TWM403734U - Two-dimensional fuzzy sliding mode control experimental platform of magnetic levitation control system - Google Patents

Two-dimensional fuzzy sliding mode control experimental platform of magnetic levitation control system Download PDF

Info

Publication number
TWM403734U
TWM403734U TW99223828U TW99223828U TWM403734U TW M403734 U TWM403734 U TW M403734U TW 99223828 U TW99223828 U TW 99223828U TW 99223828 U TW99223828 U TW 99223828U TW M403734 U TWM403734 U TW M403734U
Authority
TW
Taiwan
Prior art keywords
unit
control
maglev
sliding mode
infrared
Prior art date
Application number
TW99223828U
Other languages
Chinese (zh)
Inventor
Jen-Hsing Li
Ping-Tsung Wang
Ming-Fang Wu
Chin-Chyr Huang
Original Assignee
Univ Kun Shan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Kun Shan filed Critical Univ Kun Shan
Priority to TW99223828U priority Critical patent/TWM403734U/en
Publication of TWM403734U publication Critical patent/TWM403734U/en

Links

Description

M403734 五、新型說明: 【新型所屬之技術領域】 [0001] 本創作有關於一種磁浮控制系統之二維模糊滑動模 式控制實驗平台,特別是指運用嵌入式控制器結合二維 模糊滑動模式控制的優點,進而創作成為一個新穎的磁 浮控制系統。 【先前技術】 [0002] 按,磁浮系統在於工程上的應用層面,包括磁浮軸 承、磁浮風洞、磁浮列車與半導體的磁浮抗震平台。磁 浮系統是一種非線性系統,而且是開回路不穩定系統, 必須有適當的控制才能維持.穩定斗衡。 最近十幾年來,模糊滑·動模式控制方法·十分流行。 模糊滑動模式控制則是結合模糊控制與滑動模式控制的 優點。 然,就某類非線性系統,滑動模式控制可以考慮系 統的不確定性與外來干擾,並且達到強健控制的目的、 模糊集合理論是由扎德提出的。模糊控制也有四十幾年 的歷史。這些控制方法成功的使用在很多的應用。 模糊滑動模式控制提供有系統的設計步驟,並使模 糊控制規則最小化。使用模糊滑動模式控制可以使受控 體達到穩定。 目前模糊滑動模式控制的穩定度需要再加強,而且 價格偏向過高的問題》 【新型内容】 [0003] 爰此,為了改進目前的技術作法與解決產生問題, 表單編號A0101 苐4頁/共18頁 3作之目的在提供—種磁浮控《統之二维模糊滑動 吴式控制實驗平台,運用嵌入式控制哭纤人 動模式控制的優點,進 :::-..·模糊滑 二維模糊滑動模式控财驗平^種科控制系統之 “為達上述目的’本創作提供-種磁浮控制系統之二 維模糊滑純心财驗平纟m -個二維模糊滑動模式控制單元、―敌人式控制器 控制驅動單元、一電磁線圈單元、—磁浮受控 早疋、—紅外線感測單元以及—電源供應單元;JL特徵 在於: ’矛伋 該二維模崎動模式控制單元,包括有控制程式, 係將其控制程式載人該嵌人式控制器; 。亥肷入式控制器’用以電性連接控制該電流控制驅動單 元、該電磁線圈單元、該红外線Μ單元以及該磁浮受 控單元; 該電流控制驅動單m有第-控制回路與第二 控制回路’該第-控制回路係以比例積分控制該電磁線 圈單元電机而忒第一控制回路係以控制該磁浮受控單 元位置; 該電磁線圈單^ ’用以產生磁應力控制該磁浮受控 單元; 泫紅外線感測單元,包括有红外線發射器與紅外線 接收器;其中, 該磁浮受控單元,當受控位置改變時,該紅外線發 射态會輸出電壓至該嵌入式控制器;而且 该嵌入式控制器’其接受該紅外線接收器會輸出電 表單編號A0101 M403734 壓以汁异該磁浮受控單元受控位置;以及 該電源供應單元,主要是提供該嵌入式控制器該 電流控制驅動單元以及該紅外線感測單元的電性連接。 上述之磁浮控制系統之二維模糊滑動模式控制實驗 平台,其中該電磁線圈單元係位於該磁浮受控單元的上 方。 述之磁浮控制系統之二維模糊滑動模式控制實驗 平台,其中該磁浮受控單元係位於該紅外線發射器與紅 外線接收器的中間線。 上述之磁浮控制系統之二維模糊滑動模式控制實驗 平台,其中當該磁浮受控單元位於中樓線時該紅外線 感測單元輸出電壓約為u娜1威距_該電磁線圏 單元約為〇. 7公分。 本創作具有下列之優點: 1·本創作二維模糊滑動模式控制實驗平台,可以作 為穩定控制的基礎。 2. 本創作二維模糊滑動模式控制實驗平台可以達 成控制非線性。 3. 本創作—維模糊滑動模式控制實驗平台,可以有 效改善阻尼。 【實施方式】 [_ 本創作可纽為不同形式之實施例,但„所示者 及於下文巾相者係為本創作之較佳實施例。兹請配合 圖示說明本創作可之較佳實施例。 首先,請參閱第-圖所示,—種磁浮控制系統之二 表箪煸號A0101 第6頁/共18頁 M403734 維模糊滑動模式控制實驗平台,係包括:M403734 V. New description: [New technical field] [0001] This creation is about a two-dimensional fuzzy sliding mode control experimental platform for maglev control system, especially the use of embedded controller combined with two-dimensional fuzzy sliding mode control. The advantages are then created into a novel maglev control system. [Prior Art] [0002] According to the magnetic floating system, it is applied at the engineering level, including magnetic floating bearing, magnetic floating wind tunnel, maglev train and semiconductor magnetic floating seismic platform. The magnetic floating system is a nonlinear system and is an open loop unstable system. It must have proper control to maintain the stable balance. In the past decade or so, the fuzzy slip-and-moving mode control method has been very popular. Fuzzy sliding mode control combines the advantages of fuzzy control and sliding mode control. However, for a certain type of nonlinear system, the sliding mode control can consider the system's uncertainty and external interference, and achieve the purpose of robust control. The fuzzy set theory is proposed by Zade. Fuzzy control also has a history of forty years. These control methods have been successfully used in many applications. Fuzzy Sliding Mode Control provides systematic design steps and minimizes fuzzy control rules. The fuzzy sliding mode control can be used to stabilize the controlled body. At present, the stability of fuzzy sliding mode control needs to be strengthened, and the price is too high. [New content] [0003] In order to improve the current technical practices and solve problems, Form No. A0101 苐 4 pages / total 18 The purpose of Page 3 is to provide a kind of magnetic float control "the two-dimensional fuzzy sliding Wu control experiment platform, using the advantages of embedded control crying humanoid mode control, into:::-..·Fuzzy sliding two-dimensional fuzzy Sliding mode control and wealth control system control system "for the above purpose" provided by this creation - a kind of maglev control system of two-dimensional fuzzy sliding pure heart financial test flat m - a two-dimensional fuzzy sliding mode control unit, "enemy The controller controls the driving unit, an electromagnetic coil unit, a maglev controlled early, an infrared sensing unit, and a power supply unit; the JL features: 'The spear is the two-dimensional mode-sharing mode control unit, including the control The program, the control program is carried by the embedded controller; the black-input controller is used to electrically connect the current control drive unit, the electromagnetic coil unit The infrared ray unit and the magnetic levitation controlled unit; the current control driving unit m has a first control loop and a second control loop 'the first control loop is proportionally integrated to control the electromagnetic coil unit motor and the first control a loop to control the position of the maglev controlled unit; the electromagnetic coil is used to generate a magnetic stress to control the maglev controlled unit; and the infrared sensing unit includes an infrared emitter and an infrared receiver; wherein the magnetic float is a control unit, when the controlled position is changed, the infrared emission state outputs a voltage to the embedded controller; and the embedded controller 'accepts the infrared receiver to output an electric form number A0101 M403734 to press the magnetic float Controlled unit controlled position; and the power supply unit mainly provides the embedded controller, the current control driving unit and the electrical connection of the infrared sensing unit. The two-dimensional fuzzy sliding mode control experiment of the above maglev control system a platform, wherein the electromagnetic coil unit is located above the maglev controlled unit. The two-dimensional fuzzy sliding mode control experimental platform of the system, wherein the maglev controlled unit is located in the middle line of the infrared emitter and the infrared receiver. The above-mentioned magnetic floating control system has a two-dimensional fuzzy sliding mode control experimental platform, wherein the magnetic floating When the controlled unit is located in the middle building line, the output voltage of the infrared sensing unit is about 娜1 威 distance. The electromagnetic 圏 unit is about 7. 7 cm. The creation has the following advantages: 1. The two-dimensional fuzzy sliding of the creation The model control experimental platform can be used as the basis of stability control. 2. The two-dimensional fuzzy sliding mode control experimental platform can achieve control nonlinearity. 3. This creation-dimensional fuzzy sliding mode control experimental platform can effectively improve the damping. Means] [_ This creation can be implemented in different forms, but the ones shown below and the following are the preferred embodiments of the creation. Please refer to the illustration to illustrate a preferred embodiment of the present creation. First, please refer to the figure - Figure 2 - Maglev Control System No. 2 A No. A0101 Page 6 of 18 M403734 Dimensional Fuzzy Sliding Mode Control Experimental Platform, including:

一個二維模糊滑動模式控制單元(1)、一嵌入式控制 器(2)、一電流控制驅動單元(3)、—電磁線圈單元(4) 、一磁沣受控單元(5)、一紅外線感測單元(6)以及一電 源供應單疋⑺,其特微在於:該二維模糊滑動模式控制 單疋(1) ’包括有控制程式,係將其控制程式載入該嵌入 式控制器(2);該嵌人式控制器⑺,用以電性連接控制 該電流控制驅動單元(3)、該電磁線圈單元(4) '該紅外 線感測單元(6)以及該磁浮受控單元⑸;該電流控制驅 動早疋(3) ’包括有第—控制回路(31)與第二控制回路 (3^) ’該第—控制回路(31)係以比例積分控制該電磁線 圈單元電流(4),而該第二控制回路(32)係以控制該磁浮 受控單元(5)位置;該電磁線圈單元⑷,用以產生磁應 力控制該磁浮受控單元⑸;該紅外線感測單元⑻,包 括有紅外線發射器⑻)與紅外線接收器(62);其卜該 磁洋党控單元⑸,當受控位置改變時,該紅外線接收器 (二)會輸出電壓至該喪入式控制器⑺;而且該嵌入式控 制益(2) ’其接受該紅外線接收器(62)會輸出電壓以計算 相〉予党控單元⑸受控位置;以及該電源供應單元⑺ ’主要是提供該嵌入式控制器(2)、該電流控制驅動單元 及°玄紅外線感測單元(6 )的電性連接。 ,△上述之磁浮控制系統之二維模糊滑動模式控制實驗 平σ其中忒電磁線圈單元(4)係位於該磁浮受控單元 (5)的上方。 表箪煸號A0101 、人叫參閱第二圖、第三圖所示,係為本創作之 fA 1电&驅動器和感測⑽設計電關與鐵球的位置感 第7頁/共18頁 M403734 測電路圖。如電路圖所示,⑽了當作剛的開關, TLP250 是 IGBT 的驅動 ic。PWM 是由 eZdsp F2812電路板 的PWM蜂來控制。當IGBT關時,飛輪二極體可以避免電路 開路。LA55-P是電流感測器元件,是HALL元件可以將 电流仏號轉換為電壓信號。eZdsp 1?2812的〇埠可以將 电流彳§號轉成數位資料。取樣頻率為1{(赫茲。 再者,請參閱第四圖所示,係為本創作之鐵球與感 測态位置不意圖。如圖所示,上述之磁浮控制系統之二 ,准模糊滑動模式控制實驗平台,其中該磁浮受控單元(5) 係位於該紅外線發射器(61)與紅外線接收器(6 2)的中間 線。上述之磁浮控制系統之二維模糊滑释餐式控制實驗 平σ,其中當該磁浮受控單元(5 )位於中間终時,該紅外 線感測單元(6)輸出電壓約為丨.5伏特,而且其距離該電 磁線圈單元(4 )約為〇. 7公分。 本創作實驗結果參閱圖表一至圖表五說明如下: 圖表一是電流由1安培到2安培的響應圖。由實驗結 果可知,安定時間約50毫秒。該項實驗是測量磁浮系統 的特性曲線。可以利用比例微分作為穩定控制的基礎。 圖表二的特性曲線圖。橫軸是位置的量測數據值, 縱軸是電流的平方值,特性曲線換成函數如下所示。 表單編號Α0101 第8頁/共18頁 M403734A two-dimensional fuzzy sliding mode control unit (1), an embedded controller (2), a current control driving unit (3), a solenoid unit (4), a magnetically controlled unit (5), an infrared The sensing unit (6) and a power supply unit (7), the special feature is that the two-dimensional fuzzy sliding mode control unit (1) 'includes a control program, and loads its control program into the embedded controller ( 2); the embedded controller (7) for electrically connecting the current control drive unit (3), the electromagnetic coil unit (4) 'the infrared sensing unit (6) and the maglev controlled unit (5); The current control drive early (3) 'includes a first control loop (31) and a second control loop (3^) 'the first control loop (31) controls the solenoid unit current by proportional integral (4) And the second control loop (32) controls the position of the maglev controlled unit (5); the electromagnetic coil unit (4) is configured to generate magnetic stress to control the maglev control unit (5); the infrared sensing unit (8) includes An infrared emitter (8)) and an infrared receiver (62); The magnetic ocean party control unit (5), when the controlled position is changed, the infrared receiver (2) outputs a voltage to the dormant controller (7); and the embedded control benefit (2) 'which accepts the infrared receiver ( 62) output voltage to calculate the control position of the party control unit (5); and the power supply unit (7) 'mainly provides the embedded controller (2), the current control drive unit and the infrared infrared sensing unit ( 6) Electrical connection. , △ The above two-dimensional fuzzy sliding mode control experiment of the maglev control system, wherein the electromagnetic coil unit (4) is located above the maglev controlled unit (5). Table No. A0101, the person is referred to the second picture, the third picture, which is the creation of the fA 1 electric & drive and sensing (10) design of the electrical and iron ball position sense page 7 / a total of 18 pages M403734 circuit diagram. As shown in the circuit diagram, (10) is the switch that is just as the switch, and TLP250 is the drive ic of the IGBT. The PWM is controlled by the PWM bee of the eZdsp F2812 board. When the IGBT is turned off, the flywheel diode can avoid circuit open circuit. The LA55-P is a current sensor component that converts the current nickname into a voltage signal. The eZdsp 1?2812 can convert the current 彳§ number into digital data. The sampling frequency is 1{(Hertz. Again, please refer to the fourth figure, which is not intended for the position of the iron ball and the sensed state of the creation. As shown in the figure, the above-mentioned maglev control system, the second fuzzy slip The mode control experiment platform, wherein the maglev control unit (5) is located at a middle line between the infrared emitter (61) and the infrared receiver (62). The two-dimensional fuzzy slide release control experiment of the above maglev control system Level σ, wherein when the maglev control unit (5) is at the middle end, the infrared sensing unit (6) outputs a voltage of about 0.5 volts, and the electromagnetic coil unit (4) is about 〇. 7 The results of this creation experiment are shown in the following chart 1 to chart 5: Chart 1 is the response diagram of current from 1 amp to 2 amps. From the experimental results, the stability time is about 50 milliseconds. This experiment is to measure the characteristic curve of the maglev system. Proportional differentiation can be used as the basis for stability control. The characteristic curve of Figure 2. The horizontal axis is the measured data value of the position, the vertical axis is the square of the current, and the characteristic curve is replaced by the function as shown below. Single Number Α0101 Page 8 of 18 M403734

TekTek

Acq Complete M Pos; 0.000s SAVE/REC動作 仔影像 關於存圖像選擇資料夾 wAcq Complete M Pos; 0.000s SAVE/REC action Aberdeen image About save image selection folder w

1* CH1 SODmV M 50.0ms 16-Mar-06 12:10 儲存 TEK0002.BMP CH1 / 1,50V <10Hz 圖表一(電流輸出圖形)1* CH1 SODmV M 50.0ms 16-Mar-06 12:10 Storage TEK0002.BMP CH1 / 1,50V <10Hz Chart 1 (current output graph)

Curve Fit Diagram lu0JJnopa)Jntf)aJ<p2«*-o<DJronbgCurve Fit Diagram lu0JJnopa)Jntf)aJ<p2«*-o<DJronbg

1.5 2 Position Measurement 圖表二(測量數據的特性曲線圖) 表單編號Λ0101 第9頁/共18頁 M4037341.5 2 Position Measurement Chart 2 (Characteristics of Measurement Data) Form No. 1010101 Page 9 of 18 M403734

Tek 儿Tek

Stop M Pos; 0,000s SAVE/REC 動作 存影像Stop M Pos; 0,000s SAVE/REC action

A 蜱 Nh 2+A 蜱 Nh 2+

CH2 500mV M 250ms 17-Mar-08 16:51 格式 Μ 關於 存圖像 選擇 資料夾 儲存 TEK0172.BMP CHI I 0.00V <10Ηζ 圖表三(二維模糊滑動模式控制的成果設定點響應圖CH2 500mV M 250ms 17-Mar-08 16:51 Format Μ About Save Image Select Folder Save TEK0172.BMP CHI I 0.00V <10Ηζ Chart 3 (2D Fuzzy Sliding Mode Control Results Setpoint Response Diagram

Tek JL _ Stop M Pos: O.OOOs SAVE/REC + 動作 存影像 格式Tek JL _ Stop M Pos: O.OOOs SAVE/REC + Action Save Image Format

pvp 關於 存圖像 選擇 資料夾 I諸存Pvp About Save Image Select Folder I

TEK0180.BMPTEK0180.BMP

CH2 SOOrnV M 500ms CH11 0.00V 17-Mar-08 17:00 <10Hz 圖表四(二維模糊滑動模式控制的成果正弦波響應圖)CH2 SOOrnV M 500ms CH11 0.00V 17-Mar-08 17:00 <10Hz Chart 4 (Single-wave response diagram of 2D fuzzy sliding mode control)

表單編號A010I 第10頁/共18頁 M403734Form No. A010I Page 10 of 18 M403734

Tek JLTek JL

Stop M Pos: 0.000s SAVE/REC 動作 wStop M Pos: 0.000s SAVE/REC action w

CH2 500mV M 2.50s 13-May-08 17:35 存影像CH2 500mV M 2.50s 13-May-08 17:35

格式 關於 存圖像 選擇 資料夾 儲存 TEK0130.BMP CH1 f 0,00V <10Hz 圖表五(二維模糊滑動模式控制之步級響應圖形) 實驗結果如圖表三、四、五所示。控制參數如下: <=3.00, <=0.48, 1.2, Α/2=1·〇 ‘=0_01 •圖表三是鐵球位置響應圖,設定點為丨· 5伏特。因為有 考慮積分决差,所以實驗結果沒有穩態誤差。 圖表四疋使用二維模糊滑動模式控制的結果,輸入 是正弦波’輸入函數為 。 2 m 1.5 + 0.5 sin 坆個結果證明二維模糊滑動模式控制可以有效控制 非線性。 s圖表五是步級輸人響應圖,使用方波輸人。平均電 壓是丨· 5伏特。振幅是1伏特。 圖表五可以看ft έ /-A f_ 出系統有點欠阻尼。使用二維模糊滑 動柄式控制可以改善阻尼。 單坞號A0101 第1丨頁/共18頁 以上所述僅為本創作其中之—Format About Save Image Select Folder Save TEK0130.BMP CH1 f 0,00V <10Hz Chart 5 (step response graph of 2D fuzzy sliding mode control) The experimental results are shown in Figures 3, 4 and 5. The control parameters are as follows: <=3.00, <=0.48, 1.2, Α/2=1·〇 ‘=0_01 • Chart 3 is the position response diagram of the iron ball, and the set point is 丨·5 volts. Because there is consideration of the integral decision, there is no steady-state error in the experimental results. Figure 疋 uses the result of two-dimensional fuzzy sliding mode control, the input is a sine wave' input function is . 2 m 1.5 + 0.5 sin The results show that the two-dimensional fuzzy sliding mode control can effectively control the nonlinearity. s chart five is a step-by-step input response graph, using a square wave to input people. The average voltage is 丨·5 volts. The amplitude is 1 volt. Figure 5 can see ft έ /-A f_ The system is a little underdamped. Damping can be improved using two-dimensional fuzzy sliding handle control. Single dock number A0101 Page 1 of 18 The above is only for this creation -

範圍内。 —最佳實施例,當 1,舉凡依本創 丨单的等效變化 所涵蓋保護之 【圖式簡單說明】 [0005] 第一圖係為本創作之磁浮控制系統的方塊示意圖。 第-® 為本創作之線圈電流驅動器和感測器的設 計電路圖。 第二圖係為本創作之鐵球的位置感測器的設計電路 圖。 第四圖係為本創作之鐵球與感測器位置示意圖。 【主要元件符號說明】 [0006] (1 )二維模糊滑動模式控制單元 (2 ) 嵌入式控制器 (3) 電流控制驅動單元 (3 1 )第一控制回路 (32)弟二控制回路 (4) 電磁線圈單元 ' (5) 磁浮受控單元 (6 ) 紅外線感測單元 (6 1 )紅外線發射器 (6 2 )紅外線接收器 (7) 電源供應單元 表單編號A0101 第12頁/共18頁Within the scope. - The best embodiment, when 1, the protection covered by the equivalent change of the 丨 【 【 【 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ The -® is the design circuit diagram of the coil current driver and sensor of this creation. The second picture is the design circuit diagram of the position sensor of the iron ball of this creation. The fourth picture is a schematic diagram of the position of the iron ball and sensor of the creation. [Main component symbol description] [0006] (1) Two-dimensional fuzzy sliding mode control unit (2) Embedded controller (3) Current control drive unit (3 1) First control loop (32) Diji control loop (4 ) Solenoid unit ' (5) Maglev controlled unit (6) Infrared sensing unit (6 1 ) Infrared transmitter (6 2 ) Infrared receiver (7) Power supply unit Form No. A0101 Page 12 of 18

Claims (1)

M403734 六、申請專利範圍: 1 . 一種磁浮控制系統之二維模糊滑動模式控制實驗平台,包 括: 一個二維模糊滑動模式控制單元; 一嵌入式控制器; 一電流控制驅動單元; 一電磁線圈單元; 一磁浮受控單元; 一紅外線感測單元;以及 一電源供應單元; 其特徵在於:該二維模糊滑動模式控制單元,包括有 控制程式,係將其控制程式載入該嵌入式控制器;M403734 VI. Patent application scope: 1. A two-dimensional fuzzy sliding mode control experimental platform for maglev control system, comprising: a two-dimensional fuzzy sliding mode control unit; an embedded controller; a current control driving unit; a maglev controlled unit; an infrared sensing unit; and a power supply unit; wherein the two-dimensional fuzzy sliding mode control unit includes a control program for loading a control program into the embedded controller; 該嵌入式控制器,用以電性連接控制該電流控制驅動 單元、該電磁線圈單元、該紅外線感測單元以及該磁浮受 控單元;該電流控制驅動單元,包括有第一控制回路與第 二控制回路,該第一控制回路係以比例積分控制該電磁線 圈單元電流,而該第二控制回路係以控制該磁浮受控單元 位置;該電磁線圈單元,用以產生磁應力控制該磁浮受控 單元;該紅外線感測單元,包括有紅外線發射器與紅外線 接收器;其中,該磁浮受控單元,當受控位置改變時,該 紅外線發射器會輸出電壓至該嵌入式控制器;而且該嵌入 式控制器,其接受該紅外線接收器會輸出電壓以計算該磁 浮受控單元受控位置;以及該電源供應單元,主要是提供 該敌入式控制器、該電流控制驅動早元以及該紅外線感測 單元的電性連接。 099223828 表單編號A0101 第13頁/共18頁 0992074267-0 M403734 2 .如申請專利範圍第1項所述之磁浮控制系統之二維模糊滑 動模式控制實驗平台,其中該電磁線圈單元係位於該磁浮 受控單元的上方。 3 .如申請專利範圍第1項所述之磁浮控制系統之二維模糊滑 動模式控制實驗平台,其中該磁浮受控單元係位於該紅外 線發射器與紅外線接收器的中間線。 4 .如申請專利範圍第1項所述之磁浮控制系統之二維模糊滑 動模式控制實驗平台,其中當該磁浮受控單元位於中間線 時,該紅外線感測單元輸出電壓約為1. 5伏特,而且其距 離該電磁線圈單元約為0. 7公分。 0992074267-0 099223828 表單編號A0101 第14頁/共18頁The embedded controller is configured to electrically connect the current control driving unit, the electromagnetic coil unit, the infrared sensing unit, and the maglev controlled unit; the current control driving unit includes a first control loop and a second a control loop, the first control loop controls the solenoid unit current by proportional integral, and the second control loop controls the position of the maglev controlled unit; the solenoid unit is configured to generate a magnetic stress to control the maglev control The infrared sensing unit includes an infrared emitter and an infrared receiver; wherein the maglev controlled unit outputs a voltage to the embedded controller when the controlled position is changed; and the embedding a controller that accepts the infrared receiver to output a voltage to calculate a controlled position of the maglev controlled unit; and the power supply unit mainly provides the enemy controller, the current control driving early element, and the infrared sensation Electrical connection of the measuring unit. 099223828 Form No. A0101 Page 13 of 18 0992074267-0 M403734 2. The two-dimensional fuzzy sliding mode control experimental platform of the maglev control system according to claim 1, wherein the electromagnetic coil unit is located in the magnetic floating Above the control unit. 3. The two-dimensional fuzzy sliding mode control experimental platform of the maglev control system according to claim 1, wherein the maglev controlled unit is located at a middle line between the infrared emitter and the infrared receiver. 5伏特。 The infrared sensing unit output voltage is about 1.5 volts, the output voltage of the infrared sensing unit is about 1.5 volts, the output voltage of the infrared sensing unit is about 1.5 volts. 5厘米。 The distance from the electromagnetic coil unit is about 0. 7 cm. 0992074267-0 099223828 Form No. A0101 Page 14 of 18
TW99223828U 2010-12-08 2010-12-08 Two-dimensional fuzzy sliding mode control experimental platform of magnetic levitation control system TWM403734U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99223828U TWM403734U (en) 2010-12-08 2010-12-08 Two-dimensional fuzzy sliding mode control experimental platform of magnetic levitation control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99223828U TWM403734U (en) 2010-12-08 2010-12-08 Two-dimensional fuzzy sliding mode control experimental platform of magnetic levitation control system

Publications (1)

Publication Number Publication Date
TWM403734U true TWM403734U (en) 2011-05-11

Family

ID=45077603

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99223828U TWM403734U (en) 2010-12-08 2010-12-08 Two-dimensional fuzzy sliding mode control experimental platform of magnetic levitation control system

Country Status (1)

Country Link
TW (1) TWM403734U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI501537B (en) * 2013-10-30 2015-09-21 Method for controlling digital dual loop of magnetic levitation system
CN110687788A (en) * 2019-10-16 2020-01-14 天津大学 Magnetic suspension system feedback linearization modeling and sliding mode control method
TWI724888B (en) * 2020-05-05 2021-04-11 崑山科技大學 Deep learning proportional derivative control method for magnetic levitation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI501537B (en) * 2013-10-30 2015-09-21 Method for controlling digital dual loop of magnetic levitation system
CN110687788A (en) * 2019-10-16 2020-01-14 天津大学 Magnetic suspension system feedback linearization modeling and sliding mode control method
TWI724888B (en) * 2020-05-05 2021-04-11 崑山科技大學 Deep learning proportional derivative control method for magnetic levitation system

Similar Documents

Publication Publication Date Title
Tao et al. Self‐powered tactile sensor array systems based on the triboelectric effect
CN103944443B (en) A kind of cascade structure electromotor
Lai et al. Enhancing the output charge density of TENG via building longitudinal paths of electrostatic charges in the contacting layers
US7545148B2 (en) Electrochemical sensor
TWM403734U (en) Two-dimensional fuzzy sliding mode control experimental platform of magnetic levitation control system
CN209486630U (en) Stylus
Zhang et al. Human body constituted triboelectric nanogenerators as energy harvesters, code transmitters, and motion sensors
Qiu et al. A biomimetic drosera capensis with adaptive decision‐predation behavior based on multifunctional sensing and fast actuating capability
EP2439615A3 (en) Magnetic sensor for use with hand-held devices
EP3584926A3 (en) Active bias control circuit for an amplifier and method of power up sequencing the same
Cai et al. Ultrahigh sensitive and flexible magnetoelectronics with magnetic nanocomposites: toward an additional perception of artificial intelligence
Mhetre et al. Micro energy harvesting for biomedical applications: A review
EP2369436A3 (en) Robot apparatus, information providing method carried out by the robot apparatus and computer storage media
Liang et al. Biomimetic underwater self-perceptive actuating soft system based on highly compliant, morphable and conductive sandwiched thin films
Wang et al. A review and perspective for the development of triboelectric nanogenerator (TENG)-Based self-powered neuroprosthetics
Shu et al. Machine‐Learning Assisted Electronic Skins Capable of Proprioception and Exteroception in Soft Robotics
EP1835605A3 (en) Current sensing system for a switch mode power supply
EP2239180A3 (en) Friction estimation and detection for an electric power steering system
CN106142786A (en) A kind of Double-layer water gel bionic hands and preparation method thereof
Guo et al. Electromechanical coupling effects for data storage and synaptic devices
Ma et al. Robust hydrogel sensors for unsupervised learning enabled sign‐to‐verbal translation
CN102840935A (en) Sensing device and force sensing system thereof
KR100995895B1 (en) Haptic feedback device
CN203414175U (en) Swing type infrared probe device
KR101936381B1 (en) Method for testing back-EMF detection function of a vibration motor driving IC and device for the same

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees