TWM405921U - Mill device for tapping motion - Google Patents

Mill device for tapping motion Download PDF

Info

Publication number
TWM405921U
TWM405921U TW99218237U TW99218237U TWM405921U TW M405921 U TWM405921 U TW M405921U TW 99218237 U TW99218237 U TW 99218237U TW 99218237 U TW99218237 U TW 99218237U TW M405921 U TWM405921 U TW M405921U
Authority
TW
Taiwan
Prior art keywords
motor
milling machine
axis
impulse
zero
Prior art date
Application number
TW99218237U
Other languages
Chinese (zh)
Inventor
Hung-Chen Chen
Hung-An Chang
Wei-Sheng Huang
Original Assignee
Syntec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Syntec Inc filed Critical Syntec Inc
Priority to TW99218237U priority Critical patent/TWM405921U/en
Publication of TWM405921U publication Critical patent/TWM405921U/en

Links

Abstract

A new mill machine device is designed for a motion of object which needs to move on the path back and forth --- Tapping Cycle for example. When the device moves to the bottom of a hole, the Jerk will be zero and the velocity will decelerate to zero and go back with zero Jerk. The Jerk is zero at the bottom of a hole to attend the purpose that saves working time and decrease vibration. Besides, this device can attend another purpose of perfect bottom precision with command modification according to servo lag observation.

Description

M405921 五、新型說明: 【新型所屬之技術領域】 本創作係種CNC絲機難置,制是有關—種具有 程規畫之CNC銑床機械裝置,係藉由數值控制器對於鑽孔攻牙 ·#循環切削中,加X時間與機台震動的改良。 【先前技術】 先月參考第1圓,係、—習知之立式銳床機械裝置示意圖。 立式銳床機械裝置包含-個底座i,立柱3其一端配置於底座i 之側邊上,立柱3之縱軸配置_個第一馬達4,此第—馬達* 之頂端連接-個頭部2,使得頭部2藉由第—馬達4於Z轴進行 =下移動’頭部2上再配置一主軸9與另一第四馬心連接,其 _主轴9用以裝配刀具’使得第四馬達11可以驅動旋轉主軸9; ㈣定於底座1上卜個工作平台5經由-個鞍座6 之且工作平台5上配置可以驅動在不同方向移動 -馬達7及第:馬達8,使得工作平台5藉由第二馬達7及第 二^8能於於χ、γ方向移動。因此,絲機械裝置可藉由第 點間移動。 w於χ γ、ζ二轴之起點與終 田上述之立式銳床機械裝置為_個攻牙機時,對於執行 先=復的加工之攻牙循環時,其動作說明如下:攻牙機之頭部2 此^起始點後,主軸9與頭部2同步由靜止開始執行進刀運動, 時:馬達4沿ζ轴向下移動,當頭部2到達孔底 運動,以-成:轉動,接下來主軸9與頭部2同步反方向 =以兀成退刀並回到起始點,完成一次單孔加工猶環。在進 工過程中’當機台加減速過於劇烈時,機台可能產生震動, M405921 因此傳統立式銑床機械裝置(例如攻牙機)皆會根據機台性能進 行運動衝量(Jerk)控制,以避免機台因震動產生而降低精度,並藉 以延長機台的使用壽命。此外,傳統立式銑床機械裝置之運動方 式如第2圖所示,在孔底處,使用非零衝量減少加速度至速度靜 止,如第2圖中的第7步驟處;同時也會在速度靜止後,使用非 零衝量增加加速度以及速度,如第2圖中的第8步驟處。 然而傳統方式在孔底會有以下兩種缺點: 1. 在折返點用非零等衝量之減速或加速浪費加工時間; 2. 在孔底時不為零之衝量控制,會造成機台多餘的震動而減少 機台使用壽命。 【新型内容】 為解決先前技術的問題及缺點,本創作主要目的在於提供一 種新型CNC銑床機械裝置,對於執行一來回往復的加工,例如鑽 孔攻牙切削循環時,於孔底處相關運動軸向(攻牙時之主軸與Z 軸;鑽孔時之Z軸)皆以零衝量之減速方式減速至零,然後再維持 零衝量之加速運動退回起始點,使得經過孔底之衝量恆為零,因 此可以降低機台多餘的震動,使得加工精度得以提升,並可以有 效縮短所需的加工時間。 此外,為改善伺服落後造成相關運動軸向(攻牙時之主軸與Z 軸;鑽孔時之Z軸)於孔底處,無法正確到達使用者想要目標位置 所衍生的位置誤差,本創作另一目的係藉由伺服落後量的預估, 重新修正命令,使得最終相關運動軸向的馬達實際位置都能精準 到位。 依據上述之目的,本創作首先提供一種立式銑床機械裝置包 含一個底座,立柱其一端配置於底座之一側邊上,立柱之縱軸配 置一個第— 由第一馬S馬達,此第—馬達之頂端連接一個頭部,使得頭部藉 四馬達連接於Z軸進行上下移動,頭部上再配置一主輛與另一第 轉主輛.一,其中主軸用以裝配刀具,使得第四馬達可以驅動旋 與滑軌座、妹軌座固定於底座上;一個工作平台經由一個韃座 二馬達及ΐ合,且工作平台上配置可以驅動在不同方向移動之第 於X、Υ二馬達,使得工作平台藉由第二馬達及第三馬達能於 一衝量最方向移動,其中立式銑床機械裝置中,所有馬達各具有 大值已輪2值以及一加逮度最大值,且衝量最大值以及加速度最 於:輪2 =至一數值控制器中,而此立式銑床機械裝置之特徵在 關運動軸向=工程式至數值控制器中,使得立式銑床機械裝置相 復加工時1 ^牙時之主細與ζ軸;鑽孔時之ζ軸)在進行來回往 本創於孔底處之迷度、衝量以及位置誤差剛好為零。 行之立桂作接著提供—種龍門銑床機械裝置,包含-底座,兩平 接,且於jr端配置於底座之一側邊上,其另-端與-橫襟連 馬達;一说订之立杈與橫樑接合處,則各配置第一馬達與第二 第—馬達j座橫向配置於兩平行之立柱上,同時經由滑軌槽與 馬達之控制::馬達連接,使得滑執座可直接由第-馬達與第二 承栽-個鑽頭㈣上下移動;此外滑軌座上M405921 V. New description: [New technical field] The CNC machine is difficult to set up. The system is related to CNC milling machine with process specification. # Cycle cutting, adding X time and machine vibration improvement. [Prior Art] The first month refers to the first circle, which is a schematic diagram of the vertical sharp bed mechanical device. The vertical sharp bed mechanism comprises a base i, one end of which is arranged on the side of the base i, and the vertical axis of the column 3 is provided with a first motor 4, and the top end of the first motor* is connected to the head 2, so that the head 2 is moved by the first motor 4 on the Z axis = lower movement 'the head 2 is reconfigured with a main shaft 9 and another fourth horse center connection, the _ spindle 9 is used to assemble the tool 'making the fourth The motor 11 can drive the rotating main shaft 9; (4) The working platform 5 is set on the base 1 via the saddle 6 and the working platform 5 is configured to drive the motor 7 and the motor 8 in different directions, so that the working platform 5 is movable in the χ and γ directions by the second motor 7 and the second motor 8 . Therefore, the wire mechanism can be moved between the first points. Wχχ The starting point of the γ and ζ two axes and the vertical sharp bed mechanism of the above-mentioned field are the tapping machines. When the tapping cycle of the first-complex machining is performed, the operation is as follows: tapping machine After the starting point 2, the spindle 9 and the head 2 are synchronized to start the infeed motion from the standstill. When the motor 4 moves down the yaw axis, when the head 2 reaches the bottom of the hole, the movement is made. Then, the spindle 9 and the head 2 are synchronized in the opposite direction = the retracting knife is returned to the starting point, and the single hole processing loop is completed. In the process of entering the work, when the machine is accelerating and decelerating too much, the machine may vibrate. M405921 Therefore, the traditional vertical milling machine mechanism (such as tapping machine) will control the movement according to the performance of the machine. Avoid the accuracy of the machine due to vibration, and extend the life of the machine. In addition, the movement of the conventional vertical milling machine mechanism is as shown in Fig. 2, at the bottom of the hole, the acceleration is reduced to the speed using a non-zero impulse, as in the seventh step in Fig. 2; After that, the acceleration and speed are increased using a non-zero impulse, as in the eighth step in Figure 2. However, the traditional method has the following two disadvantages at the bottom of the hole: 1. The machining time is wasted by the deceleration or acceleration of the non-zero equal impulse at the turning point; 2. The impulse control that is not zero at the bottom of the hole will cause the machine to be redundant. Vibration reduces the life of the machine. [New content] In order to solve the problems and shortcomings of the prior art, the main purpose of this creation is to provide a new type of CNC milling machine mechanism for performing a reciprocating process, such as a drilling and tapping cutting cycle, at the bottom of the hole. The direction (the main axis of the tapping and the Z axis; the Z axis when drilling) is decelerated to zero with a zero impulse deceleration, and then the acceleration of the zero impulse is returned to the starting point, so that the impulse through the bottom of the hole is constant. Zero, so it can reduce the extra vibration of the machine, which can improve the machining accuracy and effectively shorten the required processing time. In addition, in order to improve the servo motion, the relevant motion axis (the main axis and the Z axis during tapping; the Z axis during drilling) is at the bottom of the hole, and the position error caused by the user's desired target position cannot be correctly reached. Another purpose is to re-correct the command by estimating the servo backlash so that the actual position of the motor in the final motion axis can be accurately positioned. According to the above purpose, the present invention firstly provides a vertical milling machine mechanism comprising a base, one end of which is arranged on one side of the base, and the vertical axis of the column is arranged one by one - the first horse S motor, the first motor The top end is connected to a head such that the head is moved up and down by the four motors connected to the Z axis, and the main head and the other first rotating main unit are arranged on the head. The main shaft is used to assemble the cutter so that the fourth motor The rotating and sliding rail seat and the sister rail seat can be fixed on the base; one working platform is coupled to the base via a two-seat motor, and the working platform is configured to drive the first and second motors that move in different directions, so that The working platform can move in the most direction of the impulse by the second motor and the third motor. In the vertical milling machine mechanism, all the motors have a large value of the wheel 2 value and a maximum catch value, and the maximum value of the impulse The acceleration is at most: wheel 2 = to a numerical controller, and the vertical milling machine mechanism is characterized by the closing motion axis = engineering to numerical controller, so that the vertical milling machine is mechanically loaded. When the phase is reworked, the main thin and the ζ axis of the 1 ^ tooth; the ζ axis of the drill hole) is rounded to the bottom of the hole at the bottom of the hole, the impulse and the position error is just zero. The line of Guigui then provides a kind of gantry milling machine mechanism, including - base, two flat joints, and is arranged on the side of one side of the base at the jr end, and the other end and the cross-connected motor; Where the vertical sill and the beam are joined, the first motor and the second first motor j are arranged laterally on the two parallel columns, and at the same time, the sliding rail slot and the motor control: motor connection, so that the sliding seat can be directly Moving up and down by the first motor and the second bearing - a drill bit (four); in addition to the slide rail seat

轴左右軸n i 馬達驅動鑽頭部進行X 動,同時,鑽頭部上亦配置—主軸與一 用以裝配77具’第五馬達 堪王釉 於底座之上,㈣vJ 轉主轴;—卫作平台配置 後移動’其中龍門絲機 _ 。了於Y方向則 值以及-加速度最大值,且=大2馬達各具有-衝量最大 至一數值控制器中’而此龍門銳_裝===值::: 加工程式錄健㈣中,使得制料機械裝置㈣運^袖向 厕5921 (攻牙時之主軸與z軸;鑽孔時 於孔底處之速度、衝量以及位置誤細)在進行來回往復加工時, 本創作接著再提供一種臥式差剛好為零。 立柱其一端配置於底座之_側二上床機械裝置’包含一底座’ 一 馬達;-鑽頭部配置於立枝之上立柱之另〆端上配置第 達連接,使得鑽頭部可直接由第一么由立柱令的清軌槽與第馬 * itPh m 馬達驅動於立枉兩端之z軸間 進订上下移動,此外’鑽頭部上配置 馬達,此第 四馬達係用以驅動旋轉主袖,其 袖與承# 、甲主輪之面命γ軸之一側邊上裝 配一刀具;一滑軌座固定於底.⑯向Υ种 、-上上,—工作羊台經由一鞍座與滑 軌座結合’且工作平台上酎署X门‘ π-Ter. 丁口上配置不同方向達及第三馬達’ 使得工作平台藉由第二馬達及坌- 甘士 勹迓及第二馬達於 方向移動,其中 队式銑床機械裝置卜所有馬達各具有旦以及一加速 度最大值’且衝量最大值以及加速度最大值=輸入至—數值控制 器中’而此臥式銳床機械裝置之特徵在於:輸人?加工程式至數 值控制器巾使得队式銑床機械裝置相關運動袖向(攻牙時之主軸 與γ軸;義時之γ抽)在進行來回往復加卫時,於孔底處之速度、 衝量以及位置誤差剛好為零。 【實施方式】 本創作提供一種新型CNC銑床機蜮裝置,特別是對於執行一 來回往復的加工之CNC機械裝置,例如鑽孔攻牙切削循環之CNC 機械震置。固為於本創作中所提及之動程規畫及CNC機械裝置之 圖式,亦並未依據實際之相關尺寸完整繪製,其作用僅在表達與 本】乍特徵有關之示意圖。特別要5尤明,在下述說明中之各種說 明係為本創作之實施例,並非用以限制本創作。 ;、先床機械裝置每次所要執行加工之路程並不相同,因此 M405921 配置於=床機械裝置上的數位控制裝置必須針對不 路徑以最快的速度完成所要執行加工之路程。 心長知 為了方便說明在此我們使用下列幾個符號: Vmax代表預設之速度絕對值之最大值; 之The left and right axes of the shaft ni drive the drill bit to perform X movement, and at the same time, the drill portion is also arranged - the main shaft and one for assembling 77 'the fifth motor can be glazed on the base, (4) the vJ rotary spindle; Move 'where the gantry machine _. The value in the Y direction and the maximum value of the acceleration, and = the motor of the big 2 has a maximum impulse to a numerical controller' and this gantry sharp_load === value::: The processing program is recorded in (4), making The material-making mechanism (4) transports the sleeves to the toilet 5921 (the spindle and the z-axis during tapping; the speed, the impulse and the positional misalignment at the bottom of the hole during drilling). The horizontal difference is just zero. The one end of the column is disposed on the base of the second bed-on-bed mechanism "including a base" a motor; the drill bit is disposed on the other end of the upright column and the first connection is arranged, so that the drill bit can be directly used by the first The clearing rail of the column and the first * itPh m motor drive the z-axis between the two ends of the vertical frame to move up and down, and the motor is disposed on the drill bit, and the fourth motor is used to drive the rotating main sleeve. Sleeve and bearing #, A main wheel of one side of the γ axis is equipped with a cutter; a sliding rail seat is fixed at the bottom. 16 Υ 、, - up, - working sheep platform via a saddle and rail The seat is combined with 'the X-door on the working platform' π-Ter. The different positions are arranged on the D-port and the third motor', so that the working platform moves in the direction by the second motor and the 坌- Gans 勹迓 and the second motor, where the team Milling machine mechanism All motors have a denier and an acceleration maximum 'and impulse maximum and acceleration maximum = input to - numerical controller' and this horizontal sharp bed mechanism is characterized by: input? The processing program to the numerical controller towel makes the speed of the hole at the bottom of the hole and the momentum at the bottom of the hole when the sleeve of the milling machine is related to the motion sleeve (the main axis of the tapping and the γ axis; The position error is just zero. [Embodiment] The present invention provides a novel CNC milling machine boring device, particularly for a CNC mechanical device that performs a reciprocating process, such as a CNC mechanical shock of a drilling and tapping cutting cycle. The schematics of the motion planning and CNC mechanical devices mentioned in this creation are not completely drawn according to the actual relevant dimensions. Their function is only to express the schematic diagram related to the characteristics of this machine. In particular, the various descriptions in the following description are examples of the present invention and are not intended to limit the creation. The calibre mechanism is not the same every time the machining is to be performed, so the digital control unit of the M405921 on the bed mechanism must complete the machining path for the fastest speed for the non-path. For the sake of convenience, we use the following symbols: Vmax represents the maximum value of the absolute value of the preset speed;

AmaX代表預設之加速度絕對值之最大值;AmaX represents the maximum value of the absolute value of the preset acceleration;

Jmax代表預設之衝量絕對值之最大值。Jmax represents the maximum value of the absolute value of the preset impulse.

由於攻牙時’主轴馬達位置命令與進給軸馬達位置命令間, 會因為牙距、機械齒輪比等等因素,存在—固定比值關係^此 兩軸速度、加速度與衝量命令也同樣存在此例關係,故在以下描 述中,上述Vamx/Amax/Jmax將同時隱含兩轴攻牙過種中,所對 應之物理量;鑽孔時則僅為Z軸表示。 使用數位控制裝置來控制銑床機械裝置運動時,銑床機械裝 置之衝量最大值已知;而驅動銑床機械裝置運動的馬達所能提供 之加速度最大值也是已知。當銑床機械裝置為一攻牙機時’可以 將所要加工之程式(例如要攻5毫米深度的孔)輸入至數位控制 裝置’然後再將已知銑床機械裝置之衝量最大值設定為預設之衝 量絕對值之最大值Jmax ’以及已知的馬達加速度最大值設定為預 設之加速度絕對值之最大值Amax也一併輸入至數位控制裝置 中,以產生一相應之速度與時間之動程規畫。很明顯地,銑床機 械裝置之衝量最大值以及馬達所能提供之加速度最大值均是已知 並且固定的,因此’數位控制裝置所產生之動程規畫會依據所要 加工之行程而有不同的速度與時間之動程規畫。 首先’說明本創作之較佳實施例。當銑床機械裝置之加工行 程足夠使速度絕對值達到預設之最大值時’數位控制裝置執行控 制所對應之速度-時間圖、加速度-時間圖以及衝量-時間圖分別示 於第3圖、第4圖以及第5圖;以下為銑床機械裝置之加工行程 M405921 控制步驟: 1. 銑床機械裝置之z軸移動至起始點準備開始動作; 2. 如第4圖中第A步驟,銑床機械裝置之主軸與Z軸同時由 靜止開始運動,各以使用者設定之最大正向衝量值(Jmax ),朝孔 底作等衝量正向加速度運動,直到加速度達使用者設定之最大正 向加速度值(Amax ); 3. 如第4圖中第B步驟,銑床機械裝置之主轴與Z軸同時各 以使用者設定之最大正向加速度(Amax )值作等加速度運動; 4. 如第4圖中第C步驟,當銑床機械裝置之主軸與Z軸速度 各自快達到使用者設定之加工正向速度(Vmax)時,各以使用者 設定之最大負向衝量(-Jmax)作等衝量正向加速度運動(即朝轉 折點進行減加速度運動),直到速度達使用者設定之加工正向速 度; 5. 如第4圖中第D步驟,當銑床機械裝置之主軸與Z軸速度 各達使用者設定之加工正向速度(Vmax)後,開始進行等速度運 動; 6. 如第4圖中第E步驟,當需要開始減速時,銑床機械裝置 之主軸與Z軸同時各以使用者設定最大負向衝量值(-Jmax),作 等衝量負向加速度運動,直到加速度達使用者設定之最大負向加 速度值(- Amax ); 7. 如第4圖中第F步驟,銑床機械裝置之主軸與Z轴同時各 以使用者設定的最大負向加速度值(- Amax )作等加速度運動,並 • i ft · · · A* Λ · %_ . · · % · · · % . (. 4 «論 ,参 雒符此琅Α貞问加迷度减迷,便侍通過扎低时,迷度剛针馮苓, 8. 如第4圖中第G步驟,通過孔底後,銑床機械裝置之主軸 與Z軸同時反向朝起始點,並依然保持使用者設定之最大負向加 速度值(- Amax )作等加速度運動; M405921 9. 如第4圖中第H步驟,當銑床機械裝置之主軸與Z軸速度 快達到使用者設定之加工負向速度時’各以使用者設定之最大正 , 向衝量(Jmax)作等衝量負向加速度運動’直到速度達使珣者設 , 定之加工負向速度值(_vmax); 10. 如第4圖中第Ϊ步驟,當銑床機械裝置之主軸與Z軸速 度各達使用者設定的加工負向速度(-Vmax)後,開始進行等速度 運動; 11. 如第4圖中第J步驟,當需要開始減速時,銑床機械裝 ' 置之主轴與z軸同時各以使用者設定最大正向衝量值(jmax),作 • 等衝量正向加速度運動’直到加速度達使用者設定之最大正向加 速度值(Vmax 12. 如第4圖中第K步驟,銑床機械裝置之主軸與之軸同時 各以使用者設定之最大正向加速度值(Amax)作等加迷度運動; 13. 最後’如第4圖中第L步驟,將至起始點時,主轴與z 軸同時各以使用者&又疋最大負向衝量值(Jmax )作等衝量正向加 速度運動,使得到達起始點時,速度、加速度均為零,埯程釺束。 很明顯地,當本新型銑床機械裝置進行攻牙切削嫣環時,於 ® 孔底處主軸與Z軸速度與衝量剛好為零,因此玎以降低機△多餘 、 的震動,使得加工精確度提高;在此同時,主軸與z鉍經過=底 時,加速度值不會以等衝量下降至零後(即經過孔底時,其加速 度值不會為零)’再以等衝量重新提升加速度,而是直接以所哎定 之最大值通過’故可以省去不必要的時間浪費。 本創作之另一較佳實施例,就是當遇到連續性的鑽孔攻牙循 環時,不管是如第6圖第F/G步驟所示的孔底處,或是如第6圖 第K/L步驟所示的第二孔起始點處,其相關運動軸向(玫牙時之主 軸與Z軸;鑽孔時之Z軸)均先以零衝量之減速方式減迷至零,然 9 ^U592l t =零衝量之加速方式,加速至使用者目標速度,使得經過 。點或孔底之衝量㈣零,因切⑽㈣〇餘的震動,使 亏°工精度得以提升,並可以有效縮短所需的加工時間。 由於執行攻牙或鑽職環時,各孔的起點、終點、最大加加 /从及最大加速度等均是-致的,因此所產生如第5圖或第6 圖,的動程規劃結果也是固定的,故馬達伺服落後對於各孔於 氏處’所產线位置誤差亦是相同的。此外,由於馬達運動特 1可近似於-個m因此可以透過模擬方式取得單孔位置 誤差量,將其累加後修正於原始命令中後,再重新騎動程規劃, 並再次進行賴,如純魏线,必訪料成減於孔底處 位置誤差改良之目的。 第7圖為本創作之另一較佳實施例說明,使用者必須先在數 位控制裝置中,設定模擬次數上限值參數,以及位置誤差容忍值 參數。接著本創作之銑床機械裝置將根據使用者目標深度L進行 單孔動程規劃,以及進行馬達伺服落後之模擬,取得位置誤差Lel 後,將其累加於原始命令中,此時目標深度變更為L+Lei,之後 再次進行動程規劃以及馬達伺服落後模擬,如此反覆執行直到模 擬次數大於設定值,或是位置誤差小於設定值時,即停止模擬。 最後,以最終所得目標深度作為接下來各孔切削循環之動程規劃 依據,並實際將規劃結果之命令發送至馬達開始進行切削動作使 得最終相關運動軸向的馬達實際位置都能精準到位,即攻牙時之 主轴與Z軸或鑽孔時之Z軸在到達孔底位置之誤差剛好為零。 經由實際之測試比較,以本新型銑朱機械裝置與先韵技術之 機台進行測試後;若對0.2秒加速至6000轉、主軸轉速6000轉、 R點距離2 mm、進給深度9 mm、M3的牙作測試,其結果顯示, 先前技術之機台在單孔攻牙時間需要0.8503秒,孔底深度誤差為 M405921 27um,而用本新型銑床機械裝置需0.7982秒,孔底深度誤差為 Oum;若對0.2秒加速至6000轉、主轴轉速6〇〇〇轉、R點距離2 mm、進給深度i8 mm、M6的牙作測試其結果顯示先前技術 之機台在單孔攻牙時間需要0.8100秒,孔底深度誤差為 53um,而 用本新型銳床機械裝置需0.7569秒,孔底深度誤差為 lum ;本新 型銑床機械裝置比先前技術節省了超過百分之六之時間,以及零 誤差的孔底精度。 接下來,將詳細說明本創作之各種銑床機械裝置之實施方 式。首先,以第1圖之立式銑床機械裝置來說明本創作之第一實 施例。如第1圖中所示,立式銑床機械裝置包含一個底座丨,立柱 3其一端配置於底座1之一側邊上,立柱3之縱軸配置一個第一馬 達4,此第一馬達4之頂端連接一個頭部2,使得頭部2藉由第— 馬達4於Z軸進行上下移動,頭部2上再配置一主軸9與另—第 四馬達11連接,其中主軸9用以裝配刀具,使得第四馬達u可 以驅動旋轉主軸9 ; 一個滑軌座1〇固定於底座丨上;一個工作平 台5經由一個鞍座6與滑轨座1〇結合,且工作平台5上配置可以 驅動在不同方向移動之第二馬達7及第三馬達8,使得工作平台5 藉由第二馬達7及第三馬達8能於於χ、γ方向移動。故可藉由 本實施例之立式銑床機械裝置上的第一馬達4、第二馬達7及第三 馬達8執行X、Υ及Ζ三軸之起點與終點間作往復運動。 接著於數位控制裝置中,將立式銖床機械裝置已知之衝量最 大值设疋為預設之衝量絕對值之最大值jmax,以及匕知的加速户 最大值設定為預設之加迷度絕對值之最大值Amax,以產生一相應 之速度與時間之動程規畫。再接著,操作者將所要之加工程式輪 入至數位控制裝置中,假設立式銑床機械裝置之加工行程足夠使 速度絕對值達到預設之最大值。此時,本實施例之立式銑床機蜮 M405921 、據第3圖至第s圖之控制結果,可以使得立式銳床機械敦 之相關運動㈣«牙時之主軸與z轴;鑽孔時之z轴)主轴^ 在進行來回往復加I時,於孔底處速度與衝量剛好為零,因此 、降低立式铁床機;置多餘的震動,使得加I精確度提高;在 此同時,經過孔底時,加速度值不會以等衝量下降至零後(即經 底時’其加速度值不會為零)’ H衝量重新提升加速度, 疋直接以所β又疋之最大值通過,故可以省去不必要的時間浪費。 接著,凊參考第8圖,係本創作之銑床機械裝置之另一實施 例之不意圖。如第8圖所示,一種龍門统床機械裝置,包含一底 座1 ’兩平行之立杈53/54,其一端配置於底座丨之一側邊上,其 另一端與-橫樑連接’且於兩平行之立柱那4與橫樑接合處,則 置第馬達55與第二馬達56 滑軌座57橫向配置於兩平 行之立柱53/54 ±,同時經由滑軌槽57Α與第—馬彡55與第二馬 達56連接,使得滑軌座57可直接由第-馬達55與第二馬達56 之控制於檢樑與底座丨間的ζ軸進行上下移動;此外滑轨座π上 承載-個鑽頭部58與-個第三馬達6〇,可由第三馬達⑼驅動鑽 頭。Ρ 58進行X轴左右移動,同時,鑽頭部巧上亦配置—主轴% 與:第五馬達62’主軸59用以裝配刀具,第五馬達62則用以驅 動旋轉主轴59;-卫作平台12配置於底座丨之上,並透過第四馬 達61驅動’使得工作平台12可於γ方向前後移動。因此,本實 施例之龍Η銳床機械裝置,可藉由第—馬達55與第三馬達%、第 三馬達6G及第四馬達61來執行χ、γ及ζ三軸之起點與終點間 作往復運動。 接著於數位控制裝置中’將龍門銳床機械裝置已知之衝量最 ^值設定為預設之衝量絕對值之最大们醜,以及已知的加速度 最大值設定為預設之加速度絕對值之最大值Amax,以產生一相應 12 M405921Because of the 'spindle motor position command and the feed axis motor position command during tapping, there will be a fixed ratio relationship due to factors such as the pitch, the mechanical gear ratio, etc. ^The two-axis speed, acceleration and impulse commands also exist in this example. Relationship, so in the following description, the above Vamx/Amax/Jmax will simultaneously imply the physical quantity corresponding to the two-axis tapping, and the drilling is only the Z-axis. The maximum amount of impulse of the milling machine mechanism is known when using a digital control to control the movement of the milling machine; the maximum acceleration that can be provided by a motor that drives the movement of the milling machine is also known. When the milling machine mechanism is a tapping machine, 'the program to be processed (for example, the hole to be tapped to a depth of 5 mm) can be input to the digital control device' and then the maximum value of the known milling machine mechanism can be set to the preset value. The maximum value Jmax of the absolute value of the impulse and the maximum value Amax of the known absolute value of the motor acceleration are also input to the digital control device to generate a corresponding speed and time gauge. painting. Obviously, the maximum impulse of the milling machine and the maximum acceleration that the motor can provide are known and fixed, so the motion planning generated by the 'digital control device will vary depending on the stroke to be processed. Speed and time schedule planning. First, a preferred embodiment of the present invention will be described. When the machining stroke of the milling machine mechanism is sufficient to make the absolute value of the speed reach the preset maximum value, the speed-time diagram, acceleration-time diagram and impulse-time diagram corresponding to the digital control device execution control are shown in Fig. 3, respectively. 4 and 5; the following is the machining stroke of the milling machine M405921 Control steps: 1. The z-axis of the milling machine moves to the starting point to start the action; 2. As in the fourth step of Figure 4, the milling machine The main shaft and the Z-axis start to move at the same time from the stationary state, and the maximum forward impulse value (Jmax) set by the user is used to make an equal-amplitude positive acceleration motion toward the bottom of the hole until the acceleration reaches the maximum forward acceleration value set by the user ( Amax); 3. As in step B of Fig. 4, the spindle of the milling machine and the Z axis simultaneously move with the maximum forward acceleration (Amax) value set by the user; 4. As shown in Fig. 4 In step C, when the spindle and Z-axis speed of the milling machine mechanism reach the user-programmed forward speed (Vmax), the maximum negative impulse (-Jmax) set by the user is used for the equal impulse. To the acceleration motion (ie, the deceleration motion toward the turning point) until the speed reaches the machining forward speed set by the user; 5. As in step D in Fig. 4, when the spindle and Z-axis speed of the milling machine mechanism reach the user respectively After the set forward speed (Vmax) is set, the isokinetic motion starts. 6. As in step E of Fig. 4, when the deceleration needs to be started, the spindle of the milling machine and the Z axis are simultaneously set to the maximum by the user. The impulse value (-Jmax) is used for the equal-impact negative acceleration motion until the acceleration reaches the maximum negative acceleration value (- Amax ) set by the user. 7. As in step F of Figure 4, the spindle of the milling machine is The Z axis simultaneously performs the constant acceleration motion with the maximum negative acceleration value (- Amax ) set by the user, and • i ft · · · A* Λ · %_ . · · % · · · % . (. 4 «On The 雒 雒 琅Α贞 琅Α贞 琅Α贞 琅Α贞 琅Α贞 加 加 加 加 加 加 加 加 加 加 加 加 加 加 加 加 加 加 加 加 加 加 加 加 加 加 加 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. Simultaneously reverse to the starting point with the Z axis, and still maintain user settings The maximum negative acceleration value (- Amax ) is used for equal acceleration motion; M405921 9. As in step H of Figure 4, when the spindle and Z-axis speed of the milling machine mechanism reach the user-set machining negative speed faster, The user sets the maximum positive, the impulse amount (Jmax) for the equal impulse negative acceleration motion 'until the speed is set, the machining negative speed value (_vmax); 10. The fourth step in Figure 4, when After the spindle and Z-axis speed of the milling machine reach the user-set machining negative speed (-Vmax), the iso-speed motion starts. 11. As in step J of Figure 4, when it is necessary to start deceleration, the milling machine Install the spindle and the z-axis at the same time, the user sets the maximum forward impulse value (jmax), and • the equal-amplitude positive acceleration motion 'until the acceleration reaches the maximum forward acceleration value set by the user (Vmax 12. 4 In the K step of the figure, the spindle of the milling machine mechanism and the shaft are simultaneously moved with the maximum forward acceleration value (Amax) set by the user; 13. Finally, as in step L of Figure 4, To the starting point, the Lord In each of the z-axis while the user & piece goods and a maximum negative value for the red (Jmax) and other impulse forward acceleration motion, so that the starting point is reached, velocity, acceleration is zero, Cheng Qian dibble beam. Obviously, when the new milling machine mechanism performs the tapping and cutting of the cymbal ring, the speed and impulse of the main shaft and the Z axis at the bottom of the hole are just zero, so the vibration of the machine △ is reduced, so that the machining accuracy is improved. At the same time, when the spindle and z铋 pass through the bottom, the acceleration value will not drop to zero after the equal impulse (that is, the acceleration value will not be zero when passing through the bottom of the hole), and then the acceleration will be increased again by the equal impulse. It is directly passed at the maximum value determined so that unnecessary waste of time can be saved. Another preferred embodiment of the present invention is when encountering a continuous drilling and tapping cycle, either at the bottom of the hole as shown in step F/G of Figure 6, or as shown in Fig. 6 At the starting point of the second hole shown in the /L step, the relevant motion axis (the main axis and the Z axis at the time of the toothing; the Z axis at the time of drilling) are first reduced to zero by the deceleration of the zero impulse, 9 ^U592l t = Acceleration mode of zero impulse, accelerate to the user's target speed, so that it passes. The impulse of the point or the bottom of the hole (4) is zero. Because of the vibration of the (10) (4), the precision of the loss is improved, and the required processing time can be effectively shortened. Since the starting point, the end point, the maximum addition/slave, and the maximum acceleration of each hole are performed when the tapping or drilling of the ring is performed, the result of the motion planning as shown in Fig. 5 or Fig. 6 is also Fixed, so the motor servo is behind the same line position error for each hole. In addition, since the motor motion special 1 can be approximated by -m, it is possible to obtain the single hole position error amount through the simulation method, add it and correct it in the original command, and then re-ride the motion planning, and then perform the Lai again, such as pure Wei line, must be expected to reduce the position error at the bottom of the hole to improve the purpose. Fig. 7 is a view showing another preferred embodiment of the present invention. The user must first set the analog number upper limit parameter and the position error tolerance value parameter in the digital control device. Then, the milling machine mechanism of this creation will perform single hole motion planning according to the user's target depth L, and simulate the motor servo backward. After obtaining the position error Lel, it will be added to the original command, and the target depth is changed to L. +Lei, then perform the motion planning and the motor servo backward simulation again, and then execute it repeatedly until the analog number is greater than the set value, or the position error is less than the set value, the simulation is stopped. Finally, the final target depth is used as the basis for the motion planning of the next hole cutting cycle, and the command of the planning result is actually sent to the motor to start the cutting action so that the actual position of the motor in the final relevant motion axis can be accurately positioned, ie The error between the spindle at the time of tapping and the Z-axis or the Z-axis at the time of drilling is just zero at the position of the bottom of the hole. Through actual test comparison, after testing with the new milling machine and the first rhyme technology machine; if it accelerates to 6000 rpm in 0.2 seconds, the spindle speed is 6000 rpm, the R point distance is 2 mm, the feed depth is 9 mm, The M3 tooth test shows that the prior art machine requires 0.8503 seconds for single hole tapping time and M405921 27um for hole bottom depth, while the new milling machine mechanism requires 0.7982 seconds and the hole bottom depth error is Oum. If the test is accelerated to 0.2 rpm to 6000 rpm, the spindle speed is 6 〇〇〇, the R point is 2 mm, the feed depth is i8 mm, and the M6 is tested. The result shows that the prior art machine needs to be in the single hole tapping time. 0.8100 seconds, the bottom depth error is 53um, and the new sharp bed mechanism requires 0.7569 seconds, and the bottom depth error is lum; the new milling machine mechanism saves more than 6 percent of the time and zero error compared with the prior art. Bottom hole accuracy. Next, the implementation of various milling machine mechanisms of the present invention will be described in detail. First, the first embodiment of the present invention will be described with the vertical milling machine mechanism of Fig. 1. As shown in Fig. 1, the vertical milling machine mechanism includes a base cymbal, one end of which is disposed on one side of the base 1, and the vertical axis of the column 3 is provided with a first motor 4, the first motor 4 A head 2 is connected to the top end, so that the head 2 is moved up and down by the first motor 4 on the Z axis, and the head 2 is further provided with a spindle 9 connected to the other fourth motor 11, wherein the spindle 9 is used for assembling the tool. The fourth motor u can drive the rotating main shaft 9; one sliding rail seat 1〇 is fixed on the base cymbal; a working platform 5 is coupled to the sliding rail base 1 via a saddle 6, and the configuration on the working platform 5 can be driven differently. The second motor 7 and the third motor 8 that move in the direction enable the work platform 5 to move in the χ and γ directions by the second motor 7 and the third motor 8. Therefore, the first motor 4, the second motor 7, and the third motor 8 on the vertical milling machine mechanism of the present embodiment can perform reciprocating motion between the start point and the end point of the X, Υ, and Ζ axes. Then, in the digital control device, the maximum impulse value known for the vertical boring machine mechanism is set to the maximum value jmax of the absolute value of the preset impulse, and the maximum value of the accelerator is set to the absolute value of the preset ambiguity. The maximum value of Amax is used to generate a corresponding speed and time schedule. Next, the operator rotates the desired machining program into the digital control unit, assuming that the machining stroke of the vertical milling machine mechanism is sufficient for the absolute value of the speed to reach a preset maximum value. At this time, the vertical milling machine 蜮M405921 of the present embodiment, according to the control results of the third figure to the sth figure, can make the vertical sharp bed mechanically related motion (four) «the main axis of the tooth and the z-axis; Z-axis) Spindle ^ When reciprocating and reciprocating I, the speed and impulse at the bottom of the hole are just zero. Therefore, the vertical iron bed machine is lowered; the extra vibration is set, so that the accuracy of the addition I is improved; at the same time, At the bottom of the hole, the acceleration value will not drop to zero after the equal impulse (ie, the acceleration value will not be zero when passing through the bottom). The H impulse re-accelerates the acceleration, and the 疋 directly passes the maximum value of β and 疋, so it can Save unnecessary time wasted. Next, referring to Fig. 8, it is not intended to be another embodiment of the milling machine mechanism of the present invention. As shown in Fig. 8, a gantry bed mechanism includes a base 1 'two parallel stiles 53/54, one end of which is disposed on one side of the base cymbal, and the other end of which is connected to the - beam and When the two parallel pillars 4 are joined to the beam, the first motor 55 and the second motor 56 rail seat 57 are laterally disposed on the two parallel pillars 53/54 ± while passing through the rail slot 57 and the first horse 55 The second motor 56 is connected such that the rail seat 57 can be directly moved up and down by the first motor 55 and the second motor 56 controlled between the beam and the base cymbal; and the slide rail π carries a bit 58 and a third motor 6〇, the drill bit can be driven by the third motor (9). Ρ 58 performs X-axis left-right movement, and at the same time, the drill part is also configured - the main shaft % and: the fifth motor 62' main shaft 59 is used to assemble the cutter, and the fifth motor 62 is used to drive the rotating main shaft 59; It is disposed above the base cymbal and is driven by the fourth motor 61 so that the work platform 12 can move back and forth in the gamma direction. Therefore, in the Longjing sharp bed mechanism of the present embodiment, the start and end positions of the three axes of χ, γ, and ζ can be performed by the first motor 55 and the third motor %, the third motor 6G, and the fourth motor 61. Reciprocating motion. Then in the digital control device, 'the maximum value of the known impulse of the gantry sharp bed mechanism is set to the maximum value of the absolute value of the preset impulse, and the known maximum value of the acceleration is set as the maximum value of the absolute value of the preset acceleration. Amax to generate a corresponding 12 M405921

之速度與時間之動程規晝。再接著,操作者再將所要的加工程式 輸入至數位控制裝置中,假設龍門銑床機械裝置之加工行程足夠 使速度絕對值達到預設之最大值。此時,本實施例之龍門銑床機 械裝置依據第3圖至第5圖之控制結果,可以使得龍門銑床機械 裝置之相關運動軸向(攻牙時之主軸與Z軸;鑽孔時之Z軸)在進 行來回往復加工時,於孔底處速度與衝量剛好為零,因此可以降 低龍門銳床機械裝置多餘的震動,使得加工精確度提高;在此同 時,經過孔底時,加速度值不會以等衝量下降至零後(即經過孔 底時,其加速度值不會為零),再以等衝量重新提升加速度,而是 直接以所設定之最大值通過,故可以省去不必要的時間浪費。 再接著,請參考第9圖,係本創作之CNC銑床機械裝置之再 一實施例之示意圖。如第9圖所示,一種臥式銳床機械裝置,包 含一底座1,一立柱73其一端配.置於底座1之一側邊上,立柱73 之另一端上配置一第一馬達74; —鑽頭部72配置於立柱73之上 並經由立柱73中的滑軌槽73A與第一馬達74連接,使得鑽頭部 72可直接由第一馬達74驅動於立柱73兩端之Z軸間進行上下移 動;此外,鑽頭部72上配置一主軸79與一第四馬達81,此第四 馬達81係用以驅動旋轉主軸79,其中主軸79之面向Y軸之一側 邊上裝配一刀具;一滑軌座80固定於底座1上;一工作平台75 經由一鞍座76與滑軌座80結合,且工作平台75上配置不同方向 之第二馬達77及第三馬達78,使得工作平台75藉由第二馬達77 及第三馬達78於X與Y方向移動。因此,本實施例之臥式銑床 機械裝置,可藉由第一馬達74、第二馬達77及第三馬達78於X、 Y與Z三抽之原與終點間作往復運動。 接著於數位控制裝置中,將臥式銑床機械裝置已知之衝量最 大值設定為預設之衝量絕對值之最大值Jmax,以及已知的加速度 13 M405921 最大值設定為預設之加速度絕對值之最大值Amax,以產生一相應 之速度與時間之動程規畫。再接著,操作者再將所要的加工程式 輸入至數位控制裝置中,假設臥式銑床機械裝置之加工行程足夠 使速度絕對值達到預設之最大值。此時,本實施例之臥式銑床機 械裝置依據第3圖至第5圖之控制結果,可以使得臥式銑床機械 裝置之相關運動軸向(攻牙時之主軸與γ軸;鑽孔時之γ軸)在進 灯來回往復加工時,於孔底處速度與衝量剛好為零,因此可以降 低臥式銑床機械裝置多餘的震動,使得加工精確度提高;在此同 時,經過孔底時,加速度值不會以等衝量下降至零後(即經過孔t 底時’其加速度值不會為零),再以等衝量重新提升加速度,而是 · 直接以所設定之最大值通過,故可以省去不必要的時間浪費。 以上針對本創作較佳實施例之說明係為闡明之目的,而無意 限疋本創作之精確應用形式,由以上之教導或由本創作的實施例 子s而作某種程度修改是可能的。因此,本創作的技術思想將由 以下的申請專利範圍及其均等來決定之。 【圖式簡單說明】 第1圖係立式銑床機構示意圖; 春 第2圖係傳統速度規劃示意圖; , 第3圖係本創作之速度規劃示意圖; 第4圖係本創作之加速度規劃示意圖; 第5圖係本創作之衝量規劃示意圖: 第6圖係本創作之另一速度規劃示意圖; 第7圖係本創作之孔底位置誤差改善示意圖; 第8圖係龍門銑床機構示意圖; 第9圖係臥式銑床機構示意圖; 14 M405921 【主要元件符號說明】The speed and time of the schedule. Then, the operator inputs the desired machining program into the digital control device, assuming that the machining stroke of the portal milling machine is sufficient to bring the absolute value of the speed to a preset maximum value. At this time, the gantry milling machine mechanism of the present embodiment can make the relevant motion axis of the gantry milling machine mechanism according to the control results of the third to fifth drawings (the main axis and the Z axis during tapping; the Z axis when drilling) When performing reciprocating processing, the speed and impulse at the bottom of the hole are just zero, so the excess vibration of the gantry sharp bed mechanism can be reduced, so that the machining accuracy is improved; at the same time, the acceleration value will not pass through the bottom of the hole. After the equal impulse drops to zero (that is, when the bottom of the hole passes, the acceleration value will not be zero), and then the acceleration is increased again by the equal impulse, but directly passed at the set maximum value, so unnecessary time can be saved. waste. Next, please refer to Fig. 9, which is a schematic view of still another embodiment of the CNC milling machine mechanism of the present invention. As shown in Figure 9, a horizontal sharp bed mechanism, comprising a base 1, a column 73 at one end of which is placed on one side of the base 1, and the other end of the column 73 is disposed with a first motor 74; The drill portion 72 is disposed on the column 73 and connected to the first motor 74 via the rail groove 73A in the column 73, so that the drill portion 72 can be directly driven by the first motor 74 between the Z-axis at both ends of the column 73. Further, the drill portion 72 is provided with a main shaft 79 and a fourth motor 81 for driving the rotating main shaft 79, wherein a side of the main shaft 79 facing the Y-axis is equipped with a cutter; The rail base 80 is fixed on the base 1; a working platform 75 is coupled to the rail mount 80 via a saddle 76, and the second motor 77 and the third motor 78 are arranged in different directions on the working platform 75, so that the working platform 75 is The second motor 77 and the third motor 78 move in the X and Y directions. Therefore, the horizontal milling machine mechanism of the present embodiment can reciprocate between the original and the end points of X, Y and Z by the first motor 74, the second motor 77 and the third motor 78. Then, in the digital control device, the maximum impulse value known for the horizontal milling machine mechanism is set to the maximum value Jmax of the preset impulse absolute value, and the known acceleration 13 M405921 maximum value is set to the maximum absolute value of the preset acceleration. The value Amax is used to generate a corresponding speed and time motion schedule. Then, the operator inputs the desired machining program into the digital control device, assuming that the machining stroke of the horizontal milling machine mechanism is sufficient to bring the absolute value of the speed to a preset maximum value. At this time, the horizontal milling machine mechanism of the present embodiment can make the relevant movement axis of the horizontal milling machine mechanism according to the control results of the third to fifth drawings (the main axis and the γ axis during tapping; γ axis) When the lamp is reciprocated back and forth, the speed and impulse at the bottom of the hole are just zero, so the excess vibration of the horizontal milling machine mechanism can be reduced, so that the machining accuracy is improved; at the same time, the acceleration is passed through the bottom of the hole. The value will not decrease to zero after the equal impulse (ie, the acceleration value will not be zero when passing through the bottom of the hole t), and then increase the acceleration again with the equal impulse, but directly pass the set maximum value, so it can be saved. Take unnecessary time to waste. The above description of the preferred embodiment of the present invention is for illustrative purposes, and is not intended to limit the precise application of the present invention, and it is possible to modify it to some extent by the above teachings or by the embodiment of the present invention. Therefore, the technical idea of this creation will be determined by the scope of the following patent application and its equality. [Simple diagram of the diagram] Figure 1 is a schematic diagram of a vertical milling machine; Figure 2 of the spring is a schematic diagram of the traditional speed planning; Figure 3 is a schematic diagram of the speed planning of the creation; Figure 4 is a schematic diagram of the acceleration planning of the creation; Figure 5 is a schematic diagram of the impulse planning of the creation: Figure 6 is a schematic diagram of another speed planning of the creation; Figure 7 is a schematic diagram of the improvement of the position error of the bottom of the creation; Figure 8 is a schematic diagram of the milling machine mechanism of the portal; Schematic diagram of horizontal milling machine mechanism; 14 M405921 [Main component symbol description]

Vmax 預設之速度絕對值之最大值; Amax 預設之加速度絕對值之最大值; Jmax 預設之衝量絕對值之最大值。 S 起始點 X 孔底(轉折點) 1 底座 3/53/54/73 立柱 4/55/56/74 馬達 5/12/75 工作平台 2/58/72 鑽頭部 6/76 鞍座 7/61/77 馬達 8/60/78 馬達 11/62/81 馬達 9/59/79 主轴 10/57/80 滑執座Vmax The maximum value of the absolute value of the preset speed; Amax The maximum value of the absolute value of the preset acceleration; Jmax The maximum value of the absolute value of the preset impulse. S Starting point X Hole bottom (turning point) 1 Base 3/53/54/73 Column 4/55/56/74 Motor 5/12/75 Work platform 2/58/72 Drill part 6/76 Saddle 7/61 /77 Motor 8/60/78 Motor 11/62/81 Motor 9/59/79 Spindle 10/57/80 Sliding seat

1515

Claims (1)

M405921 、申請專利範圍: 1. 一種銑床機械裝置,包含一底座,一立柱其一端配置於該底 座之一側邊上,該立柱之縱軸配置一個第一馬達,該第一馬 達之頂端連接一頭部,使得該頭部藉由一第一馬達於z軸進 行上下移動,該頭部上再配置一主軸並與另一第四馬達連 接,其中該主軸用以裝配刀具,使得該第四馬達來驅動旋轉 主軸;一滑軌座固定於該底座上;一個工作平台經由一個鞍 座與一滑軌座結合,且該工作平台上配置用以驅動在不同方 向移動之第二馬達及第三馬達,使得工作平台藉由第二馬達 及第三馬達能分別於X、Y方向移動,其中該銑床機械裝置 具有一衝量最大值以及具有一加速度最大值,且該衝量最大 值以及該加速度最大值已輸入至一數值控制器中,而該銑床 機械裝置之特徵在於: 該銳床機械裝置之運動軸向,在孔底處之速度與衝量剛 好為零,其中該運動軸向為一攻牙時之主軸與Z軸或一鑽 孔時之Z軸。 2. 如專利申請範圍第1項所述之銑床機械裝置,其中該運動軸 向於孔底處之速度與衝量剛好為零之同時,其加速度值亦不 會為零。 3. 如專利申請範圍第1項所述之銑床機械裝置,其中該運動軸 向在到達孔底位置之誤差剛好為零。 4. 如專利申請範圍第1項所述之銑床機械裝置,其中該主軸係 以直接或是皮帶傳動方式被該第四馬達驅動。 5. —種銑床機械裝置,包含一底座,兩平行之立柱,其一端配 置於底座之一側邊上,其另一端與一橫樑連接,且於兩平行 之立柱與橫樑接合處,則各配置第一馬達與第二馬達;一滑 16 M405921 執座橫向配置於兩平行之立柱上,同時經由滑軌槽與第一馬 達與第二馬達連接,使得滑軌座可直接由第一馬達與第二馬 達之控制於橫樑與底座間的z軸進行上下移動;此外滑執座 上承載一個鑽頭部與一個第三馬達,可由第三馬達驅動鑽頭 部進行X軸左右移動,同時,鑽頭部上亦配置一主軸與一第 五馬達,主軸用以裝配刀具,第五馬達則用以驅動旋轉主 軸;一工作平台配置於底座之上,並透過第四馬達驅動,使 得工作平台可於Y方向前後移動,其中該銑床機械裝置具有 一衝量最大值以及具有一加速度最大值,且該衝量最大值以 及該加速度最大值已輸入至一數值控制器中,而該銑床機械 裝置之特徵在於: 該銑床機械裝置之運動軸向,在孔底處之速度與衝量剛 好為零,其中該運動軸向為一攻牙時之主軸與z軸或一鑽 孔時之Z軸。 6. 如專利申請範圍第5項所述之銑床機械裝置,其中該運動軸 向於孔底處之速度與衝量剛好為零之同時,其加速度值亦不 會為零。 7. 如專利申請範圍第5項所述之銑床機械裴置,其中該運動軸 向在到達孔底位置之誤差剛好為零。 8. 如專利申請範圍第5項所述之銑床機械裝置,其中該主軸係 以直接或是皮帶傳動方式被該第五馬達驅動。 9. 一種銑床機械裝置,包含一底座,一立柱其一端配置於底座 之一側邊上,立柱之另一端上配置一第一馬達;一鑽頭部配 置於立柱之上並經由立柱中的滑軌槽與第一馬達連接,使得 鑽頭部可直接由第一馬達驅動於立柱兩端之Z軸間進行上 下移動;此外,鑽頭部上配置一主軸與一第四馬達,此第四 17 M405921 馬達係用以驅動旋轉主轴,其中主轴之面向γ軸之一側邊上 裝配一刀具;一滑軌座固定於底座上;一工作平台經由一鞍 座與滑軌座結合,且工作平台上配置不同方向之第二馬達及 第三馬達,使得工作平台藉由第二馬達及第三馬達於X與Υ 方向移動,其中該銑床機械裝置具有一衝量最大值以及具有 一加速度最大值,且該衝量最大值以及該加速度最大值已輸 入至一數值控制器中,而該銑床機械裝置之特徵在於: 該銑床機械裝置之運動軸向,在孔底處之速度與衝量剛 好為零,其中該運動軸向為一攻牙時之主軸與Ζ軸或一鑽 孔時之Ζ軸。 10. 如專利申請範圍第9項所述之銑床機械裝置,其中該運動軸 向於孔底處之速度與衝量剛好為零之同時,其加速度值不會 為零。 11. 如專利申請範圍第9項所述之銑床機械裝置,其中該運動軸 向在到達孔底位置之誤差剛好為零。 12. 如專利申請範圍第9項所述之銑床機械裝置,其中該主軸係 以直接或是皮帶傳動方式被該第四馬達驅動。 18M405921, the scope of the patent application: 1. A milling machine mechanism comprising a base, one end of which is disposed on one side of the base, the vertical axis of the column is provided with a first motor, and the top end of the first motor is connected to a a head such that the head is moved up and down by a first motor on the z-axis, wherein the head is further provided with a main shaft and connected to another fourth motor, wherein the main shaft is used to assemble a cutter, so that the fourth motor To drive the rotating main shaft; a sliding rail seat is fixed on the base; a working platform is coupled to a sliding rail seat via a saddle, and the working platform is configured to drive the second motor and the third motor that move in different directions The working platform can be moved in the X and Y directions by the second motor and the third motor respectively, wherein the milling machine has a maximum impulse value and an acceleration maximum value, and the maximum value of the impulse and the maximum value of the acceleration have been Input into a numerical controller, and the milling machine mechanism is characterized by: the moving axis of the sharp bed mechanism, the speed and impulse at the bottom of the hole Good zero, wherein the axial movement of the time when the Z-axis of the Z axis spindle and a tapping or drilling a hole. 2. The milling machine mechanism of claim 1, wherein the velocity and the impulse at the bottom of the hole are exactly zero, and the acceleration value is not zero. 3. The milling machine mechanism of claim 1, wherein the movement axis has an error of zero at the position of the bottom of the hole. 4. The milling machine mechanism of claim 1, wherein the spindle is driven by the fourth motor in a direct or belt driven manner. 5. A milling machine mechanism comprising a base and two parallel columns, one end of which is disposed on one side of the base, the other end of which is connected to a beam, and the two parallel columns and the beam are joined to each other. The first motor and the second motor; a sliding 16 M405921 is arranged laterally on the two parallel columns, and is connected to the first motor and the second motor via the sliding rail groove, so that the sliding rail seat can be directly connected by the first motor and the first motor The two motors are controlled to move up and down by the z-axis between the beam and the base; in addition, the sliding seat carries a drill portion and a third motor, and the third motor can drive the drill portion to move the X-axis to the left and right, and at the same time, the drill portion Configuring a spindle and a fifth motor, the spindle is used to assemble the cutter, and the fifth motor is used to drive the rotary spindle; a working platform is disposed on the base and driven by the fourth motor, so that the working platform can move back and forth in the Y direction Wherein the milling machine mechanism has a maximum impulse value and an acceleration maximum value, and the maximum value of the impulse and the maximum value of the acceleration have been input to a number In the controller, the milling machine mechanism is characterized in that: the movement axis of the milling machine mechanism has a velocity and impulse at the bottom of the hole which is exactly zero, wherein the motion axis is the main axis and the z-axis of a tapping or Z axis when drilling. 6. The milling machine mechanism of claim 5, wherein the velocity and the impulse at the bottom of the hole are exactly zero, and the acceleration value is not zero. 7. The machine tool of the milling machine of claim 5, wherein the movement axis has an error of zero at the position of the bottom of the hole. 8. The milling machine mechanism of claim 5, wherein the spindle is driven by the fifth motor in a direct or belt driven manner. 9. A milling machine mechanism comprising a base, one end of which is disposed on one side of the base, and the other end of the column is provided with a first motor; a drill bit is disposed on the column and passes through the slide rail in the column The slot is coupled to the first motor such that the drill portion can be directly moved up and down between the Z-axis of the two ends of the column by the first motor; further, a spindle and a fourth motor are disposed on the drill portion, and the fourth 17 M405921 motor system For driving the rotating main shaft, wherein a side of the main shaft facing the γ axis is equipped with a cutter; a sliding rail seat is fixed on the base; a working platform is combined with the sliding rail seat via a saddle, and different directions are arranged on the working platform The second motor and the third motor move the working platform in the X and Υ directions by the second motor and the third motor, wherein the milling machine has a maximum impulse value and an acceleration maximum value, and the impulse maximum value And the acceleration maximum value has been input to a numerical controller, and the milling machine mechanism is characterized by: the movement axis of the milling machine mechanism is at the bottom of the hole The speed with good impulse just zero, wherein the axial movement of the shaft when the time Ζ of a tapping spindle or shaft with a drilling Ζ. 10. The milling machine mechanism of claim 9, wherein the velocity and the impulse at the bottom of the hole are exactly zero, and the acceleration value is not zero. 11. The milling machine mechanism of claim 9, wherein the movement axis has an error of zero at the position of the bottom of the hole. 12. The milling machine mechanism of claim 9, wherein the spindle is driven by the fourth motor in a direct or belt drive manner. 18
TW99218237U 2010-09-21 2010-09-21 Mill device for tapping motion TWM405921U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99218237U TWM405921U (en) 2010-09-21 2010-09-21 Mill device for tapping motion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99218237U TWM405921U (en) 2010-09-21 2010-09-21 Mill device for tapping motion

Publications (1)

Publication Number Publication Date
TWM405921U true TWM405921U (en) 2011-06-21

Family

ID=45079733

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99218237U TWM405921U (en) 2010-09-21 2010-09-21 Mill device for tapping motion

Country Status (1)

Country Link
TW (1) TWM405921U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI597114B (en) * 2016-11-11 2017-09-01 Horizontal turning machine for milling machines (1)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI597114B (en) * 2016-11-11 2017-09-01 Horizontal turning machine for milling machines (1)

Similar Documents

Publication Publication Date Title
JP7096227B2 (en) Machine tool and control device for this machine tool
EP3124173B1 (en) Control device for machine tool, and machine tool provided with said control device
US10268176B2 (en) Control device for machine tool and machine tool including the control device
CN106799613A (en) A kind of processing method of laser composite manufacture device and complex parts
WO2016047485A1 (en) Machine tool and control device for machine tool
JP4804473B2 (en) Laser drilling machine
KR102154010B1 (en) Machine tool control unit, machine tool
KR102537867B1 (en) Machine tool controls and machine tools
CN101850473A (en) Laser processing equipment of connecting rod initial cracking groove of engine
TWM355141U (en) Automatic working platform switching device for horizontal tool machine
KR20120067995A (en) Machine for making gears
CN104635624A (en) Control method and control system for controlling numerical control system of four-axis processing equipment
JP2023511347A (en) Machining center for blisk
TWM405921U (en) Mill device for tapping motion
CN104625836B (en) numerical control gantry machine tool
CN103958122B (en) Machining tool and operational approach thereof
CN201376089Y (en) Special piston processing lathe integrating multiple procedures
JP2014034073A (en) Composite machine tool
CN201950526U (en) Milling machine device
CN211222801U (en) Single-arm engraving machine
JP6517061B2 (en) Machine tool and control device for the machine tool
KR101658780B1 (en) Wooden Mold 5-axis milling control
CN103853098B (en) A kind of servo position control method being applied to carving milling machine
CN107520618A (en) Steel construction joint ball Five-axis NC Machining Center and its method of work
CN205363823U (en) Multi -functional platform

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees