TWM423266U - Light source module and projection apparatus - Google Patents

Light source module and projection apparatus Download PDF

Info

Publication number
TWM423266U
TWM423266U TW100219208U TW100219208U TWM423266U TW M423266 U TWM423266 U TW M423266U TW 100219208 U TW100219208 U TW 100219208U TW 100219208 U TW100219208 U TW 100219208U TW M423266 U TWM423266 U TW M423266U
Authority
TW
Taiwan
Prior art keywords
color
light
light beam
wavelength conversion
source module
Prior art date
Application number
TW100219208U
Other languages
Chinese (zh)
Inventor
Chao-Shun Chen
Hsin-Hung Lin
Hung-Chih Chou
Original Assignee
Young Optics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Young Optics Inc filed Critical Young Optics Inc
Priority to TW100219208U priority Critical patent/TWM423266U/en
Publication of TWM423266U publication Critical patent/TWM423266U/en

Links

Landscapes

  • Projection Apparatus (AREA)

Abstract

A light source module includes a first light emitting element, a second light emitting element, a third light emitting element, a wavelength-converting element, and a light combining element. The first light emitting element is capable of emitting an exciting beam. The second light emitting element is capable of emitting a first color beam. The wavelength-converting element is disposed on transmission paths of the exciting beam and the first color beam, and includes a wavelength-converting area and a transmission area. The wavelength-converting element is capable of rotating. When the exciting beam irradiates on the wavelength-converting area, the exciting beam is converted into a second color beam. The first color beam is capable of passing through the transmission area. The third light emitting element is capable of emitting a third color beam. The light combining element is disposed on transmission paths of the first color beam, the second color beam, and the third color beam.

Description

M423266 五、新型說明: 【新型所屬之技術領域】 本創作是有關於一種光源模組與投影裝置,且特別 疋有關於一種可切換不同光源的光源模組與投影裝置。 【先前技術】 隨著環保意識的抬頭與顯示技術的進步,投影裝置 除了可採用高壓汞燈(ultra high pressure lamp, UHP lamp ) 作為光源外,近來更發展出以紅色、綠色及藍色發光二極 體(light emitting diode,LED)作為光源的投影裝置。 為了有效提升投影裝置的輸出亮度,部分習知技藝者 會於投影裝置内配置雙合光模組(dual light combination modules )、雙燈模組(dual lamps )或發光二極體陣列(led array)等光學模組,以透過增加光源個數的方法來達到亮 度提升的效果。然而,由於上述的光學模組並非配置於投 影裝置的光軸上,故會造成光斑的位移與影響收光角度, 從而使得投影裝置的整體亮度並不如理想中的高。 另一方面,亦有其他的習知技藝者藉由將激發光束照 射螢光粉(phosphor)來產生高亮度的光源,並以此種光 源作為投影裝置的照明光源,例如美國專利公開號 20090284148與20090262308。然而,利用上述方式所產生 的光源經常會有白點不純的問題,從而影響投影裝置的成 像品質。 θ M423266 【新型内容】 本創作提供一種%源模組,其能提供高亮度的 與rfj色純度的光源。 ’' 本創作提供一種投影裝置,其能提供高亮声盥古 純度的投影效果。 本創作的其他目的和優點可以從本創作 術特徵帽到進-步的了解。M423266 V. New description: [New technical field] This creation is about a light source module and projection device, and particularly relates to a light source module and projection device that can switch different light sources. [Prior Art] With the advancement of environmental awareness and the advancement of display technology, in addition to the use of ultra high pressure lamp (UHP lamp) as a light source, the projection device has recently developed red, green and blue light. A light emitting diode (LED) is used as a projection device for a light source. In order to effectively increase the output brightness of the projection device, some conventional artisans may configure a dual light combination module, a dual lamp module or a LED array in the projection device. The optical module is used to increase the brightness of the light source by increasing the number of light sources. However, since the optical module described above is not disposed on the optical axis of the projection device, the displacement of the spot and the angle of the received light are caused, so that the overall brightness of the projection device is not as high as desired. On the other hand, other conventional artisans generate a high-brightness light source by irradiating an excitation beam with a phosphor, and use such a light source as an illumination source of a projection device, for example, U.S. Patent Publication No. 20090284148 and 20090262308. However, the light source generated by the above method often has a problem of white spots being impure, thereby affecting the image quality of the projection apparatus. θ M423266 [New content] This creation provides a % source module that provides high brightness and rfj color purity. ’' This creation provides a projection device that provides a projection effect of high-pitched sound and purity. Other purposes and advantages of this creation can be learned from this creative feature cap to the next step.

為達上述之一或部份或全部目的或是其他目的,本 創作之一實施例提出一種光源模組。光源模組包括一第一 發光元件、一第二發光元件、一波長轉換元件、一第三發 光元件以及一合光元件。第一發光元件適於發出一激 束。第二發光元件適於發出一第一色光束。波長轉換元件 配置於激發光束與第一色光束的傳遞路徑上,且包括一波 長轉換區與一穿透區。波長轉換元件適於旋轉,其中當激 發光束照射到波長轉換區時,激發光束被轉換為一第二色 光束,且第一色光束適於穿透穿透區。第三發光元件適於 發出一第三色光束。合光元件配置於第一色光束、第二色 光束與第三色光束的傳遞路徑上。當激發光束被轉換為第 二色光束時,合光元件用以將第二色光束與第三色光束的 傳遞路徑合併^當第一色光束通過穿透區時,合光元件用 將第一色光束與第三色光束的傳遞路徑合併。 除此之外’本創作之一實施例還提出一種投影裝 置,其包括上述之光源模組、一投影鏡頭與一光閥。投影 鏡頭配置於上述之第一色光束與上述之該第二色光束與上 5 =之第一色光束經合併的傳遞路徑上。光閥配置於上述之 光源模組與投影鏡頭之間。 、基於上述’本辦之實_可朗下顺點或功效之 ^其-。在本創作之實_巾,由於波長轉換元件上設 有波長轉㈣與穿邮,故本實施例之光源模組能分別提 供局免度的第二色光束與高色純度的第—色光束供使用者 選擇,從而使得光源餘與投影裝置在細上更有彈性。 為讓本創作之上述特徵和優點能更明顯易懂,下文 特舉實施例,並配合所附圖式作詳細說明如下。 【實施方式】 下列各實施例的說明是參考附加的圖式,用以例示本 創作可用以貫施之特定實施例。本創作所提到的方向用 語,例如「上」、「下」、「前」、「後」、「左」、「右」 等’僅是參考附加圖式的方向。因此,使用的方向用語是 用來說明,而非用來限制本創作。 請參照圖1,本實施例的投影裝置100包括光源模組 110、光閥120以及投影鏡頭130。光源模組11〇包括發光 元件112a、發光元件112b、波長轉換元件114、發光元件 112c以及合光元件116。 在本實施例中’發光元件112a例如為藍光固態雷射 (blue solid-state laser )、紫外光雷射(Ultravi〇let laser )。 在其他實施例中,發光元件112a亦可為藍光發光二極體 (blue light emitting diode) ° 另夕卜,發光元件 112b、112c M423266 例如為發光二極體。然而,上述元件用以舉例說明,本發 明皆不以上述元件為限。 如圖1所示,發光元件112a適於發出激發光束Eex (excitation beam),其中激發光束如為雷射光束。另外, 發光兀件112a之激發光束Lex之光強度半高i(full width half-Maximmn,FWHM)例如為25奈米,且上述光強度半 焉免所對應的波長範圍例如為從450奈米到475奈米,惟 本創作不受限於此。另一方面,發光元件U2b適於發出色 光束L1。在本實施例中,色光束u例如為綠光,且色光 束L1例如是由綠色發光二極體所提供(即發光二極體 112b)。其中色光束L1之光強度半高寬所對應的波長範圍 例如為從497奈米到570奈米。 如圖1所示,波長轉換元件114配置於激發光束Lex 的傳遞路徑Pex與色光束L1的傳遞路徑pi上,且波長轉 換元件114包括波長轉換區U4a與穿透區114b。在本實 施例中’波長轉換元件114例如為輪盤(wheel disk),且 波長轉換區114a上塗布有螢光層(phosphor layer)(未緣 示)。在本實施例中,波長轉換區11如與穿透區U4b於 波長轉換元件114上的面積大小例如相同,惟本創作並不 受限於此。 承上述,波長轉換元件114適於旋轉,其中當激發光 束Lex照射到波長轉換區114a時,激發光束Lex會被轉 換為色光束L2 ’且色光束L2例如為綠光,其中本實施例 之色光束L2之光強度半高寬例如為1〇〇奈米,且色光束 7 U之光強度半高寬所對應的波長範圍例如為從490奈米到 590奈米。進一步而言,當激發光束^照射到波長轉換 區上所塗布的螢光層時,螢光粉粒子會被激發並釋放 出尚焭度的色光束L2,從而能使投影裝置10〇提供高亮度 投影效果。 除此之外,由上述之色光束L1與色光束L2之波長範 =的比較可知,在本實施例中,色光束L2之光強度半高 寬所對應的波絲®與色光束L1之光強度半高寬所對應 的波長範圍至少部分重疊。值得一提的是,雖然本實施例 之色光束L2與色光束L1皆為綠光,然而色光束L2的亮 度較色光束L1的亮度高,而色光束u的色純度較色光束 L2的色純度高。換句話說,本實施例投影裝置1〇〇能提供 兩種不同效果的光源,而關於這部份内容將於猶後作進一 步說明。 除此之外,發光元件112c適於發出色光束L3,其中 色光束L3例如為紅光。合光元件116配置於色光束、 L2、L3的傳遞路徑Pl、P2、P3上,以將色光束L1的傳 遞路徑P1與色光束L3的傳遞路徑P3合併,或將色光束 L2的傳遞路徑P2與色光束L3的傳遞路徑P3合併。光閥 120配置於光源模組11〇與投影鏡頭13〇之間,其中光閥 120適於將照明光束轉換為影像光束並傳遞至投影鏡頭 130。在本實施例中,光閥120例如是數位微鏡元件(digital micro-mirror device, DMD )、矽基液晶面板 (liquid-crystal-on-silicon panel,LCOS panel)或液晶面板 M423266 (liquid-crystal panel, LC panel)。另外,投影鏡頭 130 配置 於色光束L1與色光束L3經合併的傳遞路徑PI、P3上或 色光束L2與色光束L3經合併的傳遞路徑P2、P3上。 請繼續參照圖1,本實施例之光源模組11〇更包括發 光元件112d。發光元件112d適於發出色光束L4。如圖1 所示’合光元件116更配置於色光束L4的傳遞路徑P4上。 在本實施例中,色光束L1、色光束L3與色光束L4的顏 色彼此不同’且色光束L2、色光束L3與色光束L4的顏 色彼此不同。詳細而言,色光束L1與L2例如為綠光,色 光束L3與L4例如分別為紅光與藍光。然而,在其他實施 例中,色光束L3與L4亦可分別為藍光與紅光。如圖i所 示’本實施例之合光元件116用以將發光元件112b所發出 的色光束L1、發光元件112c所發出的色光束L3與發光元 件112d所發出的色光束L4的傳遞路徑P卜P3、P4合併, 或將經波長轉換區114a轉換過之色光束L2、發光元件112c 所發出的色光束L3與發光元件112d所發出的色光束L4 的傳遞路徑P2、P3、P4合併。如此一來,上述色光束在 通過光閥120與投影鏡頭130後,便能產生彩色的晝面。 另外,投影裝置100還包括光均勻化元件140。光均 勻化元件140配置於合光元件116與光閥120之間。其中 光均勻化元件140元件例如為光積分柱(light integration rod)。除此之外,本實施例之投影裝置100亦可包括透鏡 150。透鏡150配置於光均勻化元件140與光閥120之間。 在本實施例中,透鏡150例如為聚光透鏡,且例如為柱狀 9 M423266 透鏡、非球面透鏡或球面透鏡,其中柱狀透鏡可用來擴束 雷射光(例如激發光束Lex )。 圖2A為圖1之投影裝置100之色光束L3、L2、L4 於不同時間的開啟狀態,其中色光束L2是由激發光束Lex 照射在波長轉換區域114a所產生的高亮度照明光束。請同 參照圖1與圖2A,色光束L3、L2、L4例如是在不同的時 間依序被提供給圖1中的合光元件116,以讓合光元件U6 能將上述色光束導引至同一方向。而由於色光束L2的亮 度較色光束L1高,故當使用者想獲得亮度較高的投影晝 面時’則將發光元件112a開啟並搭配波長轉換元件U4 的轉動,使激發光束Lex照射在波長轉換區114a,以獲得 亮度較高的色光束L2。接著,色光束L3、L2、L4在依序 通過合光元件116後,色光束L3、L2、L4的傳遞路徑P3、 P2、P4會被合併(即傳遞路徑PA上之經合併後的光束 LA),並依序傳遞至光閥12〇與投影鏡頭13〇。而在此時, 使用者亦可將另一提供高色純度之綠光的發光元件U2b 關閉以節省能源。換句話說,在此時,高亮度的彩色晝面 主要疋由色光束L3、L2、L4所形成的,且色光束L3、u、 L4例如分別對應藍光、綠光與紅光。 圖2B為圖1之投影裝置100之色光束13、 另一方面’圖2B為圖1 。其中色光束L1是由發光 且發光元件112b例如為綠In order to achieve one or a part or all of the above or other purposes, an embodiment of the present invention proposes a light source module. The light source module includes a first light emitting element, a second light emitting element, a wavelength converting component, a third light emitting component, and a light combining component. The first illuminating element is adapted to emit a laser beam. The second illuminating element is adapted to emit a first color light beam. The wavelength conversion element is disposed on the transmission path of the excitation beam and the first color beam, and includes a wavelength conversion region and a penetration region. The wavelength converting element is adapted for rotation, wherein when the excitation beam is incident on the wavelength conversion region, the excitation beam is converted into a second color beam, and the first color beam is adapted to penetrate the penetration region. The third illuminating element is adapted to emit a third color light beam. The light combining elements are disposed on the transmission paths of the first color beam, the second color beam, and the third color beam. When the excitation beam is converted into the second color beam, the light combining element is used to combine the transmission path of the second color beam and the third color beam. When the first color beam passes through the penetration region, the light combining element is used first. The color beam merges with the transmission path of the third color beam. In addition to this, an embodiment of the present invention also proposes a projection apparatus comprising the above-described light source module, a projection lens and a light valve. The projection lens is disposed on the transmission path of the first color beam and the second color beam and the first color beam. The light valve is disposed between the light source module and the projection lens. Based on the above-mentioned facts of the book, it can be used to make a point or an effect. In the present invention, the light source module of the present embodiment can provide the second color beam of the partial degree and the first color light beam of high color purity, respectively, because the wavelength conversion element is provided with the wavelength conversion (four) and the mailing. It is selected by the user to make the light source and the projection device more flexible. In order to make the above features and advantages of the present invention more comprehensible, the following embodiments are described in detail with reference to the accompanying drawings. [Embodiment] The following description of the embodiments is provided to illustrate the specific embodiments in which the present invention may be utilized. The directions used in this creation, such as "upper", "lower", "before", "after", "left", "right", etc., are only directions referring to the additional schema. Therefore, the directional terminology used is for illustration, not for limiting the creation. Referring to FIG. 1, the projection apparatus 100 of the present embodiment includes a light source module 110, a light valve 120, and a projection lens 130. The light source module 11A includes a light emitting element 112a, a light emitting element 112b, a wavelength converting element 114, a light emitting element 112c, and a light combining element 116. In the present embodiment, the light-emitting element 112a is, for example, a blue solid-state laser or an ultraviolet laser (Ultravi〇let laser). In other embodiments, the light-emitting element 112a may also be a blue light emitting diode. Further, the light-emitting elements 112b, 112c, M423266 are, for example, light-emitting diodes. However, the above elements are used for exemplification, and the present invention is not limited to the above elements. As shown in FIG. 1, the light-emitting element 112a is adapted to emit an excitation beam Eex (excitation beam), wherein the excitation beam is a laser beam. In addition, the full width half-Maximmn (FWHM) of the excitation light beam Lex of the light-emitting element 112a is, for example, 25 nm, and the wavelength range corresponding to the above-mentioned light intensity half-free is, for example, from 450 nm to 475 nm, but this creation is not limited to this. On the other hand, the light-emitting element U2b is adapted to emit the color light beam L1. In the present embodiment, the color beam u is, for example, green light, and the color beam L1 is provided, for example, by a green light-emitting diode (i.e., the light-emitting diode 112b). The wavelength range corresponding to the half-height of the light intensity of the color light beam L1 is, for example, from 497 nm to 570 nm. As shown in Fig. 1, the wavelength conversion element 114 is disposed on the transmission path Pex of the excitation light beam Lex and the transmission path pi of the color light beam L1, and the wavelength conversion element 114 includes a wavelength conversion area U4a and a penetration area 114b. In the present embodiment, the wavelength converting element 114 is, for example, a wheel disk, and the wavelength conversion region 114a is coated with a phosphor layer (not shown). In the present embodiment, the wavelength conversion region 11 is, for example, the same as the area of the transmissive region U4b on the wavelength conversion element 114, but the creation is not limited thereto. In the above, the wavelength conversion element 114 is adapted to rotate, wherein when the excitation light beam Lex is irradiated to the wavelength conversion region 114a, the excitation light beam Lex is converted into the color light beam L2' and the color light beam L2 is, for example, green light, wherein the color of the embodiment The light intensity of the light beam L2 is, for example, 1 〇〇 nanometer, and the wavelength range of the light intensity of the color light beam 7 U corresponds to a wavelength range of, for example, 490 nm to 590 nm. Further, when the excitation beam is irradiated onto the phosphor layer coated on the wavelength conversion region, the phosphor particles are excited to emit the color light beam L2, thereby enabling the projection device 10 to provide high brightness. Projection effect. In addition, it can be seen from the comparison of the wavelength range of the color light beam L1 and the color light beam L2 that, in the present embodiment, the light intensity of the light beam L2 corresponds to the half-width of the light beam and the color light beam L1. The wavelength ranges corresponding to the intensity half width and width are at least partially overlapped. It is worth mentioning that although the color light beam L2 and the color light beam L1 of the present embodiment are both green light, the brightness of the color light beam L2 is higher than that of the color light beam L1, and the color purity of the color light beam u is smaller than the color of the color light beam L2. High purity. In other words, the projection apparatus 1 of the present embodiment can provide two different effects of the light source, and this part will be further explained later. In addition to this, the light-emitting element 112c is adapted to emit a color light beam L3, wherein the color light beam L3 is, for example, red light. The light combining element 116 is disposed on the transmission paths P1, P2, and P3 of the color light beams L2 and L3 to combine the transmission path P1 of the color light beam L1 with the transmission path P3 of the color light beam L3, or to transmit the transmission path P2 of the color light beam L2. Merged with the transfer path P3 of the color light beam L3. The light valve 120 is disposed between the light source module 11A and the projection lens 13A, wherein the light valve 120 is adapted to convert the illumination beam into an image beam and transmit it to the projection lens 130. In this embodiment, the light valve 120 is, for example, a digital micro-mirror device (DMD), a liquid-crystal-on-silicon panel (LCOS panel), or a liquid crystal panel M423266 (liquid-crystal Panel, LC panel). Further, the projection lens 130 is disposed on the combined transmission paths PI, P3 of the color light beam L1 and the color light beam L3 or the combined transmission paths P2, P3 of the color light beam L2 and the color light beam L3. Referring to FIG. 1, the light source module 11 of the embodiment further includes a light emitting element 112d. The light emitting element 112d is adapted to emit a color light beam L4. As shown in Fig. 1, the light combining element 116 is disposed on the transmission path P4 of the color light beam L4. In the present embodiment, the colors of the color light beam L1, the color light beam L3 and the color light beam L4 are different from each other' and the color light beams L2, the color light beams L3 and the color light beams L4 have different colors from each other. In detail, the color light beams L1 and L2 are, for example, green light, and the color light beams L3 and L4 are, for example, red light and blue light, respectively. However, in other embodiments, the color beams L3 and L4 may also be blue and red, respectively. As shown in FIG. 1 , the light combining element 116 of the present embodiment is used for transmitting the color light beam L1 emitted by the light emitting element 112b, the color light beam L3 emitted by the light emitting element 112c, and the color light beam L4 emitted by the light emitting element 112d. The P3 and P4 are combined, or the color light beam L2 converted by the wavelength conversion region 114a, the color light beam L3 emitted from the light-emitting element 112c, and the transmission paths P2, P3, and P4 of the color light beam L4 emitted from the light-emitting element 112d are combined. In this way, the color light beam can generate a colored surface after passing through the light valve 120 and the projection lens 130. Additionally, the projection device 100 also includes a light homogenizing element 140. The light homogenizing element 140 is disposed between the light combining element 116 and the light valve 120. The light homogenizing element 140 element is, for example, a light integration rod. In addition, the projection apparatus 100 of the present embodiment may also include a lens 150. The lens 150 is disposed between the light homogenizing element 140 and the light valve 120. In the present embodiment, the lens 150 is, for example, a condensing lens, and is, for example, a columnar 9 M423266 lens, an aspherical lens or a spherical lens, wherein the lenticular lens can be used to expand the laser light (e.g., the excitation beam Lex). 2A is an open state of the color light beams L3, L2, L4 of the projection apparatus 100 of FIG. 1 at different times, wherein the color light beam L2 is a high-intensity illumination light beam generated by the excitation light beam Lex in the wavelength conversion region 114a. Referring to FIG. 1 and FIG. 2A, the color light beams L3, L2, and L4 are sequentially supplied to the light combining elements 116 in FIG. 1 at different times, for example, so that the light combining elements U6 can guide the color light beams to In the same direction. Since the brightness of the color light beam L2 is higher than the color light beam L1, when the user wants to obtain a projection surface with a higher brightness, the light-emitting element 112a is turned on and matched with the rotation of the wavelength conversion element U4, so that the excitation light beam Lex is irradiated at the wavelength. The conversion area 114a is obtained to obtain a color light beam L2 having a higher luminance. Then, after the color light beams L3, L2, and L4 sequentially pass through the light combining elements 116, the transmission paths P3, P2, and P4 of the color light beams L3, L2, and L4 are combined (that is, the combined light beams LA on the transmission path PA) ), and sequentially transmitted to the light valve 12 〇 and the projection lens 13 〇. At this time, the user can also turn off another light-emitting element U2b that provides high-purity green light to save energy. In other words, at this time, the high-brightness color pupil plane is mainly formed by the color light beams L3, L2, L4, and the color light beams L3, u, L4 correspond to, for example, blue light, green light, and red light, respectively. Fig. 2B is a color beam 13 of the projection apparatus 100 of Fig. 1, and Fig. 2B is Fig. 1. Wherein the color light beam L1 is illuminated by light and the light emitting element 112b is, for example, green

LI、L4於不同時間的開啟狀態 元件112b所提供的照明光束, M423266 並搭配波長轉換元件114的轉動,使色純度較高的色光束 L1通過穿透區114b,並提供給合光元件116。接著,色光 束L3、LI、L4在依序通過合光元件116後’色光束L3、 LI、L4的傳遞路徑P3、Π、P4會被合併(即傳遞路徑pB 上之經合併後的光束LB),並依序傳遞至光閥12〇與投 影鏡頭130。於此時,使用者可關閉發光元件U2a以避免 經轉換之色光束L2的干擾,並達到節省能源的效果。 然而,上述係採用色純度較高的色光束Li通過穿透 區114b的丨月幵&gt;下,而在其他實施例中,使用者亦可開啟發 光元件112a並搭配波長轉換元件114的旋轉狀態以使部 分的激發光束Lex穿透穿透區i〗4b,並依序傳遞至合光元 件116、光閥120與投影鏡頭13〇。如此一來,便能藉由激 發光束Lex的提供來提升投影裝置1〇〇的輸出亮度。換句 話說’發光τό件112a與112b的開啟或關閉端視使用者所 欲達到的投影效果而決定,本創作並不受限於上述此。 。另外,波長轉換元件114之波長轉換區114a與穿透 區114b的面積分配也可視使用者需求而有所調整。舉例而 言,若使时希望_高亮度的投影效果,則可藉由增加 ^長轉換區IHa在波長轉換元件上的面積來達成。另 一f面’若是希望軸高色純度的投影絲,則可藉由增 力口二,區114b纟波長轉換元件114上的面積來達成。由上 述:知’本實施例的投影m〇〇僅利用波長轉換元件ιΐ4 t ^轉換區114&amp;與穿透區114b的面積分配便可達到高 免又光束與高色純度光束的切換效果。換句話說,在本實 11 M423266 施例中’不需要複雜的光學架構便能提供使用者兩種不同 的光源’故本實施例之光源模組110與投影裝置1〇〇在應 用上有良好的彈性。另外,由於本實施例的光源模組110 中的光學元件皆配置在投影裝置100的光軸〇上,故不會 有習知光學效率降低的問題。 請繼續參照圖1 ’詳細而言,本實施例之合光單元116 包括分色單元(dichroic unit) 116a與分色單元116b。分 色單元116a適於反射色光束L3,並使色光束L·卜色光束 L2與色光束L4穿透。分色單元丨丨邰適於反射色光束[4, 並使色光束L1、色光束L2與色光束L3穿透,以將色光 束L1、色光束L3與色光束L4的傳遞路徑Pl、P3、P4合 併為傳遞路徑PB或將色光束L2、色光束L3與色光束L4 的傳遞路徑合併P2 ' P3、P4為傳遞路徑pa。如此一來, 不同顏色的色光束L1、L3、L4(即光束LB)或色光束L2、 L3、L4 (即光束LA)便能傳遞到光閥丨2〇,且上述光束 LA、LB在經過光閥120的作用後,就能夠形成彩色的影 像晝面。 除此之外,本實施例之光源模組11〇更包括分色單元 118。分色單元ns配置於發光元件112&amp;與波長轉換元件 之間的激發光束Lex之傳遞路徑Pex上,且位於發光 牛112b與波長轉換元件114之間的色光束L1之傳遞路 儍上。分色單元118適於使激發光束Lex穿透,並反 射色光束L卜以使激發光束Lex與色光束L1傳遞至波長 轉換元件114。 、 12 M423266 另外,光源模組110更包括至少一透鏡113 (示意地 繪示四個,但不以此為限)。本實施例的透鏡113配置於 發光元件112a與波長轉換元件114之間。進一步而言,部 分的透鏡113 (示意地繪示兩個,但不以此為限)配置於 發光元件112a與分色單元118之間,且部分的透鏡113(示 意地繪示兩個’但不以此為限)配置於分色單元118與波 長轉換元件114之間在本實施例中,透鏡113例如為聚 光透鏡,且例如為柱狀透鏡、非球面透鏡或球面透鏡,其 •中柱狀透鏡可用來擴束雷射光(例如激發光束Lex)。 除此之外,光源模組110還包括複數個透鏡115 (示 意地繪示四個,但不以此為限)。透鏡.115配置於波長轉 換元件114與合光元件116之間與合光元件116之後。換 句。舌4,。卩分的透鏡115 (示意地繪示兩個,但不以此為 限)配置於波長轉換元件114與合光元件116之間,且另 4刀的透鏡115 (示意地緣示兩個,但不以此為限)配 置於合光元件116與光均勻化元件14〇之間(即合光元件 φ II6 g己置於另一部分的透鏡lls與波長轉換元件114之 f日υ。類似地,透鏡115例如為聚光透鏡,且例如為柱狀 透鏡,非球面透鏡或球面透鏡,其中柱狀透鏡可用來擴束 雷射光(例如激發光束Lex)。 綜上所述,本創作之實施例包括以下優點或功效之 至f其中之-。在本創作之實施例中,由於波長轉換元件 上有轉換區與穿透區,故本實施例之光源模組能分 別提供同冗度的照明光束與高色純度的照明光束供使用者 M423266 選擇,從而使得光源模組與投影裝置在應用上更有彈性。 另外,由於本實施例的光源模組配置在投影裝置的光軸 上’故此升光學效率的使用。 雖然本創作已以實施例揭露如上,然其並非用以限 定本創作,任何所屬技術領域中具有通常知識者,在不脫 離本創作之精神和範圍内,當可作些許之更動與潤飾,故 本創作之保護範圍當視後附之申請專利範圍所界定者為 準。另外本創作的任一實施例或申請專利範圍不須 : 創作所揭露之全部目的或優點或特點。此外,摘要 標題僅是用來輔助專利文件搜尋之用,並非 二勿〇 作之權利範圍。除此之外,說明書中提及^第(^本創 二、.···僅用以表示元件的名稱,並非用來限制 , 上的上限或下限。 數量 【圖式簡單說明】 圖1為本創作一實施例之投影袭置的示意圖。 圖2Α為圖1之投影裝置之色光束L3、L2、 同時間的開啟狀態。 &amp;不 圖2B為圖1之投影裝置之色光束L3、Ll、u 同時間的開啟狀態。 &amp;不 M423266 【主要元件符號說明】 100 :投影裝置 110 :光源模組 120 :光閥 130 :投影鏡頭 140 :光均勻化元件 113、115、150 :透鏡 112a〜112d :發光元件 114 :波長轉換元件 114a :波長轉換區 114b :穿透區 116 :合光元件 116a、116b、118 :分色單元The illumination beam provided by the component 112b is turned on, and the illumination beam provided by the component 112b, together with the rotation of the wavelength conversion component 114, causes the color light beam L1 having a higher color purity to pass through the penetration region 114b and is supplied to the light combining element 116. Then, after the color light beams L3, LI, and L4 sequentially pass through the light combining elements 116, the transmission paths P3, Π, and P4 of the color light beams L3, LI, and L4 are merged (that is, the combined light beams LB on the transmission path pB). ) and sequentially transmitted to the light valve 12 〇 and the projection lens 130. At this time, the user can turn off the light-emitting element U2a to avoid interference of the converted color light beam L2, and achieve an energy-saving effect. However, in the above embodiment, the color light beam Li having a higher color purity is passed through the penetrating region 114b, and in other embodiments, the user can also turn on the light emitting element 112a and match the rotation state of the wavelength conversion element 114. The partial excitation beam Lex is penetrated through the penetration region i 4b and sequentially transmitted to the light combining element 116, the light valve 120 and the projection lens 13A. In this way, the output brightness of the projection device 1 can be increased by the supply of the excitation light beam Lex. In other words, the opening or closing end of the light-emitting elements 112a and 112b is determined depending on the projection effect desired by the user, and the present creation is not limited to the above. . In addition, the area allocation of the wavelength conversion region 114a and the transmission region 114b of the wavelength conversion element 114 can also be adjusted according to user requirements. For example, if a projection effect of high brightness is desired, it can be achieved by increasing the area of the long conversion region IHa on the wavelength conversion element. The other f-plane&apos; can be achieved by the area on the wavelength conversion element 114 by the booster port 2, the region 114b, if the projection wire of the high color purity is desired. From the above, it is known that the projection m of the present embodiment can achieve the switching effect of the beam and the high-purity beam by using only the area division of the wavelength conversion element ιΐ4 t ^ conversion region 114 &amp; and the penetration region 114b. In other words, in the embodiment of the present 11 M423266, the user can provide two different light sources without requiring a complicated optical structure. Therefore, the light source module 110 and the projection device 1 of the present embodiment have good applications. Flexibility. Further, since the optical elements in the light source module 110 of the present embodiment are all disposed on the optical axis of the projection apparatus 100, there is no problem that the conventional optical efficiency is lowered. Referring to FIG. 1 in detail, the light combining unit 116 of the present embodiment includes a dichroic unit 116a and a color separation unit 116b. The color separation unit 116a is adapted to reflect the color light beam L3 and to penetrate the color light beam L, the color light beam L2 and the color light beam L4. The color separation unit 丨丨邰 is adapted to reflect the color beam [4, and penetrate the color beam L1, the color beam L2 and the color beam L3 to transmit the color beam L1, the color beam L3 and the color beam L4, P1, P3, P4 is merged into the transmission path PB or the color light beam L2, the color light beam L3 and the color light beam L4 are combined with the transmission path P2 'P3, P4 is the transmission path pa. In this way, the color beams L1, L3, L4 (i.e., the light beam LB) or the color light beams L2, L3, L4 (i.e., the light beam LA) of different colors can be transmitted to the light valve 丨2〇, and the above-mentioned light beams LA, LB pass through After the action of the light valve 120, a color image plane can be formed. In addition, the light source module 11 of the embodiment further includes a color separation unit 118. The color separation unit ns is disposed on the transmission path Pex of the excitation light beam Lex between the light-emitting element 112&amp; and the wavelength conversion element, and the transmission path of the color light beam L1 between the light-emitting cow 112b and the wavelength conversion element 114 is stupid. The color separation unit 118 is adapted to penetrate the excitation light beam Lex and to reflect the color light beam Lb to transmit the excitation light beam Lex and the color light beam L1 to the wavelength conversion element 114. 12 M423266 In addition, the light source module 110 further includes at least one lens 113 (four are shown schematically, but not limited thereto). The lens 113 of this embodiment is disposed between the light-emitting element 112a and the wavelength conversion element 114. Further, a part of the lens 113 (two are shown schematically, but not limited thereto) is disposed between the light-emitting element 112a and the color separation unit 118, and a part of the lens 113 (showing two 'shown schematically' In this embodiment, the lens 113 is, for example, a condensing lens, and is, for example, a lenticular lens, an aspherical lens, or a spherical lens, and is in the middle of the present invention. A lenticular lens can be used to expand the laser light (e.g., the excitation beam Lex). In addition, the light source module 110 further includes a plurality of lenses 115 (four are shown, but not limited thereto). The lens 115 is disposed between the wavelength conversion element 114 and the light combining element 116 and after the light combining element 116. Change the sentence. Tongue 4,. The split lens 115 (showing two, but not limited to this) is disposed between the wavelength conversion element 114 and the light combining element 116, and the other four lenses 115 (showing two edges, but not </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; 115 is, for example, a condensing lens, and is, for example, a lenticular lens, an aspherical lens or a spherical lens, wherein the lenticular lens can be used to expand the laser light (for example, the excitation light beam Lex). In summary, embodiments of the present invention include the following The advantage or the effect of the present invention is as follows: In the embodiment of the present invention, since the wavelength conversion element has a conversion area and a penetration area, the light source module of the embodiment can provide the same illumination beam and height respectively. The color purity illumination beam is selected by the user M423266, so that the light source module and the projection device are more flexible in application. In addition, since the light source module of the embodiment is disposed on the optical axis of the projection device, the optical efficiency is increased. use Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any person having ordinary knowledge in the art can make some changes and refinements without departing from the spirit and scope of the present invention. Therefore, the scope of protection of this creation is subject to the definition of the scope of the patent application. The scope of any application or patent application of this creation does not require: all the purposes or advantages or features disclosed in the creation. It is only used to assist in the search of patent documents. It is not the scope of the rights to be used. In addition, the description refers to ^ (^本二二,..··························· The upper limit or the lower limit is used to limit the number. [Simplified description of the drawings] Fig. 1 is a schematic view of the projection of an embodiment of the present invention. Fig. 2 is a color light beam L3, L2 of the projection device of Fig. Turning on. &amp; Figure 2B is the open state of the color light beams L3, L1, and u of the projection device of Fig. 1. &amp; not M423266 [Description of main component symbols] 100: Projection device 110: light source mode 120: light valve 130: projection lens 140: light homogenizing elements 113, 115, 150: lenses 112a to 112d: light-emitting element 114: wavelength conversion element 114a: wavelength conversion region 114b: penetration region 116: light-combining elements 116a, 116b , 118: color separation unit

Lex :激發光束 L1〜L4 :色光束Lex: excitation beam L1~L4: color beam

Pex、P1-P4 :傳遞路徑 0 :光軸 15Pex, P1-P4: Transfer path 0: Optical axis 15

Claims (1)

六、申請專利範圍: 1. 一種光源模組,包括: 一第一發光元件’適於發出一激發光束; 一第二發光元件,適於發出一第一色光束; 一波長轉換元件,配置於該激發光束與該第一色光束 的傳遞路徑上,且包括一波長轉換區與一穿透區,該波長 轉換元件適於旋轉,其中當該激發光束照射到波長轉換區 時,該激發光束被轉換為一第二色光束,且該第一色 適於穿透該穿透區; 一第三發光元件’適於發出一第三色光束;以及 合光元件,配置於該第一色光束、該第二色光束與 該第三色光束的傳遞路徑上,其中當該激發光束被轉換為 該第二色光束時,該合光元件用以將該第二色光束與該第 三色光束的傳遞路徑合併,當該第一色光束通過該穿透區 時,該合光元件用以將該第一色光束與該第三色光束的傳 遞路控合併。 2. 如申請專利範圍第1項所述之光源模組,其中該第 二色光束之光強度半高寬所對應的波長範圍與該第一色光 束之光強度半高寬所對應的波長範圍至少部分重疊。 3. 如申請專利範圍第1項所述之光源模組,其中該第 二色光束之光強度半高寬所對應的波長範圍為從49〇奈米 到590奈米。 '、 4. 如申凊專利範圍第1項所述之光源模組,其中該第 一色光束之光強度半高寬所對應的波長範圍為從497奈米 M423266 到570奈米。 5. 如申請專利範圍第1項所述之光源模組,更包括一 第四發光元件’適於發出一第四色光束,其中該合光元件 配置於該第四色光束的傳遞路徑上。 6. 如申请專利範圍第5項所述之光源模組,其中該第 一色光束、該第三色光束與該第四色光束的顏色彼此不 同’且該第二色光束、該第三色光束與該第四色光束的顏 色彼此不同。 7·如申請專利範圍第5項所述之光源模組,其中該合 光元件包括: 一第一分色單元’適於反射該第三色光束,並使該第 一色光束、5亥第二色光束與該第四色光束穿透;以及 一第二分色單元,適於反射該第四色光束,並使該第 一色光束、該第二色光束與該第三色光束穿透。 8. 如申請專利範圍第1項所述之光源模組,更包括一 分色單元’配置於該第一發光元件與該波長轉換元件之間 的δ亥激發光東之傳遞路徑上’且位於該第二發光元件與該 波長轉換元件之間的該第一色光束之傳遞路徑上,其中該 分色單元適於使該激發光束穿透,並反射該第一色光束, 以使s亥激發光束與該第一色光束傳遞至該波長轉換元件。 9. 如申請專利範圍第丨項所述之光源模組,更包括: 至少一第一透鏡,配置於該第一發光元件與該波長轉 換元件之間;以及 複數個第二透鏡,配置於該波長轉換元件與該合光元 17 M423266 件之間。 10.如申請專利範圍第1項所述之光源模組,更包括: 至少—第一透鏡,配置於該第一發光元件與該波長轉 換元件之間;以及 複數個第一透鏡’該合光元件配置於該些第二透鏡與 該波長轉換元件之間。 —種投影裝置,包括: 一光源模組,包括: 第一發光元件,適於發出一激發光束; 鲁 弟一發光元件,適於發出一第一色光束; 一波長轉換元件,配置於該激發光束與該第一色 光束的傳遞路控上,且包括一波長轉換區與一穿透 區,該波長轉換元件適於旋轉,其中當該激發光束照 射到波長轉換區時,該激發光束被轉換為一第二色光 束,且該第一色光束適於穿透該穿透區; 一第三發光元件,適於發出一第三色光束;以及 一合光元件,配置於該第一色光束、該第二色光 束與該第三色光束的傳遞路徑上,其中當該激發光束 攀 被轉換為該第二色光束時,該合光元件用以將該第二 色光束與該第二色光束的傳遞路彳查合併,當該第一色 光束通過該穿透區時,該合光元件用以將該第一色光 束與該第三色光束的傳遞路徑合併; 一投影鏡頭,配置於該第一色光束、該第二色光束與 該第三色光束經合併的傳遞路徑上;以及 18 一光閥,配置於該光源模組與該投影鏡頭之間。 12. 如申請專利範圍第11項所述之投影裝置,其中該 第二色光束之光強度半高寬所對應的波長範圍與該第一色 光束之光強度半高寬所對應的波長範圍至少部分重疊。 13. 如申請專利範圍第U項所述之投影裝置其中該 第二色光束之光強度半高寬所對應的波長範圍為從/49〇 = 米到590奈米。 τ 14. 如申請專利範圍第U項所述之投影襞置,其中該 第一色光束之光強度半高寬所對應的波長範圍為從497卉 米到570奈米。 不 15. 如申請專利範圍第u項所述之投影裝置,其中該 光源模組更包括一第四發光元件,適於發出一第四色光 束,其中該合光元件配置於該第四色光束的傳遞路徑上。 16. 如申請專利範圍第15項所述之投影裝置,其中該 第一色光f、該第三色光束與該第四色光束的顏色彼此不 同’且該第二色光束、該第三色光束與該第四色光束的顏 色彼此不同。 17. 如申請專利範圍第15項所述之投影裝置,其中該 合光元件包括: 一第一分色單元,適於反射該第三色光束,並使該第 一色光束、邊第二色光束與該第四色光束穿透;以及 一第二分色單元’適於反射該第四色光東,並使該第 一色光束、該第二色光束與該第三色光束穿透。 18. 如申請專利範圍第11項所述之投影裝置,其中該 M423266 光源模組更包括一分色單元,該分色單元配置於該第一發 光元件與該波長轉換元件之間的該激發光束之傳遞路徑 上’且位於該第二發光元件與該波長轉換元件之間的該第 一色光束之傳遞路徑上,其中該分色單元適於使該激發光 束穿透,並反射該第一色光束,以使該激發光束與該第一 色光束傳遞至§玄波長轉換元件。 19. 如申請專利範圍第η項所述之投影裝置,其中該 光源模組更包括: 至少一第一透鏡,配置於該第一發光元件與該波長轉 換元件之間;以及 複數個第二透鏡,配置於該波長轉換元件與該合光元 件之間。 20. 如申請專利範圍第u項所述之投影裝置,其中該 光源模組更包括: 至少一第一透鏡,配置於該第一發光元件與該波長轉 換元件之間;以及 複數個第二透鏡,該合光元件配置於該些第二透鏡與 該波長轉換元件之間。 21. 如申請專利範圍第η項所述之投影裝置,更包括 一光均勻化元件’配置於該合光元件與該光閥之間。 20Sixth, the scope of application for patents: 1. A light source module comprising: a first light-emitting element 'suitable to emit an excitation beam; a second light-emitting element adapted to emit a first color beam; a wavelength conversion element, configured a path of the excitation beam and the first color beam, and including a wavelength conversion region and a penetrating region, the wavelength conversion element being adapted to rotate, wherein when the excitation beam is irradiated to the wavelength conversion region, the excitation beam is Converting into a second color light beam, and the first color is adapted to penetrate the penetration region; a third light emitting element 'suitable to emit a third color light beam; and a light combining element disposed on the first color light beam, a path of the second color beam and the third color beam, wherein when the excitation beam is converted into the second color beam, the light combining element is configured to use the second color beam and the third color beam The transfer path is merged, and when the first color beam passes through the penetrating region, the light combining element is used to merge the first color beam with the transfer path of the third color beam. 2. The light source module of claim 1, wherein a wavelength range corresponding to a half-height width of the light intensity of the second color beam and a wavelength range corresponding to a half-height of the light intensity of the first color beam At least partially overlap. 3. The light source module of claim 1, wherein the wavelength of the light intensity of the second color beam corresponds to a wavelength range from 49 nanometers to 590 nanometers. The light source module of claim 1, wherein the light intensity of the first color beam corresponds to a wavelength range from 497 nm to 570 nm. 5. The light source module of claim 1, further comprising a fourth illuminating element adapted to emit a fourth color light beam, wherein the light combining element is disposed on the transmission path of the fourth color light beam. 6. The light source module of claim 5, wherein the first color light beam, the third color light beam and the fourth color light beam have different colors from each other' and the second color light beam and the third color color The colors of the light beam and the fourth color light beam are different from each other. The light source module of claim 5, wherein the light combining element comprises: a first color separation unit adapted to reflect the third color light beam, and the first color light beam, 5 a dichroic beam and the fourth color beam are penetrated; and a second dichroic unit adapted to reflect the fourth color beam and penetrate the first color beam, the second color beam and the third color beam . 8. The light source module of claim 1, further comprising a color separation unit disposed on the transmission path of the δH excitation light between the first illuminating element and the wavelength conversion element a path of the first color light beam between the second light-emitting element and the wavelength conversion element, wherein the color separation unit is adapted to penetrate the excitation light beam and reflect the first color light beam to cause excitation The beam and the first color beam are delivered to the wavelength conversion element. 9. The light source module of claim 2, further comprising: at least one first lens disposed between the first light emitting element and the wavelength converting element; and a plurality of second lenses disposed on the The wavelength conversion element is between the light-emitting element 17 and M423266. 10. The light source module of claim 1, further comprising: at least a first lens disposed between the first light emitting element and the wavelength converting element; and a plurality of first lenses 'the combined light The component is disposed between the second lens and the wavelength conversion component. a projection device, comprising: a light source module, comprising: a first light-emitting element adapted to emit an excitation beam; a light-emitting element, suitable for emitting a first color beam; a wavelength conversion element disposed at the excitation The light beam and the first color light beam are transmitted and controlled, and include a wavelength conversion region and a penetration region, the wavelength conversion element being adapted to rotate, wherein the excitation beam is converted when the excitation beam is irradiated to the wavelength conversion region a second color light beam, and the first color light beam is adapted to penetrate the penetration region; a third light emitting element adapted to emit a third color light beam; and a light combining element disposed on the first color light beam a transmission path of the second color beam and the third color beam, wherein the light combining element is configured to use the second color beam and the second color when the excitation beam is converted into the second color beam The transmission path of the light beam is combined, and when the first color light beam passes through the penetration region, the light combining element is used to merge the first color light beam with the transmission path of the third color light beam; The first a color light beam, the second color light beam and the third color light beam are combined in a transmission path; and a light valve is disposed between the light source module and the projection lens. 12. The projection device of claim 11, wherein a wavelength range corresponding to a half-height of a light intensity of the second color beam is at least a wavelength range corresponding to a half-height of a light intensity of the first color beam. Partial overlap. 13. The projection device of claim U, wherein the light intensity of the second color beam corresponds to a wavelength range from /49 〇 = m to 590 nm. τ 14. The projection device of claim U, wherein the light intensity of the first color beam corresponds to a wavelength range from 497 plants to 570 nm. The projection device of claim 5, wherein the light source module further comprises a fourth light emitting element adapted to emit a fourth color light beam, wherein the light combining element is disposed in the fourth color light beam On the delivery path. 16. The projection device of claim 15, wherein the first color light f, the third color light beam and the fourth color light beam have different colors from each other' and the second color light beam and the third color color The colors of the light beam and the fourth color light beam are different from each other. 17. The projection device of claim 15, wherein the light combining element comprises: a first color separation unit adapted to reflect the third color light beam and to make the first color light beam and the second color side The light beam penetrates the fourth color beam; and a second color separation unit 'is adapted to reflect the fourth color light and to penetrate the first color light beam, the second color light beam and the third color light beam. 18. The projection device of claim 11, wherein the M423266 light source module further comprises a color separation unit, the color separation unit being disposed between the first light emitting element and the wavelength conversion element. And a transmission path of the first color light beam between the second light emitting element and the wavelength conversion element, wherein the color separation unit is adapted to penetrate the excitation light beam and reflect the first color The light beam is such that the excitation beam and the first color beam are transmitted to the sinusoidal wavelength conversion element. 19. The projection device of claim n, wherein the light source module further comprises: at least one first lens disposed between the first light emitting element and the wavelength converting element; and a plurality of second lenses And disposed between the wavelength conversion element and the light combining element. 20. The projection device of claim 5, wherein the light source module further comprises: at least one first lens disposed between the first light emitting element and the wavelength converting element; and a plurality of second lenses The light combining element is disposed between the second lens and the wavelength conversion element. 21. The projection device of claim n, further comprising a light homogenizing element disposed between the light combining element and the light valve. 20
TW100219208U 2011-10-13 2011-10-13 Light source module and projection apparatus TWM423266U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100219208U TWM423266U (en) 2011-10-13 2011-10-13 Light source module and projection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100219208U TWM423266U (en) 2011-10-13 2011-10-13 Light source module and projection apparatus

Publications (1)

Publication Number Publication Date
TWM423266U true TWM423266U (en) 2012-02-21

Family

ID=46460516

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100219208U TWM423266U (en) 2011-10-13 2011-10-13 Light source module and projection apparatus

Country Status (1)

Country Link
TW (1) TWM423266U (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452409B (en) * 2012-12-14 2014-09-11 Delta Electronics Inc Light emitting module, optical excitation device and projector using the same
TWI461740B (en) * 2012-10-31 2014-11-21 Delta Electronics Inc Solid state illuminator for stereoscopic display
TWI477884B (en) * 2013-03-06 2015-03-21 深圳市繹立銳光科技開發有限公司 A light emitting device and a projection system
TWI480585B (en) * 2013-07-30 2015-04-11 Delta Electronics Inc Display Illuminating Module
TWI503578B (en) * 2014-06-13 2015-10-11 Coretronic Corp Light source module and projection apparatus
US10386710B2 (en) 2017-03-31 2019-08-20 Coretronic Corporation Projector and illumination system thereof
US10732495B2 (en) 2014-05-02 2020-08-04 Coretronic Corporation Illumination system, projection apparatus and method for driving illumination system
US11022867B2 (en) 2018-07-10 2021-06-01 Coretronic Corporation Illumination system having wavelength conversion device and projection device having the same
US11402738B2 (en) 2018-05-14 2022-08-02 Coretronic Corporation Illumination system and projection apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI461740B (en) * 2012-10-31 2014-11-21 Delta Electronics Inc Solid state illuminator for stereoscopic display
US9049437B2 (en) 2012-10-31 2015-06-02 Delta Electronics, Inc. Solid state illuminator for stereoscopic display
TWI452409B (en) * 2012-12-14 2014-09-11 Delta Electronics Inc Light emitting module, optical excitation device and projector using the same
TWI477884B (en) * 2013-03-06 2015-03-21 深圳市繹立銳光科技開發有限公司 A light emitting device and a projection system
TWI480585B (en) * 2013-07-30 2015-04-11 Delta Electronics Inc Display Illuminating Module
US10732495B2 (en) 2014-05-02 2020-08-04 Coretronic Corporation Illumination system, projection apparatus and method for driving illumination system
TWI503578B (en) * 2014-06-13 2015-10-11 Coretronic Corp Light source module and projection apparatus
US9645480B2 (en) 2014-06-13 2017-05-09 Coretronic Corporation Light source module and projection apparatus having the same
US10386710B2 (en) 2017-03-31 2019-08-20 Coretronic Corporation Projector and illumination system thereof
US11402738B2 (en) 2018-05-14 2022-08-02 Coretronic Corporation Illumination system and projection apparatus
US11022867B2 (en) 2018-07-10 2021-06-01 Coretronic Corporation Illumination system having wavelength conversion device and projection device having the same

Similar Documents

Publication Publication Date Title
TWM423266U (en) Light source module and projection apparatus
US10042240B2 (en) Projection system, light source system and light source assembly
US9152031B2 (en) Light source module and projection apparatus
TWI503578B (en) Light source module and projection apparatus
TWI504832B (en) Illumination system and projection apparatus
US20130088689A1 (en) Light source module and projection apparatus
US8789957B2 (en) Light source module and projection apparatus
TWI512385B (en) Optical wavelength conversion module, illumination system and projection apparatus
US7542206B2 (en) Light collectors for projection systems
TWI249645B (en) Illuminator and projector
JP6536212B2 (en) Wavelength conversion element, light source device and projector
JP2014199401A (en) Illumination apparatus and projector
TWI524129B (en) Illumination system and projection apparatus
JP2004184777A (en) Light source device and projection type display device
WO2015111145A1 (en) Light source device and image display device using same
JP2005140847A (en) Led light source projector optical system and led light source projector
CN103034035A (en) Illuminating system and projecting apparatus
JP2019032352A (en) Light source device and projector
JP2015049441A (en) Illumination device and projector
TWI656361B (en) Illumination system and projection apparatus
TWI273335B (en) Light source device and projector using the same
JP2012078537A (en) Light source device and projection type video display device
JP6269037B2 (en) Fluorescent light emitting device, light source device and projector
TWI375855B (en) Illumination system and projection apparatus
JP2007065412A (en) Illuminating device and projection type video display device

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees