TWM406882U - AC high voltage to DC low voltage converting device - Google Patents

AC high voltage to DC low voltage converting device Download PDF

Info

Publication number
TWM406882U
TWM406882U TW99222512U TW99222512U TWM406882U TW M406882 U TWM406882 U TW M406882U TW 99222512 U TW99222512 U TW 99222512U TW 99222512 U TW99222512 U TW 99222512U TW M406882 U TWM406882 U TW M406882U
Authority
TW
Taiwan
Prior art keywords
voltage
switching element
control
high voltage
direct current
Prior art date
Application number
TW99222512U
Other languages
Chinese (zh)
Inventor
Thi-Ing Liou
Ming-Nan Yen
Original Assignee
Megawin Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Megawin Technology Co Ltd filed Critical Megawin Technology Co Ltd
Priority to TW99222512U priority Critical patent/TWM406882U/en
Publication of TWM406882U publication Critical patent/TWM406882U/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

An AC high voltage to DC low voltage converting device comprises a rectifier, a controller, a first switch, a second switch, a regulating unit and a voltage divider. A load may be supplied with a stable DC low voltage via the on/off of the first switch and the second switch, and a transformer is not required thereby impacting the size and decreasing the manufacturing cost.

Description

M406882 五、新型說明: 【新型所屬之技術領域】 本創作係有關一種高壓交流電轉低壓直流電轉換裝置,特別是— 種無需設置變壓器之高壓交流電轉低壓直流電轉換裝置。 【先前技術】 一般將市電(110V〜220V)的高壓交流電轉換為低壓直流電的裝置 :’ -種習知的裝置為賴-變壓||賊—整流器等電路得到負栽所 需的低壓直流電源’但是使用變壓器的體馳大,抑於目前對於電 子產品朝向輕、薄、短、小的趨勢發展。 ^一種習知的裝置為利用一電容與高壓交流電源串接,利用電容 器的等效阻抗將高敎流電降壓為低敍流電,再經過—橋式整流ς ,電路得到負載所需的低壓直流電。而_電容降壓的缺點是,若^需 提供需要大電_貞載顧,腦制電容綠大的電容,如此成本 以及裝置的體積都將會增加。 • f一種習知的裝置為先利用橋式整流器將高壓交流電轉換成高 堡直流電,再經過—大電阻降壓刺低壓直流電,然而此電阻所產生 =<、·、將會#響轉換效率。因關發丨體雜小的高壓交流電轉換為低 堅直流電之裳置為業者與研發人員亟欲達成的目標。 【新型内容】 Μ本^創作係提供一種高壓交流電轉低壓直流電轉換裝置,不需額 卜。又置舰器便可提供負載穩定的碰直流電,使負載讀於高電流 工並可縮小肢積與節省成本,由於第一開關元件與第二開關元件於 工作期間往復啟閉’因此第-關元件與第二關元件解會蓄熱, 4 M406882 有效降低裝置的工作溫度。 本創作之一種高壓交流電轉低壓直流電轉換裝置’包含一整流 器、一控制元件、一第一開關元件、一第二開關元件、一調節單元 (regulating unit)與一分壓單元。整流器連接一高壓交流電源並輸出一M406882 V. New description: [New technical field] This creation is about a high-voltage AC-to-low-voltage DC converter, especially a high-voltage AC-to-low-voltage DC converter that does not require a transformer. [Prior Art] Generally, the high-voltage AC power of the mains (110V~220V) is converted into a low-voltage DC power device: '-A well-known device is a low-voltage DC power supply required for the circuit such as Lai-Variation||thief-rectifier 'But the use of transformers is so large that it is currently trending towards light, thin, short and small electronic products. ^ A conventional device uses a capacitor in series with a high-voltage AC power supply, and uses the equivalent impedance of the capacitor to step down the high-current current to a low-current power, and then through the bridge-rectified rectifier, the circuit obtains the load required. Low voltage DC. The disadvantage of _capacitor step-down is that if you need to provide a large capacitor, the brain capacitance will be large, so the cost and the size of the device will increase. • f is a conventional device that uses a bridge rectifier to convert high-voltage AC power into high-voltage DC power, and then passes through a large resistor to step down the low-voltage DC power. However, this resistor produces =<,·, will ## conversion efficiency . The conversion of low-voltage alternating currents from low-voltage direct currents to low-voltage direct currents is a goal that the industry and R&D personnel are eager to achieve. [New Content] Μ本^ Creation Department provides a high-voltage AC to low-voltage DC conversion device, which does not require an amount. The ship can also provide a load-suspended DC current, so that the load can be read at high current and can reduce the limb product and save cost. Since the first switching element and the second switching element reciprocate open and close during operation, the first-off The component and the second component are decomposed to store heat, and 4 M406882 effectively reduces the operating temperature of the device. A high-voltage alternating current to low-voltage direct current converting device of the present invention comprises a rectifier, a control element, a first switching element, a second switching element, a regulating unit and a voltage dividing unit. The rectifier is connected to a high voltage AC power supply and outputs a

高壓直流電。控制元件包含一輸入端與一輸出端。第一開關元件包含 至少一高壓電晶體,其中第一開關元件包含一高壓端、一低壓端與一 控制端,其令第一開關元件的高壓端連接整流器以輸入高壓直流電。 第二開關元件包含至少一高壓電晶體,其中第二開關元件包含一高壓 端、一低壓端與一控制端,其中第二開關元件的高壓端連接第一開關 兀件的控制端’第二開關元件的低壓端接地,第二開關元件的控制端 連接控制元件的輸丨端’第二開關元制啟職制第—關元件的啟 閉。调即單το包含-電感,其中電感之—端連接第—_元件的低歷 端’電感之另-端連接-負載,調節單元輸出—低壓直流電於負載。 分壓單元輸入低壓直流電並輸出—直流分壓至控制元件的輸入端,控 制元件對應直流分壓輸出—控舰號,控制第二關元件的啟閉。 曰具體貫施例配合所附的圖式詳加說明,當更容 易瞭解本創作之目的、枯 — nn . 、 _ 技術内谷、特點及其所達成之功效。High voltage direct current. The control element includes an input and an output. The first switching element includes at least one high voltage transistor, wherein the first switching element includes a high voltage terminal, a low voltage terminal and a control terminal, and the high voltage terminal of the first switching component is connected to the rectifier to input high voltage direct current. The second switching element comprises at least one high voltage transistor, wherein the second switching element comprises a high voltage end, a low voltage end and a control end, wherein the high voltage end of the second switching element is connected to the control end of the first switch element. The low-voltage end of the switching element is grounded, and the control end of the second switching element is connected to the input end of the control element, and the second switching element is turned on and off. The tone το includes an inductor, where the end of the inductor is connected to the low-end of the first component, the other end of the inductor is connected to the load, and the output of the regulation unit is low-voltage direct current to the load. The voltage dividing unit inputs the low-voltage DC power and outputs the DC-divided voltage to the input end of the control component, and the control component corresponds to the DC voltage-dividing output-control ship number to control the opening and closing of the second component.曰 The specific examples and the attached drawings are explained in detail, so that it is easier to understand the purpose of the creation, the use of the technology, the characteristics, and the effects achieved.

7已省略而::實%例及圖式中’與本創作非直接相關之元 易瞭解非用,且圖式中各元件間之尺寸關係僅為求容 易瞭解,非用以限制實際比例。 【實施方式】 所述實施例僅做說明而非用以限定本創 本創作洋細說明如下 作。 請參考圖1,圖丨%柄 直流電轉換裝置之方相、妹創作之—實施例之高壓交流電轉低壓 -開關元件40、-第二;包含—整流器2G、—控制耕30、〆第 元件50、一調卽單元6〇與—分壓單元7〇。 5 M406882 整流器20連接一高壓交流電源10,並輸出一高壓直流電DCVhigh。舉 例而言,整流器20可為一橋式全波整流器或一橋式半波整流器。控制 元件30包含一輸入端31與一輸出端32。第一開關元件40包含至少 一高壓電晶體,其中第一開關元件40包含一高壓端41、一低壓端42 與一控制端43。第二開關元件50包含至少一高壓電晶體,其中第二 開關元件50包含一高壓端51、一低壓端52與一控制端53。 調節單元60包含一電感61,其中第一開關元件的高壓端41連接 整流器20以輸入兩壓直流電DC Vhigh。第一開關元件的低壓端42連 接電感61之一端’電感61之另一端連接一負載L。舉例而言,負載 L包含一發光元件’可為一發光二極體燈串,但不以此為限。 調節單元60輸出一低壓直流電DC V|〇w于負載L。第二開關元件的高 壓端51連接第一開關元件的控制端43,第二開關元件的低壓端52接 地,第二開關元件的控制端53連接控制元件的輸出端32。分壓單元 70輸入低壓直流電DC VI()W並輸出一直流分壓DC Vdiv至控制元件的輸 入端31,控制元件的輸出端32輸出一對應直流分壓DC Vdw的控 制訊號Sc ’以控制第二開關元件50的啟閉。 要注意的是,由於第一開關元件的控制端43連接第二開關元件 的尚壓端51,因此第二開關元件5〇的啟閉將控制第一開關元件4〇的 啟閉。當供給負載L的低壓直流電DCVl〇w較大時,分壓單元7〇輸出 之直流分壓DC Vdiv亦較大’控制單元3〇輸出之控制訊號&將開啟(〇n) 或關閉㈣第二開關元件5G以使第-開關元件4G關(Gff),此時調節 單το 60的電感61作為一電流源並釋能於負載L,而隨著電感61釋能, 低壓直流電DC %⑽下降,使得分壓單元7〇輸出的直流分壓DC 下降,當直流分壓DC Vdiv較低時,控制單元3〇輸出的控制訊號^將 控制第二開關元件50關閉_或開啟㈣以使第一開關元件4〇 _ (on) ’使问壓直机電DC Vhigh透過第一開關元件4〇與調節單元6〇輸出 低壓直流電DC Vlow於負載L。藉由第一開關元件4〇與第二開關元件 5〇的啟閉能夠將輪出於負載L的低壓直流電DC %⑽限制在一穩定的 6 M406882 範圍内。 依據上述結構,不需額外設置變壓器便可提供負載L穩定的低壓 直流電DC Vlmv並使負載L工作於高電流下,而可縮小體積與節省成 本。此外,由於第一開關元件40與第二開關元件5〇於工作期間往復 啟閉,因此第一開關元件40與第二開關元件50將不會蓄熱,有效降 低裝置的工作溫度》 請參考圖2,圖2為本創作之高壓交流電轉低壓直流電轉換農置 依據圖1之方塊圖之一實施例。整流器20可為一橋式全波整流 器。於一實施例中,包含一第二電容(:2,其一端連接整流器2〇, 另一端接地,用以降低咼壓直流電DC Vhigh的電壓漣波。其中第 一開關元件40包含一高功率的P型高壓電晶體Qp’例如pNp雙極 性電晶體(BJT)或P型金氧半導體場效電晶體(M〇SFET)。以p 型金氧半導體場效電晶體(P-MOSFET)來說’第一開關元件的高 壓端41為P-MOSFET的源極(source);第一開關元件的低壓端42為 P-M0SFET的汲極(drain);第一開關元件的控制端43為P-M0SFET 的閘極(gate)。第一開關元件40更包含一第三電阻r3連接第一開關元 件的控制端43與第一開關元件的高壓端41。第二開關元件5〇包含一 尚功率的N型高壓電晶體Qn ’例如NPN雙極性電晶體(BJT)或N 型金氧半導體場效電晶體(N-M0SFETP以N型金氧半導體場 效電晶體(N-MOSFET)來說,第二開關元件的高壓端51為 N-M0SFET的汲極(drain);第二開關元件的低壓端52為N-M0SFET 的源極(source);第二開關元件的控制端53為N_M〇SFET的閘極(gate)。 接續上述,調節單元60更包含一第一二極體D!與一第 一電容q,其中第一二極體Di的陽極接地,該二極體的陰極 連接第一開關元件的低壓端42與調節單元60的電感61的一 端。第一電容C!連接電感61的另一端並與負載l並聯,其 中第一電容C,可用以降低輸出電壓漣波。 7 M406882 分壓單元70包含一第一電阻Rl與一第二電阻r2彼此串 聯,第二電阻&的另一端接地,第一電阻R,的另一端連接電 感61與負載L。第一電阻艮與第二電阻r2的連接處連接控制 元件30的輸入端31。可以理解的是第一電阻R丨與/或第二電阻r2 可為可變電阻。另外要說明的是,於圖2之實施例中,控制元件30為 一可工作於高電壓的晶片模組,控制元件30之一工作電壓輸入端34 透過一第五電阻Rs連接整流器20,可以理解的是,控制元件30的工 作電壓輸入端34亦可直接連接整流器20。控制元件30包含一比較電 路33,用以比較直流分壓DCVdiv與一參考電壓vref,並於控制元件的 輸出端32輸出控制訊號Sc,以控制第二開關元件5〇的啟閉。於其他 實施例中,控制元件30更包含一脈衝寬度調變(PWM)單元(未圖示), 以調變該控制訊號為一脈衝寬度調變控制訊號,用以調變第二開關元 件50的啟閉時間,若負載l為發光二極體時,可調整發光二極體的亮 度。 接續上述,首先假設第一開關元件40為開啟(〇n),即第一開關元 件40的P型高壓電晶體Qp為開啟(〇n)的狀態,因此由圖2的結構可 知,第二開關元件50的N型高壓電晶體(^亦為開啟(on)的狀態方能 使整流器2〇輸出之高壓直流電DC Vhigh透過第—開關元件*與調節 單元60輸出低壓直流電DC V|〇w於負載L。若低壓直流電DC 過 =,則經過分壓單元70至控制單元3〇的比較電路33的直流 /刀壓DC Vdiv將大於參考電壓vref ’比較電路33將輸出一邏輯為〇之 控制说號Sc以關閉(off)第二開關元件50的N型高壓電晶體Qn,使第 —開關元件的控制端43的電壓(P型高壓電晶體Qp的閘極電壓)升高而 關閉_第—開關元件的P型高壓電晶體Qp。此時調節單元60 =的第一二極體Di、電感61、第一電容q與負載L形成的 、路將使調節單元60的電感61作為一電流源並釋能於負載[。 小於^著電感61釋能,低壓直流電DCVlQW下降,當直流分壓〇(:¥心 、於參考電壓Vref,比較電路33將輸出一邏輯為丨之控制訊號、以開 8 M406882 啟(:n)第二開關元件5〇的N麼高壓電晶體Qn。使第-開關元件的控 制端43的電壓(p型高壓電晶體QP關極電壓)降低而開啟㈣第-開 關兀件+40的p型高壓電晶體Qp,使低壓直流電DC Vlow上升。由上述 可=藉由控制單元30控制第二開關元件5〇與第-開關元件4〇的啟 閉月b夠將輸出於負載L的低壓直流電DC Vlow限制在-穩定的範圍内。 °月參考圖3,圖3為本創作之高壓交流電轉低壓直流電轉換裝置 依據^ =方塊圖之另-實補’其中第-關元件4G包含一高功率 的N型阿壓電晶體α,例如NpN雙極性電晶體(b几)或n型金氧 半導體場效電晶體(N-MOSFET)。以N型金氧半導體場效電晶 體(N-MOSFET)來說’第一開關元件的高壓端 41 為 N-MOSFET 的 第一開關元件的低壓端42為N-MOSFET的源極(source); 第-開關元件的控制端43為N_M〇SFET的閘極(㈣。第三電阻心 連接第-開關it件的控制端43與第—開關元件的高壓端4卜第二開 關,件50與圖2之貫施例相同,亦為高功率的N型高壓電晶體Qn。 _貫施例巾本創作之轉換裝置更包含一反向單元⑽,搞合控制 兀件的輸出端32與第二開關元件的控制端53,用以反向控制 訊號Se。 假設第-_元件4G為開啟㈣,整魅2G輸出之高壓直流電 DC 透過第—開關元件4〇與調節單元6〇輸出低壓直流電% i 於負載L。當直流分a DC Vdiv大於參考電壓Vref,比較電路%將輸 出一邏輯為0之控制訊號Sc。反向單元8〇將邏輯〇反向成為邏 輯1以開啟(on)第二開關元件50的!^型高壓電晶體Qn,使第一開關 續的控綱43的_(Ν雜壓電雜Qj_電壓)降低而關閉 (off)第一開關元件4〇的N型高壓電晶體Qn。 。虽直流分壓DC Vdiv小於參考電壓Vref,比較電路33將輸出一邏 輯為1之控制訊號Sc。反向單元80將邏輯!反向成為邏輯〇以 關閉(off)第二開關元件50的N型高壓電晶體Qn,使第—開關元件的 控制端43的電壓(N型紐電晶體Qn_極電壓)升高而敝㈣第一 9 M406882 開關元件40的N型高壓電晶體Qn使低壓直流電dc Vk)W上升。藉由 控制單元3 0控制第二開關元件5〇與第一開關元件4〇的啟閉能夠將輸 出於負載L的低壓直流電DC V|〇w限制在一穩定的範圍内。 請參考圖4,圖4為本創作之高壓交流電轉低壓直流電轉換裝置 依據圖1之方塊圖之另一實施例,其中第一開關元件4〇與第二開關 元件50為咼功率的n型高壓電晶體Qn。於圖4之實施例中以N型金 氧半導體場效電晶體(N-MOSFET)為例作說明。反向單元8〇 包含至少一電晶體組成的反向器(inverter),於一實施例中, 反向單το 80包含一 N型金氧半導體場效電晶體 (N MOSFET)Mn與-第四電阻&組成共射極(c〇mm〇n⑽汾⑷組態 的反向器。其中N型金氧半導體場效電晶體Mn的閘極(§於匀連 接控制元件的輸出端32; N型金氧半導體場效電晶體Mn的源 極(scarce)接地;N型金氧半導體場效電晶體Mn的汲極(drain) 連接第二開關元件的控制端53。舉例來說,當比較電路33輸出邏輯 為1之控制Λ號Sc,反向單元80將開啟(on) , n型金氧半導體 場效電晶體Mn的汲極(drain)輸出邏輯為〇之訊號於第二開關元件 的控制端53以關閉(off)第二開關元件5〇〇要說明的是,反向單元8〇 之電晶體不以N型金氧半導體場效電晶體為限,亦可為p型金 氧半導體場效電晶體或NPN、PNP雙極性電晶體。 综合以上所述’本創作之實施例之高壓交流電轉低壓直流電轉 換裝置,其中控制元件控制第二開關元件的啟閉,而第二開關 元件控制第一開關元件的啟閉,不需額外設置變壓器便可提供負 讎定的健直流電並使貞載X作於高電流下,可縮小體料節省成 本,由於[酬元件與第二Μ元件於項_往復啟/,、因此第 -開關元件與第二開關猶將不會蓄熱,有效降低裝置的工作溫度。 以上所述之實施例僅係為說明本創作之技術思想及特點,其目的 在使熟習此項技藝之人士能夠瞭解本創作之内容並據以實施,♦不处 以之限定本創作之專利劍,即大凡依摘作所揭示之精神所;之= 10 1^406882 等變化或修飾,仍應涵蓋在本創作之專利範圍内。 wue>882 【圖式簡單說明】 圖1為根據本創作之一實施例之高壓交流電轉低壓直流電轉換裝 置之方塊圖。 圖2為本創作之高壓交流電轉低壓直流電轉換裝置依據 圖1之方塊圖之一實施例。 圖3為本創作之高壓交流電轉低壓直流電轉換裝置依據圖1之方 塊圖之另一實施例。 圖4為本創作之高壓交流電轉低壓直流電轉換裝置依據圖丨之方 塊圖之另一實施例。 【主要元件符號說明】 10 高壓交流電源 20 整流器 30 控制元件 31 控制元件的輸入端 32 控制元件的輸出端 33 比較電路 34 工作電壓輸入端 40 第一開關元件 41 第一開關元件的南壓端 42 第一開關元件的低壓端 43 第一開關元件的控制端 50 第二開關元件 51 第二開關元件的高壓端 12 M4068827 has been omitted:: In the real example and the schema, the elements that are not directly related to the creation are easy to understand and use, and the dimensional relationship between the components in the schema is only for easy understanding and not for limiting the actual ratio. [Embodiment] The above embodiments are merely illustrative, and are not intended to limit the scope of the present invention. Please refer to FIG. 1 , which illustrates the phase of the % shank DC power conversion device, the high voltage alternating current to low voltage switching element 40 of the embodiment, and the second; the rectifier 2G, the control plough 30, and the 元件 component 50 , a tuning unit 6〇 and a voltage dividing unit 7〇. 5 M406882 Rectifier 20 is connected to a high voltage AC power supply 10 and outputs a high voltage DC power DCVhigh. For example, rectifier 20 can be a bridge full wave rectifier or a bridge half wave rectifier. Control element 30 includes an input 31 and an output 32. The first switching element 40 includes at least one high voltage transistor, wherein the first switching element 40 includes a high voltage terminal 41, a low voltage terminal 42 and a control terminal 43. The second switching element 50 includes at least one high voltage transistor, wherein the second switching element 50 includes a high voltage terminal 51, a low voltage terminal 52 and a control terminal 53. The regulating unit 60 includes an inductor 61, wherein the high voltage terminal 41 of the first switching element is connected to the rectifier 20 to input a two-voltage direct current DC Vhigh. The low voltage terminal 42 of the first switching element is connected to one end of the inductor 61. The other end of the inductor 61 is connected to a load L. For example, the load L includes a light-emitting element', which may be a light-emitting diode string, but is not limited thereto. The adjusting unit 60 outputs a low voltage direct current DC V|〇w to the load L. The high voltage terminal 51 of the second switching element is connected to the control terminal 43 of the first switching element, the low voltage terminal 52 of the second switching element is grounded, and the control terminal 53 of the second switching element is connected to the output terminal 32 of the control element. The voltage dividing unit 70 inputs a low-voltage DC DC VI()W and outputs a DC-divided DC Vdiv to the input terminal 31 of the control element, and the output 32 of the control element outputs a control signal Sc' corresponding to the DC voltage divider DC Vdw to control The opening and closing of the two switching elements 50. It is to be noted that since the control terminal 43 of the first switching element is connected to the still terminal 51 of the second switching element, the opening and closing of the second switching element 5〇 controls the opening and closing of the first switching element 4A. When the low-voltage DC power DCV1〇w supplied to the load L is large, the DC voltage divider DC Vdiv of the voltage dividing unit 7〇 is also larger. The control signal output of the control unit 3〇 will be turned on (〇n) or turned off (4). The second switching element 5G turns off the first switching element 4G (Gff). At this time, the inductance 61 of the single το 60 is adjusted as a current source and discharged to the load L, and as the inductance 61 is released, the low-voltage direct current DC%(10) decreases. Therefore, the DC voltage division DC output of the voltage dividing unit 7〇 is decreased. When the DC voltage division DC Vdiv is low, the control signal outputted by the control unit 3〇 controls the second switching element 50 to be turned off or turned on (4) to make the first The switching element 4〇_(on)' causes the voltage direct current DC Vhigh to pass through the first switching element 4〇 and the regulating unit 6〇 to output a low voltage direct current DC Vlow to the load L. The opening and closing of the first switching element 4〇 and the second switching element 5〇 can limit the low-voltage direct current DC%(10) of the wheel L to a stable range of 6 M406882. According to the above structure, the L-stabilized low-voltage DC DC Vlmv can be supplied without the need of an additional transformer, and the load L can be operated at a high current, which can reduce the size and cost. In addition, since the first switching element 40 and the second switching element 5 are reciprocally opened and closed during operation, the first switching element 40 and the second switching element 50 will not store heat, thereby effectively reducing the operating temperature of the device. FIG. 2 is an embodiment of the block diagram of FIG. 1 according to the high voltage alternating current to low voltage direct current conversion of the present invention. Rectifier 20 can be a bridge full wave rectifier. In one embodiment, a second capacitor (: 2 is connected to one end of the rectifier 2 〇 and the other end is grounded to reduce voltage chopping of the DC power DC V high. The first switching element 40 includes a high power P-type high voltage transistor Qp' such as pNp bipolar transistor (BJT) or P-type MOS field effect transistor (M〇SFET). For p-type MOSFETs (P-MOSFET) 'The high voltage terminal 41 of the first switching element is the source of the P-MOSFET; the low voltage terminal 42 of the first switching element is the drain of the P-MOSFET; the control terminal 43 of the first switching element is the P- A gate of the MOSFET. The first switching element 40 further includes a third resistor r3 connected to the control terminal 43 of the first switching component and the high voltage terminal 41 of the first switching component. The second switching component 5 〇 includes a power N-type high-voltage transistor Qn 'such as NPN bipolar transistor (BJT) or N-type MOS field effect transistor (N-M0SFETP with N-type MOS field effect transistor (N-MOSFET), The high voltage terminal 51 of the second switching element is the drain of the N-MOSFET; the low voltage terminal 52 of the second switching element is the source of the N-MOSFET (sour The control terminal 53 of the second switching element is a gate of the N_M〇SFET. In addition, the adjusting unit 60 further includes a first diode D! and a first capacitor q, wherein the first diode The anode of the body Di is grounded, and the cathode of the diode is connected to the low voltage end 42 of the first switching element and one end of the inductance 61 of the adjusting unit 60. The first capacitor C! is connected to the other end of the inductor 61 and connected in parallel with the load l, wherein A capacitor C can be used to reduce the output voltage chopping. 7 M406882 The voltage dividing unit 70 includes a first resistor R1 and a second resistor r2 connected in series with each other, the other end of the second resistor & ground, the first resistor R, the other One end is connected to the inductor 61 and the load L. The connection between the first resistor 艮 and the second resistor r2 is connected to the input end 31 of the control element 30. It can be understood that the first resistor R 丨 and / or the second resistor r2 can be a variable resistor In addition, in the embodiment of FIG. 2, the control component 30 is a chip module that can operate at a high voltage, and one of the operating voltage input terminals 34 of the control component 30 is connected to the rectifier 20 through a fifth resistor Rs. It can be understood that the operating voltage input of the control element 30 34 can also be directly connected to the rectifier 20. The control component 30 includes a comparison circuit 33 for comparing the DC voltage divider DCVdiv with a reference voltage vref, and outputting a control signal Sc at the output 32 of the control component to control the second switching component 5. In other embodiments, the control component 30 further includes a pulse width modulation (PWM) unit (not shown) for modulating the control signal into a pulse width modulation control signal for modulation. The opening and closing time of the second switching element 50 can adjust the brightness of the light emitting diode when the load 1 is a light emitting diode. Following the above, first assume that the first switching element 40 is turned on (〇n), that is, the P-type high voltage transistor Qp of the first switching element 40 is in an on state (〇n), so that the structure of FIG. 2 is known, and the second The N-type high voltage transistor of the switching element 50 (also being in the on state) enables the high voltage direct current DC Vhigh output from the rectifier 2 to pass through the first switching element* and the regulating unit 60 to output the low voltage direct current DC V|〇w At the load L. If the low-voltage DC power DC =, the DC/crush voltage DC Vdiv of the comparison circuit 33 passing through the voltage dividing unit 70 to the control unit 3A will be greater than the reference voltage vref 'the comparison circuit 33 will output a logic 〇 control The reference number Sc turns off the N-type high voltage transistor Qn of the second switching element 50, and turns off the voltage of the control terminal 43 of the first switching element (the gate voltage of the P-type high voltage transistor Qp). The P-type high voltage transistor Qp of the first-switching element. At this time, the path formed by the first diode Di, the inductor 61, the first capacitor q and the load L of the adjusting unit 60=will make the inductance 61 of the adjusting unit 60 As a current source and release energy to the load [. Less than ^ inductance 61 release energy, low voltage DC DCVl QW drops, when the DC voltage divider 〇 (: ¥ heart, at the reference voltage Vref, the comparison circuit 33 will output a logic signal of 丨, to open 8 M406882 (: n) the second switching element 5 〇 N high Piezoelectric crystal Qn. The voltage of the control terminal 43 of the first switching element (p-type high voltage transistor QP off-voltage) is lowered to turn on (d) the p-type high voltage transistor Qp of the first-switch element +40, so that the low voltage The direct current DC Vlow rises. By the above, the control unit 30 can control the opening and closing months b of the second switching element 5 〇 and the first switching element 4 够 to limit the low voltage direct current DC Vlow outputted to the load L to a stable range. Referring to FIG. 3, FIG. 3 is a high-voltage alternating current to low-voltage direct current conversion device according to the present invention. The first-off element 4G includes a high-power N-type piezoelectric crystal α according to the ^=block diagram. For example, NpN bipolar transistor (b) or n-type MOSFET (N-MOSFET). For N-type MOS field effect transistor (N-MOSFET), the first switching element The low voltage terminal 42 of the first switching element of the N-MOSFET of the high voltage terminal 41 is the source of the N-MOSFET; the first switching element The control terminal 43 is the gate of the N_M〇SFET ((4). The third resistor is connected to the control terminal 43 of the first-switching device and the high-voltage terminal 4 of the first switching element, the second switch, the component 50 and the implementation of FIG. For the same example, it is also a high-power N-type high-voltage transistor Qn. The conversion device of the present invention further includes a reverse unit (10) for controlling the output terminal 32 and the second switching element of the control element. The terminal 53 is used for the reverse control signal Se. Assuming that the -_ element 4G is on (four), the high-voltage direct current DC of the 2G output is outputted through the first switching element 4〇 and the regulating unit 6〇 to output the low-voltage direct current % i to the load L. When the DC component a DC Vdiv is greater than the reference voltage Vref, the comparison circuit % will output a control signal Sc with a logic of zero. The inverting unit 8 turns the logic port into a logic 1 to turn on the high voltage transistor Qn of the second switching element 50, so that the first switch continues to control the _(noisy piezoelectric The Qj_voltage is lowered to turn off the N-type high voltage transistor Qn of the first switching element 4A. . Although the DC divided DC Vdiv is smaller than the reference voltage Vref, the comparison circuit 33 outputs a control signal Sc of logic 1. Reverse unit 80 will logic! The reverse direction becomes a logic 〇 to turn off the N-type high voltage transistor Qn of the second switching element 50, so that the voltage of the control terminal 43 of the first switching element (the N-type NMOS Qn_polar voltage) rises. (d) The N-type high voltage transistor Qn of the first 9 M406882 switching element 40 raises the low voltage direct current dc Vk)W. Controlling the opening and closing of the second switching element 5〇 and the first switching element 4〇 by the control unit 30 can limit the low-voltage direct current DC V|〇w outputted to the load L to a stable range. Please refer to FIG. 4 , which is another embodiment of the block diagram of the high voltage alternating current to low voltage direct current conversion device according to FIG. 1 , wherein the first switching element 4 〇 and the second switching element 50 are n-type high of 咼 power. Piezoelectric crystal Qn. In the embodiment of Fig. 4, an N-type MOS field effect transistor (N-MOSFET) is taken as an example for illustration. The reverse unit 8A includes an inverter composed of at least one transistor. In one embodiment, the reverse single τ 80 includes an N-type MOSFET (N MOSFET) Mn and -4 Resistor & constitutes the common emitter (c〇mm〇n (10) 汾 (4) configuration of the inverter. The gate of the N-type MOS field effect transistor Mn (§ is connected to the output terminal 32 of the control element; N type The source of the MOS field effect transistor Mn is grounded; the drain of the N-type MOS field effect transistor Mn is connected to the control terminal 53 of the second switching element. For example, when the comparison circuit 33 The output logic is 1 control slog Sc, the reverse unit 80 will be turned on, and the drain output of the n-type MOS field effect transistor Mn is 〇 signal at the control end of the second switching element. 53 is to turn off the second switching element 5. It should be noted that the transistor of the reverse unit 8 is not limited to the N-type MOSFET, and may also be a p-type MOSFET. A transistor or an NPN or PNP bipolar transistor. The high voltage alternating current of the embodiment of the present invention is reduced. a direct current conversion device, wherein the control element controls the opening and closing of the second switching element, and the second switching element controls the opening and closing of the first switching element, and the negatively-determined healthy direct current is provided without additional transformer setting At high current, the body material can be reduced in cost, because the [reward element and the second element are in the item _ reciprocating start /, therefore, the first switching element and the second switch will not store heat, effectively reducing the operating temperature of the device The embodiments described above are only for explaining the technical idea and characteristics of the present invention, and the purpose thereof is to enable those skilled in the art to understand the contents of the creation and implement it according to the ♦, and not to limit the patent sword of the creation. , that is, the spirit revealed by the abstract; the change or modification of the = 10 1^406882 should still be covered by the scope of the patent of this creation. wue> 882 [Simple description of the diagram] Figure 1 is based on this creation A block diagram of a high voltage alternating current to low voltage direct current conversion device according to an embodiment. Fig. 2 is an embodiment of the block diagram of the high voltage alternating current to low voltage direct current conversion device according to Fig. 1. 3 is another embodiment of the block diagram of the high voltage alternating current to low voltage direct current conversion device according to Fig. 1. Fig. 4 is another embodiment of the block diagram of the high voltage alternating current to low voltage direct current conversion device according to the drawing. Main component symbol description] 10 High-voltage AC power supply 20 Rectifier 30 Control element 31 Control element input 32 Control element output 33 Comparison circuit 34 Operating voltage input 40 First switching element 41 First switching element South end 42 Low voltage terminal 43 of a switching element Control terminal 50 of a first switching element Second switching element 51 High voltage terminal 12 of the second switching element M406882

52 第二開關元件的低壓端 53 第二開關元件的控制端 60 調節單元 61 電感 70 分壓單元 80 反向單元 DC Vhigh 高壓直流電 DC Vi〇w 低壓直流電 DCVdiv 直流分壓 L 負載 Sc 控制訊號 Ri 第一電阻 r2 第二電阻 r3 第三電阻 R4 第四電阻 r5 第五電阻 D, 第一二極體 c, 第一電容 c2 第二電容 Qp P型高壓電晶體 Qn N型高壓電晶體 Vref 參考電壓 M406882 Μη Ν型金氧半導體場效電晶體52 Low-voltage terminal of the second switching element 53 Control terminal of the second switching element 60 Adjustment unit 61 Inductor 70 Voltage dividing unit 80 Reverse unit DC Vhigh High-voltage DC DC Vi〇w Low-voltage DC DCVdiv DC voltage division L Load Sc Control signal Ri a resistor r2 a second resistor r3 a third resistor R4 a fourth resistor r5 a fifth resistor D, a first diode c, a first capacitor c2 a second capacitor Qp a P type high voltage transistor Qn N type high voltage transistor Vref reference Voltage M406882 Μη Ν type MOS field effect transistor

1414

Claims (1)

M4U6882 , 六、申請專利範圍: ‘ 1· 一種高壓交流電轉低壓直流電轉換裝置,包含: -整流器,其連接-高壓交流電源並輪出一高壓直流電; 一控制元件,其包含一輸入端與—輸出端; -第i關元件’包含至少-高壓電晶體,其中該第一開關元件包 •含一南壓端、一低壓端與一控制端,其中該第-開關元件的高壓端連接該 . 整流器以輸入該高壓直流電; • 一第二開關元件’包含至少一高壓電晶體,其中該第二開關元件包 含一咼壓端、一低壓端與一控制端,其中該第二開關元件的高壓端連接該 第一開關元件的控制端,該第二開關元件的低壓端接地,該第二開關元件 的控制端連接該控制元件的輸出端,該第二開關元件的啟閉控制該第一開 關元件的啟閉; 一調節單元(regulating unit),包含一電感,其中,該電感之一端連 接該第一開關元件的低壓端,該電感之另一端連接一負載,該調節單元輸 % 出一低壓直流電于該負載;以及 • 一分壓單元,其輸入該低壓直流電並輸出一直流分壓至該控制元件 的輸入端,該控制元件對應該直流分壓輸出一控制訊號,控制該第二開關 元件的啟閉。 2.如請求項1所述的高壓交流電轉低壓直流電轉換裝置,其中該控制元件 - 為一可工作於高電壓的晶片模組。 - 3.如請求項丨所述的高壓交流電轉低壓直流電轉換裝置,其中該第一開關 元件與該第二開關元件的該高壓電晶體可為高壓金氧半導體場效電晶體 15 M406882 (MOSFET)或高壓雙極性電晶體(BJT)。 、 4·如請求項1所述的紐交流電轉低壓直流電轉換裝置,其中該控制元件 包含-比較電路,用以比較該直流分壓與—參考電壓,並於該控制元件的 輸出端輸出相對應的該控制訊號,以控制該第二開關元件的啟閉。 5.如請求項4所賴高駐流電轉低壓錢電轉換裝置,其巾該控制元件 更包含一脈衝見度調變(PWM)·^·元’以調變該控制訊號為-脈衝寬度調變 控制訊號。 % φ 6.如請求項1所述的高壓交流電轉低壓直流電轉換裝置,更包含—反向單 元,麵合該控制元件的輸出端與該第二開關元件的控制端,用以反向該控 制訊號。 7. 如請求項6所述的高壓交流電轉低壓直流電轉換裝置,其中該反向單元 包含至少一電晶體組成的反向器(inverter)。 8. 如請求項1所述的高壓交流電轉低壓直流電轉換裝置,其中該調節單元 更包含一二極體與一電容,其中該二極體的陽極接地,該二極體的陰極連 φ 接該第一開關元件的低壓端與該調節單元的該電感的一端,該電容連接該 . 電感的另一端並與該負載並聯。 9·如請求項1所述的高壓交流電轉低壓直流電轉換裝置,其中該分壓單元 包含一第一電阻與一第二電阻彼此串聯,該第二電阻的另一端接地,該第 電阻的另一端連接s玄調郎早元的s亥電感與該負載,該第一電阻與該第_ •電阻的連接處連接該控制元件的該輸入端。 • 10.如請求項9所述的高壓交流電轉低壓直流電轉換裝置,其中該分壓單元 的該第一電阻與該第二電阻的至少其一包含一可變電阻。M4U6882, VI. Patent application scope: '1· A high-voltage AC to low-voltage DC converter, comprising: - a rectifier connected to a high-voltage AC power supply and rotating a high-voltage direct current; a control element comprising an input and an output The ith switch component includes at least a high voltage transistor, wherein the first switch component package includes a south voltage terminal, a low voltage terminal and a control terminal, wherein the high voltage terminal of the first switching component is coupled to the terminal. a rectifier to input the high voltage direct current; a second switching element 'comprising at least one high voltage transistor, wherein the second switching element comprises a rolling end, a low voltage end and a control end, wherein the second switching element has a high voltage The terminal is connected to the control end of the first switching element, the low voltage end of the second switching element is grounded, the control end of the second switching element is connected to the output end of the control element, and the opening and closing of the second switching element controls the first switch Opening and closing of the component; a regulating unit comprising an inductor, wherein one end of the inductor is connected to the low voltage end of the first switching component, The other end of the inductor is connected to a load, the regulating unit outputs a low voltage direct current to the load; and • a voltage dividing unit that inputs the low voltage direct current and outputs a constant current divided to an input end of the control element, the control element The DC voltage divider outputs a control signal to control the opening and closing of the second switching element. 2. The high voltage alternating current to low voltage direct current converting device according to claim 1, wherein the control element is a chip module operable at a high voltage. 3. The high voltage alternating current to low voltage direct current converting device according to claim ,, wherein the high voltage transistor of the first switching element and the second switching element is a high voltage MOS field effect transistor 15 M406882 (MOSFET) ) or high voltage bipolar transistor (BJT). 4. The neon alternating current to low voltage direct current converting device according to claim 1, wherein the control component comprises a comparison circuit for comparing the DC partial voltage and the reference voltage, and outputting corresponding outputs at the output end of the control component The control signal controls the opening and closing of the second switching element. 5. As claimed in claim 4, the control unit further includes a pulse modulation (PWM)·^· element to modulate the control signal into a pulse width modulation. Change control signal. % φ 6. The high-voltage alternating current to low-voltage direct current conversion device according to claim 1, further comprising a reverse unit that faces the output end of the control element and the control end of the second switching element to reverse the control Signal. 7. The high voltage alternating current to low voltage direct current converting device according to claim 6, wherein the inverting unit comprises an inverter composed of at least one transistor. 8. The high voltage alternating current to low voltage direct current conversion device according to claim 1, wherein the adjusting unit further comprises a diode and a capacitor, wherein an anode of the diode is grounded, and a cathode of the diode is connected to the cathode The low voltage end of the first switching element and one end of the inductance of the regulating unit are connected to the other end of the inductor and in parallel with the load. The high voltage alternating current to low voltage direct current converting device according to claim 1, wherein the voltage dividing unit comprises a first resistor and a second resistor connected in series with each other, and the other end of the second resistor is grounded, and the other end of the first resistor The connection between the first inductance and the first resistor is connected to the input end of the control element. The high voltage alternating current to low voltage direct current converting device according to claim 9, wherein at least one of the first resistor and the second resistor of the voltage dividing unit comprises a variable resistor.
TW99222512U 2010-11-19 2010-11-19 AC high voltage to DC low voltage converting device TWM406882U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99222512U TWM406882U (en) 2010-11-19 2010-11-19 AC high voltage to DC low voltage converting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99222512U TWM406882U (en) 2010-11-19 2010-11-19 AC high voltage to DC low voltage converting device

Publications (1)

Publication Number Publication Date
TWM406882U true TWM406882U (en) 2011-07-01

Family

ID=45080665

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99222512U TWM406882U (en) 2010-11-19 2010-11-19 AC high voltage to DC low voltage converting device

Country Status (1)

Country Link
TW (1) TWM406882U (en)

Similar Documents

Publication Publication Date Title
TWI289971B (en) Boost converter and boost conversion method
US20220029545A1 (en) Resonant converter
US9136699B2 (en) Dynamic damper and lighting driving circuit comprising the dynamic damper
EP3242385A1 (en) A load adaptable boost dc-dc power converter
TWI548187B (en) Dynamic drive capability adjustment of the power control device
JP5590115B2 (en) Power supply device drive circuit, power supply device drive integrated circuit, and power supply device
US9479072B2 (en) Flyback converter
TWI699081B (en) Low delay time power conversion circuit and driver circuit thereof
US11223271B2 (en) Gate drive adapter
TW200408184A (en) Dc-AC converter and controller IC thereof
US9331585B1 (en) Power control apparatus with dynamic adjustment of driving capability
CN109391147A (en) Step-down voltage converter
CN108933515A (en) Flyback converter controller, flyback converter and its operating method
TW445694B (en) Buck regulator circuit
JP7151325B2 (en) driver circuit
CN109560692A (en) A kind of dual chip power circuit
EP3934074B1 (en) Power supply device without ringing effect
TWI551022B (en) Dynamic drive capability adjustment of the power control device
JP2000134075A (en) Switch device
WO2004062075A2 (en) Adaptive resonant switching power system
CN108430139B (en) LED driving circuit with silicon controlled rectifier dimmer and control method thereof
CN107005157B (en) DC-DC converter and associated method and controller
TWM591640U (en) Power conversion circuit with single-stage double-switch wide input range
TWM406882U (en) AC high voltage to DC low voltage converting device
US6577518B2 (en) Integrated controller for synchronous rectifiers

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees