M409819 五、新型說明: 【新型所屬之技術領域】 [0001] 本創作是有關於一種心跳監控系統,特別是有關於一種 利用可攜式紅外線光耦合感測器量測人體血管之血液容 積變化,以得知心跳跳動頻率,並可經由遠端監控其心 跳數變化之心跳監控系統。 【先前技術】M409819 V. New Description: [New Technology Field] [0001] This work is about a heartbeat monitoring system, especially for measuring the blood volume change of human blood vessels using a portable infrared light coupling sensor. A heartbeat monitoring system that knows the heartbeat frequency and can monitor its heartbeat number changes via a remote end. [Prior Art]
[0002] 心血管疾病,可說是不眨眼的殺手。現代人生活忙碌, 步調節奏日益加速,心臟的工作負荷過重,但人們平時 往往不會注意到身上這個似乎理所當然的器官是否需要 • . J 渗· ; -ί · V > 产、 % V貧 保養了。心臟默默地工作,到决I參丨無‘負荷為止。 直到心血管疾病已病入膏肓,/人們〆覺,事態的嚴重。 但是到這個階段,心臟已經無法再恢復原狀,只能盡量 地預防它的發作。但是發作仍在所難免,一旦發作,若 沒有及時地處理,往往會發生遺憾的結果,是大家所不 • - V * Λ <. i >'· ·, ' ί·% , " ··: ::·'·.#- - · . .· *,. ' ·,>5 樂見0 .:, -1 「. : V; : ν' t 4 \ , ,.[0002] Cardiovascular disease can be said to be a killer without blinking. Modern people are busy with life, step adjustments are accelerating, and the heart's workload is too heavy, but people often don't notice whether the organ that seems to be taken for granted needs to be. J. Seepage; -ί · V > Production, % V poor maintenance It is. The heart works silently, until the decision is no load. Until the cardiovascular disease has become ill, / people feel that the situation is serious. But at this stage, the heart can no longer be restored to its original state, and it can only prevent its attack as much as possible. However, the seizure is still inevitable. Once it is attacked, if it is not dealt with in time, there will often be regrettable results. Everyone does not need to - V * Λ <. i >'· ·, ' ί·% , " ·: ::·'·.#- - · . . . *,. ' ·,>5 乐见0 .:, -1 ". :V; : ν' t 4 \ , ,.
[0003] 基於上述因素,本創作旨在研餐丨一¾心跳監控系統,以 紅外線光耦合器感測生理訊號之血容積並轉換成心跳值 ,製作成可攜帶式心跳量測儀器,用以量測被監控者心 跳的生理訊號後,以區域性的方式利用ZigBee無線網路 傳送至電腦端做監控,更可經由網路與遠端電腦做連結 以進行同步監控。 【新型内容】 [0004] 有鑑於上述習知技藝之問題,本創作之其中一目的就是 表單編號A0101 第3頁/共19頁 在提供一種心跳監控系統,係利用可攜式紅外線光耦合 感測器量測人體血管之血液容積變化,來得知心跳之頻 率,且可經由遠端監控心跳之變化,以防止患者發病卻 箨法及時得知之問題。 [〇0〇5] 根據本創作之另一目的,提出一種心跳監控系統,其包 含一感測模組、一第一傳輸模組、一處理模組、一提示 模組及一第二傳輸模組。感測模組係感測人體血管之血 浪容積變化以產生脈搏訊號。第一傳輸模組係連接感測 模組以傳輸脈搏訊號。處理模組係連接第一傳輸模組, 以根據脈搏訊號運算出每分鐘之心跳值,更判斷心跳值 是否大於一上限心跳值或小於一下限心跳值。提示模組 係連接處理模組’當心跳值大於上报心跳值"^小於下限 ' Λ · 心跳值時,提示模組則發出警示。第二傳輸模組係連接 處理模組,以提供一遠端監控端連結至處理模組,使遠 端監控端可同步遠端監控心跳值是否大於上限心跳值或 小於下限心跳值。 [〇〇〇6] 其中,本創作所述之心跳監控系統更包含一顯示模組, 係連接處理模組,以顯示每分鐘之心跳值、上限心跳值 及下限心跳值。顯示模組係包含以波形顯示之方式顯示 心跳值、上限心跳值及下限心跳值。 [〇〇〇7] 其中’本創作所述之心跳監控系統更包含一通訊模組, 係連接處理模組,其中當心跳值大於上限心跳值或小於 下限心跳值時,處理模組則經由通訊模組發送一訊息至 至少一手持式電子裝置《此通訊模組可為為一全球行動 通訊系統(Global System for Mobile Conununica_ 表單编號A0101 第4頁/共19頁 M409819 tions,GSM)。 [0008] 其中,本創作所述之心跳監控系統更包含一輸入模組, 係連接處理模組,以接收設定上限心跳值及下限心跳值 [0009] 其中,處理模組更具有一視訊介面以提供該遠端監控端 與該處理模組進行視訊。 [0010] 其中,感測模組包含一紅外線光耦合器以感測人體血管 之血液容積變化。 [0011] 其中,提示模組包含以聲音、燈號或其組合之方式發出 警示。 、 應: [0012] 其中,第一傳輸模組可為一Zig.B泛<短始離無線通訊系統 [0013] 其中,第二傳輸模組可為TCP/IP通訊協定。 [0014] 承上所述,因依本創作之心跳監&家化,其可具有一或 多個下述優點: : [0015] ( 1 )此心跳監控系統係利用可攜帶式的心跳感測器來感 測人體心跳之變化,可隨身隨時的對被監控者進行心跳 監控。 [0016] (2)此心跳監控系統可提供遠端監控端同步的監控心跳 值之變化,亦可進行視訊通話以達到線上問診之功能。 [0017] (3)此心跳監控系統當發生心跳異常跳動時,可經由GSM 發送簡訊到各個手機,以提醒遠端監控者使避免意外之 表單編號A0101 第5頁/共19頁 M409819 發生。 【實施方式】 [0018] 以下將參照相關圖式,說明依本創作之心跳監控系統, 為使便於理解,下述實施例中之相同元件係以相同之符 號標示來說明。 [0019] 請參閱第1圖,其係為本創作之心跳監控系統之第一實施 例之方塊圖。圖中,心跳監控系統1包含感測模組11、第 一傳輸模組12、處理模組13、提示模組14、輸入模組15 、顯示模組16、第二傳輸模組17及通訊模組18。感測模 組11係與第一傳輸模組12連接。處理模組13則連接第一 傳輸模組12、提示模組14、輸八模組ί 5.、顯示模組1 6、 * 第二傳輸模組17及通訊模組18。第二傳輸模組17可提供 遠端監控端2連結至處理模組13,通訊模組18則可提供處 理模組13發送訊息至手持式電子裝置3。 [0020] 在第一實施例中,感測模組11可用來感測人體血管(如手 指上之微血管)之血液容積變化以產生脈搏訊號。感測模 組11所包含的零件有紅外線光耦合器111、二階高通濾波 器112、增益放大器113、四階低通慮波器114、微分器 115、反相放大器116 '比較器117及單穩態振盪器118, 其感測模組11之方塊圖如第2圖所示。主要是利用紅外線 光耦合器111來偵測手指内微血管容積變動的情形,進而 獲得脈搏速率。以紅外線光耦合器111來感測手指内血容 積的變動之後,則經由二階高通濾波器112去除手指晃動 所造成的漂移電壓或是紅外線光耦合器111的直流偏壓, 以便確保下一級電路不至於進入飽和區,而無法正常運 表單編號Α0101 第6頁/共19頁 M409819 作。增益放大器113可將信號予以放大及造成相位的改變 ,以利下一級電路測試時不至於產生失真。四階低通濾 波器114的設計不僅可以去除一般光源60Hz的干擾,亦可 避免高頻的雜訊。經微分器115與反相放大器116,可使 信號的振幅變大,又經比較器117後可產生一方波,此方 波會觸發單穩態振盪器118,並可產生一同步於心跳且脈 寬固定支脈波。由於運動時人體的血壓和心律會上升, 當到達一極限時,末梢血管將被動脈血壓完全撐開,此 時,微血管的容積波動將會明顯變小,甚至消失。[0003] Based on the above factors, the present invention aims to develop a meal-based heartbeat monitoring system, which uses an infrared light coupler to sense the blood volume of a physiological signal and convert it into a heartbeat value, thereby making a portable heartbeat measuring instrument for After measuring the physiological signal of the heartbeat of the monitored person, the ZigBee wireless network is transmitted to the computer for monitoring in a regional manner, and the remote computer can be connected via the network for synchronous monitoring. [New Content] [0004] In view of the above-mentioned problems of the prior art, one of the purposes of this creation is that Form No. A0101, Page 3 of 19 provides a heartbeat monitoring system utilizing portable infrared light coupling sensing. The device measures the blood volume change of the human blood vessel to know the frequency of the heartbeat, and can monitor the heartbeat change through the remote end to prevent the patient from getting sick but not knowing the problem in time. [〇0〇5] According to another object of the present invention, a heartbeat monitoring system is provided, which includes a sensing module, a first transmission module, a processing module, a prompting module, and a second transmission mode. group. The sensing module senses a change in the volume of the blood of the human blood vessel to generate a pulse signal. The first transmission module is connected to the sensing module to transmit a pulse signal. The processing module is connected to the first transmission module to calculate a heartbeat value per minute according to the pulse signal, and further determine whether the heartbeat value is greater than an upper limit heartbeat value or less than a lower limit heartbeat value. The prompt module is connected to the processing module. When the heartbeat value is greater than the reported heartbeat value "^ is less than the lower limit' Λ · heartbeat value, the prompting module issues a warning. The second transmission module is connected to the processing module to provide a remote monitoring terminal connected to the processing module, so that the remote monitoring terminal can synchronously monitor whether the heartbeat value is greater than the upper limit heartbeat value or less than the lower limit heartbeat value. [〇〇〇6] The heartbeat monitoring system described in the present invention further comprises a display module, which is connected to the processing module to display the heartbeat value, the upper limit heartbeat value and the lower limit heartbeat value of each minute. The display module includes a heartbeat value, an upper limit heartbeat value, and a lower limit heartbeat value displayed in a waveform display manner. [〇〇〇7] The heartbeat monitoring system described in the present invention further includes a communication module, which is a connection processing module, wherein when the heartbeat value is greater than the upper limit heartbeat value or less than the lower limit heartbeat value, the processing module communicates The module sends a message to at least one handheld electronic device. "This communication module can be a global mobile communication system (Global System for Mobile Conununica_ Form No. A0101 Page 4 of 19 M409819 tions, GSM). [0008] The heartbeat monitoring system of the present invention further includes an input module connected to the processing module to receive the set upper limit heartbeat value and the lower limit heartbeat value [0009] wherein the processing module further has a video interface The remote monitoring terminal is provided to perform video recording with the processing module. [0010] wherein the sensing module includes an infrared light coupler to sense a change in blood volume of the blood vessel of the human body. [0011] wherein the prompting module includes issuing an alert in the form of a sound, a light number, or a combination thereof. [0012] wherein, the first transmission module can be a Zig.B pan < short-term departure wireless communication system [0013] wherein the second transmission module can be a TCP/IP communication protocol. [0014] As mentioned above, due to the creation of heartbeat & home, it may have one or more of the following advantages: [0015] (1) This heartbeat monitoring system utilizes a portable heartbeat The detector senses the change of the human heartbeat, and can monitor the heartbeat of the monitored person at any time. [0016] (2) The heartbeat monitoring system can provide a change in the monitoring heartbeat value synchronized by the remote monitoring terminal, and can also perform a video call to achieve the function of online consultation. [0017] (3) The heartbeat monitoring system may send a short message to each mobile phone via GSM when a heartbeat abnormality jump occurs, to remind the remote monitoring party to avoid the accidental form number A0101, page 5/19, M409819. [Embodiment] The heartbeat monitoring system according to the present invention will be described below with reference to the related drawings. For ease of understanding, the same components in the following embodiments are denoted by the same reference numerals. [0019] Please refer to FIG. 1 , which is a block diagram of a first embodiment of the heartbeat monitoring system of the present invention. In the figure, the heartbeat monitoring system 1 includes a sensing module 11, a first transmission module 12, a processing module 13, a prompting module 14, an input module 15, a display module 16, a second transmission module 17, and a communication module. Group 18. The sensing module 11 is connected to the first transmission module 12. The processing module 13 is connected to the first transmission module 12, the prompt module 14, the eight-module ί, the display module 166, the second transmission module 17, and the communication module 18. The second transmission module 17 can provide a remote monitoring terminal 2 connected to the processing module 13, and the communication module 18 can provide the processing module 13 to send a message to the handheld electronic device 3. [0020] In the first embodiment, the sensing module 11 can be used to sense changes in blood volume of a human blood vessel (such as a microvascular on the finger) to generate a pulse signal. The components included in the sensing module 11 include an infrared optical coupler 111, a second-order high-pass filter 112, a gain amplifier 113, a fourth-order low-pass filter 114, a differentiator 115, an inverting amplifier 116' comparator 117, and a one-shot The state oscillator 118 has a block diagram of the sensing module 11 as shown in FIG. The infrared light coupler 111 is mainly used to detect the change of the microvessel volume in the finger, thereby obtaining the pulse rate. After the infrared light coupler 111 senses the fluctuation of the blood volume in the finger, the drift voltage caused by the finger shake or the DC bias of the infrared light coupler 111 is removed via the second-order high-pass filter 112 to ensure that the next-stage circuit does not As for entering the saturation zone, the form number Α0101, page 6 / 19 pages of M409819 cannot be normally operated. The gain amplifier 113 amplifies the signal and causes a phase change to prevent distortion in the next level of circuit testing. The design of the fourth-order low-pass filter 114 not only removes the 60 Hz interference of the general light source, but also avoids high frequency noise. The differentiator 115 and the inverting amplifier 116 can increase the amplitude of the signal, and after the comparator 117, a square wave can be generated. The square wave triggers the monostable oscillator 118 and can generate a synchronization with the heartbeat and pulse. Wide fixed branch pulse wave. As the blood pressure and heart rhythm of the human body rise during exercise, when the limit is reached, the peripheral blood vessels will be fully opened by the arterial blood pressure. At this time, the volume fluctuation of the microvessels will become significantly smaller or even disappear.
[0021] 上述中,紅外線光耦合器111感測血容量之原理為:半導 體的PN接面是分別參雜了 P和ίί盤(物ϋ丰#难相結合在 一起,若正電位加於Ρ型半等,馥處負J:饵>於Ν型半導 體處,則相對應之電洞和電子載子會移向接面處,在此 情形下電洞電子互相結合;但若反向加入電俾,則會把 電荷拉離開於接面區,使得該區内自由電荷變少,而形 成所謂的空乏區,然而单導體ϋ少數電荷型會 ί . : ·* +.-'‘+ , V •'广[0021] In the above, the principle that the infrared light coupler 111 senses the blood volume is: the PN junction of the semiconductor is mixed with the P and the ίί disk respectively (the object is difficult to combine, if the positive potential is added to the Ρ Type semi-equal, 馥 at the negative J: bait> at the Ν-type semiconductor, the corresponding hole and electron carrier will move to the junction, in which case the hole electrons are combined with each other; The electric sputum will pull the electric charge away from the junction area, so that the free charge in the area becomes less, and the so-called depletion area is formed. However, the single conductor ϋ a few charge types will be ί : : * +.-''+ , V • 'wide
因此穿越空乏區,形成所謂的潘電流。;有一些PN接面半 .;丨 導體的n型做得很薄,以致於光i能透過,而擊出電子 形成所謂的漏電流,此電流的大小和光的強度成正比。 同樣原理亦用於NPN型的電晶體形成所謂的光電晶體,其 基極為一光罩,可接受光源的照射,當有光線照射時可 產生集極-射極的電流。紅外線光耦合器111包含有一紅 外線發光二極體及光電晶體,當皮膚接觸紅外線光耦合 器111時,由於微血管内流量的變化,而改變了組織的結 構,使得紅外光在穿過組織時反射的量受到不同程度的 表單編號A0101 第7頁/共19頁 M409819 影響,因此可藉由光接收器獲得這微弱的信號變化量。 為降低可見光對測量時的干擾’二極體發射器和光電晶 體接收器,最大功率波長選定為880nm。 [0022] 第一實施例中’心跳監控系統1可提供監控者利用輸入模 組15針對不同的被監控者輸入上限心跳值及下限心跳值 。當感測模組11感測到人體血管之血液容積變化以取得 脈搏訊號時,可經由第一傳輸模組12將脈搏訊號傳送至 處理模組13,處理模組13則會根據接收到之脈搏訊號運 算出被監控者每分鐘之心跳值’然後經由顯示模組16將 每分鐘之心跳值以打點波形之方式顯示出來’並顯示上 限心跳值及下限心跳值。處理模組13亦會同時不斷的判 斷每分鐘之心跳值是否超過所設定的上'降值或是低 .. .’: .> · 於設定的下限心跳值。若是心跳值超過上限心跳值或是 低於設定的下限心跳值時,提示模組14便會以聲音、燈 號或其組合等方式發出警示,以提醒監控者。處理模組 13亦會將心跳值不正常跳動的訊息經由通訊模組18發送 至手持式電子裝置3,以提醒另外的監控者。亦或是可經 由第二傳輸模組17,讓其它的監控者可利用遠端監控端2 從遠端監控處理模組13所監測到心跳值之變化。 [0023] 第一實施例令,第一傳輸模組12彳為一種ZigBee短距離 無線通訊系統。ZigBee是一種短距離、架構簡單、低成 本、低消耗功率與低傳輸數率之無線通訊技術’其傳輸 距離最遠可因所選擇的功率不同而異,使用頻段為免用 申請的2.4GHz與900MHz頻段,傳輸速率,為20〖至 250Kbps,網路架構具備Master/Siave屬性’並可達到 表單編號A0101 第8頁/共19頁 M409819 雙向通信功用。ZigBee的主要特性為:高資料傳輸可靠 度、低功耗、低成本、支援多樣性的網路架構、低功率 長距及可加密提高資料安全性。第二傳輸模組17可為一 種Web及TCP/IP通訊協定。通訊模組18可為一種全球行 動通訊系統(Global System for Mobile Communications, GSM) 。 [0024] 第一實施例中,處理模組13、提示模組14、輸入模組15 及顯示模組16之組合可為一LABVIEW程式所撰寫而成之 一人機介面處理監控端。LABVIEW是一種圖形化程式語言 (我們又稱之為G語言),它的指令多數是看見圖形便大 概知道其用途,也因為如此义它,4比一般其它妁語言容易 JV 乂 …·· . 著手學習。不單單是如此,而有力的功 ,< Ψί·,· *.>*.-I?.,-;. 能,包括資料擷取(DAQ)、資料分析與結果呈現。除此 之外LABVIEW更提供量測後的數學分析與顯示功能,並且 對於與真實世界中所選擇的待測物提供一個溝通的介面 。藉由LABVIEW人機介面處Μ €輛可同時監控數個感測 气 * ·. ί ./ ·\ 模組11所感測到之脈搏訊號、,:·#脈搏訊號由類比轉為數 位之後,在顯示模組16以波形化的方式呈現。LABVIEW 人機介面處理監控端除了可以達到監控功能以外,更提 供有視訊介面,讓監控者可與位在遠端監控端2之其它監 控者進行視訊通話,以了解被監控者目前心跳變化之狀 況。假設LABVIEW人機介面處理監控端是由被監控者所控 制,則監控者則可利用遠端監控端2與被監控者進行視訊 通話,以遠到線上問診之功能。 [0025] 請參閱第3圖,其係為本創作之心跳監控系統之第二實施 表單編號A0101 第9頁/共19頁 M409819 例之流程圖。其可分為四個步驟,步驟S31 :利用紅外線 光耦合感測器感測人體血管之血液容積變化以取得脈博 訊號;步驟S32 :量測到脈博訊號後,則利用Zigbee無 線傳輸系統傳輸脈博訊號;步驟S33 :將脈博訊號傳送至 處理端,並利用LABVIEW將脈博訊號運算出每分鐘之心跳 值以進行監控;步驟S34 :透過Web或TCP/ίΡ之通訊協定 ,使得遠端監控端可連結至處理端,以進行同步的遠端 監控或是進行視訊通話;若是心跳值大於或小於某一值 時,則可經由GSM發送警示簡訊至手機,以提醒位於遠處 之監控者。 [0026]請參閱第4圖’其係為本創作之心跳監療索:統之第三實施 例之第一示意圖。圖中’心跳監控系統你各為三個部份 ,第一部份為紅外線光耦合感測電路101,第二部份為處 理端102 ’第三部份為手機103及遠端監控端1〇4。主要 是利用紅外線光耦合感測電路101來擷取要用來運算心跳 值的生理訊號。利用紅外線光搞合感測電路1 〇 1所操取到 的訊號’再利用Zigbee模組所建構的無線傳輸架構來傳 送資料至處理端1〇2。傳至處理端102後,經由程式 LABVIEW所設計出來的人機監控介面來將生理訊號換算出 每分鐘之心跳值,並利用波形圖框的方式讓過去及目前 所監測到的心跳值,以打點的方式來呈現。在LABVIEW程 式中也建構了資料庫、即時視訊及聲音等的功能。為了 要提高LABVIEW監控能力,也利用了 Web、TCP/IP或GSM 之通訊協定’來與手機103及遠端監控端1〇4進行遠端監 控。Web的協定是利用網際網路的網頁瀏覽方式使遠端監 表單煸號A0101 第10頁/共19頁 控端104可同步遠端監控處理端102所得到之心跳值。 TCP/IP的協定可用來降低遠端監控端104電腦記憶體之 使用量,使得遠端監控端104要同時遠端監控數個處理端 102時,不需開啟數個網頁以至浪費電腦記憶體。GSM的 通訊協定用來在突發狀況時,可以傳送簡訊至你所想要 傳送的手機103,在程式的架構中也設置了無上限的電話 號碼可提供設定,另外欲傳送的簡訊内容也可以因人而 異。 [0027] 請參閱第5及6圖,其係為本創作之心跳監控系統之第三 實施例之第一示意圖及第二示意圖。此兩圓式係為處理 端1 0 2 t程式LABVIEW所設‘针k棒的又韓介面之示意 圖。此人機監控介面可提供#用%匕跳值及下 .'ί Ά、 限心跳值,並可設定要連續超出或不連續超出幾次才算 心跳異常跳動,以所設定出來的條件做為判斷感測出來 之心跳值是否不正常之標準。兩厚式左邊具有一波形顯 示介面,此係用來顯示感滅到乏‘分_童之心跳值、所設Therefore, through the depletion zone, a so-called Pan current is formed. There are some PN junctions. The conductor n's n-type is made so thin that the light i can pass through and the electrons are struck to form a so-called leakage current. The magnitude of this current is proportional to the intensity of the light. The same principle is also applied to an NPN-type transistor to form a so-called photo-electric crystal, which is based on a reticle that receives illumination from a light source and produces a collector-emitter current when illuminated by light. The infrared light coupler 111 includes an infrared light emitting diode and a photoelectric crystal. When the skin contacts the infrared light coupler 111, the structure of the tissue is changed due to the change of the flow rate in the micro blood vessel, so that the infrared light is reflected when passing through the tissue. The amount is affected by different degrees of form number A0101, page 7 / 19 pages, M409819, so this weak signal variation can be obtained by the optical receiver. In order to reduce the interference of visible light to the measurement, the maximum power wavelength is selected to be 880 nm for the diode emitter and the photonic crystal receiver. [0022] In the first embodiment, the heartbeat monitoring system 1 can provide a monitor using the input module 15 to input an upper limit heartbeat value and a lower limit heartbeat value for different monitored persons. When the sensing module 11 senses the blood volume change of the human blood vessel to obtain the pulse signal, the pulse signal can be transmitted to the processing module 13 via the first transmission module 12, and the processing module 13 receives the pulse according to the received pulse. The signal calculates the heartbeat value of the monitored person every minute' and then displays the heartbeat value of each minute as a dot waveform via the display module 16' and displays the upper limit heartbeat value and the lower limit heartbeat value. The processing module 13 also continuously determines whether the heartbeat value per minute exceeds the set upper 'down value or low. . . . . . . . . . . . . at the set lower limit heartbeat value. If the heartbeat value exceeds the upper limit heartbeat value or is lower than the set lower limit heartbeat value, the prompting module 14 will issue a warning by means of sound, light signal or a combination thereof to remind the monitor. The processing module 13 also sends a message that the heartbeat value is not beating normally to the handheld electronic device 3 via the communication module 18 to alert the other monitors. Alternatively, the second transmission module 17 can be used to allow other monitors to use the remote monitoring terminal 2 to detect changes in the heartbeat value from the remote monitoring processing module 13. [0023] In the first embodiment, the first transmission module 12 is a ZigBee short-range wireless communication system. ZigBee is a short-distance, simple architecture, low-cost, low power consumption and low transmission rate wireless communication technology. The transmission distance can be different depending on the power selected. The frequency band is 2.4GHz with the application free. In the 900MHz band, the transmission rate is 20 〖 to 250Kbps, the network architecture has the Master/Siave attribute' and can reach the form number A0101 page 8 / 19 pages M409819 two-way communication function. The main features of ZigBee are: high data transmission reliability, low power consumption, low cost, support for diverse network architecture, low power long range and encryption to improve data security. The second transmission module 17 can be a Web and TCP/IP communication protocol. The communication module 18 can be a Global System for Mobile Communications (GSM). [0024] In the first embodiment, the combination of the processing module 13, the prompt module 14, the input module 15, and the display module 16 can be a human-machine interface processing monitor written by a LABVIEW program. LABVIEW is a graphical programming language (we also call it G language). Most of its instructions are to see the graphics and probably know its purpose. Because of this, it is easier than other common languages. JV 乂...·· . Learn. Not only that, but powerful work, < Ψί·,· *.>*.-I?.,-;. can, including data acquisition (DAQ), data analysis and results presentation. In addition to this, LABVIEW provides post-measurement mathematical analysis and display capabilities, and provides a communication interface to selected objects in the real world. With the LABVIEW man-machine interface, you can monitor several sensing gases at the same time. *. ί ./ ·\ The pulse signal sensed by the module 11 , , :· # pulse signal is changed from analog to digital Display module 16 is presented in a waveformd manner. In addition to monitoring functions, the LABVIEW human-machine interface monitoring terminal provides a video interface that allows the monitor to make video calls with other monitors located at the remote monitoring terminal 2 to understand the current heartbeat changes of the monitored person. . Assuming that the monitoring terminal of the LABVIEW human-machine interface is controlled by the monitored person, the monitor can use the remote monitoring terminal 2 to make a video call with the monitored person to go far to the online consultation function. [0025] Please refer to FIG. 3, which is the second implementation of the heartbeat monitoring system of the present invention. Form No. A0101 Page 9 of 19 Flowchart of the M409819 example. The method can be divided into four steps. Step S31: sensing the blood volume change of the human blood vessel by using the infrared light coupling sensor to obtain the pulse signal; and step S32: measuring the pulse signal, then transmitting by using the Zigbee wireless transmission system. Pulse scanning signal; step S33: transmitting the pulse signal to the processing end, and using LABVIEW to calculate the heartbeat value of the pulse signal for monitoring every minute; step S34: making the remote end through the Web or TCP/Ρ protocol The monitoring terminal can be connected to the processing terminal for synchronous remote monitoring or video communication; if the heartbeat value is greater than or less than a certain value, the warning message can be sent to the mobile phone via GSM to remind the remotely located monitor . [0026] Please refer to Fig. 4, which is the first schematic diagram of the third embodiment of the present invention. In the figure, the heartbeat monitoring system is divided into three parts. The first part is the infrared light-coupled sensing circuit 101, the second part is the processing end 102'. The third part is the mobile phone 103 and the remote monitoring terminal. 4. The infrared light coupling sensing circuit 101 is mainly used to extract the physiological signal to be used for calculating the heartbeat value. The infrared light is used to engage the signal sensed by the sensing circuit 1 再 1 and then the data transmission structure constructed by the Zigbee module is used to transmit the data to the processing terminal 1〇2. After passing to the processing terminal 102, the human-machine monitoring interface designed by the program LABVIEW converts the physiological signal into the heartbeat value of each minute, and uses the waveform frame to make the heartbeat value monitored in the past and the current to be managed. The way to present. The library, instant video and sound functions are also built in the LABVIEW program. In order to improve the LABVIEW monitoring capability, the Web, TCP/IP or GSM protocol is also used to remotely monitor the mobile phone 103 and the remote monitoring terminal 1〇4. The web protocol is to use the Internet web browsing mode to enable the remote monitoring form to be synchronized with the heartbeat value obtained by the remote monitoring processing terminal 102. The TCP/IP protocol can be used to reduce the amount of computer memory used by the remote monitoring terminal 104. When the remote monitoring terminal 104 is to remotely monitor several processing terminals 102 at the same time, it is not necessary to open several web pages and waste computer memory. The GSM communication protocol is used to send a short message to the mobile phone 103 you want to transmit in an emergency situation. In the program architecture, an unlimited number is also provided to provide settings, and the content of the message to be transmitted can also be It varies from person to person. [0027] Please refer to FIGS. 5 and 6 , which are a first schematic diagram and a second schematic diagram of a third embodiment of the heartbeat monitoring system of the present invention. The two-circle type is a schematic diagram of the Korean interface of the 'pin k-bar set by the processing terminal 1 0 2 t program LABVIEW. This man-machine monitoring interface can provide #% 匕 跳 value and lower .'ί Ά, limit heart rate value, and can be set to continuously exceed or discontinue more than a few times to calculate the abnormal heartbeat, based on the set conditions A criterion for judging whether the sensed heartbeat value is abnormal. The two thick left sides have a waveform display interface, which is used to display the value of the heartbeat value of the ‘分_童_
:V 定之上限心跳值及下限心跳值若心嬈值為正常,提示 C 中Μ厂 L‘, 燈則顯示「無異常」之字樣,如第5圖所示。若心跳值不 正常跳動時(在此是設定五點異常便為心跳異常跳動), 提示燈則會亮起、發出聲響及顯示「異常」之字樣,如 第6圖所示。兩圖式中間具有一視訊介面,可用來與遠端 監控端104進行視訊通話。兩圖式右上方則可提供設定被 監控者之病歷資料。 [0028] 綜合上述,本創作之心跳監控系統具有以下特性: [0029] 1、感測器可以隨身攜帶,有別於一般固定式的感測設備 表單編號A0101 第11頁/共19頁 M409819 [0030] 2、可同時監控數個監控端。 [0031] 3、利用Lab View系統來做異常判斷及ZigBee通訊協定功 能,傳送至電腦端監控。 [0032] 4、利用Web可進行遠端監控。 [0033] 5、TCP/IP的協定可進行遠端傳值外,也可降低電腦記憶 體的使用量。 [0034] 6、不管是連續異常或不連續異常都可以選擇傳一次或連 續傳簡訊給欲傳達的號碼,可設定多組電話,簡訊内容 - ‘ 可自行設定。 : … .V’ ί .,··· -- [0035] 7、擁有與遠端視訊、語音談話及蚣話視窗的功能。 [0036] 以上所述僅為舉例性,而非為限制性者。任何未脫離本 創作之精神與範疇,而對其進行之等效修改或變更,均 應包含於後附之申請專利範圍 【圖式簡單說明】 [0037] 第1圖係為本創作之心跳監控系統之第一實施例之方塊圖 f 第2圖係為本創作之心跳監控系統之第一實施例之感測模 組之方塊圖; 第3圖係為本創作之心跳監控系統之第二實施例之流程圖 9 第4圖係為本創作之心跳監控系統之第三實施例之第一示 意圖; 表單編號A0101 第12頁/共19頁 M409819 第5圖係為本創作之心跳監控系統之第三實施例之第二示 意圖;以及 第6圖係為本創作之心跳監控系統之第三實施例之第三示 意圖。 【主要元件符號說明】 [0038] 1、100 :心跳監控系統 11 :感測模組 111 :紅外線光耦合器 112 :二階高通濾波器 113 :增益放大器 114 :四階低通濾波器 ::、 115 :微分器 W 、 116 :反相放大器 117 :比較器 118 :單穩態振盪器 ; . , 12 :第一傳輸模組 ;’ 13 :處理模組 / : '...." 14 :提示模組 1 5 :輸入模組 1 6 :顯示模組 17 :第二傳輸模組 18 :通訊模組 2、104 :遠端監控端 3:手持式電子裝置 101 :紅外線光耦合感測電路 表單編號A0101 第13頁/共19頁 M409819 102 :處理端 103 :手機 S3卜S34 :步驟 表單編號A0101 第14頁/共19頁:V Set the upper limit heartbeat value and lower limit heartbeat value. If the heart rate is normal, the prompt C is displayed in the factory L', and the light shows “no abnormality”, as shown in Figure 5. If the heartbeat value does not beat normally (in this case, if the five-point abnormality is set, the heartbeat will be abnormally beaten), the indicator light will light up, sound and display the word “abnormal”, as shown in Figure 6. There is a video interface in the middle of the two graphics, which can be used for video communication with the remote monitoring terminal 104. The top right of the two figures provides information on the medical records of the monitored person. [0028] In summary, the heartbeat monitoring system of the present invention has the following characteristics: [0029] 1. The sensor can be carried around, which is different from the general fixed sensing device form number A0101 page 11 / 19 pages M409819 [ 0030] 2. Several monitoring terminals can be monitored at the same time. [0031] 3. The Lab View system is used to perform abnormality judgment and ZigBee communication protocol function, and is transmitted to the computer for monitoring. [0032] 4. Remote monitoring can be performed by using the Web. [0033] 5, TCP / IP agreement can be used to remotely pass the value, but also reduce the amount of computer memory usage. [0034] 6. Regardless of whether it is a continuous abnormality or a discontinuous abnormality, you can choose to transmit the serial message or send the short message to the number to be communicated. You can set multiple sets of telephones, and the content of the newsletter - ‘ can be set by yourself. : ... .V' ί .,··· -- [0035] 7. Has the function of remote video, voice conversation and slamming window. [0036] The foregoing is illustrative only and not limiting. Any equivalent modification or change without departing from the spirit and scope of this creation shall be included in the scope of the attached patent application [Simplified illustration] [0037] Figure 1 is the heartbeat monitoring of this creation. Block diagram f of the first embodiment of the system is a block diagram of the sensing module of the first embodiment of the heartbeat monitoring system of the present invention; FIG. 3 is the second implementation of the heartbeat monitoring system of the present invention. Flowchart of Example 9 Figure 4 is the first schematic diagram of the third embodiment of the heartbeat monitoring system of the present invention; Form No. A0101 Page 12 of 19 M409819 Figure 5 is the first heartbeat monitoring system of the creation The second schematic diagram of the third embodiment; and the sixth diagram is the third schematic diagram of the third embodiment of the heartbeat monitoring system of the present invention. [Main component symbol description] [0038] 1, 100: Heartbeat monitoring system 11: Sensing module 111: Infrared optical coupler 112: Second-order high-pass filter 113: Gain amplifier 114: Fourth-order low-pass filter::, 115 : Differentiator W, 116: Inverting amplifier 117: Comparator 118: monostable oscillator; . , 12: first transmission module; '13: processing module / : '...." 14 : prompt Module 1 5 : Input module 1 6 : Display module 17 : Second transmission module 18 : Communication module 2 , 104 : Remote monitoring terminal 3 : Handheld electronic device 101 : Infrared light coupling sensing circuit form number A0101 Page 13 of 19 M409819 102: Processing End 103: Mobile Phone S3 Bu S34: Step Form No. A0101 Page 14 of 19