TWM394571U - Solar cell structure - Google Patents

Solar cell structure Download PDF

Info

Publication number
TWM394571U
TWM394571U TW99212207U TW99212207U TWM394571U TW M394571 U TWM394571 U TW M394571U TW 99212207 U TW99212207 U TW 99212207U TW 99212207 U TW99212207 U TW 99212207U TW M394571 U TWM394571 U TW M394571U
Authority
TW
Taiwan
Prior art keywords
layer
solar cell
cell structure
amorphous
substrate
Prior art date
Application number
TW99212207U
Other languages
Chinese (zh)
Inventor
chong-jun Huang
qi-wen Hu
Huang-Zhong Zheng
Bo-Yu Yang
hong-xian Li
Original Assignee
Chung Shan Inst Of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Shan Inst Of Science filed Critical Chung Shan Inst Of Science
Priority to TW99212207U priority Critical patent/TWM394571U/en
Publication of TWM394571U publication Critical patent/TWM394571U/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

M394571 五、新型說明: 【新型所屬之技術領域】 . 本創作係有關一種太陽能電池結構,特別指一種具有 奈米線結構的太陽能電池結構。 【先前技術】 _ 隨著地球暖化的日益嚴重,綠色能源的開發逐漸受到 重視;而太陽能的利用已達到產業應用的規模,其中,第 • 一代太陽能模組主要係利用單晶矽和多晶矽的技術,其光 電轉換效率高且量產技術成熟,但因為材料成本高,使得 後續的量產受到限制。因此,以非晶矽薄膜、銅銦鎵硒薄 膜和碲化鎘薄膜為主的第二代薄膜太陽能模組,在近幾年 已逐漸發展並成熟。 非晶矽薄膜的優勢在於吸光效果與光導效果均十分 優良,但其電氣特性卻相當於絕緣體,而不具有晶體矽之 半導體特性。再者,由於非晶矽結構中之懸浮鍵問題,使 • 得光激發所生成之自由電子與電洞復合的速率相.當快。因 - 此,當光照射於非晶矽上產生電子-電洞對之後,必須盡快 將兩者分離,以產生有效的光電效應,故非晶砍太陽能電 池均以薄膜的態樣成型,以降低自由電子與電洞的復合現 象。 針對非晶矽太陽能電池的發展,日本三洋公司已經提 ! 出一種異質接面薄膜太陽能電池結構,其效率為21.5%, 且製造效率為中等19%,其高效率已受到產業及學界的重 視。然而,上述電池效率均為實驗室所獲得的數據,在 3/10 M394571 如何 =的階段並不能達到上述的高效率;簡而言之 k南太陽能電池的效率實是目前研發的重點方向。 =創作人有鑑於上述習用的結鮮置於實際施用 時的缺失’ JL積累個人從事相關產#開發實務上 研究,終於提出一種設計合理且有效改善上述問 【新型内容】 並具目二在於提供一種太陽能電池結構, 二具有a材(基板)與相結合之設計,並利用薄膜 位於塊材上下表面之奈米線結構’故本創作可利用太米 線結構的特性製作大面積的非晶質半導體^、 效率的太陽能電池。 達成间 構,到上述目的’本創作係提供—種太陽能電池結 不匕3 . —基板’其具有一第一表面及一與該 Γ第目二表面;一第一薄膜層,其係成型於該基板之 」繁且该第—薄膜層具有第—奈米線結構;以及 膜層’其係成型於該基板之該第 f奈米線結構;其中,該第一奈米線= —第一不米線結構上均具有—非晶質半導體結構。 及第如=構造,本創作在基板之上下表面(即第一表面 線成凹凸狀之奈米線結構,故披覆於奈米 Γ,故在太陽能電池的應用面上可提供較佳的電= 4/10 M394571 為使能更進-步瞭解本創作之特冑及技術内容’請參 閱以下有關本創作之詳細說明與附圖,然而所附圖式僅提 供參考與說明用,並非用來對本創作加以限制者。 【實施方式】 請參考第一圖至第一 B圖,並同時配合第二圖至第五 -圖,本創作係提出一種結合塊材與薄膜的太陽能電池結 ‘構,並利用薄膜製作出具有凹凸狀表面之奈米線結構,: 大幅提高太陽能吸收表面積,進以提高本創作之太陽能電 池結構的效率。 ^以下將详細說明本創作之太陽能電池結構的具體實 ,例;本創作之太陽能電池結構可為一種混合型異質接面 ㈣㈤')太陽能電池結構’其至少包括基板工〇、成 里於第—薄膜層1 1 A上之第-奈米線結構1 2 A與成 型於第二薄膜層1 1 B上之第二奈米線結構工2 B。 • 請復參考第一圖至第一B圖,該基板10具有一第— '表面101及一與該第一表面101相對之第二表面1 ff,在本具體實施例中,該基板1 0可為單晶矽基板或 夕晶矽基板;而如第二圖所示,第一薄膜層丄2 A係成型 2δ亥基板1 0之第一表面101,該第-薄膜層1 1A係 -為石夕材料之薄膜,其中第-奈米線結構1 2A可利用敍刻 • f法成型於該第—薄膜層1 1 AJi,但不以此為限。值得 二:的是’為了使圖式較為清楚,第二圖至第五圖的比例 二不思之用,並非表達實際的尺寸比例。 同於第—薄膜層i工A,第二薄膜層工工B係成型於 5/10 M394571 該基板1 0之第二表面1 02,該第二薄膜層1 1^可為 石夕材料之薄膜,其中第二奈米線結構1 2 Β可利用颠刻方 法成型於該第二薄膜層11Β上。 “ 據此’如第三圖所示,該基板1〇的上下表面(即第 一表面1 〇 1與第二表面i 〇 2)可先製作薄膜層(即第 一薄膜層1 1 A與第二薄膜層1 1 B)於其上,再利用餘 刻方法將上述薄膜層成型為奈米線結構(即第—奈米線、妹 構1 2 A與第二奈米線結構χ 2 B ),而所成型的奈米= 結構即可於該基板i 〇的上下表面形成凹凸狀的態^使 最後製成的太陽能電池結構具有較大的光吸收面積。 具體而言,該第一奈米線結構i 2A與該第二奈米線 結構1 2 B均形成一種連續狀之凹凸狀結構,其具有間隔 成型之凸出結構1 2 1及位於相鄰凸出結構丄2丄的間 隔空間1 2 2 ’故可藉由上述凸出結構工2丄與間隔空; 1 2 2的分佈態樣形成大面積的光吸收區域。在一具俨實 施例中,相鄰凸出結構1 2 1的間距(即間隔空間 的寬度)係小於等於約腿,較佳為小於等於約15〇 而每一凸出結構1 2 1的寬度小於等於約1〇麵,萨 以有效增加光吸收區域的表面積。 θ 1接著請參考第四圖,位於基板10的上下表面之第— :膜層11Α與第二薄膜層11Β上可 二一 構13.其功用係在於接收太陽先能量以 二==。在本具體實施例中,所述之非晶質半導 質i1 3 ^ 雙層結構’其包括—非晶質半導體本 、曰1 31與-非晶質半導體播雜層丄32,該非晶質半 6/10 1可為一種非晶質矽之半導體本質層,而 #雜异 ⑯摻雜層1 3 2可為-種非晶質梦之半導體 二3 ==體本質層131與非晶質半導體推 質声]]]予〜均"於20至200埃;非晶質半導體本 “昭第二,質半導體摻雜層1 3 2在形成薄膜時 所妒成、構1 2A與第二奈米線結構1 2B 導H 結構形成凹凸狀祕,藉以提高非晶質半 二二曰提3 Μ晶質半導體摻雜層1 3 2的表面 、 達成鈇向光吸收效率的功效。 ’非晶料導體 一透明導電薄膜声Ί z •分$ 工文匕祜有 Πτη^ 4,s亥透明V電薄膜層1 4可為氧化 使太陽^彳料’其功能在於,透明導電薄膜層Η可 …士氆η Γ 層14而入射於非晶質半導 化銦錫材質之四分之層Η更可包括一乳 性。 刀之,皮長層(圖未示),以提高光學特 1 因=^相較於傳統的平面狀之非晶質半導體結構,本 創作之太%能電池結構具有較大光吸收面積之非曰質半 導體糾U,其可用於提高太陽能電池結 知上所述,本創作具有了列諸項優點: 能電池結構可利用奈米線結構製作大面 、y早兀,故可大幅提高太陽能電池效率。 本創作係利用塊材與薄膜 銮廿产〜專膜之組合製作太陽能電池效 率在賴上以1 虫刻方式製作奈米線結構,故太陽 能電池結構之整體結構簡單’且製程難度低。 7/|〇 2 M394571 太μ 1為本創作之較封財_,㈣此褐限 2作之專職園,故舉凡運用摘作說明書及圖示内容 所為之等效技術變化,均包含於本創作之範圍内。 【圖式簡單說明】 第-圖係為本創作之太陽能電池結構的示意圖。 第一 Α圖係為第一圖之Α部分的放大圖。 第一 Β圖係為第一圖之]3部分的放大圖。 - 第-圖至第五圖係為本創作之太陽能電池結構的製作流_ 程示意圖。 【主要元件符號說明】 第一表面 第二表面M394571 V. New description: [New technical field] The present invention relates to a solar cell structure, in particular to a solar cell structure having a nanowire structure. [Previous technology] _ With the increasing global warming, the development of green energy has been paid more and more attention; and the utilization of solar energy has reached the scale of industrial application. Among them, the first generation of solar modules mainly use single crystal germanium and polycrystalline germanium. Technology, its photoelectric conversion efficiency is high and mass production technology is mature, but due to the high material cost, subsequent mass production is limited. Therefore, second-generation thin-film solar modules based on amorphous germanium films, copper indium gallium selenide thin films and cadmium telluride thin films have gradually developed and matured in recent years. The advantage of the amorphous germanium film is that the light absorption effect and the light guiding effect are excellent, but the electrical characteristics are equivalent to the insulator, and do not have the semiconductor characteristics of the crystal germanium. Moreover, due to the problem of the levitation bond in the amorphous germanium structure, the rate at which the free electrons generated by the light excitation are combined with the holes is fast. Therefore, after the light is irradiated on the amorphous germanium to generate an electron-hole pair, the two must be separated as soon as possible to produce an effective photoelectric effect, so the amorphous cut solar cells are formed in a thin film to reduce The phenomenon of the combination of free electrons and holes. In response to the development of amorphous germanium solar cells, Sanyo has introduced a heterojunction thin film solar cell structure with an efficiency of 21.5% and a manufacturing efficiency of 19%. Its high efficiency has been valued by industry and academia. However, the above battery efficiency is the data obtained by the laboratory. In the stage of 3/10 M394571, the above high efficiency cannot be achieved; in short, the efficiency of the k-nan solar cell is the current research and development. = The creator has considered the lack of the above-mentioned conventional use in the actual application of the 'JL accumulation of individuals engaged in related production # development practice, and finally proposed a reasonable design and effective improvement of the above question [new content] and the second is to provide A solar cell structure, two having a material (substrate) combined with the design, and utilizing the nanowire structure of the film on the upper and lower surfaces of the block, so the creation can utilize the characteristics of the glutinous rice structure to make a large area of amorphous Semiconductors, efficient solar cells. Reaching the structure, to the above purpose, the present invention provides a solar cell junction. The substrate has a first surface and a surface of the second surface. A first film layer is formed on the substrate. The substrate has a first-thin film structure having a first-nano-line structure; and the film layer is formed on the f-nano-wire structure of the substrate; wherein the first nanowire = first The non-rice line structure has an amorphous semiconductor structure. And the first structure = the original surface of the substrate (that is, the first surface line has a concave-convex nanowire structure, so it is coated on the nano-bismuth, so it can provide better electricity on the application surface of the solar cell. = 4/10 M394571 To enable a more in-depth understanding of the features and technical content of this creation 'Please refer to the following for a detailed description and drawings of this creation. However, the drawings are for reference and explanation only, not for [Embodiment] Please refer to the first figure to the first B picture, and at the same time cooperate with the second picture to the fifth-picture, the author proposes a solar cell junction structure combining the block and the film. The film is used to fabricate a nanowire structure having a concave-convex surface, which greatly increases the solar absorption surface area, thereby improving the efficiency of the solar cell structure of the present invention. ^ The details of the solar cell structure of the present invention will be described in detail below. For example, the solar cell structure of the present invention may be a hybrid heterojunction (4) (5) ') solar cell structure 'which includes at least a substrate process, the first on the first film layer 1 1 A - 1 2 A noodle structure and the molding on the second thin film layer 1 1 B of the second structural engineering nanowires 2 B. • Referring to the first to the first B, the substrate 10 has a first surface 101 and a second surface 1 ff opposite the first surface 101. In the embodiment, the substrate 10 It may be a single crystal germanium substrate or a silicon germanium substrate; and as shown in the second figure, the first thin film layer 丄 2 A is formed on the first surface 101 of the 2 δ hai substrate 10, and the first thin film layer 1 1A- The film of the Shixi material, wherein the first-nano wire structure 1 2A can be formed on the first film layer 1 1 AJi by using the sieving f method, but is not limited thereto. Worth two: Yes, in order to make the schema clearer, the ratios of the second to fifth maps are not used, not the actual size ratio. Same as the first film layer I, the second film layer B is formed on the second surface 102 of the substrate 10, the second film layer 1 1 can be a film of the stone material , wherein the second nanowire structure 1 2 Β can be formed on the second film layer 11 by an indentation method. According to this, as shown in the third figure, the upper and lower surfaces of the substrate 1 (ie, the first surface 1 〇 1 and the second surface i 〇 2) may be first formed into a thin film layer (ie, the first thin film layer 1 1 A and the first The second film layer 1 1 B) is formed thereon, and the film layer is formed into a nanowire structure by using a residual method (ie, the first nanowire, the sister 12 A and the second nanowire structure χ 2 B ) And the formed nano= structure can form a concave-convex state on the upper and lower surfaces of the substrate i ^, so that the finally fabricated solar cell structure has a large light absorption area. Specifically, the first nanometer Both the line structure i 2A and the second nanowire structure 1 2 B form a continuous concavo-convex structure having a space-formed convex structure 1 2 1 and a space 1 located adjacent to the protruding structure 丄2丄2 2 ' Therefore, a large-area light absorbing region can be formed by the above-mentioned convex structure 2 丄 and the space of the gap; 1 2 2 is distributed. In an 俨 embodiment, the adjacent convex structure 1 2 1 The pitch (ie, the width of the space) is less than or equal to about the leg, preferably less than or equal to about 15 〇 and each of the protruding structures 1 2 1 The degree is less than or equal to about 1 ,, and Sa is effective to increase the surface area of the light absorbing region. θ 1 Next, refer to the fourth figure, which is located on the upper and lower surfaces of the substrate 10: the film layer 11 Α and the second film layer 11 可13. The function is to receive the solar energy first to === In the present embodiment, the amorphous semiconducting i1 3 ^ double-layer structure 'including amorphous semiconductors, 曰 1 31 and - amorphous semiconductor broadcast layer 丄 32, the amorphous half 6/10 1 may be an amorphous germanium semiconductor intrinsic layer, and the # hetero 16 doped layer 133 may be amorphous The dream of the semiconductor 2 3 == body essence layer 131 and amorphous semiconductor push sound]]] ~ ~ average " at 20 to 200 angstroms; amorphous semiconductor this "Zhao second, quality semiconductor doped layer 1 3 2 in the formation of the film, the formation of 1 2A and the second nanowire structure 1 2B lead H structure to form a concavo-convex secret, thereby improving the amorphous semi-dioxin 3 Μ crystalline semiconductor doped layer 1 3 The surface of 2, the effect of achieving the light absorption efficiency. 'Amorphous material conductor-transparent conductive film sonar z•分$工文匕祜有Πτη^ 4, shai transparent V electric film layer 1 4 can be oxidized to make the sun's material' its function lies in the transparent conductive film layer Η可...士氆η Γ layer 14 and incident on the quarter of the amorphous semi-conductive indium tin material may further comprise a milky property. The knife, the long layer of the skin (not shown), to improve the optical speciality 1 = ^ compared to the traditional planar amorphous semiconductor structure, the creation of the solar cell structure has a large light absorption area Tantalum semiconductor correction U, which can be used to improve the solar cell's knowledge, has many advantages: The battery structure can use the nanowire structure to make large faces, y early, so it can greatly improve solar cells. effectiveness. This creation system uses the combination of bulk material and film tantalum-specific film to produce solar cell efficiency. The nanowire structure is made in a 1-worm manner, so the overall structure of the solar cell structure is simple and the process is difficult. 7/|〇2 M394571 Too μ 1 is a relatively rich _ of the creation _, (4) This brown limited 2 is a full-time garden, so the equivalent technical changes made by using the instructions and the contents of the illustrations are included in this creation. Within the scope. [Simple description of the diagram] The first diagram is a schematic diagram of the solar cell structure of the creation. The first map is an enlarged view of the top portion of the first graph. The first map is an enlarged view of the third part of the first figure. - The first to fifth figures are schematic diagrams of the production flow of the solar cell structure of the present invention. [Main component symbol description] First surface Second surface

凸出結構 間隔空間 10 基板 101 1 0 2 1 1Α 第一薄膜層 11B 第二薄膜層 1 2 A 第一奈米線結構 1 2 B 第二奈米線結構 121 1 2 2 13 非晶質半導體結構 131 非晶質半導體本質層 13 2非晶質半導體摻雜層 14 透明導電薄膜層 8/1〇Projection space 10 substrate 101 1 0 2 1 1 Α first film layer 11B second film layer 1 2 A first nanowire structure 1 2 B second nanowire structure 121 1 2 2 13 amorphous semiconductor structure 131 amorphous semiconductor intrinsic layer 13 2 amorphous semiconductor doped layer 14 transparent conductive film layer 8/1〇

Claims (1)

M394571 >、申請專利範圍: -、一種太陽能電池結構,係包含: ί板’其具有-第-表面及-與該第-表面相對之 % 一表面; -第:薄膜層,其係成型於該基板之該第一表面 5亥第一薄膜層具有第一奈米線結構;以及 一第二薄膜層,其係成型於該基板之該第二表面 該第二薄膜層具有第二奈米線結構;其中,該第— 奈米線結構與該第二奈米線結構上 質半導體結構。 ,、 非日日 、如申請專利範圍第!項所述之太陽能電池結構 °亥非晶質半導體結構係為一雙層結構,其包括. 質半導體本質層與—非晶質半導體摻雜層。 4 、如申請專利範圍第2項所述之太陽能電池結構 该基板係為單晶矽基板或多晶矽基板。 ^申請專利範圍第2項所述之太陽能電池結構, 5亥非晶質半導體本質層盘兮非曰所坐 、 貝層興。亥非日日貝+導體摻雜層的 ;度均介於20至200埃。 如申請專利範圍第2項所述之太陽能電池結構, 括-成型於該非晶質半導體結構上之透明 層。 ^寸味 6 其中 非晶 其中 如申請專利範圍第5項所述之太陽能電池結構 該透明導電薄膜層係為氧化銦錫材料。 八 如申請專利範圍第2項所述之太陽能電池結構, 邊非晶質半導體本質層係為非晶f石夕之半導體ς質 9/|〇 7 M394571 /皆° 8、如申請專利範圍第2項所述之太陽能電池結構,其中 該非晶質半導體摻雜層係為非晶質矽之半導體摻雜 層0 10/10M394571 >, the scope of patent application: - a solar cell structure, comprising: a plate having a - surface - and - a surface opposite to the first surface; - a film layer formed by The first surface of the substrate has a first nanowire layer; and a second film layer is formed on the second surface of the substrate. The second film layer has a second nanowire. a structure; wherein the first nanowire structure and the second nanowire structure are superior to the semiconductor structure. ,, non-Japanese, such as the scope of patent application! The solar cell structure described in the above is a two-layer structure comprising a nature semiconductor layer and an amorphous semiconductor doped layer. 4. The solar cell structure according to claim 2, wherein the substrate is a single crystal germanium substrate or a polycrystalline germanium substrate. ^ Applying for the solar cell structure described in item 2 of the patent scope, the 5H amorphous semiconductor intrinsic layer is not in the squat, and is in the layer. The degree of the non-doped layer of the non-conducting layer is between 20 and 200 angstroms. The solar cell structure of claim 2, comprising a transparent layer formed on the amorphous semiconductor structure. ^寸味6 wherein amorphous is a solar cell structure as described in claim 5, the transparent conductive film layer is an indium tin oxide material. 8. As for the solar cell structure described in the second paragraph of the patent application, the amorphous semiconductor intrinsic layer is amorphous f. The semiconductor enamel 9/|〇7 M394571 / all ° 8, as claimed in the second scope The solar cell structure of the present invention, wherein the amorphous semiconductor doped layer is an amorphous germanium doped layer 0 10/10
TW99212207U 2010-06-28 2010-06-28 Solar cell structure TWM394571U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99212207U TWM394571U (en) 2010-06-28 2010-06-28 Solar cell structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99212207U TWM394571U (en) 2010-06-28 2010-06-28 Solar cell structure

Publications (1)

Publication Number Publication Date
TWM394571U true TWM394571U (en) 2010-12-11

Family

ID=45083355

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99212207U TWM394571U (en) 2010-06-28 2010-06-28 Solar cell structure

Country Status (1)

Country Link
TW (1) TWM394571U (en)

Similar Documents

Publication Publication Date Title
Li et al. Carbon/silicon heterojunction solar cells: state of the art and prospects
Lin et al. Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function
Yoon et al. High-performance hybrid cell based on an organic photovoltaic device and a direct current piezoelectric nanogenerator
Kim et al. Hybrid Si microwire and planar solar cells: passivation and characterization
JP5324222B2 (en) Nanostructure and photovoltaic cell implementing it
Li et al. Periodically aligned Si nanopillar arrays as efficient antireflection layers for solar cell applications
TWI409963B (en) Coaxial nanowire solar cell structure
O'Donnell et al. Silicon nanowire solar cells grown by PECVD
Lee et al. Hybrid energy harvester based on nanopillar solar cells and PVDF nanogenerator
TW201228017A (en) Solar cell
TW201128789A (en) New structure solar cell with superlattices
JP5379811B2 (en) Photovoltaic devices using high aspect ratio nanostructures and methods for making same
Dong et al. Realization of radial pn junction silicon nanowire solar cell based on low-temperature and shallow phosphorus doping
JP6730367B2 (en) Solar cell
Shin et al. Effect of layer number and metal-chloride dopant on multiple layers of graphene/porous Si solar cells
Sohrabi et al. Optimization of third generation nanostructured silicon-based solar cells
Rahman et al. Impact of silicon quantum dot super lattice and quantum well structure as intermediate layer on p‐i‐n silicon solar cells
CN104851935B (en) A kind of Graphene/indium phosphide solar cell of electric field regulation and control and preparation method thereof
CN103563091B (en) There is the tandem solaode of the tunnel knot of improvement
Zang et al. Graphene as transparent electrode in Si solar cells: A dry transfer method
CN103137770B (en) A kind of Graphene/Si p-n double-junction solar battery and preparation method thereof
Zhou et al. An investigation on a crystalline-silicon solar cell with black silicon layer at the rear
TW201539774A (en) Solar cell and fabrication method thereof
TWI603489B (en) Solar cell
TWM394571U (en) Solar cell structure

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model