M407437 五、新型說明: 【新型所屬之技術領域】 ^本新型關於一種觸摸點偵測裝置,特別關於一種用於 從多觸摸點之原始座標中判斷出真座標之偵測裝置。 【先前技術】 目別,藉由手指之類觸控物件之觸摸,直接對電子設 _備進行操作之技術已經普遍應用於日常工作及生活中。該 等電子設備一般採用觸摸點偵測裝置來感應觸摸動作並 產生相應電信號以供後續操作。所述觸摸點偵測裝置於實 際生產或使用中常表現為觸控板、觸控螢幕等形式。 按照觸控原理之不同,觸摸點偵測裝置主要分為電阻 式、電容式、光學式、電磁式、聲波式等。其中電容式觸 摸點偵測裝置之工作原理為:由使用者以手指或感應筆等 可導電之觸控物件觸摸裝置表面,導致裝置表面被觸摸之 鲁位置產生電壓變化,微處理器根據此電壓變化偵測出觸摸 點之座標,以達到觸控操作之目的。 為了配合不同之電子設備,業者研發出各種不同之電 谷式觸摸點憤測裝置,投射電容式觸摸點偵測裝置為其中 一種。如圖la、lb所示,傳統之一種呈網格狀之投射電 容式觸摸點偵測裝置1包括位於第一方向之第一電極2、 位於第二方向之第二電極3、絕緣層4、基板5、複數導 線6以及處理器7。其中,第—電極2與第二電極3相互 父錯分佈於基板5上,且以絕緣層4隔開。處理器7經由 4 M407437 觸摸穿置以。當可導電之觸控物件 雷*L 時’母組電極及觸控物件之間都會產生自 電谷變化,此自電容變化可由處理器7偵測出來。每組電 極上自電容變化之質心代表觸摸點在每—電極方向上之 位置觸摸點之座標由二組電極方向上之質心相互交叉叶 算得出。《,傳統之_方法步驟為:a)分別掃描二組電 極,b)解析觸摸點在二組電極方向上自電容變化之質心; c)由所述質心計算出觸摸點之座標。 當觸摸點價測震置表面同時出現至少二觸控點時,以 二觸摸點G、Η為例’如圖2所示,每組電極方向上就會 解析出自電容變化之二質心,即第一方向上質心、如、肋 及第二方:上質心、9a、9b’由所述二組質心相互交又配 置,計算出四原始座標G(8a, 9a)、G,(8&,北)、 H (8b,9a)、H(8b’ 9b) ’其中僅有二座標為觸摸點之真座 標G(8a,9a)、H(8b,9b),另二為觸摸點之假座標 G (8a,9b)、H’(8b,9a)。由此可見,在使用傳統之投射 電容式觸摸點偵測裝置及其_方法來偵測至少二點觸 摸點時,就不可避免之產生觸摸點之假座標,使觸控面板 之應用受到限制。故,如何在偵測至少二觸摸點中計算出 觸摸點之真座標’剔除假座標’便成為投射電容式觸摸點 偵測裝置及偵測方法需要解決之問題。 【新型内容】 有鑑於此,有必要提供一種多觸摸點之真座標偵測裴 5 M407437 置,以在偵測複數觸摸點時, 觸摸點之真座標。 月匕剔除假座標,準確判斷出 種夕_點之真座標偵測裝置,包括用㈣測 夕觸摸點U座標之該以及連接於所述電極之奸 電路’其中,料掃料路包㈣於對所述電極全掃描: 得到所述多觸摸點之原始座標之全掃摇電路,以及用M407437 V. New description: [New technical field] The present invention relates to a touch point detecting device, and more particularly to a detecting device for judging a true coordinate from an original coordinate of a multi-touch point. [Prior Art] The technology of directly operating an electronic device by touch of a touch object such as a finger has been widely used in daily work and life. Such electronic devices typically employ touch point detection devices to sense touch motion and generate corresponding electrical signals for subsequent operation. The touch point detecting device is often in the form of a touch panel or a touch screen in actual production or use. According to different touch principles, touch point detection devices are mainly classified into resistive, capacitive, optical, electromagnetic, and sonic. The working principle of the capacitive touch point detecting device is that the touch surface of the device is touched by the user with a conductive touch object such as a finger or an inductive pen, so that the surface of the device is changed in voltage by the touched position, and the microprocessor according to the voltage The change detects the coordinates of the touch point to achieve the purpose of the touch operation. In order to cooperate with different electronic devices, the industry has developed a variety of different types of touch point inversion devices, and projected capacitive touch point detection devices are one of them. As shown in FIG. 1a and 1b, a conventional projected capacitive touch point detecting device 1 includes a first electrode 2 in a first direction, a second electrode 3 in a second direction, and an insulating layer 4. The substrate 5, the plurality of wires 6 and the processor 7. The first electrode 2 and the second electrode 3 are distributed on the substrate 5 with their fathers and are separated by an insulating layer 4. The processor 7 is touched through the 4 M407437. When the conductive touch object is Ray*L, the self-voltage valley change occurs between the parent electrode and the touch object, and the self-capacitance change can be detected by the processor 7. The centroid of the self-capacitance change on each group of electrodes represents the position of the touch point in each-electrode direction. The coordinates of the touch point are calculated by the centroids in the direction of the two sets of electrodes intersecting each other. The conventional method steps are: a) scanning two sets of electrodes separately, b) analyzing the centroid of the self-capacitance change of the touch point in the direction of the two sets of electrodes; c) calculating the coordinates of the touch point from the centroid. When at least two touch points are simultaneously displayed on the surface of the touch point sensor, the two touch points G and Η are taken as an example. As shown in FIG. 2, the centroids of the self-capacitance change are resolved in the direction of each group of electrodes, that is, In the first direction, the centroid, such as the rib and the second side: the upper centroid, 9a, 9b' are arranged by the two groups of centroids, and the four original coordinates G(8a, 9a), G, (8& , North), H (8b, 9a), H (8b' 9b) 'There are only two coordinates of the true coordinates G (8a, 9a), H (8b, 9b) of the touch point, and the other is the false touch point Coordinates G (8a, 9b), H' (8b, 9a). It can be seen that when the conventional projected capacitive touch point detecting device and the method thereof are used to detect at least two touch points, the false coordinates of the touch point are inevitably generated, which limits the application of the touch panel. Therefore, how to calculate the true coordinates of the touched point 'removing the false coordinates' in detecting at least two touch points becomes a problem to be solved by the projected capacitive touch point detecting device and the detecting method. [New content] In view of this, it is necessary to provide a true coordinate detection of the multi-touch point 裴 5 M407437 setting, in order to detect the complex touch point, touch the true coordinates of the point. The moon 匕 匕 假 假 , , , , 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕Full scanning of the electrode: obtaining a full sweep circuit of the original coordinates of the multi-touch point, and using
所述電極分區掃描以判斷所述原始座標中所述多觸摸點 之真座標之分區掃描電路。 採用上述多觸摸點之真座標制裝置,可克服傳統觸 摸點倘測裝置在_複數戦點時,遇到顧點之假座標 問題’準綠判斷出觸摸點之真座標。同時,由於每一電極 包括二部分電極’ & ’可提高觸控面板之掃描速度,亦可 減少觸控信號在電極上傳輸時造成之衰減。 【實施方式】 如圖3a、3b所示,第一實施方式之多觸摸點之真座 標偵測裝置100包括基板110、分佈於第一方向χ之複數 第一電極120、分佈於第二方向γ之複數第二電極13〇、 絕緣層140、處理器15〇,以及複數導線170。第一電極 120設置於基板11〇表面。其中,第一方向χ及第二方向 Y異向,第一電極120及第二電極130設置於絕緣層14〇 之兩側’且相互交錯呈網格狀,同時形成複數電極交叉 處。第一電極120及第二電極130可為透明導電材料或為 金屬。絕緣層140為平面連續結構,使第一電極120及第 6 M407437 w •二電極130相互絕緣。其中,第一電極120在第一方向x * 上分為相互隔開之第一甲電極121及第一乙電極122;第 ,-電極130在第二方向Y上分為相互隔開之第二甲電極 131及第二乙電極132。第一甲電極121及第二甲電極⑶ 相互交錯之區域定義為電極區域Q1 ;第—乙電極及 第二甲電極131相互交錯之區域定義為電極區域Q2;第 甲電極121及第二乙電極! 32相互交錯之區域定義為電 極區域Q3;第-乙電極122及第二乙電極132相互交錯 之區域定義為電極區域q4。每一第一甲電極12丨藉由導 線170,經由開關161連接至處理器15〇,同理,每一第 一乙電極122藉由導線no,經由開關162連接至處理器 150母第一甲電極131藉由導線,經由開關⑽ 連接至處理器150,每一第二乙電極132藉由導線17〇, 經由開關164連接至處理器15卜偵測裝置1〇〇還包括掃 描電路(圖未示)’包括全掃描電路及分區掃描電路,用 _於當偵測裝置100執行偵測多觸摸點時,币兩種不同之掃 也電路對第一私極及第二電極進掃描。上述掃描電路還包 括複數開關m、162、163、164,用於辅助進行全掃描 電路之分區掃描電路之間之切換。 掃描電路可控制所有開關161、162、163、164之開 。以切換全掃描電路及分區掃描電路。當所有開關1^、 162、163、164全部閉合時,則第一甲電極121及第一乙 .電極I22表現為整體電極結構,即第一電極12〇,同理, •第二甲電極131及第二乙電極132表現為整體電極結構, 7 M407437 即第二電極130,此時切換為全掃描電路,對第一電極120 及第二電極130進行全掃描。當開關161閉合時,則連接 開關161之第一甲電極121連接至處理器150,此時切換 為分區掃描電路,對第一甲電極121進行分區掃描。同 理,當開關162、開關163及開關164分別閉合時,切換 為分區掃描電路,分別對第一乙電極122、第二曱電極131 及第二乙電極132進行分區掃描。 依據不同之設計需要,第一甲電極121及第一乙電極 122可相互對稱,第二曱電極131及第二乙電極132可相 互對稱,故四電極區域Ql、Q2、Q3及Q4相互對稱;相反, 第一甲電極121及第一乙電極122亦可相互非對稱,第二 曱電極131及第二乙電極132亦可相互非對稱,則四電極 區域Ql、Q2、Q3及Q4相互非對稱。 如圖4a、4b所示為第二實施方式之多觸摸點之真座 標偵測裝置200,同第一實施方式相似,包括:基板210、 分佈於第一方向X之複數第一電極220、分佈於第二方向 Y之複數第二電極230、複數絕緣片240、處理器250、複 數開關261、262、263、264,以及複數導線270。不同之 處在於^所有電極均分佈於基板210同一表面。為使不同 方向之電極相互絕緣,在電極交叉處之第一電極220及第 二電極230之間設置複數絕緣片240,即在電極交叉處之 第一電極220表面設置複數絕緣片240,且使第二電極230 橫跨於複數絕緣片240表面。其中,第一電極220在第一 方向X上分為相互隔開之第一曱電極221及第一乙電極 8 M407437 222,第二電極23〇在第二方向上γ上分為相互隔開之第 二甲電極231及第二乙電極232。第二實施方式之制裝 置中其他元件之位置設置同第一實施方式。 多觸摸點之真座標偵測裝置中電極形狀不僅限於條 狀’還可為其他形狀或形狀之組合。The electrode is divided into sections to determine a partition scan circuit of the true coordinates of the multi-touch point in the original coordinates. By adopting the above-mentioned multi-touch point real coordinate marking device, the traditional touch point can be overcome when the measuring device encounters the false coordinate problem of the point when the _ complex number is detected, and the true coordinate of the touched point is judged by the quasi-green. At the same time, since each electrode includes a two-part electrode '&', the scanning speed of the touch panel can be improved, and the attenuation caused by the touch signal transmitted on the electrode can be reduced. [Embodiment] As shown in FIG. 3a and FIG. 3b, the multi-touch point true coordinate detecting apparatus 100 of the first embodiment includes a substrate 110, a plurality of first electrodes 120 distributed in the first direction, and distributed in the second direction γ. The plurality of second electrodes 13A, the insulating layer 140, the processor 15A, and the plurality of wires 170. The first electrode 120 is disposed on the surface of the substrate 11 . Wherein, the first direction χ and the second direction Y are opposite, the first electrode 120 and the second electrode 130 are disposed on both sides of the insulating layer 14 ’ and are staggered in a grid shape, and at the same time forming a plurality of electrode intersections. The first electrode 120 and the second electrode 130 may be a transparent conductive material or a metal. The insulating layer 140 has a planar continuous structure, and the first electrode 120 and the sixth M407437 w • the two electrodes 130 are insulated from each other. The first electrode 120 is divided into a first electrode 121 and a first electrode 122 that are spaced apart from each other in the first direction x*. The first electrode 130 is divided into two in the second direction Y. A electrode 131 and a second electrode 132. A region in which the first electrode 121 and the second electrode (3) are interdigitated is defined as an electrode region Q1; a region in which the first electrode and the second electrode 131 are interdigitated is defined as an electrode region Q2; the first electrode 121 and the second electrode ! The regions interleaved with each other are defined as the electrode regions Q3; the regions where the first-electrode electrode 122 and the second-electrode electrode 132 are interdigitated are defined as the electrode regions q4. Each first electrode 12 is connected to the processor 15 via a switch 170 via a wire 170. Similarly, each first electrode 122 is connected to the processor 150 via the switch 162 via the wire no. The electrode 131 is connected to the processor 150 via a switch via a switch (10). Each second electrode 132 is connected to the processor 15 via the switch 164 via a wire 17 and further includes a scanning circuit. The display includes a full scan circuit and a partition scan circuit. When the detection device 100 performs the detection of the multi-touch point, the two different scan circuits of the coin scan the first private electrode and the second electrode. The scan circuit further includes a plurality of switches m, 162, 163, 164 for assisting in switching between the zone scan circuits of the full scan circuit. The scanning circuit controls the opening of all of the switches 161, 162, 163, 164. To switch the full scan circuit and the partition scan circuit. When all the switches 1^, 162, 163, and 164 are closed, the first electrode 121 and the first electrode I22 appear as an integral electrode structure, that is, the first electrode 12A, and the second electrode 131 The second electrode 132 and the second electrode 132 are represented as a whole electrode structure, and the second electrode 130 is switched to a full scan circuit, and the first electrode 120 and the second electrode 130 are fully scanned. When the switch 161 is closed, the first electrode 121 of the connection switch 161 is connected to the processor 150, and at this time, it is switched to the zone scanning circuit to perform a zone scan on the first electrode 121. Similarly, when the switch 162, the switch 163, and the switch 164 are respectively closed, the switch is switched to the partition scanning circuit, and the first ethyl electrode 122, the second germanium electrode 131, and the second second electrode 132 are separately scanned. According to different design requirements, the first electrode 121 and the first electrode 122 can be symmetric with each other, and the second electrode 131 and the second electrode 132 can be symmetric with each other, so the four electrode regions Q1, Q2, Q3 and Q4 are symmetrical to each other; In contrast, the first electrode 121 and the first electrode 122 may be asymmetric with each other, and the second electrode 131 and the second electrode 132 may be asymmetric with each other, and the four electrode regions Q1, Q2, Q3, and Q4 are asymmetric with each other. . As shown in FIG. 4a and FIG. 4b, the multi-touch point true coordinate detecting device 200 of the second embodiment is similar to the first embodiment, and includes a substrate 210, a plurality of first electrodes 220 distributed in the first direction X, and a distribution. The second electrode 230, the plurality of insulating sheets 240, the processor 250, the plurality of switches 261, 262, 263, 264, and the plurality of wires 270 in the second direction Y. The difference is that all the electrodes are distributed on the same surface of the substrate 210. In order to insulate the electrodes in different directions from each other, a plurality of insulating sheets 240 are disposed between the first electrode 220 and the second electrode 230 at the intersection of the electrodes, that is, a plurality of insulating sheets 240 are disposed on the surface of the first electrode 220 at the intersection of the electrodes, and The second electrode 230 spans the surface of the plurality of insulating sheets 240. The first electrode 220 is divided into a first drain electrode 221 and a first ethyl electrode 8 M407437 222 which are spaced apart from each other in the first direction X, and the second electrode 23 is separated from each other by γ in the second direction. The dimethyl electrode 231 and the second ethyl electrode 232. The positional arrangement of the other elements in the manufacturing apparatus of the second embodiment is the same as that of the first embodiment. The shape of the electrodes in the true coordinate detecting device of the multi-touch point is not limited to the strip shape but may be other shapes or combinations of shapes.
多觸摸點之真座標偵測裝置中各元件依據實際需要 不同,可由透明材料製成,亦可由不透明材料製成^列如, 當觸控圖形為不透明時,可應用於筆記型電腦等設備之觸 控操作面板;當觸控圖形為透明時,可應用於顯示器等發 光顯示裝置之表面做成觸控操作螢幕。 禝数觸摸點偵測裝置中第一電極及第二電極分別包 括至少二條電極,其中電極數目由所應用之偵測裝置之解 析度及尺寸;定。—般㈣度要求愈高,即 愈小,電極數目愈多;尺寸愈大,電極數目亦愈~多、。/ 當本實施方式提供之多_點之真座標_ 表面同時產生至少二職點時,可㈣5所示之 之真座標❹丨方法流程制至少二翻點之真 ,·一 觸摸點之㈣為例,結合圖6a_6e所示n 同時產生二觸摸點Α、β,且二觸摸點A、心= Γ複第數第甲電極、複數第一乙電極與所述複數第二甲電 複數第-乙電極相互交錯所定義之四電極 鄰之電極區域㈣,在絲步驟10之後,執行步驟;;相 閉合所有開關,掃財路切換為全掃描電路,對位 方向X之第-電極及位於第二方向7之第二電極進行 M407437 描。藉由掃描,偵測到觸摸點Α、β分別與第一電極及第 二電極之間產生自電容變化,並且將此自電容變化之資料 傳輸至處理器。 進入步驟12,處理器根據自電容變化之資料,解析 出觸摸點Α、β在X方向之自電容變化之質心χ^χ2及在 Y方向之自電容變化之質心yl、y2。同時,依據第二甲電 極131及第二乙電極丨32之位置,處理器可分辨出質心 yi在第二甲電極131上,而質心y2在第二乙電極132上。 二方向上之質心相互交又匹配,計算出觸摸點之原始座標 ‘l’yl)'b〇c2’y2)、a’(xl,y2)、b’(x2 yl),如圖 6a所示。 進入判斷步驟13,處理器判斷是否在χ方向及γ方 向之其中任⑦-方向上僅解析出—質心,若判斷結果為 則進人㈣14’處理器將相對之二原始座標分劃分 為一组’則形成二組原始座標,即a(xl yl)、b(x2 y2) ,a (Xl’y2)、b’(x2 yl)。由於假座標之存在,該二 原始座定有一組為真座標’而另一組為假座標。 八^人步驟15 ’閉合連接複數第—甲電極之開關,以 :區掃描電路對複數第一甲電極進行分區掃描,如圖此 所不。 僅倍5$|判:步驟16’處理器判斷是否在第-曱電極上 僅偵測到一步驟12 φ魅山+ A a 自電容變化之質心,若判 二,人㈣17’閉合連接複數第二甲電極 之開關’〜轉描電路龍數第二w極進行分區掃 M407437 描,如圖6c所示。藉由掃描,偵測到一步驟12中解析出 之自電谷變化之質心xl。由於,γ方向上之自電容變化之 質心yl在第二曱電極上,則原始座標a(xl,yl)為觸摸點 A之真座標。故,步驟14 ψ得出之觸摸點之二組原始座 標 a(xl,yl)、b(x2,y2)及 a’(xl,y2)、b’(x2,yl)中, 包含該真座標a(xl,yl)之一組原始座標a(xlyl)、 1)(乂2,72)為觸摸點八、8之真座標。進入步驟18,處理器 輸出真座標。 如圖7a、7b所示,當本實施方式提供之偵測裝置1〇〇 之表面同時產生二觸摸點C、D,且同時產生在由複數第 一甲電極121、複數第一乙電極122與所述複數第二曱電 極131及複數第二乙電極132相互交錯所定義之四電極區 域中二相對之電極區域内時,則圖5所示之多觸摸點之真 座標偵測方法流程中,判斷步驟16之判斷結果為是,則 v驟15在第一曱電極121上偵測到之自電容變化之質心 W,與X方向自電容變化之質心χ3組成之原始座標 c(x3,y3)為觸摸點c之真座標。故,二組原始座標 = x3’y3)、d(X4,y4)Ac’(x3,y4)、d’(x4,y3)t,& 3該真座標c(x3,y3)之一組原始座標c(x3,y3)、d(;x4,y4) 為觸摸點C、D之真座標。進入步驟18,處理器15〇輸出 真座標。 如圖8所示,當本實施方式提供之偵測裝置1〇〇之表 面同時產生二觸摸點E、F,且同時產生在由複數第一甲 電極121、複數第一乙電極122與所述複數第二曱電極131 M407437 及複數第二乙電極132相互交錯所定義之四電極區域中 二相鄰之電極區域内’且分別位於同一條第一電極之第一 曱電極121及第一乙電極122上時,如圖5所示之多觸摸 點之真座標偵測方法流程中,判斷步驟13之判斷結果為 是,則代表步驟12中處理器在Y方向上僅解析出一質心 y5,且僅計算出二觸摸點之原始座標e(x5, y5)、 f(x6, y5)。故,此原始座標為觸摸點E、F之真座標。直 接進入步驟18,處理器150輸出二觸摸點E、F之真座標 ® e(x5,y5)、f(x6,y5)。 圖5中步驟18輸出之真座標,可輸出至一控制設備, 亦可輸出至一顯示裝置等,用以執行後續相關流程,對此 真座標之接收端及用以執行之相關流程不做限制。 依據偵測方法流程之不同設置需求,步驟15中,可 閉合連接複數第一乙電極122之開關,以分區掃描電路對 複數第一乙電極122進行分區掃描。步驟17中,可閉合 蠢連接複數第二乙電極132之開關,以分區掃描電路對複數 第二乙電極13 2進行分區掃描。 同樣以二觸摸點為例,本實施方式提供之偵測方法還 可按照圖9所示之流程進行,其中步驟20到步驟23同圖 5所示之流程中步驟10到步驟13完全一致,不同之處在 於,當步驟23之判斷結果為否時,處理器不對原始座標 進行分組,直接進入步驟24,掃描電路切換為分區掃描 • 電路,依據任意順序分別對第一曱電極121、第一乙電極 , 122、第二甲電極131及第二乙電極132進行分區掃描; 12 M407437 然後進入步驟25,根據分區掃描結果直接判斷出二觸摸 點之真座標,進而輸出真座標。 上述處理器150包括掃描單元、計算單元、判斷單元 及輸出單元。其中,掃描單元用於提供掃描信號給各線 路,同時接收掃描過程中產生之電信號,例如上述自電容 變化之信號;計算單元執行計算自電容變化之質心及原始 座標;判斷單元做出判斷,例如,是否在某一方向上僅解 析出一計算單元計算出之自電容變化之質心;輸入單元則 • 為將最終判斷之真座標輸出至執行下一步操作之單元。 上述多觸摸點之真座標偵測方法亦可運用於偵測本 實施方式提供之偵測裝置之表面,同時產生二以上之觸摸 點時,先以全掃描電路對第一電極及第二電極進行全掃 描,計算出觸摸點之原始座標;再以分區掃描電路分別對 第一甲電極、第一乙電極、第二甲電極或第二乙電極進行 分區掃描,判斷出原始座標中觸摸點之真座標。 φ 綜上所述,本新型確已符合新型專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本新型之較佳實施方 式,自不能以此限制本新型之申請專利範圍。舉凡熟悉本 新型技藝之人士援依本新型之精神所作之等效修飾或變 化,皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 . 圖la為傳統投射電容式觸摸點偵測裝置之結構示意 . 圖。 13 M407437 圖lb為圖la所示之傳統投射電容式觸摸點偵測跋置 沿A-A線之剖面示意圖。 圖2為傳統投射電容式觸摸點偵測裝置表面發生二 點觸摸時之示意圖。 圖3a為本新型提供之多觸摸點之真座標偵測裝置之 第一實施方式之平面結構示意圖。 圖3b為圖3a所示之多觸摸點之真座標_裝置之剖 面示意圖。The components of the multi-touch point true coordinate detecting device may be made of a transparent material or may be made of an opaque material according to actual needs. For example, when the touch graphic is opaque, it can be applied to a notebook computer or the like. The touch operation panel; when the touch graphic is transparent, it can be applied to the surface of the light-emitting display device such as a display to form a touch operation screen. The first electrode and the second electrode of the touch point detecting device respectively comprise at least two electrodes, wherein the number of electrodes is determined by the resolution and size of the detecting device to be applied. The higher the general (four) degree requirement, the smaller the number of electrodes, and the larger the size, the more the number of electrodes. / When the true _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ For example, in combination with FIG. 6a-6e, n simultaneously generates two touch points Α, β, and two touch points A, a heart= 第 complex number of the first electrode, a plurality of first electrodes, and the plural second group A The electrodes are interdigitated with the four electrode adjacent electrode regions (four), after the step 10 of the wire, the steps are performed; the phase switches all the switches, the sweeping circuit is switched to the full scan circuit, the first electrode of the alignment direction X is located at the second The second electrode of direction 7 is described by M407437. By scanning, it is detected that the touch points Α, β respectively generate a self-capacitance change between the first electrode and the second electrode, and the self-capacitance change data is transmitted to the processor. Proceeding to step 12, the processor analyzes the centroids 触摸^χ2 of the self-capacitance changes of the touch points Α and β in the X direction and the centroids y1 and y2 of the self-capacitance changes in the Y direction according to the data of the self-capacitance change. At the same time, according to the positions of the second electrode 131 and the second electrode 32, the processor can distinguish that the center of mass yi is on the second electrode 131 and the center of mass y2 is on the second electrode 132. The centroids in the two directions are matched and matched, and the original coordinates 'l'yl) 'b〇c2'y2), a'(xl, y2), b'(x2 yl) of the touch point are calculated, as shown in Fig. 6a. Show. In the determining step 13, the processor determines whether only the centroid is resolved in any of the - direction and the γ direction, and if the result of the judgment is the input, the (four) 14' processor divides the second original coordinate division into one. The group 'forms two sets of original coordinates, namely a(xl yl), b(x2 y2), a (Xl'y2), b'(x2 yl). Due to the existence of the false coordinates, the two original seats have one set of true coordinates and the other set of false coordinates. The eight-person step 15 ’closes the switch connecting the plurality of first-electrode electrodes to: the area scanning circuit scans the plurality of first electrode electrodes as shown in the figure. Only 5 times|judgment: Step 16' processor judges whether only one step 12 φ charm mountain + A a self-capacitance change centroid is detected on the first-electrode electrode, if the judgment is two, the person (four) 17' closed connection plural The switch of the dimethyl electrode '~ the second circuit of the dipole circuit is the second sweep of the M-scan, as shown in Figure 6c. By scanning, the centroid xl of the self-electric valley change resolved in a step 12 is detected. Since the centroid yl of the self-capacitance change in the γ direction is on the second electrode, the original coordinate a(xl, yl) is the true coordinate of the touch point A. Therefore, the two sets of original coordinates a(xl, yl), b(x2, y2), and a'(xl, y2), b'(x2, yl) of the touch point obtained in step 14 include the true coordinates. One of the a(xl,yl) sets of the original coordinates a(xlyl), 1)(乂2,72) is the true coordinates of the touch points eight and eight. Proceeding to step 18, the processor outputs the true coordinates. As shown in FIG. 7a and FIG. 7b, when the surface of the detecting device 1 is provided, the two touch points C and D are simultaneously generated, and simultaneously generated by the plurality of first electrode electrodes 121 and the plurality of first electrode electrodes 122. When the plurality of second electrodes 131 and the plurality of second electrodes 132 are interdigitated in two opposite electrode regions defined by the four electrode regions, the process of detecting the true coordinates of the multi-touch dots shown in FIG. If the result of the determination in step 16 is YES, then the centroid W of the self-capacitance change detected by the c-step 15 on the first germanium electrode 121 and the original coordinate c (x3, which is formed by the centroid χ3 of the X-direction self-capacitance change) Y3) is the true coordinates of the touch point c. Therefore, the two sets of original coordinates = x3 'y3), d (X4, y4) Ac' (x3, y4), d' (x4, y3) t, & 3 3 of the true coordinates c (x3, y3) The original coordinates c(x3, y3) and d(;x4, y4) are the true coordinates of the touch points C and D. Proceeding to step 18, the processor 15 outputs a true coordinate. As shown in FIG. 8 , when the surface of the detecting device 1 本 provided by the embodiment simultaneously generates two touch points E and F, and simultaneously generated by the plurality of first electrode electrodes 121 and the plurality of first electrode electrodes 122 The plurality of second electrodes 131 M407437 and the plurality of second electrodes 132 are interleaved in two adjacent electrode regions defined by two adjacent electrode regions and are respectively located at the first electrode 121 and the first electrode of the same first electrode In the process of 122, in the flow of the true coordinate detection method of the multi-touch point shown in FIG. 5, if the determination result of the determination step 13 is yes, the processor in step 12 only parses a centroid y5 in the Y direction. Only the original coordinates e(x5, y5) and f(x6, y5) of the two touch points are calculated. Therefore, the original coordinates are the true coordinates of the touch points E and F. Going directly to step 18, the processor 150 outputs the true coordinates of the two touch points E, F ® e (x5, y5), f (x6, y5). The true coordinates outputted in step 18 of FIG. 5 can be output to a control device, and can also be output to a display device or the like for performing subsequent related processes, and the receiving end of the true coordinate and the related processes for executing are not limited. . According to the different setting requirements of the detection method flow, in step 15, the switch connecting the plurality of first electrodes 122 can be closed, and the plurality of first electrodes 122 are scanned by the partition scanning circuit. In step 17, the switch of the plurality of second electrodes 132 is slidably connected, and the plurality of second electrodes 13 2 are scanned by the partition scanning circuit. For example, in the second touch point, the detection method provided in this embodiment may also be performed according to the process shown in FIG. 9, wherein steps 20 to 23 are completely consistent with steps 10 to 13 in the flow shown in FIG. The reason is that when the result of the determination in the step 23 is no, the processor does not group the original coordinates, and directly proceeds to step 24, and the scanning circuit is switched to the partition scanning circuit, and the first electrode 121 and the first B are respectively arranged according to an arbitrary order. The electrode 122, the second electrode 131 and the second electrode 132 perform a zone scan; 12 M407437 Then proceeds to step 25, and directly determines the true coordinates of the two touch points according to the partition scan result, and then outputs the true coordinates. The processor 150 includes a scanning unit, a calculation unit, a determination unit, and an output unit. The scanning unit is configured to provide a scanning signal to each line, and simultaneously receive an electrical signal generated during the scanning process, such as the signal of the self-capacitance change; the calculating unit performs a centroid and an original coordinate for calculating the self-capacitance change; the determining unit makes a judgment. For example, whether or not the centroid of the self-capacitance change calculated by a calculation unit is parsed in a certain direction; the input unit is to output the final coordinate of the final judgment to the unit performing the next operation. The method for detecting the true coordinates of the multi-touch point can also be used to detect the surface of the detecting device provided by the embodiment. When two or more touch points are generated, the first electrode and the second electrode are first performed by the full scan circuit. Full scan, calculate the original coordinates of the touch point; and then perform a partition scan on the first electrode, the first electrode, the second electrode or the second electrode by using the partition scanning circuit to determine the true touch point in the original coordinate coordinate. φ In summary, the new model has indeed met the requirements of the new patent, and has filed a patent application in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the present invention are intended to be included within the scope of the following claims. [Simple diagram of the diagram] Figure la is a schematic diagram of the structure of a conventional projected capacitive touch point detection device. 13 M407437 Figure lb is a cross-sectional view of the conventional projected capacitive touch point detection device shown in Figure la along line A-A. Fig. 2 is a schematic view showing a two-point touch on the surface of a conventional projected capacitive touch point detecting device. Fig. 3a is a schematic plan view showing the first embodiment of the multi-touch point true coordinate detecting device of the present invention. Figure 3b is a cross-sectional view of the true coordinate device of the multi-touch point shown in Figure 3a.
圖4a為多職點之真座標制裝置之第二實施方式 之平面結構示意圖。 -圖4b為圖4a所示之多觸摸點之真座標偵測裝置之剖 圖5為多觸摸點之真座㈣測方法之第—實施方式 之流程圖。 =當二職點產生在相鄰電極區域内時之 鲁真座標偵測方法之步驟示意圖。 7b為胃—觸摸點產生在相對電極區域内時之 真座標偵測方法之步驟示意圖。 條坌圖1為當二觸摸點產生在相鄰電極區域内,且在同-電極上時之真座標偵測方法之步驟示意圖。 •之-二為多觸摸點之真座標偵測方法之第二實施方式 ^IL 圖。 14 M407437 主要元件符號說明 本實施方式Fig. 4a is a plan view showing the structure of a second embodiment of a multi-tasking real coordinate device. - Figure 4b is a cross-sectional view of the true coordinate detecting device of the multi-touch point shown in Figure 4a. Figure 5 is a flow chart of the first embodiment of the method for measuring the true seat (four) of the multi-touch point. = Schematic diagram of the steps of the Luzhen coordinate detection method when the second duty point is generated in the adjacent electrode region. 7b is a schematic diagram of the steps of the true coordinate detection method when the stomach-touch point is generated in the opposite electrode region. FIG. 1 is a schematic diagram showing the steps of a true coordinate detection method when two touch points are generated in adjacent electrode regions and on the same electrode. • The second embodiment is the second embodiment of the true coordinate detection method for multi-touch points. 14 M407437 Main component symbol description This embodiment
偵測裝置 100 、 200 基板 110 、 210 第一電極 120 、 220 第一曱電極 121 ' 221 第一乙電極 122 、 222 第二電極 130 、 230 第二曱電極 13卜 231 第二乙電極 132 、 232 絕緣層 140 處理器 150 、 250 開關 16卜 162 、 163 、 164 開關 261 、 262 、 263 、 264 導線 170 、 270 絕緣片 240 電極區域 Ql 、 Q2 、 Q3 、 Q4 第一方向 X 第二方向 Y 觸摸點 A、B、C、D、E'F 15 M407437 先前技術 投射電容式觸摸點偵測裝置 1 第一電極 2 第二電極 3 絕緣層 4 基板 5 導線 6 處理器 7 觸摸點 G、ΗDetection device 100, 200 substrate 110, 210 first electrode 120, 220 first electrode 121' 221 first electrode 122, 222 second electrode 130, 230 second electrode 13 231 second electrode 132, 232 Insulation layer 140 processor 150, 250 switch 16 162, 163, 164 switch 261, 262, 263, 264 wire 170, 270 insulating sheet 240 electrode area Ql, Q2, Q3, Q4 first direction X second direction Y touch point A, B, C, D, E'F 15 M407437 Prior Art Projected Capacitive Touch Point Detection Device 1 First Electrode 2 Second Electrode 3 Insulation Layer 4 Substrate 5 Wire 6 Processor 7 Touch Point G, Η
1616