracket 28 in the passage is fixed to the compression section to drive the annular electromagnetic stator 20, and the compression rotor shaft 23 is provided with a compression section annular permanent magnet rotor 19. The fixed airflow bypass structure 32 itself is supported by the support frame 35 and seated on the casing 1 and is provided with an outer flow guiding piece 34, and the fan blade 11, the rotary airflow bypass structure 27, and the fixed type The airflow bypass structure 32, the outer flow guiding piece 34, and the support frame 35 collectively constitute a secondary airflow bypass passage. In the operation of the thrust generating program, after the generated power is rectified and modulated, a part of the power is transmitted to the annular electromagnetic stator 22 of the device 10 via the cable, and a magnetic force is generated to rotate the device in the blade. The annular blade permanent magnet rotor 21 and the blade 11 at the blade end, and a part of the distributed electric power is transmitted to the compression section to drive the annular electromagnetic stator 2 via the power transmission line 36 in the support frame 35 and the support bracket 28 in the passage. Oh, a magnetic force is generated to rotate the compression section to drive the annular permanent magnet rotor 19. When the blade U rotates, the intake air fluid enters the casing 1 through the intake guide cone 14, and the air is split by the airflow bypass structure 27, 32. At this time, the blade turns to drive the blade to extend. The segment 37 rotates, and the main flow path gas that is branched out is sucked into the compression section, and is replaced by the compressor rotor blade group 25, the year of March, and the leaf rotor segment 26 is rotated to the main greedy rotor. The driving of the blade group 25 is driven by the _ segment driving the annular permanent magnet and the blade rotor blade *26 is the interlocking fan blade extending blade, U ' at this time relative to the blade rotor blade group 26, compressing the "slice group 25 will The higher the rotational speed, and the rotation direction of the rotor group 25 and the blade rotor blade group 26 are designed to be reversed, and the rotation speed can be increased in the limited regenerator rotor stage to achieve a higher shrink ratio to increase Enthalpy before entering the burner 29, the main airflow passes through the compressed air bypass passage valve 38, the compressor is variable, the sub-guide drive mechanism 39 and the compressor variable stator guide 4〇 and the rotor Blade group 25 times to boost and regulate flow, then enter The burner 29 directly injects fuel and mixes the compressed main gas stream, and the ignition combustion generates heat energy, and the variable gas is discharged through the variable outlet exhaust vane 30 to provide the required speed of the engine. The required speed is generated simultaneously, the blade u Rotating work on the main airflow produces a difference in airflow mass flow, which provides the thrust required by the engine. At this point the bearing 15' 18 supports and withstands the radial and axial forces of the blade 11, the rotor shaft 13 of the blade, bearing 16, 17 and subject to the radial and axial forces of the compressor rotor shaft 23' while the compression section drives the annular permanent magnet rotor 19 and the annular electromagnetic stator 20 can also be regarded as an electromagnetic bearing when the engine is running, to protect the peak The compressor rotor shaft 23 drives the gap of the annular electromagnetic stator 20 to the retractor section, and the same blade rotor permanent magnet rotor 21 and the blade lobe electromagnetic stator 22 also have the same electromagnetic bearing effect on the blade 11. On March 4th, the correction replacement page is determined by the actual flow field calculation for the number of blades of the blade 11 of FIG. 2, the wing profile type, etc., for the number of stages of the rotor blade group 25, the blade rotor blade group 26, and the single-stage blade. The same number of conditions The rotor structure, the relative position of the blade, the blade angle profile, etc. of the overall compressor are also determined according to the actual flow field calculation, and the possibility of changing positions is retained. For the compressed air bypass passage valve 38, the compressor can be Variable stator stator drive mechanism 39, compressor variable stator 40, with compressor rotor blade group 25 to design its mechanism, number of stages, single-stage number of blades, and its wing profile, while compressor rotor blade group 25 points For the two groups, the former group is turned to the fan blade rotor group 26, and the other group is rotated coaxially with the rotational speed variable stator 40. The number of stages and single-stage blades will be more than the previous pair of groups. The number of relatively high Mach number losses and low momentum boundary layers produced by the counter-rotation compression mode is also expected to be mitigated by other means, such as the blade design using aspiration [8]. The burner uses a properly designed nozzle assembly that effectively burns fuel and converts latent heat. Please refer to the third non-intentional *this is a partial exploded view of the magnet array of the fan blade bad electromagnetic stator 22 and the annular blade permanent magnet rotor 21. The array arrangement used in this creation is pre-set in three types, as shown in A, B, and C in the figure; the driving blade annular electromagnetic stator 22 in Fig. A is a combination of a ring-shaped electromagnet, and the direction of the arrow represents the electromagnet. The direction of the generated magnetic pole, the direction of the current is the vertical flow into the paper surface or the flow out of the paper. One of the electromagnetic coils supplies a circulating direction current to generate a forward magnetic field, and the adjacent electromagnetic year is corrected by the March 曰 correction: the surname ^^^the reverse motor generates a reverse magnetic field, and the two electromagnetic coils are combined with the two So repeatedly arranged into a ring-shaped electromagnetic stator, and combined in the casing 10; 璟 荩咎 荩咎, 疋卞 疋卞 疋卞 之 之 : : : : : : : : : : : : : : : : : : : : : : : : : : The money 'is combined with the components - the slewing is arranged, the rotor - (four)-like riding permanent magnet rotor 21 is combined with the member in the fan pattern B designed to drive the fan-ring annular electromagnetic stator 22 and Figure 8 phase =, different in The permanent arrangement method of riding the permanent magnet rotor 21: the polarity direction of the long-lasting magnet is present in a phase difference of (10) degrees, and the arrangement method is a sea (four) gram array (Halbach Array) arrangement, and the array features an array-shaped axial distribution. In order to suppress the wire, the magnetic field is strong and the magnetic field is periodically added. The average magnetic field strength per magnet is extremely high, which is beneficial to the magnetic propulsion. Figure c «· Juice is further driven by the fan blade ring Electromagnetic stator 22 is also changed to Haierbeck array Halbach Array mode. When A, B, and C are in operation, after the power supply modulation control of the driving blade annular electromagnetic stator 22, the blade permanent magnet rotor 21 will be rotated relative to the driving blade electromagnetic stator & γ further drives the fan blade 11 to cause a change in the airflow mass flow. For the construction of the blade permanent magnet rotor 21 and the blade 11, the material of the blade is considered in consideration of the flight demand of the flying carrier and the simple distribution of the magnetic field. In addition to single crystal metal, composite materials can be used as the manufacturing material. Please refer to the fourth schematic diagram, which is a partial displacement of the magnet array of the compression section driving the annular permanent magnet rotor 19 and the compression section driving the annular electromagnetic stator 2〇 101 years 03 The replacement page is modified on the day of the month. The array arrangement used in this creation is pre-configured in three types, as shown in A and C in the figure; the compression section in Figure A drives the annular electromagnetic stator 20 as a combination of a %-shaped electromagnet. The direction of the arrow represents the direction of the magnetic pole generated by the electromagnet. The direction of the current is perpendicular to the flow path or the flow out of the paper. One of the electromagnetic coils supplies a circulating direction current to generate a forward magnetic field, and the adjacent electromagnetic coil supplies a reverse current. A reverse magnetic field is generated, and the two electromagnetic coils are combined by members, so that they are repeatedly arranged into an annular electromagnetic stator and fixed in the support frame in the passage; the compression section drives the annular X-magnetic rotor 19 in the opposite direction of the two magnetic poles. The permanent magnets are arranged in a ring-shaped rotor and are fixed to the blade rotor shaft 13 (Fig. 1 to Fig. 4) or the compressor rotor shaft 23 (Figs. 2 and 4). Figure B is designed to drive the annular electromagnetic stator 2 () on the compression section as in Figure a, except that the compression section drives the permanent magnet arrangement of the annular permanent magnet rotor 19, which is arranged in a phase difference of 9 degrees. %, the row method is the Halbach Array method, the characteristics of the array (4) - the magnetic field is periodically distributed as the phase; the result of the Xiao results in the magnetic field strength is extremely small - the magnetic field periodic distribution of the other side is the addition The result 'causes the average magnetic field strength per unit of money is extremely high, which is conducive to magnetic propulsion. The design of Figure C is even more advanced—stepping the compression section drive ring-shaped electromagnet 2〇 into a Halbach Array mode. The rotor shaft material and the compression section drive the ring-shaped permanent magnet rotor 19 between the 2° gap fan blade ring: the gap between the sub-Jade-like blade-blade permanent magnet rotor 21 and the M429654 ιοί年03月1日 Revision replacement page The specifications of the power supply system depend on the speed and the actual output power. [Simplified illustration] Figure 1 is a cross-sectional view of the upper half of the single-shaft electric engine with the reduction gear without turbine. The second picture is the creation. The cross-sectional view of the upper half of the dual-shaft electric engine of the No. Section 3 is the partial decomposition of the magnet array of the driving fan. The electromagnetic stator and the blade permanent magnet rotor magnetic rotor and the compression section drive electric The figure is a partial exploded view of the magnet array of the compression segment driven permanent magnet stator. The above 4 figures are not drawn on the scale scale. [Main component symbol description] [This creation] Figure 1 Figure 10 Machine fan fan U fan blade structure 13 blade rotor shaft Η intake guide cone 15 bearing 16 bearing 20 M429654 HH year March #日修正 replacement page 17 compressor structure 18 compressor rotor blade group 19 compression section drive permanent magnet rotor 20 compression section drive electromagnetic stator 21 Leaf permanent magnet rotor 22 drive blade electromagnetic stator 23 blade rotor blade group 24 rotary airflow bypass structure 25 blade extension 26 passage inner support frame 27 combustion section 28 outlet variable exhaust guide 29 end end structure 30 fixed Airflow bypass structure 31 airtight gap 32 support frame 33 outer flow guide 34 passage inner support power transmission line 35 reduction gear set 36 compressed air bypass passage valve 37 compressor variable stator guide drive mechanism 38 compressor Variable stator guide 39 engine cross-section schematic center line 21 M429654 101 March 2011 correction replacement page 2 Figure 10 machine 11 blade 12 blade structure 13 blade rotor shaft 14 inlet guide cone 15 bearing 16 bearing 17 bearing 18 Bearing 19 compression section drive permanent magnet rotor 20 compression section drive electromagnetic stator 21 blade permanent magnet rotor 22 drive blade electromagnetic stator 23 blade rotor blade group 24 compressor structure 25 compressor rotor blade group 26 blade rotor blade group 27 rotation Airflow bypass structure 28 passage inner support frame 29 combustion section 30 outlet variable exhaust guide 31 tail end structure 22 M429654 101 March 2011 correction replacement page 32 fixed airflow bypass structure 33 airtight seam 34 support frame 35 support frame 36 passage inner support frame power transmission line 37 blade extension 38 compressed air bypass passage valve 39 compressor variable stator guide drive mechanism 40 compressor variable stator guide 41 engine cross-sectional schematic center Line 3, 4 Figure 11 Blade 12 Compression Segment Drive Permanent Magnet Rotor 20 Compression Section Drive Electromagnetic Stator 21 Blade Permanent Magnet Rotor 22 Drive Blade Electromagnetic Stator 14: Current Flow in Paper Direction Θ: Current Flows in Paper Direction DD[= C> Electromagnetic stator pole direction 23 M429654 ._ 101 March 2011 correction replacement page ^ Permanent magnet rotor pole direction electromagnetic stator coil and conduction current direction. VI. Patent scope: 1. An aircraft engine, its structure is horizontal On the back, there is an electric fan blade module combined with a compressor module, combined with a combustion-exhaust module; the structure of the electric fan blade module, the outermost one is a casing, and the inner device is a ring-shaped electromagnet. Sub-array, the electromagnetic stator array generates a magnetic field type, which may be adjacent to the positive and negative magnetic poles, or form a Heilbeek array magnetic field, and its annular electromagnet stator array In the radial direction of the annular array, there is an annular permanent magnet rotor array in the axial direction, the permanent magnet rotor array and the electromagnet stator array are separated by a gap, and the permanent magnet rotor array is arranged in an array manner, which may be The positive and negative magnetic poles are combined or combined in a Herbeck array, and the annular permanent magnet rotor array is combined with a blade group, and the blade group is combined with a rotating airflow bypass structure. The rotary airflow bypass structure is provided with a fan blade arranged in front and rear. The rotor blade group is divided into several turns, that is, several compression stages, and the rotary t air flow bypass structure is combined in one fan. On the leaf extension, the blade extension is combined on a blade structure, and the blade structure is combined on a blade rotor shaft; and the compressor module is constructed, which includes the array compressor rotor blade# Group, compressor structure, compressed air bypass bypass valve, fixed airflow bypass structure, array compressor variable stator guide, compressor 24 M429654 101 March 2011 Correction Replacement Page Reference 1. D r. Reinhard FaaB, "CRYO-PLANE Flugzeuge mit Wasserstoffantrieb", Airbus Deutschland GmbH, 2001 ppl4~15; ppl8~19, 26 2. http://en.wikipedia.org/wiki/Hydrogen-powered aircra ft. Airbus Deutschland GmbH "Liquid Hydrogen Fuelled Aircraft - CRYOPLANE Final Technical Report", 2003 pp 30-36 4. Dennis J. Eiehenburg, Christopher A. Gailo, Paul A. Solano, William K Thompson, Daniel R Vrnak, “Development of a 32 Inch Diameter Levitated Ducted Fan Conceptual Design NASA-TM-2006-214481, December 2006. 5. http://en.wikipedia.org/wiki/Halbach_array 6. http://en.wikipedia.org/wiki/Propfan 7 http://en.wikipedia.org/wiki/Geared_turbofan 8. David V. Parker, “Design and Operation of a counter-Rotating Aspirated Compressor Blowdown Test Facility '' Master Thesis of Aeronautics and Astronautics Science, June 2005, ppl9 28

Claims (1)

M429654 ._ 101年03月日修正替換頁 ^ 永磁轉子磁極方向 電磁定子線圈及導通電流方向 . 六、申請專利範圍: 1、一種飛行器用發動機,其構造為水平方向上由前往後 有一電動扇葉模組結合一壓縮器模組,再結合一燃燒 - 排氣模組;電動扇葉模組之構造,最外為一機匣外罩, 於内裝置一環狀電磁鐵定子陣列,該電磁定子陣列產 . 生磁場型態,可為正反磁極相臨,或形成海爾貝克陣 列磁場之型態,又其環狀電磁鐵定子陣列,在該環狀 陣列之徑向上,往軸心方向有一環狀永久磁鐵轉子陣 列,此永久磁鐵轉子陣列和電磁鐵定子陣列隔開一間 隙,而該永久磁鐵轉子陣列其陣列排列組合方式,可 為正反磁極相臨結合,或以海爾貝克陣列方式組合而 成,又此環狀永久磁鐵轉子陣列為裝置結合於一扇葉 組上,而扇葉組則又結合在一轉動式氣流旁通結構上, 該轉動式氣流旁通結構,其内裝有前後間隔排列之扇葉 . 轉子葉片群,且分為數圈,即數個壓縮級,又該轉動式 t 氣流旁通結構為結合在一扇葉延伸段上,而扇葉延伸段 則結合在一扇葉結構上,而扇葉結構則結合在一扇葉轉 子軸上;此外壓縮器模組之構造,其包含了數組壓縮 器轉子葉#群、壓縮器結構、壓縮氣流旁通通路閥、固 定式氣流旁通結構、數組壓縮器可變定子導片、壓縮器 24 i iM429654 101年03月1\日修正替換頁 可變定子導片驅動機構;壓縮器轉子葉片群可分為兩群, 除了和扇葉轉子群交錯排列外,也和裝置於固定式氣流 旁通結構内之壓縮器可變定子導片交錯排列,而壓縮器 轉子葉片其分為數圈,即數個壓縮級;燃燒排氣模組之 結構設計,其出口排氣導片前方裝有一燃燒段,該段以 更有效率之構造來轉換出氫燃料之内能,但仍保留使用 石化燃料、或以氫及石化燃料混合燃燒的能力;燃燒段 燃燒燃料後,出口排氣導片則加速燃燒段排出之熱流, ' 提供發動機所需之速度。 -2、如請求項1所述之飛行器用發動機,其電動扇葉模組 所含之扇葉轉子葉片群和壓縮器模組所含之壓縮器轉 子葉片群,兩者轉動方向設定為相反轉向。 3、 如請求項1之所述之飛行器用發動機,其壓縮器模組 所含之壓縮器轉子葉片群,為裝置固定在壓縮器結構 上,而該壓縮器結構則結合固定在一壓縮器轉軸上。 4、 如請求項3所述之飛行器用發動機,其壓縮器轉軸前 有一減速齒輪組,減速齒輪組前方則結合扇葉轉子 轴,令兩者為同一軸心,並以減速齒輪組協調兩轴不 同之轉速;此外,該壓縮器轉轴也可經由軸承,來支 撐在飛行器用發動機的電動扇葉模組中所包含之扇葉 轉子軸上,成為雙轴設計。 25 M429654 ._ 101年03月日修正替換頁 5、 如請求項1所述之飛行器用發動機,其壓縮器模組中 所含之壓縮器可變定子導片,該導片和一部份壓縮器轉子 . 葉片群交錯排列。 6、 如請求項4所述飛行器用發動機,該減速齒輪組後方 可結合一轉軸,該軸即扇葉轉子軸之再延伸成壓縮器 轉轴,並延伸至引擎末端做一尾端結構,其上有一轴 . 承來支撐飛行器用發動機燃燒排氣模組之出口排氣導 片。 —7、如請求項1所述之飛行器用發動機,其燃燒排氣模組 ~ 之燃燒段,該燃燒段前方有一内通路及擴散空間結 ' 構,其内通路和壓縮器模組之固定式氣流旁通結構共 同形成主要氣流旁通通路,即氣流壓縮燃燒通路。 8、如請求項1所述之飛行器用發動機,其電動扇葉模組 之轉動式氣流旁通結構,和壓縮器模組中的固定式氣 流旁通結構之間,有一氣密間隙,使得轉動式氣流旁通 結構能相對於固定式氣流旁通結構相對轉動。 ' 9、如請求項3所述之飛行器用發動機,其壓縮器模組所 ' 含之固定式氣流旁通結構,和電動扇葉模組所含之機 亀 匣外罩之間,有一組支撐架支撐兩者;在發動機軸向 ' 上,在支撐架組往前方向,有一組外流導片,其導片 兩端分別結合在機匣外罩和固定式氣流旁通結構,可 做為主要旁通氣流之外流導引裝置,也兼具支撐用途。 26 10、如請灰τ 101年03月&日修正替換頁 所含之^員1所述之飛行器用發動機,其電動扇葉模組 另包含史。機匣外罩轉動式氣流旁通結構,以及 含之固…支,架組和外流導片組,加上壓縮器模組所 通路。&式乳流旁通結構’其共同形成次要氣流旁通 11、 如請來項 為電磁+ 所述之飛行器用發動機,該壓縮器模組可 勹电破力驅動轉動。 12、 如請求項 壓縮器轉轴,料之飛行器用發動機’其壓縮器模組之 轉子,复、轉軸上附裝有一環圈之壓縮段驅動永磁 海爾磁轉子陣列排法為正反磁極相臨結合,或以 海爾貝克陣列方式組合而成。 U、如請求項19此〜 永磁轉子0坡罢乂之飛行器用發動機,其壓縮段驅動 所含之愚始⑺ 縮轉轴上’並被壓縮器模組中 生之磁埸疋于所驅動,該驅動電磁定子產 生之磁琢極性,可為正反 極陣列的排列方式。 从成海爾貝克磁 14、如請求項13所述 電磁定子,是經動機,其壓縮段驅動 管路,來供應盆番士牙架内導通路内支撐架電力傳送 成-環形,並和此賴動電磁定子 並和通路内支撐架電力傳 構,且和簡魏段切料有―_。疋成、、。 27M429654 ._ 101 March 2011 Correction replacement page ^ Permanent magnet rotor pole direction electromagnetic stator coil and conduction current direction. VI. Patent application scope: 1. An aircraft engine, which is constructed in the horizontal direction from the back to an electric fan The leaf module is combined with a compressor module, and combined with a combustion-exhaust module; the structure of the electric fan blade module, the outermost is a casing, and the inner device is an annular electromagnet stator array, the electromagnetic stator array Production. The magnetic field type can be adjacent to the positive and negative magnetic poles, or form the Haierbeek array magnetic field, and its annular electromagnet stator array has a ring shape in the radial direction of the annular array. a permanent magnet rotor array, the permanent magnet rotor array and the electromagnet stator array are separated by a gap, and the permanent magnet rotor array is arranged in an array, which may be a combination of positive and negative magnetic poles or a combination of Herbeck arrays. The annular permanent magnet rotor array is coupled to a blade group, and the blade group is combined with a rotating airflow bypass structure. The rotary airflow bypass structure is provided with a fan blade arranged in front and rear. The rotor blade group is divided into several turns, that is, several compression stages, and the rotary t airflow bypass structure is combined with a blade extension. On the segment, the blade extension is combined with a blade structure, and the blade structure is combined with a blade rotor shaft; and the compressor module is constructed, which includes the array compressor rotor blade group, Compressor structure, compressed air bypass bypass valve, fixed airflow bypass structure, array compressor variable stator guide, compressor 24 i iM429654 101 March 1\day correction replacement page variable stator guide drive mechanism; The compressor rotor blade group can be divided into two groups, in addition to being staggered with the fan rotor group, and also interlaced with the compressor variable stator guides arranged in the fixed airflow bypass structure, and the compressor rotor blades are divided. a number of cycles, that is, several compression stages; the structure of the combustion exhaust module is designed with a combustion section in front of the outlet exhaust guide, which converts the internal energy of the hydrogen fuel in a more efficient configuration, but still retains Make The ability to burn with fossil fuels or with hydrogen and fossil fuels; after burning the fuel in the combustion section, the outlet exhaust guides accelerate the heat flow from the combustion section, 'providing the speed required for the engine. -2. The aircraft engine according to claim 1, wherein the fan blade group included in the electric fan blade module and the compressor rotor blade group included in the compressor module are set to be oppositely turned. . 3. The aircraft engine according to claim 1, wherein the compressor rotor blade group included in the compressor module is fixed to the compressor structure, and the compressor structure is fixedly coupled to a compressor shaft. on. 4. The aircraft engine of claim 3, which has a reduction gear set in front of the compressor shaft, and a fan rotor shaft in front of the reduction gear set, so that the two are the same axis, and the two axes are coordinated by the reduction gear set. Different speeds; in addition, the compressor shaft can also be supported on the blade rotor shaft included in the electric fan blade module of the aircraft engine via a bearing, and becomes a two-axis design. 25 M429654 ._March 101 Correction Replacement Page 5, the aircraft engine of claim 1, the compressor variable stator guide included in the compressor module, the guide piece and a part of the compression Rotor. The blade groups are staggered. 6. The aircraft engine of claim 4, wherein the reduction gear set is coupled to a rotating shaft, and the shaft, that is, the fan rotor shaft, is further extended to a compressor shaft and extends to the end of the engine to form a tail end structure. There is a shaft on it. It supports the exit exhaust guide of the exhaust module of the aircraft engine. The aircraft engine of claim 1, which burns the combustion section of the exhaust module, has an inner passage and a diffusion space in front of the combustion section, and the inner passage and the compressor module are fixed. The airflow bypass structures together form a primary airflow bypass passage, i.e., a gas flow compression combustion passage. 8. The aircraft engine of claim 1, wherein the rotary airflow bypass structure of the electric fan blade module and the fixed airflow bypass structure in the compressor module have an airtight gap for rotation The airflow bypass structure is relatively rotatable relative to the stationary airflow bypass structure. 9. The aircraft engine of claim 3, the fixed airflow bypass structure included in the compressor module, and the casing cover included in the electric fan blade module, and a set of support frames Supporting both; in the engine axial direction, in the forward direction of the support frame group, there is a set of external flow guiding pieces, and the two ends of the guiding piece are respectively combined with the casing cover and the fixed airflow bypass structure, which can be used as the main bypass The airflow outflow guiding device also serves as a support. 26 10. If you want to use the engine of the aircraft described in §1, the motor blade engine included in the MG 101 101 March & The casing has a rotating airflow bypass structure, and includes a solid support, a frame set and an outer flow guide set, and a passage of the compressor module. & milk flow bypass structure' which together form a secondary airflow bypass. 11. For an aircraft engine of the electromagnetic type described above, the compressor module can be driven to rotate by electric force. 12. If the compressor of the compressor is requested, the rotor of the aircraft is used as the rotor of the compressor module, and the compression section of the ring and the rotating shaft is mounted on the rotating shaft to drive the permanent magnet Haier magnetic rotor array as the positive and negative magnetic pole phase. It is combined or combined in a Halber Beck array. U, as in claim 19, the permanent magnet rotor 0 slams the aircraft engine, the compression section of the drive contains the ignorance (7) on the retracting shaft 'and is driven by the magnetism generated in the compressor module The magnetic pole polarity generated by the driving electromagnetic stator can be an arrangement of the positive and negative pole arrays. From the Haier Becker magnetic 14, the electromagnetic stator described in claim 13 is a motive, and its compression section drives the pipeline to supply the power transmission into the ring in the inner guide of the basin of the squash, and The electromagnetic stator is electrically coupled to the support frame in the passage, and the cut piece has a __. Yu Cheng,,. 27
TW100214612U 2011-08-05 2011-08-05 Electrical power driven ducted fan engine TWM429654U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100214612U TWM429654U (en) 2011-08-05 2011-08-05 Electrical power driven ducted fan engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100214612U TWM429654U (en) 2011-08-05 2011-08-05 Electrical power driven ducted fan engine

Publications (1)

Publication Number Publication Date
TWM429654U true TWM429654U (en) 2012-05-21

Family

ID=46550795

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100214612U TWM429654U (en) 2011-08-05 2011-08-05 Electrical power driven ducted fan engine

Country Status (1)

Country Link
TW (1) TWM429654U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105366060A (en) * 2015-12-03 2016-03-02 北京航空航天大学 Lightweight high efficiency low noise duct type four-level electric fan propeller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105366060A (en) * 2015-12-03 2016-03-02 北京航空航天大学 Lightweight high efficiency low noise duct type four-level electric fan propeller

Similar Documents

Publication Publication Date Title
CN106948969B (en) Mixed propulsion system
US11312502B2 (en) Gas-electric propulsion system for an aircraft
JP6542812B2 (en) Hybrid propulsion system.
US10967984B2 (en) Hybrid aircraft
EP3569498B1 (en) Hybrid aircraft propulsion system
US20160257416A1 (en) Propulsion system
US20200354068A1 (en) Hybrid electric aircraft propulsion system
JP2006205755A (en) Propulsion system for aircraft
CN104595032B (en) A kind of multi-fan super large bypass ratio turbine push system
WO2008064881A1 (en) Propulsion device for operation with a plurality of fuels for an aircraft
US9181900B1 (en) Fully advanced superconducting segmented turbo-electric rotormachine (fasster)
WO2018203941A2 (en) Turbocharged gas turbine engine with electric power generation for small aircraft electric propulsion
US11125186B2 (en) Aircraft comprising two contra-rotating fans to the rear of the fuselage, with spacing of the blades of the downstream fan
US20100295310A1 (en) Non-fuel combusting stand alone air turbine engine
EP3034395A1 (en) Aircraft boundary layer removal with auxilliary power unit suction
TWM429654U (en) Electrical power driven ducted fan engine
TWM446824U (en) Hybrid-powered ducted fan engine
EP4035996A1 (en) Aircraft propulsion system and methods of feathering
Seidel et al. NASA aeropropulsion research: looking forward
RU2782719C2 (en) Propulsion unit of aircraft, and aircraft driven by such a propulsion unit built in rear part of fuselage of aircraft
CN205605329U (en) Two anti - turbofan engine
CN117644979A (en) Double-motor hybrid aeroengine
EP3566952A1 (en) Distributed propulsion system
WO2023134865A1 (en) Hybrid aircraft propulsion
TWM451320U (en) Integrated electrical power and jet propulsion device for aero vehicle engine

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees