TWM417740U - Multi-color light emitting device circuit - Google Patents

Multi-color light emitting device circuit Download PDF

Info

Publication number
TWM417740U
TWM417740U TW100211353U TW100211353U TWM417740U TW M417740 U TWM417740 U TW M417740U TW 100211353 U TW100211353 U TW 100211353U TW 100211353 U TW100211353 U TW 100211353U TW M417740 U TWM417740 U TW M417740U
Authority
TW
Taiwan
Prior art keywords
light
circuit
emitting element
color
dark
Prior art date
Application number
TW100211353U
Other languages
Chinese (zh)
Inventor
Jing-Meng Liu
Original Assignee
Richtek Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richtek Technology Corp filed Critical Richtek Technology Corp
Publication of TWM417740U publication Critical patent/TWM417740U/en

Links

Landscapes

  • Control Of El Displays (AREA)
  • Led Devices (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

五、新型說明: 【新型所屬之技術領域】 本創作係有關一種多色發光元件電路’特別是指一種發 光元件串中之發光元件數量,可根據不同發光元件所需之不 同電壓來決定之多色發光元件電路。 【先前技術】 發光二極體(led)投影顯示裝置中,其中一種方式 係以RGB色循環(color sequential)的技術,快速地猶環轉 換RGB LED導通/不導通與穩定時間(settling time),以令 使用者得以觀看投影幕上的畫面。而手持式的LED投影顯 示裝置,如第1圖所示,一般採取由RGB LED共享一 DC-DC電源調節電路100以將裝置最小化並降低製造成 本。此種先前技術中,當需要RGB其中一種顏色LED (即 RLED、GLED、或BIJED)發光時,邏輯閘12接收發光訊 號R、G、或B,以操作開關η,而選擇將供應電壓Vout 供應給圖中右方的多色發光元件組20;同時,電晶體Q卜 Q2、Q3亦根據該發光訊號r、G、或B,以使多色發光元 件組20中,對應顏色的LED導通。 第1圖先前技術中,係根據開關14之選擇,而根據 感測電阻Rs上的跨壓,或根據第一電阻R1與第二電阻 R2間的節點電壓,而反饋控制DC-DC電源調節電路100, 產生適當的輸出電壓Vout。詳言之,RGB三種顏色的 LED ’其工作電壓並不相同。一般而言,白光led,其工 作電壓約為3.2V - 3.8V ;紅光LED,其工作電壓約為 1-9V - 2.6V ;綠光LED,其工作電壓約為29V 一 3.7V ;藍光LED,其工作電壓约為3.0V — 3 8V。第i圖 中,假設紅光RLED工作電壓為2 3V ;綠光gled工作 電壓為3.6V ;藍光BlED工作電壓例如為3 6V。當三種 顏色全暗時,輸出電壓Vout若設定為〇v,則從三種顏色 全暗銜接到其中一種顏色發亮的情況下,輸出 v〇ut 必須從0V增加到2.3V或3.6V,其差距相當大,將導致電 路反應速度過慢關題。因此,先祕術巾係在前述工作 電壓2.3V到3.6V之間設置一個暗色位準(Dark ievd),例 如3V,當三種顏色全暗時,輸出電壓v〇m停留在此位準, 如此,在三種顏色全暗銜接到其中一種顏色發亮的情況 下,輸出電壓Vout的變化較小,可加速電路反應。需要暗 色(Dark)狀況時,開關14根據邏輯閘12的輸出訊號,^ 換連接至暗色反饋電路13(由第一電阻尺丨與第二電阻幻 構成),使所有顏色LED皆不導通,並適當安排第一電阻 R1與第二電阻R2的阻值,使供應電壓v〇ut控制於前述工 作電壓2.3V到3.6V之間,例如3V。 以上方式所產生的供應電壓Vout波形舉例而言如第2 圖所示,其雖然使三種顏色全暗銜接到其中一種顏色發亮 之間的輸出電壓差距縮小,但在紅光RLED與其他兩^ LED的變換之間,輸出電壓差距仍可達13V (若每_串 LED串接更多數目的LED ’則差距更大),此過程中輪出 電容C1的充電/放電仍需要相當時間才能達到正確的工作 電壓;如此將將使顏色轉換的時間變長,並降低影像對比 度’亦即’電路的反應速度仍難令人滿意。 如果不共用DC_DC電源調節電路,而針對每一種顏 色的LED分別以不同的DC-DC電源調節電路供電,固可 解決此問題’但顯然並不經濟。因此,有必要提出一種在V. New description: [New technical field] This creation is about a multi-color light-emitting device circuit', especially the number of light-emitting components in a string of light-emitting components, which can be determined according to the different voltages required by different light-emitting components. Color light-emitting element circuit. [Prior Art] In a light-emitting diode (LED) projection display device, one of the methods is to use RGB color sequential technology to quickly convert RGB LED conduction/non-conduction and settling time. In order to allow the user to view the picture on the projection screen. The hand-held LED projection display device, as shown in Fig. 1, generally employs a DC-DC power conditioning circuit 100 shared by RGB LEDs to minimize the device and reduce manufacturing costs. In this prior art, when one of the RGB LEDs (ie, RLED, GLED, or BIJED) is required to be illuminated, the logic gate 12 receives the illumination signal R, G, or B to operate the switch η, and selects to supply the supply voltage Vout. To the right of the multi-color light-emitting element group 20 in the figure; at the same time, the transistors Q, Q2, and Q3 are also based on the light-emitting signals r, G, or B, so that the LEDs of the corresponding color in the multi-color light-emitting element group 20 are turned on. In the prior art, according to the selection of the switch 14, the DC-DC power supply regulating circuit is feedback-controlled according to the voltage across the sensing resistor Rs or according to the node voltage between the first resistor R1 and the second resistor R2. 100, generating an appropriate output voltage Vout. In particular, the LEDs of the three colors of RGB have different operating voltages. In general, white LED, its working voltage is about 3.2V - 3.8V; red LED, its working voltage is about 1-9V - 2.6V; green LED, its working voltage is about 29V - 3.7V; blue LED Its working voltage is about 3.0V - 3 8V. In the figure i, it is assumed that the red RLED operating voltage is 2 3V; the green light gled operating voltage is 3.6V; and the blue BLED operating voltage is, for example, 3 6V. When the three colors are all dark, if the output voltage Vout is set to 〇v, the output v〇ut must be increased from 0V to 2.3V or 3.6V when the three colors are all dark and connected to one of the colors. Quite large, will lead to slow circuit response speed. Therefore, the first secret surgery towel sets a dark color level (Dark ievd) between the aforementioned working voltages of 2.3V to 3.6V, for example, 3V. When the three colors are all dark, the output voltage v〇m stays at this level, so In the case where the three colors are all connected to one of the colors, the change in the output voltage Vout is small, which accelerates the circuit response. When a dark condition is required, the switch 14 is connected to the dark feedback circuit 13 (consisting of the first resistance 丨 and the second resistance illusion) according to the output signal of the logic gate 12, so that all the color LEDs are not turned on, and The resistance values of the first resistor R1 and the second resistor R2 are appropriately arranged such that the supply voltage v〇ut is controlled between the aforementioned operating voltages of 2.3V to 3.6V, for example, 3V. The waveform of the supply voltage Vout generated by the above method is as shown in FIG. 2, for example, although the output voltage gap between the three colors is completely connected to one of the colors is brightened, but the red light RLED and the other two ^ Between the LED changes, the output voltage gap can still reach 13V (if the number of LEDs connected to each string is larger), the charging/discharging of the capacitor C1 in the process still takes a considerable time to reach. The correct working voltage; this will lengthen the color conversion time and reduce the image contrast 'that is' the response speed of the circuit is still unsatisfactory. If the DC_DC power conditioning circuit is not shared, and the LEDs for each color are separately powered by different DC-DC power conditioning circuits, this problem can be solved', but it is obviously not economical. Therefore, it is necessary to propose a

硬體上十分精簡、在成本運用上更有效率的多色發光元件 電路〇 X 有鑑於以上所述,本創作即針對先前技術之不足,提 出一種多色發光元件電路,其中,發光元件串之發光元件 數量,可根據不同發光元件所需之不同電壓來決定之多色 發光元件電路,以增加多色發光元件電路的應用範圍,且 簡化現有發光元件控制電路設計。 【新型内容】 . 本創作目的在提供一種多色發光元件電路,包含:複 數顏色不同之發光元件串,其-端連接於—共同節點,以 接收-供應電壓’且每-發光元件Φ包括複數顏色相同之 發光元件,以串聯方式連接,其中每一發光 一個對應的❹m號;時序㈣桃,根據—輸入訊號, 而選擇導通該複數顏色不同之發光元件串其巾之一或都 不導通,一電源調節電路,當該複數顏色不同之發光元件 串其中之-導通時’用以接收與該導通之發統件串對應 的感測訊號’與-參考訊號比較,並根據比較結果,將一 輸入電壓轉換為雜應電Μ ;其中,所述發光元件串中之 發光元件數f ’根據不件所冑之不同電壓來 決疋’其中至少兩發光元件串巾之發光元件數量彼此不 同’以使制發光树$之麟較發光元絲量相同時更 為接近。 在其中一種較佳的實施型態中,上述多色發光元件電 路宜更包含:一暗色反饋電路,以供產生一暗色反饋訊 號’且當該複數顏色不同之發光元件串都不導通時該電 源調節電路接收該暗色反饋訊號,與該參考訊號比較,並 根據比較結果,將該輸入電壓轉換為該供應電壓。 在另一較佳實施型態中,上述多色發光元件電路宜更 包含:一暗色反饋電路,以供產生一暗色反饋訊號,且當 該複數顏色不同之發光元件㈣*導通時,該電源調節電 路接收該暗色反饋訊號,與一暗色參考訊號比較,並根據 比較結果,將該輸入電壓轉換為該供應電壓。 上述多色發光元件電路之其中一種實施方式中,該暗 色反饋電路保持導通。 在另一較佳實施型態中,多色發光元件電路宜更包含 共用感測電阻,與各發光元件串耦接,以提供該感測訊 號。 在又一較佳實施型態中,多色發光元件電路宜更包含 複數感測電阻,分別與各發光元件串搞接,以提供與導通 之發光元件串對應的感測訊號。 上述中之多色發光元件電路中,多色發光元件電路宜 更包含一選擇電路,與各發光元件串分別耦接於對應的節 點,以取得與各發光元件串對應的感測訊號,擇一輸入該 電源調節電路。 前述之多色發光元件電路中,多色發光元件電路較佳 地更包含一選擇電路,接收複數之顏色參考訊號,並根據 該時序控制電路所選發光元件串,而選擇與所選發光元件 作電壓例如為3.6V ;藍% BLED纟讀電壓例如亦為 3.6V ’因此’根據不關色不同發光元件所需之不同電壓 來決定各發光元件ί巾,串聯的發光元件數量,以使各發 光元件串之壓降近似。 詳言之’如第3Α圖所示,例如但不限於將3個紅光 RLED串聯為紅光RLED串;將2綠光GLED串聯為綠光 GLED串;並將2藍光BLED串聯為藍光BLED串。也就 是紅光RLED串之總和工作電壓為3*23V=69V,綠光 GLED串之總和工作電壓為2*3 6V=7 2V,且藍光BLED 串之總和工作電壓為2*3.6V=7.2V。這樣一來,與先前技 術相比’本實施例之紅光RLED串與藍光BLED串間總和 工作電壓的壓差’從1.3V降低至〇.3V。因此,於不同顏 色(包括暗色)之間切換時’供應電壓v〇ut的電壓差大幅 減低,從而減少輸出電容C1的充電/放電的時間,這將使 顏色轉換的時間縮短,並提高影像對比度。 多色發光元件電路中,暗色反饋電路13的一端也與 »玄共同郎點麵接,以接收供應電壓V〇ut;暗色反饋電路a 的另一端經由感測電阻RS耦接於接地電位。.暗色反饋電 路13包括一分壓電路,.由相互耦接之第一電阻R1與第二 電阻R2所構成。第一電阻ri與第二電阻们的阻值宜經 過適當設計,使得當暗色開關SD導通(亦即其他顏色開 關SR、SG、SB)皆不導通時,供應電壓v〇ut的位準落在 紅光RLED串的總和工作電壓與藍光bled串的總和工作 電壓之間,在本實施例中即位於6.9V與7.2V之間。 時序控制電路50接收輸入訊號Input,以產生多色時 序控制訊號TR、TG、TB、或暗色時序控制訊號TD,以 操作顏色開關SR、SG、SB或暗色開關SD ;其中,當顏 色開關SR、SG、SB皆不導通時,邏輯閘56使暗色開關 SD導通。調節控制電路40,接收感測訊號Vs,與參考訊 號Vref比較,以產生控制訊號Vc,控制功率級1〇,使功 率級10根據控制訊號Vc,將輸入電壓Vin轉換為供應電 壓Vout。功率級10例如可為但不限於第13A_13H圖所示 的降壓電路(buck C0nverter )、升壓電路(b_ c〇nverter)、 升降壓電路(buck-boost converter)、反壓電路(inverting converter)等。調節控制電路4〇比較感測訊號%與參考 訊號Vref *產生之蝴訊號Ve,可控制功率級1()執行脈 寬調變或脈頻調變’其控制方式㈣者所已知,在此不予 贅述。 為避免供應電壓Vout過高,可設置過電壓保護電路, 以增加多色發光元件電路的安全性;其電路實現方法與習 知在多色發光元件電路巾的電路實現方法姻,在此不予 贅述。 第3B圖舉例顯示本實施例中,多色時序控制訊號 TR、TG、TB、與暗色時序控制訊號TD所可能發生的波 形圖。假設某畫面中需要使各顏色的亮度接近,則可以控 制將紅光RLED φ、綠光GLED _、錢光BLED串之Multi-color light-emitting element circuit 〇X which is very compact in hardware and more efficient in cost application. In view of the above, the present invention proposes a multi-color light-emitting element circuit for the deficiencies of the prior art, wherein the light-emitting element string The number of light-emitting elements can be determined according to different voltages required by different light-emitting elements to increase the application range of the multi-color light-emitting element circuit, and simplify the design of the existing light-emitting element control circuit. [New content] The purpose of the present invention is to provide a multi-color light-emitting element circuit comprising: a plurality of light-emitting element strings of different colors, the - terminal is connected to the - common node to receive - supply voltage ' and each - light-emitting element Φ comprises a plurality The light-emitting elements of the same color are connected in series, wherein each of the light-emitting elements has a corresponding ❹m number; the timing (four) peach, according to the input signal, is selected to turn on the light-emitting elements of the plurality of different colors, or one of the towels is not turned on, a power conditioning circuit for comparing a sense signal corresponding to the turned-on string of the conductors with a reference signal when the plurality of light-emitting component strings of the plurality of different color strings are turned on, and according to the comparison result, The input voltage is converted into a hybrid electric power; wherein the number of light-emitting elements f' in the light-emitting element string is determined according to different voltages of the plurality of light-emitting elements, wherein the number of light-emitting elements of at least two of the light-emitting elements is different from each other The illuminating tree $ lin is closer to the same amount as the illuminating element. In a preferred embodiment, the multi-color light-emitting device circuit further includes: a dark color feedback circuit for generating a dark color feedback signal 'and the power source when the plurality of light-emitting element strings having different colors are not turned on The adjustment circuit receives the dark feedback signal, compares it with the reference signal, and converts the input voltage to the supply voltage according to the comparison result. In another preferred embodiment, the multi-color light-emitting device circuit further includes: a dark color feedback circuit for generating a dark color feedback signal, and the power source is adjusted when the plurality of light-emitting elements (four)* having different colors are turned on. The circuit receives the dark feedback signal, compares it with a dark reference signal, and converts the input voltage to the supply voltage according to the comparison result. In one embodiment of the multi-color light-emitting device circuit described above, the dark feedback circuit remains conductive. In another preferred embodiment, the multi-color light-emitting device circuit further includes a common sensing resistor coupled to each of the light-emitting elements to provide the sensing signal. In a further preferred embodiment, the multi-color light-emitting device circuit further includes a plurality of sensing resistors respectively coupled to the respective light-emitting element strings to provide a sensing signal corresponding to the turned-on light-emitting element string. In the above-mentioned multi-color light-emitting device circuit, the multi-color light-emitting device circuit further includes a selection circuit, and each of the light-emitting element strings is respectively coupled to a corresponding node to obtain a sensing signal corresponding to each of the light-emitting element strings, Enter the power conditioning circuit. In the multi-color light-emitting device circuit, the multi-color light-emitting device circuit preferably further includes a selection circuit for receiving a plurality of color reference signals, and selecting the light-emitting element string selected according to the timing control circuit to select the selected light-emitting element The voltage is, for example, 3.6V; the blue % BLED reading voltage is, for example, also 3.6V. Therefore, the number of light-emitting elements in series is determined according to the different voltages required for different light-emitting elements without coloring, so that the respective light-emitting elements are made. The voltage drop of the component string is approximated. In detail, as shown in Figure 3, for example, but not limited to, three red RLEDs are connected in series as a red RLED string; two green GLEDs are connected in series as a green GLED string; and two blue BLEDs are connected in series as a blue BLED string. . That is, the sum of the red light RLED strings is 3*23V=69V, the sum of the green GLED strings is 2*3 6V=7 2V, and the sum of the blue BLED strings is 2*3.6V=7.2V. . Thus, the pressure difference 'the sum of the operating voltages of the red light RLED string and the blue light BLED string of the present embodiment is reduced from 1.3 V to 〇.3 V as compared with the prior art. Therefore, when switching between different colors (including dark colors), the voltage difference of the supply voltage v〇ut is greatly reduced, thereby reducing the charging/discharging time of the output capacitor C1, which shortens the color conversion time and improves the image contrast. . In the multi-color light-emitting element circuit, one end of the dark color feedback circuit 13 is also connected to the X---------------------------------------------------- The other end of the dark-color feedback circuit a is coupled to the ground potential via the sense resistor RS. The dark feedback circuit 13 includes a voltage dividing circuit, which is composed of a first resistor R1 and a second resistor R2 coupled to each other. The resistance values of the first resistor ri and the second resistor should be appropriately designed so that when the dark switch SD is turned on (ie, other color switches SR, SG, SB) are not turned on, the level of the supply voltage v〇ut falls on Between the sum operating voltage of the red light RLED string and the sum operating voltage of the blue light bled string, in this embodiment is between 6.9V and 7.2V. The timing control circuit 50 receives the input signal Input to generate a multi-color timing control signal TR, TG, TB, or a dark color timing control signal TD to operate the color switch SR, SG, SB or the dark color switch SD; wherein, when the color switch SR, When neither SG nor SB is turned on, the logic gate 56 turns on the dark switch SD. The adjustment control circuit 40 receives the sensing signal Vs and compares it with the reference signal Vref to generate the control signal Vc, and controls the power level 1〇 to cause the power stage 10 to convert the input voltage Vin into the supply voltage Vout according to the control signal Vc. The power stage 10 can be, for example but not limited to, a buck circuit (buck C0nverter), a boost circuit (b_c〇nverter), a buck-boost converter, and a back-pressure circuit (inverting) as shown in FIG. 13A_13H. Converter) and so on. The adjustment control circuit 4 〇 compares the sensing signal % with the reference signal Vref * generated by the signal signal Ve, and can control the power level 1 () to perform pulse width modulation or pulse frequency modulation 'its control method (4) is known here. Do not repeat them. In order to avoid the supply voltage Vout being too high, an overvoltage protection circuit may be provided to increase the safety of the multi-color light-emitting element circuit; the circuit implementation method is conventionally in the circuit implementation method of the multi-color light-emitting element circuit towel, and is not allowed here. Narration. Fig. 3B exemplifies a waveform diagram which may occur in the multi-color timing control signals TR, TG, TB, and the dark color timing control signal TD in this embodiment. Assuming that the brightness of each color needs to be close in a certain picture, it is possible to control the red light RLED φ, the green light GLED _, and the Qianguang BLED string.

導,時間比例,控制比例約為2:3:3,如财2τ與打所 不思。而當紅光RLED串、綠光GLED串、與藍光BLED 串皆=導通時’則暗色時序控制訊號TD導通暗色開關 SD。當然’若畫面需要各顏色有不同的亮度,則可根據比 例來控制各發紅件㈣發亮時間。 第4A與犯圖顯示本創作之第二個實施例。與第一個 實施例不_是,本實酬❹色發光元件電路,更包含 第-選擇電路15 ’可根據時序控制電路5()選擇導通顏色 開關SR、SG、SB,或選擇導通暗色開關SD,而選擇不 同的參考訊號輪入調節控制電路4〇作為感測訊號Vs的比 較對象。亦即’當時序控制電路% 導通顏色開關SR、 SG、或SB時,第一選擇電路15選擇多色參考訊號 Vref_RGB ;當時序控制電路5〇選擇導通暗色開關SD時, 第-選擇電路15選擇暗色參考訊號Vfef—Dark。不同的參 考訊號’可使供應電壓Vout的控制更為準確,或增加電路 s5:計(例如電阻Rl、R2、rs的阻值設定)的彈性。 第4B圖與第3B圖不同,意在舉例顯示,當晝面需要 各顏色有不同的亮度時,可根據比例來控制各發光元件串 的發受時間。 第5A與5B圖顯示本創作之第三個實施例。與第二個 實施例不同的是,本實施例的多色發光元件電路,包含第 二選擇電路17 ’可根據時序控制電路5〇選擇導通顏色開 關SR、SG、SB,或選擇導通暗色開關SD,而選擇不同 的參考訊號輸入調節控制電路40作為感測訊號Vs的比較 對象。亦即,當時序控制電路50選擇導通顏色開關SR時, 第二選擇電路17選擇紅色參考訊號Vref_R ;當時序控制 電路50選擇導通顏色開關SG時,第二選擇電路17選擇 綠色參考訊號Vref_G ;當時序控制電路50選擇導通顏色 開關SB時,第二選擇電路17選擇藍色參考訊號Vref_B ; 當時序控制電路50選擇導通暗色開關SD時,第二選擇電 路17選擇暗色參考訊號Vref_Dark。本實施例中,不同的 參考訊號除了可使供應電壓Vout的控制更為準確,或增加 M417740 電路設計(例如電阻R卜R2、Rs的阻值設定)的彈性之 外’更可藉由各色參考訊號Vref_R、VrefJ3、Vref—B的設 定,使得各色發光元件串在相同導通時間下 '亮度相同, 而不必須藉助於控制發亮時間比例。但當然,如欲根據時Guide, time ratio, control ratio is about 2:3:3, such as the money 2τ and hit the house. When the red RLED string, the green GLED string, and the blue BLED string are both turned on, the dark timing control signal TD turns on the dark switch SD. Of course, if the picture requires different brightness for each color, the brightness of each red part (4) can be controlled according to the ratio. The 4A and the map show the second embodiment of the present creation. In contrast to the first embodiment, the presently preferred color light-emitting element circuit further includes a first selection circuit 15' that selects the color switch SR, SG, SB according to the timing control circuit 5(), or selects the conduction dark switch. SD, and select different reference signals to enter the adjustment control circuit 4 as a comparison object of the sensing signal Vs. That is, when the timing control circuit % turns on the color switch SR, SG, or SB, the first selection circuit 15 selects the multi-color reference signal Vref_RGB; when the timing control circuit 5 selects the conduction dark switch SD, the first selection circuit 15 selects Dark reference signal Vfef-Dark. Different reference signals can make the control of the supply voltage Vout more accurate, or increase the flexibility of the circuit s5: meter (for example, the resistance setting of the resistors R1, R2, rs). Fig. 4B is different from Fig. 3B, and is intended to exemplify that when the facets require different colors for each color, the time of transmission of each of the light-emitting element strings can be controlled according to the ratio. Figures 5A and 5B show a third embodiment of the present creation. Different from the second embodiment, the multi-color light-emitting element circuit of the present embodiment, including the second selection circuit 17', can select the conduction color switches SR, SG, SB according to the timing control circuit 5, or select the conduction dark switch SD. The different reference signal input adjustment control circuit 40 is selected as the comparison object of the sensing signal Vs. That is, when the timing control circuit 50 selects the on color switch SR, the second selection circuit 17 selects the red reference signal Vref_R; when the timing control circuit 50 selects the on color switch SG, the second selection circuit 17 selects the green reference signal Vref_G; When the sequence control circuit 50 selects the on color switch SB, the second selection circuit 17 selects the blue reference signal Vref_B; when the timing control circuit 50 selects to turn on the dark switch SD, the second selection circuit 17 selects the dark reference signal Vref_Dark. In this embodiment, different reference signals can not only make the control of the supply voltage Vout more accurate, but also increase the flexibility of the M417740 circuit design (for example, the resistance R R2, Rs resistance setting). The signals Vref_R, VrefJ3, and Vref-B are set such that the strings of the respective color light-emitting elements have the same brightness at the same on-time, without having to control the ratio of the brightening time. But of course, if you want to

間比例來控制各色發光元件串的亮度,也仍屬可行。第5B 圖意在舉_示’各發光元件㈣發糾間不必須為前述 的 2:3:3。 第6A與6B圖顯示本創作之第四、五實施例。與第一 個實施例不同的是,這兩個實施例的多色發光元件電路, 包3複數個感測電阻RSR、RSG、與RSB,分別對應粞接 至對應的顏色開關SR、SG、與SB,且各感測電阻RsR、 RsG、與RSB之阻值,可以分別設定為相同或不同的值, 例如可根據各發光元件串所需電流而設定;以及第二選擇 電路π,可根據時序控制電路50選擇導通顏色開關SR、 SG、SB,或選擇導通暗色開關SD ,而選擇不同的感測訊 號Vs輸入調節控制電路4〇作為參考訊號Vref的比較對 象。亦即,當時序控制電路50選擇導通顏色開關SR時, 第二選擇電路17選擇感測電阻RsR的跨壓作為感測訊號 Vs ;當時序控制電路50選擇導通顏色開關SG時,第二選 擇電路17選擇感測電阻RsG的跨壓作為感測訊號Vs ;當 時序控制電路50選擇導通顏色開關SB時,第二選擇電路 17選擇感測電阻RsB的跨壓作為感測訊號Vs ;當時序控 制電路50選擇導通暗色開關sd時,第二選擇電路選 擇第一電阻R2的跨壓作為感測訊號vs。本實施例中,不 同的感測訊號Vs可使供應電壓v〇ut的控制更為準確,或 增加電路設計的彈性,且此外,更可藉由各感測電阻RsR、 12 M417740It is still feasible to control the brightness of the strings of light-emitting elements of each color in proportion. The fifth drawing is intended to mean that the respective light-emitting elements (four) are not necessarily the aforementioned 2:3:3. Figures 6A and 6B show fourth and fifth embodiments of the present invention. Different from the first embodiment, the multi-color light-emitting element circuits of the two embodiments have a plurality of sensing resistors RSR, RSG, and RSB, respectively corresponding to the corresponding color switches SR, SG, and SB, and the resistance values of the sensing resistors RsR, RsG, and RSB may be respectively set to the same or different values, for example, may be set according to the required current of each of the light-emitting element strings; and the second selection circuit π may be based on the timing The control circuit 50 selects the on color switches SR, SG, SB, or selects the conduction dark switch SD, and selects different sensing signals Vs to input the adjustment control circuit 4 as the comparison object of the reference signal Vref. That is, when the timing control circuit 50 selects the turn-on color switch SR, the second selection circuit 17 selects the voltage across the sense resistor RsR as the sense signal Vs; when the timing control circuit 50 selects the turn-on color switch SG, the second select circuit 17 selects the voltage across the sense resistor RsG as the sense signal Vs; when the timing control circuit 50 selects the turn-on color switch SB, the second selection circuit 17 selects the voltage across the sense resistor RsB as the sense signal Vs; when the timing control circuit When the selection of the dark switch sd is selected, the second selection circuit selects the voltage across the first resistor R2 as the sensing signal vs. In this embodiment, the different sensing signals Vs can make the control of the supply voltage v〇ut more accurate, or increase the flexibility of the circuit design, and moreover, by the respective sensing resistors RsR, 12 M417740

RsG、與rsb的設定’使得各色發光元件串在相同導通時 間下、亮度相同’而不必須藉助於控制發亮時間比例。(但 當然,如欲根據時間比例來控制各色發光元件串的亮度, 也仍屬可行。) 第6B圖實施例與第6A圖實施例相似,僅是其中將從 各色發光元件串取感測訊號的節點,改為取自各顏色開關 SR、SG、SB的上端(電流流入端)’而非取自其下端(電 流流出端)。The setting of RsG, and rsb is such that the strings of the respective color light-emitting elements are at the same on-time and the brightness is the same ' without having to control the ratio of the brightening time. (Of course, it is still possible to control the brightness of the strings of light-emitting elements according to the time ratio.) The embodiment of Figure 6B is similar to the embodiment of Figure 6A, except that the sensing signals are taken from the respective color-emitting elements. The node is changed from the upper end (current inflow end) of each color switch SR, SG, SB' instead of the lower end (current outflow end).

又,第6A與6B圖實施例中省略了暗色開關SD,因 此自共同節點(Vout)經暗色反饋電路13 (包含第一電阻幻 與第二電阻R2)接地的路徑將保持導通,但這不影響整體 電路的操作。基本上,整體電路將根據第二選擇電路17 所選擇的感測訊號Vs來控制功率級1〇的操作而產生南备 的供應電壓Vout,僅是在紅光脏〇串、綠光GLED串二 或藍光BLED串導通發凴時,會在第一電阻ri與第二電 阻R2構成的路徑上有微小的漏電流,但此漏電流影響不Moreover, in the embodiment of FIGS. 6A and 6B, the dark switch SD is omitted, so the path from the common node (Vout) to the ground through the dark feedback circuit 13 (including the first resistor phantom and the second resistor R2) will remain conductive, but this is not Affect the operation of the overall circuit. Basically, the overall circuit will control the operation of the power stage 1 根据 according to the sensing signal Vs selected by the second selection circuit 17 to generate the supply voltage Vout of the south preparation, only in the red light dirty string, the green light GLED string 2 When the blue BLED string is turned on, there is a slight leakage current in the path formed by the first resistor ri and the second resistor R2, but the leakage current does not affect

μ 目意在舉觸示,各發光元件串的發亮時間不 2:3:3 ,顧各色發光元件串的發 牛,目不完全相同,但仍可使各色發光元件串的亮度 考目制方式可藉助於控制導通時間、給予不同的參 5儿準、或使用不同阻值的感測電阻。 的控制更為η 選擇,以使供應電屋_ 色發亮:加電路設計的彈性、及/或便利控制各 13 第8圖顯示本創作第七個實施例。本實施例為第7圖 實施例相似,但其中將從各色發光元件串取感測訊號的節 點,改為取自各顏色開關SR、SG、SB的上端(電流流入 端)’而非取自其下端(電流流出端)。 第9圖顯示本創作第八個實施例。本實施例與第三個 實施例(第5A圖)相似,但與其不同的是,本實施例之 暗色開關SD耦接於調節控制電路40與感測電阻Rs之 間,.並由時序控制電路50根據輸入訊號〗叩ut產生之多色 開關訊號TR、TG、與TB再經由邏輯閘56處理後,產生 暗色時序控制訊號TD,經過反邏輯閘11的轉換,所產生 的訊號來控制。詳言之,當多色時序控制訊號TR、TG、 TB使任一顏色開關SR、SG、SB導通時,暗色開關SD 也導通’因此感測訊號Vs將由感測電阻Rs與第二電阻 R2兩者並聯決定,因為感測電阻rs阻值遠小於第一電阻 R1與第二電阻R2的阻值,因此感測訊號%約等於感測 電阻Rs上的跨壓,依此反饋控制功率級1〇,產生被選之 發光元件串所需的供應電壓Vout。另方面,當多色時序控 制訊號TR、TG、TB使顏色開關SR、SG、SB皆不導通 時,暗色開關SD也不導通,因此感測訊號Vs將為第二電 阻R2上的跨壓,因此產生暗色位準的供應電壓v〇ut。 第10圖顯示本創作第九個實施例。本實施例與第8 圖實施例相似,但與其不同的是,第8圖實施例的第二選 擇電路17,以最小電壓選擇電路18取代,其與各發光元 件串之第二端以及第二電阻R2耦接,並從各第二端電壓 與第二電阻上之壓降,分別由接腳INR、ING、INB、與 IND接收,從中選擇一最小電壓,由接腳OUT輸出,以 作為感測訊號Vs。詳言之’當多色時序控制訊號TR、TG、 TB使任一顏色開關SR、SG、SB導通時,未導通的發光 元件串因無電流’發光元件的壓降較低,故其對應的第二 端電壓將較接近供應電壓Vout,亦即若適當設計第一電阻 IU、第二電阻R2和各感測電阻rsR、RsG、RsB的阻值, 可使得導通的發光元件串,其對應的第二端電壓為最低, 以決定適當的感測訊號Vs,並反饋控制產生適當的供應電 壓 Vout。 第11圖顯示本創作第十個實施例。本實施例與第7 圖實施例相似,但沒有設置第一選擇電路15,且另一與其 不同的是,第7圖實施例的第二選擇電路17,以最大電壓 選擇電路19取代’與各感測電阻RsR、RsG、RsB以及第 一電阻R2耦接’並從各感測電阻rsr、rsg、與rsb,以 及第二電阻R2上之壓降,選擇其中最大電壓,以作為感 測訊號Vs。詳言之,當多色時序控制訊號TR、TG、TB 使任一顏色開關SR、SG、SB導通時,未導通的發光元件 串,其對應的感測電阻上之電壓將為零,亦即導通的發光 元件串,其對應的感測電阻上之電壓為最高,以此作為感 測訊號Vs,並反饋控制產生適當的供應電壓v〇ut。 第12圖顯示本創作第十一個實施例。與第十個實施 例不同的是,本實施例更包含上述之第一選擇電路15,其 根據時序控制電路50的輸出,選擇多色參考訊號 Vref—RGB或暗色參考訊號Vref一Dark,以作為參考訊號 Vref。又’在第11與12圖實施例中,設置了暗色開關SD。 以上各實施例中,如認為不需要提供暗色位準,則可 不舄要设置暗色反饋電路丨3、邏輯閘56、暗色開關SD, M417740 且各選擇電路15、17、18、19内也不需要提供相對應於 暗色反饋電路13的選擇。 以上已針對較佳實施例來說明本創作,唯以上所述 者’僅係為使熟悉本技術者易於了解本創作的内容而已, 並非用來限定本創作之權利範圍。在本創作之相同精神 下,熟悉本技術者可以思及各種等效變化。例如,在所示 各實施例中,各發光元件串,串聯的發光元件數量,不限 於為如圖所示之紅光RLED3個串聯,綠光GLED與藍光 BLED各2個串聯,可以其他數量的[ED串聯,如紅光 RLED 11個串聯(m3V=25.3V);綠光GLED與藍光 BLED各7個串聯(7*3.6V=25.2V)等;又例如,在所示各 實施例電路中’可插入不影響訊號主要意義的元件,如其 他開關等;再例如在某些架構下,輸出電壓v〇ut為負電 壓,發光元件則為反接,此時電路應做相應的改變;又例 如,在某些實施例(例如第3Λ'4Α、5Λ圖)中,第二 電阻R2可以省略;再例如,在例如第7、8、1〇、12圖 中,第一選擇電路15亦可改為四輸入的選擇電路,自參 考訊號 Vref__R、Vref_G、Vref—Β、暗色參考訊號 Vref__Dark 中擇-作為參考訊號Vref,等等。因此,所有各種等效變 化,均應包含在本創作的範圍之内。 【圖式簡單說明】 第1圖顯示手持式的LED投影顯示裝置控制電路示意圖。 第2圖顯械前技術之供應電J1 Vout波形。 第3A與3B圖顯示本創作的第一個實施例。 第4A與4B圖顯示本創作之第二個實施例。μ is intended to indicate that the light-emitting time of each light-emitting element string is not 2:3:3, and the brightness of the light-emitting element strings is not exactly the same, but the brightness of each color light-emitting element string can still be made. The method can be controlled by means of controlling the conduction time, giving different parameters, or using different resistance values. The control is more η-selected to make the supply house _ color brighter: the flexibility of the circuit design, and/or the convenience control. 13 Figure 8 shows the seventh embodiment of the present creation. This embodiment is similar to the embodiment of FIG. 7, but the node from which the sensing signals are taken from the respective color light-emitting elements is changed from the upper end (current inflow end) of each color switch SR, SG, SB' instead of being taken from Its lower end (current outflow end). Figure 9 shows an eighth embodiment of the present creation. The present embodiment is similar to the third embodiment (FIG. 5A), but the difference is that the dark switch SD of the embodiment is coupled between the adjustment control circuit 40 and the sensing resistor Rs, and is controlled by the timing control circuit. The multi-color switching signals TR, TG, and TB generated according to the input signal 叩 ut are processed by the logic gate 56 to generate a dark timing control signal TD, which is controlled by the conversion of the inverse logic gate 11. In detail, when the multi-color timing control signals TR, TG, TB turn on any of the color switches SR, SG, SB, the dark switch SD is also turned on. Therefore, the sensing signal Vs will be caused by the sensing resistor Rs and the second resistor R2. The parallel determination is made because the resistance of the sense resistor rs is much smaller than the resistance of the first resistor R1 and the second resistor R2, so the sense signal % is approximately equal to the voltage across the sense resistor Rs, and the power level is controlled accordingly. The supply voltage Vout required for the selected string of light-emitting elements is generated. On the other hand, when the multi-color timing control signals TR, TG, TB make the color switches SR, SG, and SB non-conducting, the dark switch SD is not turned on, so the sensing signal Vs will be the voltage across the second resistor R2. Therefore, a supply level v〇ut of a dark color level is generated. Figure 10 shows the ninth embodiment of the present creation. This embodiment is similar to the embodiment of Fig. 8, except that the second selection circuit 17 of the embodiment of Fig. 8 is replaced by a minimum voltage selection circuit 18, which is connected to the second end and the second of each of the light-emitting element strings. The resistor R2 is coupled, and the voltage drop from each of the second terminal voltage and the second resistor is received by the pins INR, ING, INB, and IND, respectively, and a minimum voltage is selected therefrom, and is output by the pin OUT as a sense Test signal Vs. In detail, when the multi-color timing control signals TR, TG, and TB turn on any of the color switches SR, SG, and SB, the non-conducting light-emitting element string has a lower voltage drop due to no current, so its corresponding The second terminal voltage will be closer to the supply voltage Vout, that is, if the resistance values of the first resistor IU, the second resistor R2, and the respective sensing resistors rsR, RsG, and RsB are appropriately designed, the conduction light-emitting element string can be made corresponding to The second terminal voltage is the lowest to determine the appropriate sensing signal Vs, and the feedback control generates an appropriate supply voltage Vout. Figure 11 shows the tenth embodiment of the present creation. This embodiment is similar to the embodiment of Fig. 7, but the first selection circuit 15 is not provided, and the other is different in that the second selection circuit 17 of the embodiment of Fig. 7 is replaced by the maximum voltage selection circuit 19 The sense resistors RsR, RsG, RsB and the first resistor R2 are coupled to 'and the voltage drop across the sense resistors rsr, rsg, and rsb, and the second resistor R2, and the maximum voltage is selected as the sense signal Vs. . In detail, when the multi-color timing control signals TR, TG, and TB turn on any of the color switches SR, SG, and SB, the voltage of the corresponding non-conducting light-emitting element string will be zero, that is, the voltage on the corresponding sensing resistor is zero. The turned-on light-emitting element string has the highest voltage on the corresponding sensing resistor as the sensing signal Vs, and the feedback control generates an appropriate supply voltage v〇ut. Fig. 12 shows an eleventh embodiment of the present creation. Different from the tenth embodiment, the embodiment further includes the first selection circuit 15 described above, which selects the multi-color reference signal Vref-RGB or the dark reference signal Vref-Dark according to the output of the timing control circuit 50. Reference signal Vref. Further, in the eleventh and twelfth embodiments, the dark switch SD is provided. In the above embodiments, if it is considered that it is not necessary to provide a dark color level, the dark feedback circuit 丨3, the logic gate 56, the dark switch SD, the M417740 may not be provided, and the selection circuits 15, 17, 18, 19 are not required. A selection corresponding to the dark feedback circuit 13 is provided. The present invention has been described above with respect to the preferred embodiments, and the above description is only for the purpose of making the present invention easy to understand the content of the present invention, and is not intended to limit the scope of the present invention. In the same spirit of the creation, those skilled in the art can think of various equivalent changes. For example, in each of the embodiments shown, the number of light-emitting elements in series, the number of light-emitting elements connected in series is not limited to three series of red light RLEDs as shown in the figure, and two green light GLEDs and two blue light BLEDs are connected in series, and other numbers may be used. [ED series, such as red RLED 11 series (m3V=25.3V); green GLED and blue BLED 7 in series (7*3.6V=25.2V), etc.; for example, in the circuit of each embodiment shown 'Can insert components that do not affect the main meaning of the signal, such as other switches; for example, in some architectures, the output voltage v〇ut is a negative voltage, and the light-emitting elements are reversed, and the circuit should be changed accordingly; For example, in some embodiments (for example, the third Λ '4 Α, 5 Λ diagram), the second resistor R2 may be omitted; for example, in the seventh, eighth, first, and second diagrams, for example, the first selection circuit 15 may also The selection circuit is changed to four inputs, and the reference signals Vref__R, Vref_G, Vref_Β, dark reference signal Vref__Dark are selected as the reference signal Vref, and the like. Therefore, all kinds of equivalent changes should be included in the scope of this creation. [Simple description of the drawing] Fig. 1 shows a schematic diagram of a control circuit of a hand-held LED projection display device. Figure 2 shows the power supply J1 Vout waveform before the technology. Figures 3A and 3B show a first embodiment of the present creation. Figures 4A and 4B show a second embodiment of the present work.

Claims (1)

、申請專利範圍: 1. 一種多色發光元件電路,包含: 複數顏色不同之發光元件串,其一端連接於一共同節 點,以接收-供應電壓,且每一發光元件串包括複數顏色 相同之發光元件,以串聯方式連接,其中每一發光元件串 產生一個對應的感測訊號; 時序控制電路,根據一輸入訊號,而選擇導通該複數顏 色不同之發光元件串其中之一或都不導通; 一電源調節電路’當該複數顏色不同之發光元件串其中 之一導通時,用以接收與該導通之發光元件_對應的感測 訊號,與一參考訊號比較,並根據比較結果,將一輸入電 壓轉換為該供應電壓; 其中,所述發光元件串中之發光元件數量,根據不同顏 色發光元件所需之不同電壓來決定,其中至少兩發光元件 串中之發光元件數量彼此不同,以使該兩發光元件串之壓 降較發光元件數量相同時更為接近。 2·如申請專利範圍第1項的多色發光元件電路,更包含:一 暗色反饋電路,以供產生一暗色反饋訊號,.且當該複數顏 色不同之發光元件串都不導通時,該電源調節電路接收該 暗色反饋訊號,與該參考訊號比較,並根據比較結果,將 該輸入電壓轉換為該供應電壓。 3.如申請專利範圍第1項的多色發光元件電路,更包含:一 暗色反饋電路,以供產生一暗色反饋訊號,且當該複數顏 色不同之發光元件串都不導通時,該電源調節電路接收讀 暗色反饋訊號,與一暗色參考訊號比較’並根據比較結果, 將該輸入電壓轉換為該供應電壓。 Ml 7740 4.如申請專利範圍第2或3項的多色發光元件電路,其中該 暗色反饋電路保持導通。 5·如申請專利範圍第1項的多色發光元件電路,更包含一共 用感測電阻,與各發光元件串耦接,以提供該感測訊號。 6. 如申請專利範圍第1項的多色發光元件電路,更包含複數 感測電阻,分別與各發光元件串耦接,以提供與導通之發 光元件串對應的感測訊號。 7. 如申請專利範圍第1、5或ό項的多色發光元件電路,更包 含一選擇電路’接收複數之顏色參考訊號,並根據該時序 控制電路所選發光元件串,而選擇與所選發光元件串對應 的顏色參考訊號,作為該參考訊號。 8. 如申請專利範圍第6項的多色發光元件電路更包含一選 擇電路’與各發光元件串分別耦接於對應的節點,以取得 與各發光元件串對應的感測訊號,擇一輸入該電源調節電 路。 9. 如申請專利範圍第6項的多色發光元件電路,更包含: 一暗色反饋電路,以供產生一暗色反饋訊號,以及 一選擇電路,與各發光元件串及該暗色反饋電路分別耦 接於對應的節點’以取得與各發光元件串對應的感測訊號 或該暗色反饋訊號,擇一輸入該電源調節電路。 10. 如申請專利範圍第8或9項的多色發光元件電路,其中該 選擇電路選自以下電路之一:最大電壓選擇電路、最小電 壓選擇電路、受控於時序控制電路之選擇而進行選擇之選 擇電路。 20Patent application scope: 1. A multi-color light-emitting element circuit comprising: a plurality of light-emitting element strings of different colors, one end of which is connected to a common node to receive-supply voltage, and each light-emitting element string includes a plurality of light beams of the same color The components are connected in series, wherein each of the light-emitting element strings generates a corresponding sensing signal; the timing control circuit selects to turn on one of the plurality of light-emitting element strings of different plural colors or not according to an input signal; The power adjustment circuit 'receives a sensing signal corresponding to the turned-on light-emitting element_ when the one of the plurality of light-emitting element strings having different colors is turned on, compares with a reference signal, and inputs an input voltage according to the comparison result Converting to the supply voltage; wherein, the number of the light-emitting elements in the string of light-emitting elements is determined according to different voltages required by the different color light-emitting elements, wherein the number of light-emitting elements in at least two of the light-emitting element strings are different from each other, so that the two The voltage drop of the string of light-emitting elements is closer than when the number of light-emitting elements is the same. 2. The multi-color light-emitting element circuit of claim 1, further comprising: a dark feedback circuit for generating a dark color feedback signal, and when the plurality of light-emitting element strings having different colors are not turned on, the power source The adjustment circuit receives the dark feedback signal, compares it with the reference signal, and converts the input voltage to the supply voltage according to the comparison result. 3. The multi-color light-emitting element circuit of claim 1, further comprising: a dark color feedback circuit for generating a dark color feedback signal, and wherein the power source adjustment is not performed when the plurality of light-emitting element strings of different plural colors are not turned on The circuit receives the read dark feedback signal and compares it with a dark reference signal and converts the input voltage to the supply voltage according to the comparison result. Ml 7740. The multicolor light emitting element circuit of claim 2, wherein the dark feedback circuit remains conductive. 5. The multi-color light-emitting device circuit of claim 1 further comprising a common sense resistor coupled to each of the light-emitting elements to provide the sense signal. 6. The multi-color light-emitting device circuit of claim 1, further comprising a plurality of sensing resistors coupled to each of the light-emitting element strings to provide a sensing signal corresponding to the turned-on light-emitting element string. 7. The multi-color light-emitting element circuit of claim 1, 5 or 2, further comprising a selection circuit 'receiving a plurality of color reference signals, and selecting and selecting the light-emitting element string according to the timing control circuit The color reference signal corresponding to the string of the light-emitting elements serves as the reference signal. 8. The multi-color light-emitting device circuit of claim 6 further includes a selection circuit ′ and each of the light-emitting element strings respectively coupled to the corresponding nodes to obtain a sensing signal corresponding to each of the light-emitting element strings, and an input is selected. The power conditioning circuit. 9. The multi-color light-emitting element circuit of claim 6, further comprising: a dark feedback circuit for generating a dark feedback signal, and a selection circuit coupled to each of the light-emitting element string and the dark color feedback circuit The corresponding node 'obtains a sensing signal corresponding to each of the light-emitting element strings or the dark color feedback signal, and selectively inputs the power adjusting circuit. 10. The multicolor light emitting element circuit of claim 8 or 9, wherein the selection circuit is selected from one of the following: a maximum voltage selection circuit, a minimum voltage selection circuit, and a selection controlled by a timing control circuit. The selection circuit. 20
TW100211353U 2010-07-29 2011-06-22 Multi-color light emitting device circuit TWM417740U (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US36876910P 2010-07-29 2010-07-29

Publications (1)

Publication Number Publication Date
TWM417740U true TWM417740U (en) 2011-12-01

Family

ID=45767928

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100211353U TWM417740U (en) 2010-07-29 2011-06-22 Multi-color light emitting device circuit

Country Status (2)

Country Link
CN (1) CN202160308U (en)
TW (1) TWM417740U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102571007A (en) * 2012-01-09 2012-07-11 电子科技大学 Operation amplifier with minimum potential selection function
TWI478620B (en) * 2012-12-17 2015-03-21 Power Forest Technology Corp Light emitting diode backlight system the driving apparatus and driving method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11561591B2 (en) 2020-05-11 2023-01-24 Shenzhen Absen Optoelectronic Co., Ltd. LED display driven by dual-negative-voltage power supply
TWI806476B (en) 2022-03-07 2023-06-21 友達光電股份有限公司 Light emitting diode display module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102571007A (en) * 2012-01-09 2012-07-11 电子科技大学 Operation amplifier with minimum potential selection function
CN102571007B (en) * 2012-01-09 2014-10-15 电子科技大学 Operation amplifier with minimum potential selection function
TWI478620B (en) * 2012-12-17 2015-03-21 Power Forest Technology Corp Light emitting diode backlight system the driving apparatus and driving method thereof
US9113520B2 (en) 2012-12-17 2015-08-18 Power Forest Technology Corporation Light emitting diode backlight system the driving apparatus and driving method thereof

Also Published As

Publication number Publication date
CN202160308U (en) 2012-03-07

Similar Documents

Publication Publication Date Title
KR102129772B1 (en) Analog and digital dimming control for led driver
TWI701972B (en) Multiway led constant current controller and control method
CN104137651B (en) Illuminator with uniform LED luminance
TWI410171B (en) Current-balance circuit and backlight module having the same
US9018856B2 (en) Light emitting diode driver having phase control mechanism
JP4944658B2 (en) LED drive circuit
US9258861B2 (en) Apparatus for driving multi-color LED strings
US20140232270A1 (en) Led driving device and led lighting apparatus
EP2592903A2 (en) Lighting system and luminaire
US8441196B2 (en) Multi-color light emitting device circuit
CN101331796A (en) Led lighting device
CN108029171B (en) Lighting control circuit and method for multiple LEDs
TW201044915A (en) AC power line controlled light emitting device dimming circuit and method thereof
CN105848332A (en) Control circuit for lED lighting apparatus
JP2013098537A (en) Led protection circuit
TWM417740U (en) Multi-color light emitting device circuit
TW201415745A (en) Light emitting diode luminance system having clamping device
KR101046081B1 (en) LED lighting device
US20190132918A1 (en) Controller, light source driving circuit and method for controlling light source module
US11116058B2 (en) LED dimming control circuit, dimming control method and LED power system thereof
US9293944B2 (en) Systems and methods for providing power to one or more loads in a circuit
JP5569232B2 (en) Light emitting element driving circuit and display device
KR101518554B1 (en) Power supplies to drive the multiple LED modules and the lighting apparatus including the same
JP2012038781A (en) Light-emitting element drive circuit and display device
CN108882429B (en) Lighting device and illumination system

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model