TWM416877U - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
TWM416877U
TWM416877U TW100207692U TW100207692U TWM416877U TW M416877 U TWM416877 U TW M416877U TW 100207692 U TW100207692 U TW 100207692U TW 100207692 U TW100207692 U TW 100207692U TW M416877 U TWM416877 U TW M416877U
Authority
TW
Taiwan
Prior art keywords
solar cell
light
reflective sheet
cell module
reflective
Prior art date
Application number
TW100207692U
Other languages
Chinese (zh)
Inventor
An-Ting Cheng
Original Assignee
Auria Solar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Auria Solar Co Ltd filed Critical Auria Solar Co Ltd
Priority to TW100207692U priority Critical patent/TWM416877U/en
Publication of TWM416877U publication Critical patent/TWM416877U/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A solar cell module includes a transparent solar cell and a first reflective sheet. The transparent solar cell has a top surface and a bottom surface, and the top surface is a light incident surface of the solar cell. The first reflective sheet is disposed outside the transparent solar cell and located under the bottom surface of the solar cell, so as to reflect a light beam transmitting through the transparent solar cell.

Description

M416877 五、新型說明: 【新型所屬之技術領域】 種呈陽能電池模組,特別是指-檀具有冋“利用㈣太陽能電池模組。 【先前技術】 環顧目前大眾所處的生活環 J二使得全球的能源正急遽地被消耗由J芯 將分別在41年、67年與;9? = ;非 在k樣的h況下,太陽能、風力、地熱、生物 生能源技術的開發勢必會越來越受到重視。 、 在眾夕的再生能源技術當中,由於太陽能具有發 廷過程無污染且無需維持費用的特性,所以目前普遍 ^世界各_青睞,因而驅使太陽能電池市場在近幾 發展。在此前提下,有關太陽能開發議題 二又彳,視,因而驅使許多國家紛紛開始著手推行 新能源政策,並實施補助獎勵辦法,以求積極發展盥 推廣太陽能電池。 /、 依據專家的統計結果顯示,太陽每年輻射至地球 的能量約為5·4χ丨俨焦耳,而全世界每年所需的能量 =為Ux]02G焦耳;因此,只要人類可充分地利用從太 陽輪射至地球之能量的五萬分之一,則人類目前所面 臨的許多能源問題馬上便可被迎刃而解。有鑑於此, 3 M416877 實有必要積極發展太陽能電池以求纾解能源問題。 為了提升太陽能電池的光能利用量,在設計太陽 能電池時,通常會設法增加光束在太陽能電池之光電 轉換層内之行進路徑長度或行進時間。在一種常見的 習知技術中,為了達到增加光束在太陽能電池之光電 轉換層内之行進路徑長度或行進時間,通常會在太陽 能電池内部增設一反射層,藉以將自入光面射入之光 束反射回光電轉換層。 然而,對於在太陽能電池内部增置反射層的技術 手段而言,為了達到較佳的反射效果,在形成反射層 時,通常會使反射層的表面具有複雜而凹凸不平的紋 理結構。如此一來,將會造成太陽能電池的製程變得 更為複雜,且其品質也會隨之變得更不易控制。此 外,在太陽能電池内部增設反射層,只能利用反射層 内較小的反射面積反射光束,對光能利用量的提升效 果也相當有限。 【新型内容】 本創作所欲解決之技術問題與目的: 有鑒於在習知技術中,在太陽能電池内部增設反 射層會衍生出製程複雜、品質不易控制以及光能利用 量的提升量不足等問題。緣此,本創作之主要目的在 於提供一種太陽能電池模組,其係在不在太陽能電池 内設置反射層的前提下,提升太陽能電池的光能利用 量。 本創作解決問題之技術手段: 4 M416877 本創作為解決習知技術之問題,所採 奴係提供一種太陽能電池模組, = 能電池與-第—反射片。透* 透先式太㈤ :二底面,且頂面為太陽能電池的光八射面。第一 ===陽,池的外部,並且位於太陽能 池之光束反射回透光式太陽能電池。械太^私M416877 V. New description: [New technical field] The solar cell module is a kind of solar cell module, especially the “Tan” solar cell module. [Prior Art] Looking around the life circle of the public The global energy is being rushed to be consumed by the J core in 41 years, 67 years and 9? =; in the case of non-k, the development of solar, wind, geothermal, bio-energy technologies is bound to The more attention is paid to it. In the regenerative energy technology of the public, because solar energy has the characteristics of pollution-free process and no need to maintain the cost, it is generally popular in the world, thus driving the solar cell market to develop in recent years. Under this premise, the issue of solar energy development is second and foremost, thus driving many countries to start implementing new energy policies and implementing subsidy incentives to actively promote the promotion of solar cells. /, According to expert statistics, The energy radiated by the sun to the Earth every year is about 5.4 χ丨俨 joules, and the energy required every year in the world = Ux] 02 G joules; As long as human beings can make full use of one-fifth of the energy that is emitted from the sun to the earth, many of the energy problems facing humanity can be solved immediately. In view of this, it is necessary for 3 M416877 to actively develop solar cells. To solve the energy problem. In order to improve the solar energy utilization of solar cells, when designing solar cells, it is usually sought to increase the travel path length or travel time of the light beam in the photoelectric conversion layer of the solar cell. In a common conventional technique In order to increase the length of the travel path or the travel time of the light beam in the photoelectric conversion layer of the solar cell, a reflective layer is usually added inside the solar cell to reflect the light beam incident from the light incident surface back to the photoelectric conversion layer. For the technical means of adding a reflective layer inside the solar cell, in order to achieve a better reflection effect, when the reflective layer is formed, the surface of the reflective layer usually has a complicated and uneven texture structure. Will make the process of solar cells more complicated, and its products In addition, it is more difficult to control. In addition, a reflective layer is added inside the solar cell, and only a small reflection area in the reflective layer can be used to reflect the light beam, and the effect of improving the utilization of light energy is also rather limited. The technical problems and objectives to be solved by the present invention: In view of the conventional technology, the addition of a reflective layer inside the solar cell may cause problems such as complicated process, difficulty in control of quality, and insufficient improvement in utilization of light energy. The main purpose of the present invention is to provide a solar cell module that improves the utilization of solar energy of the solar cell without providing a reflective layer in the solar cell. The technical means for solving the problem in this creation: 4 M416877 In the case of the prior art, the slave system provides a solar cell module, = a battery and a - reflective sheet. Transparency* Transmitting too (5): Two bottom surfaces, and the top surface is the light-emitting surface of the solar cell. The first === yang, the outside of the pool, and the light beam located in the solar pool is reflected back to the light-transmissive solar cell. Mechanical too

較f者,太陽能電池模組更包含至少—第二反射 L且^反射片係^繞並面向透光式太陽能電池之 J 一反射片與第二反射片可藉由在-基板上覆 盍一金屬繼-反射膜所組成,且第—反射片鱼第 ίί:Γί::面鏡或—凹面鏡。此外,第二反射 片了/、弟一反射片一體成型或彼此獨立。 本創作對照先前技術之功效: =於上述習知技術所提供之太陽能電池,由於 。^所提供之太陽能電池模組中,係在鄰近於透In contrast, the solar cell module further includes at least a second reflection L and a reflective sheet that faces and faces the light-transmitting solar cell. A reflective sheet and a second reflective sheet can be covered by the substrate. A metal-reflective film consisting of a first-reflecting sheet fish ίί:Γί:: a mirror or a concave mirror. Further, the second reflection sheet/, the reflection sheet is integrally formed or independent of each other. This creation compares the efficacy of the prior art: = solar cells provided by the above-mentioned prior art, due to . ^The solar cell module provided is adjacent to

光式太陽能電池之底面的下方位置,另外增設第一反 射片,並在透光式太陽能電池之側面,另外增設第二 反射片;因此,可以有效避免在太陽能電池内部設置 反,層的技術所造成之製程複雜與品質不易控制的 問題。 ,,易見地’相較於習知技術,藉由本案所提供 之太陽能電池模組,只需透過簡單的製程,即可製作 出品質(良率)較高的透光式太陽能電池。此外,由 於在本創作中,係透過第一反射片與第二反射片提供 較大的反射面積,藉以將更大量或更多能量的光束反 射至透光式太陽能電池;因此,還可以大幅提升透光 5 M416877 $太陽能電池對光能的有效利用量,進而大 除能電池模組之整體光電轉換效率。 棱升太 本創作所採用的具體實施例,將藉由以下之 例及圖式作進一步之說明。 男、& 【實施方式】 由於本創作所提供之太陽能電池模组可廣The first reflective sheet is additionally disposed at a lower position of the bottom surface of the solar cell, and a second reflective sheet is additionally disposed on the side of the light-transmitting solar cell; therefore, it is possible to effectively prevent the reverse layer from being disposed inside the solar cell. The problems caused by the complexity of the process and the difficulty of quality control. ,, in view of the prior art, the solar cell module provided in the present invention can produce a light-transmitting solar cell with high quality (benefit) by a simple process. In addition, in the present invention, a larger reflective area is provided through the first reflective sheet and the second reflective sheet, thereby reflecting a larger amount or more energy beams to the light-transmitting solar cell; Light transmission 5 M416877 $ Solar battery's effective utilization of light energy, and thus the overall photoelectric conversion efficiency of the large de-energy battery module. The specific embodiments used in this creation will be further illustrated by the following examples and drawings. Male, & [Implementation] Due to the wide range of solar cell modules provided by this creation

各種規格之太陽能電池模組或太陽能電池 系、,先,而且相關之組合實施方式更是不勝牧舉, 上ίί:再一T贅,僅針對太陽能電池模組本身, J牛/、中兩個幸父佳實施例加以具體說明。Various specifications of solar cell modules or solar cell systems, first, and related combinations of implementations are even more than the pastoral, on the ίί: another T赘, only for the solar cell module itself, J Niu /, two Fortunately, the embodiment of the father is specifically described.

一银請參閱第-圖與第二圖,第一圖係顯示本創作第 貝jiL例所提供之太陽能電池模組之立體結構示音 圖係顯示本創作第—實施例所提供之太陽^ 之工作原理示意圖。如第—圖所示,一太陽 月匕廷池杈組]包含一透光式太陽能電池11與一反射 結構12。透光式太陽能電池】】具有一頂面】】】、一 3】12與四側面,在第一目中只標示其中兩個彼此 相對的側面113與114。 、、透光式太陽能電池11之頂面lu為光入射面。 透光式士陽能電池]]可為一矽基晶片太陽能電池、 矽基薄膜太陽能電池、一 m_v族化合物太陽能電 恭II-V〗族化合物太陽能電池、一染料敏化太陽 月b黾池、一有機太陽能電池或其他任何種類可自頂面 透光至底面之透視型(See Through Type)太陽能電 池,但是必須滿足可供光束穿透之要求。 反射結構12包含一第一反射片〖21與二第二反 射片122與〖23。第一反射片】21係設置於透光式太 ==11之底面112的下方,第二反射片⑵與 114 /別面+向透光式太陽能電池丨1之側面】】3與 ’/、=,第一反射片]2]可接觸透光式太陽能電 =之底面U2,亦可與透光式太陽能電池】】之底 面相隔。雖然在第二圖中,第一反射片】2】與第 f片]22與123係為平面鏡,但是,在實務運用 上,亦可改用凹面鏡,藉以提升聚光效果。 第一反射片】2]以及第二反射片]22與】23可 一體成型之構件,亦可為彼此獨立構及 =12]以及第二反射片〗咖3為〜皮牛此以4 利用適當之連結固定元件,使第二反射片 ]22與透光式太陽能電池u之側面】】3之間呈一 :。在實務運用上,夾角“系依據入射之光束之場二 广入射方位,以及依據各相關元件之尺寸、折射率與 才目3位置關係等因素而決定。此外,第一反射片12; ΐίΐ反射片122與123可藉由在-基板上覆蓋-金 組成;其中’基板可為玻璃基板 ^至_ 土板,金屬鍍層可為銀、銅、鎳、鉻或鋁等金 屬鍍層;反射膜可為金屬鍍膜或其他對光線具有高反 射率之薄膜。 如^二圖所示,當一光束】LB】自透光式太陽能 电池11之頂面m射入後,會產生一穿透 =、:B】V 一部分之穿透光伽會被透光式ί 1%此電池1]吸收而轉換成電能,另一部份之穿透光 束jLm會繼續穿透上述之透光式太陽能電池丨1,並 被第一反射片121反射而形成一反射光束RLB|,反 射光束RLB】會自透光式太陽能電池丨丨之底面丨]2 射入透光式太陽能電池Η,藉以供透光式太陽能電池 11再次吸收而產生電能。 M416877 同時,當另一光束ILB2自鄰近透光式太陽 亡11之側面m射入至第二反射片m時 2 = 第二反射片122反射,並經由透光式太陽能電曰1 之側面11 3射入至透光式太陽能電池】】後, 式太陽能電池η所吸收而產生電能。 边元 相似地,當另一光束ILB3自鄰近透光式太 氧,11之側面114射入至第二反射片123時,,= 被第二反射片123反射,並經由透光式太陽能 曰 ,側面U4射入至透光式太陽能電池η後, 式太陽能電池Π所吸收而產生電能。 返九 請繼續參閱第三圖,其係顯示本創作第二 =提供之太陽能電池模組之立體結構示意圖。如f 丄在=作第二實施例中,另一太陽能電: 月匕電池11相似或相同,以下不再與以贅述。 匆 組4太八不同的是’在太陽能電池模 個第-了構包含一弟—反射片221以及四 弟—反射片 222、223、224 與 225。 太,能電池。之底面的下二二 223、?2=;2ί—反射片221以及第二反射片222、 立之構件二第u成型之構件,亦可為彼此獨 之連結固定元件構件時’可以利用適當 相較於上述習知技術所提供之太陽能電池,就本 8 Μ16877 言’由於在本創作所提供之太陽能 係在鄰近於透光式太陽能電池]之底 f 2的下方位置,另外增設第一反射片〗2〗,並在 透光式太陽能電池]】之側面113或"4,另外” J :反射片】22與】23 ;因此,可以有效 ^ 置反射層的技術所造成之製 貝不易控制的問題。Please refer to the first and second figures for the first silver. The first figure shows the three-dimensional structure of the solar cell module provided by the first example of the creation of the first jiL. The solar system provided by the first embodiment of the present invention is shown. Schematic diagram of working principle. As shown in the first figure, a solar moon solar cell stack includes a light-transmitting solar cell 11 and a reflective structure 12. The light-transmitting solar cell has a top surface], a 3] 12 and four sides, and only two of the opposite sides 113 and 114 are indicated in the first object. The top surface lu of the light-transmitting solar cell 11 is a light incident surface. Light-transmitting Shiyang energy battery]] can be a silicon wafer solar cell, a germanium-based thin film solar cell, a m_v compound solar energy electric II-V compound solar cell, a dye-sensitized solar moon b pool, An organic solar cell or any other type of See Through Type solar cell that can transmit light from the top surface to the bottom surface, but must meet the requirements for beam penetration. The reflective structure 12 includes a first reflective sheet 21 and two second reflective sheets 122 and 23. The first reflection sheet] 21 is disposed below the bottom surface 112 of the light transmission type too ==11, and the second reflection sheet (2) and 114 / other surface + the side of the light transmission type solar battery unit 1] 3 and '/, =, the first reflection sheet] 2] can be contacted with the transparent solar power = the bottom surface U2, and can also be separated from the bottom surface of the light-transmitting solar cell. Although in the second figure, the first reflection sheet 2] and the fth sheet 22 and 123 are plane mirrors, in practice, a concave mirror may be used instead to enhance the condensing effect. The first reflective sheet] 2] and the second reflective sheet 22 and 23 can be integrally formed, or can be independent of each other and = 12] and the second reflective sheet can be used as a The fixing member is connected such that the second reflection sheet 22 is opposite to the side surface of the light-transmitting solar cell u. In practice, the angle is determined according to the incident direction of the incident beam and the size, refractive index and positional relationship of the relevant components. In addition, the first reflection sheet 12; ΐίΐ reflection The sheets 122 and 123 may be composed of - gold on the substrate; wherein the substrate may be a glass substrate, the metal plating may be a metal plating such as silver, copper, nickel, chromium or aluminum; the reflective film may be Metal coating or other film with high reflectivity to light. As shown in Fig. 2, when a beam LB] is injected from the top surface m of the light-transmitting solar cell 11, a penetration =, : B is generated. 】V part of the penetrating light gamma will be absorbed by the light-transmitting type 1% of the battery 1] and converted into electric energy, and the other part of the penetrating beam jLm will continue to penetrate the above-mentioned light-transmitting solar cell 丨1, and Reflected by the first reflective sheet 121 to form a reflected light beam RLB|, the reflected light beam RLB] is incident on the bottom surface of the light-transmitting solar cell 丨2 into the light-transmitting solar cell Η, so that the light-transmitting solar cell 11 can be used. Reabsorbed to generate electricity. M416877 At the same time, The other light beam ILB2 is incident from the side m adjacent to the light-transmissive solar dying 11 to the second reflection sheet m. 2 = the second reflection sheet 122 is reflected, and is incident through the side surface 11 of the light-transmitting solar cell 1 After the solar cell is absorbed, the solar cell η absorbs and generates electric energy. Similarly, when the other beam ILB3 is incident from the side 114 of the adjacent translucent oxygen to the second reflecting sheet 123, , = is reflected by the second reflection sheet 123, and is transmitted through the transparent solar cell, the side surface U4 is incident on the light-transmitting solar cell η, and the solar cell is absorbed by the solar cell to generate electric energy. It is a schematic diagram showing the three-dimensional structure of the solar cell module provided by the second creation of the present invention. If f is in the second embodiment, another solar power: the moon battery 11 is similar or identical, and the following is no longer described. The rush group 4 is different from the one in the solar cell module - the structure contains a younger brother - the reflection sheet 221 and the fourth brother - the reflection sheets 222, 223, 224 and 225. Too, the battery. The bottom of the bottom two Two 223, ? 2 =; 2 ί - reflection sheet 221 and The reflection sheet 222, the member of the second member and the u-shaped member may be connected to each other when the fixing member member is used alone. 'The solar battery provided by the above-mentioned conventional technology can be used appropriately, as it is in the 8 Μ 16877' The solar energy provided by the present invention is located below the bottom f 2 of the light-transmitting solar cell, and a first reflection sheet is added, and on the side 113 or "4 of the light-transmitting solar cell] In addition, "J: reflection sheet" 22 and 23; therefore, it is possible to effectively solve the problem that the technique of the reflection layer is difficult to control.

,而易見地,相較於習知技術,藉由本案所提供 之太陽能f池模組】,只需透過簡單的製程 樂; 2出品質(良率)較高的透光式太陽能電池】】。此外: 由於在本創作中,係透過第一反射片】21以及第二反 =片】22與123提供較大的反射面積,藉以將更高大 =或$多能量的光束反射至透光式太陽能電池n;因 士」還可^大幅提升透光式太陽能電池n對光能的 有效利用量,進而大幅提升太陽能電池模組之整體 電轉換效率。 藉由上述之本創作實施例可知,本創作確具產業 亡之利用價值。惟以上之實施例說明,僅為本創作之And, in view of the conventional technology, the solar energy f pool module provided by the present case only needs to pass through a simple process music; 2 a light-transmitting solar cell with high quality (yield)] . In addition: in this creation, the first reflective sheet 21 and the second reverse sheet 22 and 123 provide a larger reflective area, thereby reflecting a higher-sized or multi-energy beam to the light-transmitting solar energy. The battery n; Instinct can also greatly increase the effective utilization of the light-emitting solar cell n to the light energy, thereby greatly improving the overall electrical conversion efficiency of the solar cell module. It can be seen from the above-described embodiments of the present invention that the creation has the value of using the industry. However, the above examples illustrate that this is only for the purpose of this creation.

較,實施例說明,舉凡所屬技術領域中具有通常知識 者當可依據本創作之上述實施例說明而作其它種種 之改良及變化。然而這些依據本創作實施例所作的種 種改良及變化’當仍屬於本創作之創作精神及界定之 專利範圍内。 【圖式簡單說明】 第—圖係顯示本創作第一實施例所提供之太陽能電 池模組之立體結構示意圖; 第二圖係顯示本創作第一實施例所提供之太陽能電 9 M416877 池模組之工作原理示意圖;以及 第三圖係顯示本創作第二實施例所提供之太陽能電 池模組之立體結構示意圖。 【主要元件符號說明】 1 11Other embodiments of the invention are susceptible to various modifications and changes in the embodiments described herein. However, all of the improvements and variations made in accordance with the present embodiment are still within the scope of the creative spirit and definition of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS The first figure shows a three-dimensional structure diagram of a solar cell module provided by the first embodiment of the present invention; the second figure shows a solar cell 9 M416877 pool module provided by the first embodiment of the present creation. A schematic diagram of the working principle of the present invention; and a third diagram showing a three-dimensional structure of the solar cell module provided by the second embodiment of the present invention. [Main component symbol description] 1 11

111 112 113 、 114 12 121111 112 113 , 114 12 121

太陽能電池模組 透光式太陽能電池 頂面 底面 側面 反射結構 第一反射片 第二反射片 太陽能電池模組 透光式太陽能電池 反射結構 第一反射片 弟一反射片 光束 穿透光束 反射光束 夾角 122 ' 123 2 21 22 221 222 > 223 ' 224 > 225 ILB1 ' ILB2 > ILB3 TLB1 RLB1 Θ 10Solar cell module translucent solar cell top surface side reflection structure first reflection sheet second reflection sheet solar cell module transmissive solar cell reflection structure first reflection sheet brother one reflection sheet beam penetration beam reflection beam angle 122 ' 123 2 21 22 221 222 > 223 ' 224 > 225 ILB1 ' ILB2 > ILB3 TLB1 RLB1 Θ 10

Claims (1)

M416877 六、申請專利範圍·· L —種太陽能電池模組,包括··M416877 VI. Patent Application Scope·· L-type solar cell module, including·· 一透光式太陽能電池,係具有一頂面與一底面 為έ亥太陽能電池的光入射面;以及A light transmissive solar cell having a top surface and a bottom surface is a light incident surface of a solar cell; 第一反射片,設置於該太陽能電池的外部,且位芡 太IV此電池的該底面下方,藉以將至少一穿透 式太陽能電池之光束反射回該透光式太陽能電 池 2.如申請專利範圍第】項所述之太陽能電池模組,其中,兮第 一反射片係為一平面鏡或一凹面鏡。 3. 如申睛專利範圍第]項所述之太陽能電池模組,其中該第一 反射片係由在一基板上覆蓋一金屬鑛層或一反射膜所組成。 4. 如申晴專利範圍第1項所述之太陽能電池模組,更包括至少 一第二反射片,連接於該第一反射片,且面向該透光式太 1%此電池的一側面。 5.如申請專利範圍第4項所述之太陽能電池模組,其中,上述 之至少一第二反射片係圍繞該透光式太陽能電池的該側 M416877 6. 如申請專利範圍第4項所述之太陽能電池模組,其中,上述 之至少一第二反射片係為一平面鏡或一凹面鏡。 7. 如申請專利範圍第4項所述之太陽能電池模組,其中該第二 反射片係由在一基板上覆蓋一金屬鍍層或一反射膜所組成。 Λ • 8.如申請專利範圍第4項所述之太陽能電池模組,其中該第二 反射片與該第一反射片一體成型。a first reflective sheet disposed outside the solar cell and located below the bottom surface of the battery, thereby reflecting at least one light beam of the transmissive solar cell back to the light transmissive solar cell 2. As claimed in the patent application The solar cell module according to the item, wherein the first reflective sheet is a plane mirror or a concave mirror. 3. The solar cell module of claim 4, wherein the first reflective sheet is composed of a metal ore layer or a reflective film on a substrate. 4. The solar cell module of claim 1, further comprising at least one second reflective sheet attached to the first reflective sheet and facing one side of the transparent type of the battery. 5. The solar cell module of claim 4, wherein the at least one second reflective sheet surrounds the side of the light transmissive solar cell M416877. 6. As described in claim 4 The solar cell module, wherein the at least one second reflective sheet is a plane mirror or a concave mirror. 7. The solar cell module of claim 4, wherein the second reflective sheet is composed of a metal plating layer or a reflective film on a substrate. 8. The solar cell module of claim 4, wherein the second reflective sheet is integrally formed with the first reflective sheet.
TW100207692U 2011-04-29 2011-04-29 Solar cell module TWM416877U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100207692U TWM416877U (en) 2011-04-29 2011-04-29 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100207692U TWM416877U (en) 2011-04-29 2011-04-29 Solar cell module

Publications (1)

Publication Number Publication Date
TWM416877U true TWM416877U (en) 2011-11-21

Family

ID=46449157

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100207692U TWM416877U (en) 2011-04-29 2011-04-29 Solar cell module

Country Status (1)

Country Link
TW (1) TWM416877U (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8871533B2 (en) 2011-12-29 2014-10-28 Tsinghua University Method for making solar cell and solar cell system
TWI481050B (en) * 2011-12-16 2015-04-11 Hon Hai Prec Ind Co Ltd A solar cell
US9012767B2 (en) 2011-12-16 2015-04-21 Tsinghua University Solar cell system
US9209335B2 (en) 2011-12-09 2015-12-08 Tsinghua University Solar cell system
US9349890B2 (en) 2011-12-29 2016-05-24 Tsinghua University Solar cell and solar cell system
US9349894B2 (en) 2011-12-29 2016-05-24 Tsinghua University Solar cell and solar cell system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9209335B2 (en) 2011-12-09 2015-12-08 Tsinghua University Solar cell system
TWI481050B (en) * 2011-12-16 2015-04-11 Hon Hai Prec Ind Co Ltd A solar cell
US9012767B2 (en) 2011-12-16 2015-04-21 Tsinghua University Solar cell system
US10109757B2 (en) 2011-12-16 2018-10-23 Tsinghua University Solar cell system
US8871533B2 (en) 2011-12-29 2014-10-28 Tsinghua University Method for making solar cell and solar cell system
US9349890B2 (en) 2011-12-29 2016-05-24 Tsinghua University Solar cell and solar cell system
US9349894B2 (en) 2011-12-29 2016-05-24 Tsinghua University Solar cell and solar cell system

Similar Documents

Publication Publication Date Title
TWM416877U (en) Solar cell module
CN201936904U (en) Solar battery pack structure capable of improving efficiency of battery
JP2013229609A5 (en)
TW201344127A (en) Solar photovoltaic-thermal system
TW201010098A (en) Solar cell module
CN103441175B (en) Crystalline Silicon PV Module
CN202487599U (en) Solar photovoltaic assembly
CN107833936A (en) Generating electricity on two sides photovoltaic module
TWM458534U (en) Solar power generation bricks
CN203674226U (en) Solar cell module with high transmission on forward direction and high reflection on backward direction
CN101393941A (en) Fluorescent flat optical waveguide solar cell photovoltaic power generation system
CN101980373A (en) Solar module laminated piece with aluminium plated back film
Einhaus et al. Free-space concentration of diffused light for photovoltaics
CN203674235U (en) Double-face-light-receiving type solar cell assembly
CN102709376A (en) Back plate integrated with fluorescent planar optical waveguide structure for solar battery module and application
CN202695508U (en) Solar cell module
CN204809236U (en) High efficiency photovoltaic module
CN102194906B (en) Integrated structure of solar cell plate
CN207637811U (en) The solar cell of stratospheric airship
US20160064589A1 (en) Solar cell module
CN210897309U (en) Photovoltaic module
CN204303827U (en) A kind of high-efficiency solar electrification component
CN210379076U (en) Photovoltaic module
CN207303125U (en) Generating electricity on two sides photovoltaic module
CN203589056U (en) Double-faced solar photovoltaic assembly

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees