TWM420926U - Power management circuit - Google Patents

Power management circuit Download PDF

Info

Publication number
TWM420926U
TWM420926U TW100214431U TW100214431U TWM420926U TW M420926 U TWM420926 U TW M420926U TW 100214431 U TW100214431 U TW 100214431U TW 100214431 U TW100214431 U TW 100214431U TW M420926 U TWM420926 U TW M420926U
Authority
TW
Taiwan
Prior art keywords
circuit
voltage
signal
battery
power management
Prior art date
Application number
TW100214431U
Other languages
Chinese (zh)
Inventor
Nien-Hui Kung
Original Assignee
Richtek Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richtek Technology Corp filed Critical Richtek Technology Corp
Priority to TW100214431U priority Critical patent/TWM420926U/en
Publication of TWM420926U publication Critical patent/TWM420926U/en

Links

Description

五 、新型說明: 【新型所屬之技術領域】 本新型係有關-種電源管理電路,_是指—種在供電給 負載電路時又能對電池充電的電源管理電路。 【先前技術】 -第1圖顯不先前技術電源管理電路之示意圖。如第i圖所 不’切換調節電路11接收與輸出電壓、相關_授訊號, 以將輸入電壓Vin轉換為輸出電壓VGut供應給負載電路12, 且輸出電壓Vout透過線性調節電路13對電池14充電。其 中’切換調節電路η可為同步或非同步之降壓型功率轉換電 =’如第2Α-2Β圖所示;或是同步或非同步之升壓型功轉 、電路如第2C-2D圖所不。線性調節電路13例如為第2Ε ,所不之轉。為使輸出電壓VGut倾在最小輸出電壓 / 以上’以供應貞載電路12之需要,因此需要輸出電壓 貞=電,!5 ’來接收輸出電壓_,並轉換為回授訊號輸入 =、調即電路11 ;切換調節電路11根據回授訊號 ,切換功 ,開關以將輸人電壓Vin轉換為輸出電壓Μ,並將輸出電 壓v〇m控制在最小輸出電壓Vmin之上。 此種先則技術巾’輸出電壓VGut經由線性調節電路 對電池14充電時,若輸出電壓Vout與電池電壓彻的電 堅差較大’會造成耗能與散熱的問題。對此,纟國專利第 ^0,079號揭露—種電源管理電路,藉由控制輸出電壓伽 ^^電壓彻的魏差,來改善上述問題。不過,在美國 7,71G,G79相設計的電路中’必須仙三輸入誤差放 益’根據輸出電壓V〇ut、電池電壓伽加上固定電壓差、 M420926 及-固定參考電壓三者間的比較,來控制輸出電壓偏盘電 池電壓Vbat的電壓差,並提供適當的輸出電壓v〇ut給負載 電路12,因此電路較為複雜。此外,該先前技術中,於電池 電壓Vbat高於臨界電壓時,輸出電壓v〇ut與電池電壓外对 的電壓差控制於-固定值,但賴定值之設定不為元件 所能達成的最佳值。 本創作採用不同的方式,於電池電壓Vbat高於臨界電壓 時’進一步將線性調節電路13中之開關完全導通,使得輸出 電麼Vout與電池電| Vbat的電壓差降至元件所能達成的最 低值’進—錢善電雜能與散熱關題,提高電源管理的效 :亨〇 【新型内容】 本創作目的在提供一種電源管理電路。 為達上述之目的,本創作提供了一種電源管理電路,包 含·切換式調節電路,根據一壓差控制訊號,將一輸入電壓 轉換為-輸出賴;祕調節電路,祕於該輸出電壓與一 電’池之間’根據一開關訊號,以控制輸出電壓與t池間之-充 電路控;以及壓差控制電路,接收該電池之充電電流訊號、 該電池之電壓與該輸丨電壓,並輸出該壓差控制訊號與該開 關訊唬,以控制該切換式調節電路與該線性調節電路,使得 當該電池電壓未超過—臨界電壓時,該輸出電壓高於該臨界 電壓一第一差值,而當該電池電壓超過該臨界電壓時,該輸 出電壓高於該電池電壓一第二差值,其中該線性調節電路具 有一關’位於該充電路徑上,且該第二差值為該功率 開關完全導通時,該充電路徑之等效電阻乘以該電池之充電 4 電流。 在其中一種實施型態中,該壓差控制電路包括:一比較 電路’比較該電池電壓與該臨界電壓,以產生一致能訊號; 一誤差放大電路,比較該輸出電壓與一第一電壓’以產生一 放大訊號,其中該第一電壓高於該臨界電壓該第一差值;一 第一多工電路,接收該放大訊號與該充電電流訊號,並根據 該致能訊號’以選擇依據該放大訊號或該充電電流訊號產生 該壓差控制訊號;以及一第二多工電路,根據該致能訊號, 選擇以該充電電流訊號輸入線性調節電路或使該功率開關完 全導通’以控制電池的充電電流。 在其中一種實施型態中,當電池電壓超過臨界電壓時, 致能訊號控制第一多工電路,選擇根據充電電流訊號來控制 切換式調節電路,且致能訊號控制第二多工電路,選擇將線 性調節電路中之功率開關完全導通,此時輸出電壓等於 Vbat+Ibat*R ;其中,Vbat為該電池電壓,ibat為流入該線性 調節電路與該充電路徑之電流,R為該充電路經之等效電阻。 底下藉由具體實施例詳加說明,當更容易瞭解本創作之 目的、技術内容、特點及其所達成之功效。 【實施方式】 請參閱第3圖,顯示本創作的第一個實施例。如第3圖 所示,電源管理電路10包含切換式調節電路u、線性調& 電路13、與壓差控制電路20。其中,切換式調節電路^ ^ 據壓差控制訊號,將輸入電壓Vin轉換為輸出電壓v〇m,以^ 應電源予電池14及負載電路12。切換式調節電路u可包括 但不限於如第2A,2D _故降壓型切_節電路或=壓 型切換調節電路。線性調節電路13可以為但不限於為第2B 圖所示之線性調節電路。 壓差控制電路20接收輸出電壓Vout、充電電流訊號、與 電池電壓Vbat,並輸出壓差控制訊號至切換式調節電路u, 以控制輸出電壓Vout,產生如第5圖所示輸出電壓yout與電 池電壓Vbat及臨界電壓Va間的關係。其中,當電池電壓vbat 未超過和高於臨界電壓Va時,輸出電壓Vout變換為不同的曲 線:(1)當電池電壓Vbat未超過臨界電壓Va時,輸出電壓v〇ut 與電池電壓Vbat無關,而可務高於臨界電壓va第一差值vi, 例如為電壓Vb ; (2)當電池電壓Vbat高於臨界電壓Va時,輪 出電壓Vout稍高於電池電壓Vbat第二差值V2,此時輸出電 壓Vout約為Vbat+Ibat*R,其中Ibat為流入線性調節電路13 與電池14路徑之電流,R為該路徑之等效電阻,且線性調節 電路13中之功率開關(參閱第2E圖)為完全導通,以減低 該路徑的耗能。此與先前技術美國專利第λ71〇,〇79號的差 別,將於後文參閱第6圖再予說明。 第4圖顯示壓差控制電路20更具體的實施例,其包括: 比較電路21、誤差放大電路22、第一多工電路24、以及第 二多工電路25 ^其中,比較電路21比較電池電壓Vbat與臨 界電壓Va ’以產生致能訊號。誤差放大電路22比較輸出電 壓V0ut與電壓Vb,以產生放大訊號,其中如第$圖所示, 電壓vb高於臨界電壓Va第一差值v卜當電池電壓vbat未 超過臨界電壓Va時’比較電路21輸出的致能訊號控制第一 多=電路24 ’選擇以誤差放大電路22的輸出來控制切 調節電路η,㈣娜迴路平賴制,#整體電路達到 平衡時,誤差放大器22 _輸入端將位於相同的電位因此 可將輸出電壓Vout控制於電壓vb,達成第5圖左方所示的 關係。另一方面,比較電路21輸出的致能訊號也控制第二多 工電路25 ’選擇以充電電流訊號輸入線性調節電路13作為 回授訊號Vfb (參閱第2E圖),與參考電壓Vref比較,以控 制電池的充電電流。亦即當電池電壓vbat未超過臨界電壓 Va時’切換式調節電路u控制輸出電壓v〇ut維持於電壓 Vb ’而線性調節電路丨3則控制電池的充電電流。 當電池電壓Vbat超過臨界電壓Va時,比較電路21輸出 的致能訊號控制第一多工電路24,選擇根據充電電流訊號來 控制切換式調節電路11,此時輸出電壓Vout不為固定值, 將等於Vbat+Ibat*R,如第5圖右方所示;另一方面,比較電 路21輸出的致能訊號控制也控制第二多工電路25,選擇將 線性調節電路13中的功率開關完全導通(第2E圖中功率開 關為PMOS電晶體,因此第4圖顯示第二多工電路25將 PMOS·電晶體的閘極接地;若線性調節電路13中的功率開關 為NMOS電晶體,則第二多工電路25可將NMOS電晶體的 閘極連接至使其完全導通的高電位)。由於功率開關完全導通 之故,流入線性調節電路13與電池14路徑之電流Ibat,所流 經的電路路徑之等效電阻R為最小,如此一來,相較於美國 專利第7,71〇,〇79號所設計的電路,本創作於電池電壓讥故 超過臨界電壓Va時,電路耗能與散熱的問題將被減輕至最低。 第6圖顯示本創作之輸出電壓vout與美國專利第 7’71〇,〇79號所設計的電路之輸出電壓vout的比較圖,圓形虛 線所示意之輸出電壓訊號’放大如第6圖上方所示意。如圖所 示美國專利第7,710,079號所設計的電路之輸出電壓 高於電池電壓Vbat —差值電壓V3,此差值為電路設計時所 決定之設計值,而不必然為(事實上通常高於)功率開關完全 導通時所產生的壓降,因此該差值電壓V3高於本創作之差值 電壓V2。相較於本創作,美國專利第7,71〇,〇79號具有較高 較高的耗能與較大的散熱問題。 第7與8圖顯示本創作第三個實施例,與本創作之第一 實施例相比,電源管理電路1〇可更包含電流判斷電路17, 其用以偵測流入切換式調節電路11之輸入電流Iin,以保持 該輸入電流Iin在正常操作時不超過一設定值;當輸入電流 Iin超過該設定值時,切換式調節電路u限制輸入電流 或暫停工作’以避免過量電流損壞電路。 請繼續參閱第7圖,舉例說明本實施例中之電流判斷電 路17如何偵測並判斷輸入電流Iin;電流判斷電路17有各種 實施方式,不限於本實施例。如圖所示,電流判斷電路17 感應偵測輸入電流Iin ’並轉換為一電壓訊號,輸入比較電路 171 ’比較電路171比較與輸入電流Iin相關之電壓訊號與設 定訊號Vset後,將結果輸入切換式調節電路n,以進行過 量電流保護控制。 以上已針對較佳實施例來說明本創作,唯以上所述者, 僅係為使熟悉本技術者易於了解本創作的内容而已’並非用 來限定本創作之權利範圍。在本創作之相同精神下,熟悉本 技術者可以思及各種等效變化。例如,實施例中圖示直接連 接的兩電路私制’可插置邱響主要魏的其他電路或元 件,又如,誤差放大器或比較電路之輸入端正負號可以互換, 只需在電路+ _應的修改等。柄作的範圍應涵蓋上述及 其他所有等效變化。V. New description: [New technical field] This new type is related to a kind of power management circuit, _ refers to a power management circuit that can charge the battery when it is supplied to the load circuit. [Prior Art] - Fig. 1 shows a schematic diagram of a prior art power management circuit. The switching regulator circuit 11 receives and outputs the voltage, the associated_signal number to convert the input voltage Vin into the output voltage VGut to the load circuit 12, and the output voltage Vout charges the battery 14 through the linear adjustment circuit 13 as shown in FIG. . The 'switching regulation circuit η can be synchronous or asynchronous buck power conversion== as shown in Figure 2Α-2; or synchronous or non-synchronous boosting power conversion, circuit such as 2C-2D No. The linear adjustment circuit 13 is, for example, the second turn, and does not rotate. In order to make the output voltage VGut tilt to the minimum output voltage / above 'to supply the load circuit 12, it is necessary to output voltage 贞 = electricity, ! 5 ' to receive the output voltage _, and convert to feedback signal input =, tone The circuit 11 switches the adjustment circuit 11 to switch the power according to the feedback signal, and the switch converts the input voltage Vin into an output voltage Μ and controls the output voltage v 〇m above the minimum output voltage Vmin. When the output voltage VGut of the conventional technology towel is charged to the battery 14 via the linear adjustment circuit, if the output voltage Vout and the battery voltage have a large electrical difference, the problem of energy consumption and heat dissipation may occur. In this regard, the Japanese Patent No. 0,079 discloses a power management circuit that improves the above problem by controlling the output voltage gamma voltage. However, in the US 7,71G, G79 phase design circuit, 'must three input error gains' based on the output voltage V〇ut, battery voltage plus fixed voltage difference, M420926 and - fixed reference voltage comparison To control the voltage difference of the output voltage bias plate battery voltage Vbat, and provide an appropriate output voltage v〇ut to the load circuit 12, so the circuit is more complicated. In addition, in the prior art, when the battery voltage Vbat is higher than the threshold voltage, the voltage difference between the output voltage v〇ut and the battery voltage is controlled to a fixed value, but the setting of the reset value is not the highest that the component can achieve. Good value. This creation uses different methods to further turn on the switch in the linear adjustment circuit 13 when the battery voltage Vbat is higher than the threshold voltage, so that the voltage difference between the output voltage Vout and the battery power | Vbat is reduced to the lowest level that the component can achieve. The value of 'into-Qianshan electric energy and heat issues, improve the efficiency of power management: Henry [new content] The purpose of this creation is to provide a power management circuit. In order to achieve the above purpose, the present invention provides a power management circuit including a switching regulator circuit for converting an input voltage into an output according to a differential pressure control signal; a secret regulation circuit, which is secretive to the output voltage and a The electric 'between pools' according to a switching signal to control the charging voltage between the output voltage and the t-cell; and the differential pressure control circuit, receiving the charging current signal of the battery, the voltage of the battery and the output voltage, and outputting the a differential pressure control signal and the switch signal to control the switching regulator circuit and the linear regulator circuit, such that when the battery voltage does not exceed a threshold voltage, the output voltage is higher than the threshold voltage by a first difference, and When the battery voltage exceeds the threshold voltage, the output voltage is higher than the second voltage difference of the battery voltage, wherein the linear adjustment circuit has an off 'on the charging path, and the second difference is the power switch is completely When turned on, the equivalent resistance of the charging path is multiplied by the charging current of the battery. In one embodiment, the differential pressure control circuit includes: a comparison circuit 'compares the battery voltage with the threshold voltage to generate a uniform energy signal; and an error amplification circuit that compares the output voltage with a first voltage Generating an amplification signal, wherein the first voltage is higher than the threshold voltage; the first multiplex circuit receives the amplification signal and the charging current signal, and selects the amplification according to the enabling signal The signal or the charging current signal generates the differential pressure control signal; and a second multiplexing circuit, according to the enabling signal, selecting the charging current signal to input the linear adjusting circuit or making the power switch fully conductive to control the charging of the battery Current. In one embodiment, when the battery voltage exceeds the threshold voltage, the enable signal controls the first multiplex circuit, selects the switching regulator circuit according to the charging current signal, and enables the signal to control the second multiplex circuit, selecting The power switch in the linear adjustment circuit is fully turned on, and the output voltage is equal to Vbat+Ibat*R; wherein Vbat is the battery voltage, ibat is the current flowing into the linear regulation circuit and the charging path, and R is the charging path. The equivalent resistance. The details of the creation, the technical content, the features and the effects achieved by the present invention are more easily explained by the detailed description of the specific embodiments. [Embodiment] Referring to Figure 3, a first embodiment of the present creation is shown. As shown in Fig. 3, the power management circuit 10 includes a switching type adjustment circuit u, a linear modulation &amplifier circuit 13, and a differential pressure control circuit 20. The switching regulator circuit converts the input voltage Vin into an output voltage v〇m according to the differential pressure control signal to supply the power to the battery 14 and the load circuit 12. The switching regulator circuit u may include, but is not limited to, a 2A, 2D, or a step-down switching circuit or a = mode switching regulator circuit. The linear adjustment circuit 13 can be, but is not limited to, a linear adjustment circuit as shown in FIG. 2B. The differential pressure control circuit 20 receives the output voltage Vout, the charging current signal, and the battery voltage Vbat, and outputs a differential pressure control signal to the switching regulator circuit u to control the output voltage Vout to generate an output voltage yout and a battery as shown in FIG. The relationship between the voltage Vbat and the threshold voltage Va. Wherein, when the battery voltage vbat does not exceed and exceed the threshold voltage Va, the output voltage Vout is converted into a different curve: (1) when the battery voltage Vbat does not exceed the threshold voltage Va, the output voltage v〇ut is independent of the battery voltage Vbat, And the service may be higher than the threshold voltage va, the first difference vi, for example, the voltage Vb; (2) when the battery voltage Vbat is higher than the threshold voltage Va, the wheel-out voltage Vout is slightly higher than the battery voltage Vbat, the second difference V2, The output voltage Vout is approximately Vbat+Ibat*R, where Ibat is the current flowing into the path of the linear regulation circuit 13 and the battery 14, R is the equivalent resistance of the path, and the power switch in the linear adjustment circuit 13 (see FIG. 2E) ) is fully conductive to reduce the energy consumption of the path. This difference from prior art U.S. Patent No. λ71, 〇79 will be further described later with reference to Figure 6. 4 shows a more specific embodiment of the differential pressure control circuit 20, comprising: a comparison circuit 21, an error amplification circuit 22, a first multiplex circuit 24, and a second multiplex circuit 25, wherein the comparison circuit 21 compares the battery voltage Vbat and the threshold voltage Va' to generate an enable signal. The error amplifying circuit 22 compares the output voltage V0ut with the voltage Vb to generate an amplification signal, wherein as shown in FIG. $, the voltage vb is higher than the threshold voltage Va, the first difference v, when the battery voltage vbat does not exceed the threshold voltage Va, 'Comparison The enable signal outputted by the circuit 21 controls the first multi-circuit 24' to select the output of the error amplifying circuit 22 to control the trimming circuit η. (4) The circuit is integrated, and when the whole circuit reaches equilibrium, the error amplifier 22_input Will be at the same potential so that the output voltage Vout can be controlled to the voltage vb to achieve the relationship shown on the left in FIG. On the other hand, the enable signal outputted by the comparison circuit 21 also controls the second multiplex circuit 25' to select the charge current signal input linear adjustment circuit 13 as the feedback signal Vfb (see FIG. 2E), and compares it with the reference voltage Vref to Control the charging current of the battery. That is, when the battery voltage vbat does not exceed the threshold voltage Va, the switching regulator circuit u controls the output voltage v〇ut to be maintained at the voltage Vb' and the linear regulator circuit 丨3 controls the charging current of the battery. When the battery voltage Vbat exceeds the threshold voltage Va, the enable signal outputted by the comparison circuit 21 controls the first multiplex circuit 24 to select the switching regulator circuit 11 according to the charging current signal. At this time, the output voltage Vout is not a fixed value. Equal to Vbat+Ibat*R, as shown on the right side of FIG. 5; on the other hand, the enable signal control outputted by the comparison circuit 21 also controls the second multiplex circuit 25 to select the power switch in the linear adjustment circuit 13 to be fully turned on. (The power switch in FIG. 2E is a PMOS transistor, so FIG. 4 shows that the second multiplex circuit 25 grounds the gate of the PMOS transistor; if the power switch in the linear regulator circuit 13 is an NMOS transistor, then the second The multiplex circuit 25 can connect the gate of the NMOS transistor to a high potential that makes it fully conductive. Since the power switch is fully turned on, the current resistance Ib flowing into the path of the linear regulation circuit 13 and the battery 14 is the minimum equivalent resistance R of the circuit path flowing through, so that, compared with U.S. Patent No. 7,71, The circuit designed by 〇79, when the battery voltage exceeds the threshold voltage Va, the problem of circuit energy consumption and heat dissipation will be minimized. Figure 6 shows a comparison of the output voltage vout of the present creation with the output voltage vout of the circuit designed in U.S. Patent No. 7'71, No. 79, and the output voltage signal indicated by the circular dotted line is enlarged as shown in Fig. 6. Shown. The output voltage of the circuit designed as shown in U.S. Patent No. 7,710,079 is higher than the battery voltage Vbat - the difference voltage V3, which is the design value determined at the time of circuit design, and is not necessarily (in fact, usually higher than The voltage drop generated when the power switch is fully turned on, so the difference voltage V3 is higher than the difference voltage V2 of the present creation. Compared with this creation, U.S. Patent No. 7,71, 〇79 has higher energy consumption and larger heat dissipation problems. 7 and 8 show a third embodiment of the present invention. Compared with the first embodiment of the present invention, the power management circuit 1 further includes a current judging circuit 17 for detecting the inflow of the switching regulator circuit 11. The input current Iin is input to keep the input current Iin from exceeding a set value during normal operation; when the input current Iin exceeds the set value, the switching regulator circuit u limits the input current or suspends operation 'to avoid excessive current damage to the circuit. Please refer to FIG. 7 to illustrate how the current judging circuit 17 in the present embodiment detects and judges the input current Iin. The current judging circuit 17 has various embodiments, and is not limited to the embodiment. As shown in the figure, the current judging circuit 17 senses the input current Iin′ and converts it into a voltage signal. The input comparison circuit 171 'the comparison circuit 171 compares the voltage signal related to the input current Iin with the set signal Vset, and then switches the result input. The circuit n is adjusted to perform excessive current protection control. The present invention has been described above with respect to the preferred embodiments, and the above description is only intended to make the content of the present invention easy to understand by those skilled in the art, and is not intended to limit the scope of the present invention. In the same spirit of the creation, those skilled in the art can think of various equivalent changes. For example, in the embodiment, the two circuits of the direct connection are illustrated as 'other circuits or components that can be inserted into the main ring. For example, the input and output signs of the error amplifier or the comparison circuit can be interchanged, and only need to be in the circuit + _ Modifications should be made. The scope of the handle shall cover the above and all other equivalent changes.

Claims (1)

M420926 第100214431專利申請案修正頁(無劃線版) It. J17 - 六、申請專利範圍: ' - -. -ww «· .. W 二 τ ♦ ι· 一種電源管理電路,包含: 切換式調節電路’根據一壓差控制訊號,將一輸入電壓轉 換為一輸出電壓; 線性調節電路,耦接於該輸出電壓與一電池之間,根據一 開關訊號’以控制輸出電壓與電池間之一充電路徑;以及 壓差控制電路,接收該電池之充電電流訊號、該電池之電 壓與該輸出電壓’並輸出該壓差控制訊號與該開關訊號,以 控制該切換式調節電路與該線性調節電路,使得當該電池電 壓未超過一臨界電壓時,該輸出電壓高於該臨界電壓一第一 差值,而當該電池電壓超過該臨界電壓時,該輸出電壓高於 該電池電壓一第二差值, 其中該線性調節電路具有一功率開關,位於該充電路徑 上’且該第二差值為該功率開關完全導通時,該充電路徑之等 效電阻乘以該電池之充電電流。 2.如申請專利範圍第丨項所述之電源管理電路,其中該壓差 控制電路包括: 一比較電路,比較該電池電壓與該臨界電壓,以產生一致 能訊號; 一誤差放大電路,比較該輸出電壓與一第一電壓,以產生 一放大訊號,其中該第一電壓高於該臨界電壓該第一差值; 一第一多工電路’接收該放大訊號與該充電電流訊號,並 根據該致能訊號’以選擇依據該放大訊號或該充電電流訊號 產生該壓差控制訊號;以及 一第二多工電路,根據該致能訊號,選擇以該充電電流訊 號輸入線性調節電路或使該功率開關完全導通,以控制電池 10 的充電電流。 3·如申請專利範圍第2項所述之電源管理電路其中當該電 池電壓未超過該臨界電壓時,該致能訊號控制該第一$二電 路,選擇以該放大訊號來控制該切換式調節電路。 屯如申請專利範圍第2項所述之電源管理電路,其中當該電 池電壓未超過該臨界電壓時,該致能訊號控制該第二電 路,選擇以該充電電流訊號輸入該線性調節電路,作為該開 關訊號。 5. 如申請專利範圍第2項所述之電源管理電路,其中當該電 池電壓超過該臨界電壓時,該致能訊號控制該第一多工電 路,選擇根據該充電電流訊號來控制該切換式調節電路,此 時該輪出賴等於vbat+Ibat*R;其巾,Vbat為該電池電壓, Ibat為流入該線性調節電路與該充電路徑之電流,r為該充電 路徑之等效電阻。 ,以 6. 如申請專利範圍第2項所述之電源管理電路,其中當該電 池電壓超過該臨界電壓時,該致能訊號控制選擇將該功率開 關完全導通。 7. 如申請專利範圍第1項所述之電源管理電路,其中該切換 式調節電路為降壓型切換調節電路或升壓型切換調節電路。 8·如申請專利範圍第1項所述之電源管理電路,更包含一電. 流判斷電路,用以偵測流入該切換式調節電路之輸入電流, 以保持該輸入電流在正常操作時不超過一設定值。M420926 Patent Application No. 100214431 (no underlined version) It. J17 - VI. Patent application scope: ' - -. -ww «· .. W 2τ ♦ ι· A power management circuit that includes: Switching regulation The circuit 'converts an input voltage into an output voltage according to a differential pressure control signal; a linear adjustment circuit coupled between the output voltage and a battery, according to a switching signal 'to control the output voltage and charge one of the batteries a path; and a differential pressure control circuit, receiving a charging current signal of the battery, a voltage of the battery and the output voltage', and outputting the differential pressure control signal and the switching signal to control the switching regulator circuit and the linear adjustment circuit, When the battery voltage does not exceed a threshold voltage, the output voltage is higher than the threshold voltage by a first difference, and when the battery voltage exceeds the threshold voltage, the output voltage is higher than the battery voltage by a second difference. Where the linear adjustment circuit has a power switch located on the charging path and the second difference is when the power switch is fully turned on, Resistance electrical path efficiency of a battery and the like is multiplied by the charging current. 2. The power management circuit of claim 2, wherein the differential pressure control circuit comprises: a comparison circuit that compares the battery voltage with the threshold voltage to generate a uniform energy signal; an error amplification circuit that compares Outputting a voltage and a first voltage to generate an amplification signal, wherein the first voltage is higher than the threshold voltage; the first multiplexing circuit receives the amplification signal and the charging current signal, and according to the The enable signal 'selects to generate the differential pressure control signal according to the amplified signal or the charging current signal; and a second multiplexing circuit, according to the enabling signal, selecting the charging current signal to input the linear adjusting circuit or making the power The switch is fully turned on to control the charging current of battery 10. 3. The power management circuit of claim 2, wherein when the battery voltage does not exceed the threshold voltage, the enable signal controls the first $2 circuit, and the amplified signal is selected to control the switching adjustment Circuit. For example, the power management circuit of claim 2, wherein when the battery voltage does not exceed the threshold voltage, the enable signal controls the second circuit, and the charging current signal is selected to be input to the linear adjustment circuit as The switch signal. 5. The power management circuit of claim 2, wherein when the battery voltage exceeds the threshold voltage, the enable signal controls the first multiplex circuit, and selects to control the switching mode according to the charging current signal. Adjusting the circuit, at this time, the round trip is equal to vbat+Ibat*R; its towel, Vbat is the battery voltage, Ibat is the current flowing into the linear regulation circuit and the charging path, and r is the equivalent resistance of the charging path. 6. The power management circuit of claim 2, wherein the enable signal control selectively turns the power switch fully on when the battery voltage exceeds the threshold voltage. 7. The power management circuit of claim 1, wherein the switching regulator circuit is a buck switching regulator circuit or a boost switching regulator circuit. 8. The power management circuit of claim 1, further comprising an electrical flow determining circuit for detecting an input current flowing into the switching regulator circuit to keep the input current from exceeding during normal operation. A set value.
TW100214431U 2011-08-04 2011-08-04 Power management circuit TWM420926U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100214431U TWM420926U (en) 2011-08-04 2011-08-04 Power management circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100214431U TWM420926U (en) 2011-08-04 2011-08-04 Power management circuit

Publications (1)

Publication Number Publication Date
TWM420926U true TWM420926U (en) 2012-01-11

Family

ID=46452981

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100214431U TWM420926U (en) 2011-08-04 2011-08-04 Power management circuit

Country Status (1)

Country Link
TW (1) TWM420926U (en)

Similar Documents

Publication Publication Date Title
JP5261942B2 (en) POWER SUPPLY CIRCUIT FOR POWER SUPPLYING CHARGE CONTROL CIRCUIT, CHARGING DEVICE HAVING THE POWER SOURCE CIRCUIT, AND METHOD FOR POWER SUPPLYING CHARGE CONTROL CIRCUIT
TWI530068B (en) Systems and methods for power management
TWI364906B (en) Multi-output power converting circuit
US6590370B1 (en) Switching DC-DC power converter and battery charger for use with direct oxidation fuel cell power source
US8378634B2 (en) Power management circuit
WO2021050239A1 (en) Efficient use of energy in a switching power converter
US20070085519A1 (en) Switching regulator with automatic multi mode conversion
TW201206033A (en) Control circuit and method for reducing output ripple in constant on-time switching regulator
TW201212478A (en) Power control systems, apparatus, and methods
TW201121216A (en) System and method for controlling a voltage supply
US9158314B2 (en) Voltage regulator, and control circuit and control method thereof
TW201138284A (en) Flyback converter system and feedback controlling apparatus and method for the same
CN103036274B (en) There is the battery charge modulator of boost capability
TWM240729U (en) Voltage transformer with enhanced efficiency
JP2013537032A5 (en)
TW201023477A (en) Uninterruptible power supply
TW201212497A (en) Switching regulator and control circuit and control method thereof
JP2013537032A (en) Reduction of ripple current in switched-mode power converters using bridge topology
TW201227203A (en) Method for improving voltage identification (VID) transient response and voltage regulator
TW201233017A (en) Control circuit for switching regulator, switching regulator and electronic equipment using the control circuit
TW201013355A (en) Low drop out regulator with fast current limit
JP5642349B2 (en) Pulse width modulation circuit, pulse width modulation method and regulator
TW200903960A (en) Cascade power converter
WO2017113191A1 (en) Head-mountable display device
TWM420926U (en) Power management circuit

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees