TWM382658U - Full-bridge phase-shift converter with assisted zero-voltage-switching circuit - Google Patents

Full-bridge phase-shift converter with assisted zero-voltage-switching circuit Download PDF

Info

Publication number
TWM382658U
TWM382658U TW99203377U TW99203377U TWM382658U TW M382658 U TWM382658 U TW M382658U TW 99203377 U TW99203377 U TW 99203377U TW 99203377 U TW99203377 U TW 99203377U TW M382658 U TWM382658 U TW M382658U
Authority
TW
Taiwan
Prior art keywords
voltage
switching element
circuit
power switching
full
Prior art date
Application number
TW99203377U
Other languages
Chinese (zh)
Inventor
chang-de Xue
Original Assignee
Chicony Power Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chicony Power Tech Co Ltd filed Critical Chicony Power Tech Co Ltd
Priority to TW99203377U priority Critical patent/TWM382658U/en
Publication of TWM382658U publication Critical patent/TWM382658U/en

Links

Classifications

    • Y02B70/1491

Landscapes

  • Dc-Dc Converters (AREA)

Description

M382658 五、新型說明: 【新型所屬之技術領域】 [0001] 本創作係有關一種全橋相移式轉換器,尤指一種具有零 電壓切換輔助電路之全橋相移式轉換器。 【先前技術】 [0002] 由於半導體技術發展日漸蓬勃,因此許多電子產品皆朝 向輕、薄、短、小的趨勢發展。傳統的線性電源供應器 (linear power supply)由於内部有笨重的隔離變壓器 及散熱片,且其效率又較低,因此逐漸地被淘汰。取而 代之的則是能操作在高頻下,並且,具有體積小、重量 Λ 輕、效率高等優點的切換式電源供應器(sw i tch i ng power supply) ° [0003] 一般切換式電源供應器採用傳統硬式切換(hard switching),若操作頻率增加時,功率開關元件在導通 和截止時的切換損失也隨著增加。因此,使用硬式切換 方法所造成熱損耗的問題,不僅使轉換效率變低,也容 易導致開關元件壽命縮短,甚至,提高加裝散熱裝置所 需要的體積與成本。此外,功率晶體切換動作的非理想 現象也會產生電壓、電流突波,使電路元件的應力增加 ,亦成為電磁干擾(electromagnetic interference, Ε ΜI )的來源。 [0004] 為了克服高頻操作下所造成問題,因此柔性切換(soft switching)成為目前運用在各種電力電子產品上的一種 技術。柔性切換技術一般可分為零電壓切換(zero 表單編號A0101 第4頁/共29頁 voltage switching,ZVS)和零電流切換(zero current switching, ZCS) 兩種方式 。零電壓切換是在功 率開關元件欲導通的暫態期間,先將功率開關元件兩端 跨壓降為零,接著再將功率開關元件導通。而零電流切 換則是在功率開關元件欲導通的暫態期間,先將流過功 率開關元件的電流降為零,接著再將功率開關元件導通 。不論是零電壓或是零電流切換,其目的都是為了達成 在切換暫態期間,功率開關元件兩端跨壓與流過電流的 乘積為零,降低功率開關元件的切換損失,提高電路的 效率,以減少功率開關元件切換所帶來的雜訊干擾。惟 ,柔性切換的二種切換方式在高頻切換時以零電壓切換 較佳,因為若開關在零電流切換時,儲存在開關内部電 容的電荷將會造成切換損失,尤其在高頻時更為嚴重。 [0005] —般而言,在中、大功率的直流對直流轉換器電路中, 相移控制的全橋轉換器(ful 1-bride converter)是最 常用的電路形式之一。配合參見第一圖,係習知全橋相 移式零電壓切換轉換器之電路圖。該全橋相移式零電壓 切換轉換器主要係包含一全橋式切換電路10A、一隔離變M382658 V. New Description: [New Technology Field] [0001] This paper is about a full-bridge phase-shift converter, especially a full-bridge phase-shift converter with zero voltage switching auxiliary circuit. [Prior Art] [0002] Due to the growing development of semiconductor technology, many electronic products are moving toward light, thin, short, and small trends. Traditional linear power supplies have been phased out due to the cumbersome isolation transformers and heat sinks inside, and their low efficiency. Instead, it is a switching power supply that can operate at high frequencies and has the advantages of small size, light weight, high efficiency, etc. [0003] General switched power supply adopts In traditional hard switching, if the operating frequency is increased, the switching loss of the power switching element during turn-on and turn-off increases. Therefore, the problem of heat loss caused by the hard switching method not only makes the conversion efficiency lower, but also shortens the life of the switching element, and even increases the volume and cost required for installing the heat sink. In addition, the non-ideal phenomenon of the power crystal switching action also generates voltage and current surges, which increase the stress of the circuit components and become a source of electromagnetic interference (Ε Μ I ). [0004] In order to overcome the problems caused by high frequency operation, soft switching has become a technology currently used in various power electronic products. Flexible switching technology can generally be divided into zero voltage switching (zero form number A0101 page 4 / 29 voltage switching, ZVS) and zero current switching (ZCS). The zero voltage switching is performed during the transient period in which the power switching element is to be turned on, and the voltage across the power switching element is firstly zeroed, and then the power switching element is turned on. The zero current switching is to reduce the current flowing through the power switching element to zero during the transient period in which the power switching element is to be turned on, and then turn on the power switching element. Whether it is zero voltage or zero current switching, the purpose is to achieve zero the product of the voltage across the power switching element and the current flowing through during the switching transient, reducing the switching loss of the power switching element and improving the efficiency of the circuit. To reduce noise interference caused by switching of power switching components. However, the two switching modes of flexible switching are better to switch at zero voltage during high frequency switching, because if the switch is switched at zero current, the charge stored in the internal capacitance of the switch will cause switching loss, especially at high frequencies. serious. [0005] In general, in a medium- and high-power DC-DC converter circuit, a phase shift-controlled full-bride converter is one of the most commonly used circuit forms. Referring to the first figure, it is a circuit diagram of a conventional full-bridge phase-shifting zero-voltage switching converter. The full bridge phase shifting zero voltage switching converter mainly comprises a full bridge switching circuit 10A, an isolation transformer

壓器20A、一全波整流電路30A以及一低通濾波電路40A 〇 [0006] 該全橋式切換電路10A係電性連接一直流輸入電壓Vga。 該隔離變壓器20A之——次側繞組(包含——次側漏電感 Lea)係電性連接該全橋式切換電路10A。該隔離變壓器 20A之一二次側繞組係電性連接該一全波整流電路30A。 並且,該低通濾波電路40A係電性連接該全波整流電路 表單編號A0101 第5頁/共29頁 M382658 30A。因此,在此電路架構下,以傳送該直流輸入電壓 Vga提供之能量至所供應之一負載RLa。 [0007] 該全波整流電路30A係包含一第一整流二極體SRI a與一第 二整流二極體SR2a,並且電性連接該隔離變壓器20A之該 二次側繞組,用以整流該隔離變壓器2 0 A之該二次側繞組 之輸出電壓。該低通濾波電路40A係由一輸出濾波電感 Loa與一輸出濾波電容Coa所形成,並且電性連接該全波 整流電路30A,用以濾除該全波整流電路30A所輸出之整 流電壓之高頻諧波成分,提供該負載RLa所需電壓準位之 一輸出電壓(未標示)。 [0008] 該全橋式切換電路10A係包含四個功率開關元件,亦即分 別為一第一功率開關元件Q1 a、一第二功率開關元件Q2a 、一第三功率開關元件Q3a以及一第四功率開關元件Q4a 。並且,每一該些功率開關元件Qla~Q4a皆含有一反向並 聯二極體(未標示),或稱為本體二極體(body diode)與 一寄生電容(parasitic capacitance)(未標示)。此 外,該全橋式切換電路10A係由兩組橋臂所構成,每組橋 臂係由上述兩個功率開關元件所組成。由於該第一功率 開關元件Q1 a與該第二功率開關元件Q2a是在有效脈波寬 度調變信號(effective PWM signal)之正緣(rising edge)時觸發導通,因此,該第一功率開關元件Qla與第 二功率開關元件Q2a組成之橋臂稱為一超前臂 (leading-edge lag)(未標示)。反之,由於該第三功 率開關元件Q 3 a與該第四功率開關元件Q 4 a是在有效脈波 寬度調變信號之負緣(falling edge)時觸發導通,囟此 表單編號A0101 第6頁/共29頁 ,該第三功率開關元件Q3a與該第四功率開關元件Q4a組 成之橋臂稱為一落後臂(lagging-edge lag)(未標示) 〇 [0009] 對該落後臂而言,零電壓切換的實現在於負載電流由該 隔離變壓器20A之該二次側反射至該一次側。因此,該落 後臂所產生之感應能量係如下列第1式表示: [0010] εη = 0.5 X Lm X Im2 +0.5 X λ2 X Loa X (/^ In)2 +0,5 X Lea X (Im +/^ / n)2 ···(第1式) [0011] 其中,F 表示該落後臂所產生之感應能量;Im表示該 隔離變壓器2 0 A之該一次側繞組之磁4b電流 (magnetizing current);該則表示流經該輸出 * Lotip 濾波電感Loa電流之最大值;而該係數η則為該隔離變壓 器20Α之該一次側繞組與該二次侧繞組之匝數比。 [0012] 因為該低通濾波電路40Α之該輸出濾波電感Loa所儲存能 量相較於該些一次側寄生電容充電或放電所需之能量是 大的,也就是說,該落後臂提供零電壓切換所需要能量 是足夠的。因此,在負載變化較大的使用範圍下,該第 三功率開關元件Q3a與該第四功率開關元件Q4a是容易達 成零電壓切換。 [0013] 然而,對該超前臂而言,零電壓切換的實現在該隔離變 壓器20 A之該漏電感Le和該第一功率開關元件Qla與該第 二功率開關元件Q2a所提供之諧振。因此,該超前臂所產 生之感應能量係如下列第2式表示: 表單編號A0101 第7頁/共29頁 M382658 [0014] „ ηςντ v ίΛ 丄 τ 、2 ...(第 2式) = 0,5 X Lea X (Ipr + Im) [0015] 其中,F 表示該超前臂所產生之感應能量。 [0016] 特別是在輕載時,該第一功率開關元件Qla與該第二功率 開關元件Q2a是較難實現零電壓切換。故此,整體而言, 該相移式全橋零電壓切換轉換器較不適合應用在負載變 化較大的使用範圍下。 [0017] 因此,如何設計出一種具有零電壓切換輔助電路之全橋 相移式轉換器,能改善習知相移式全橋零電壓切換轉換 器之超前臂無法提供零電壓切換所需之能量,乃為本案 創作人所欲行克服並加以解決的一大課題。 【新型内容】 [0018] 為了達成上述目的,本創作係提供一種具有零電壓切換 輔助電路之全橋相移式轉換器。具有零電壓切換輔助電 路之全橋相移式轉換器係電性連接直流輸入電壓,以傳 送直流輸入電壓提供之能量至所供應之負載。具有零電 壓切換輔助電路之全橋相移式轉換器係包含全橋式切換 電路、隔離變壓器、零電壓切換辅助電路、全波整流電 路以及低通濾波電路。 [0019] 全橋式切換電路係包含四個功率開關元件,分別為第一 功率開關元件、第二功率開關元件、第三功率開關元件 以及第四功率開關元件,以切換直流輸入電壓為方波電 壓;其中,每一功率開關元件分別具有與功率開關元件 並聯之二極體與寄生電容,並且,第一功率開關元件與 表單編號A0101 第8頁/共29頁 第二功率開關元件係形成超前臂,第三功率開關元件與 第四功率開關元件係形成落後臂。 [0020] 隔離變壓器係具有一次側繞組與二次側繞組,並且電性 連接全橋式切換電路,以接收方波電壓,並利用一次側 繞組與二次側繞組之E數比轉換方波電壓乏大小。 [0021] 零電壓切換輔助電路係包含第一輔助電容、第二輔助電 容以及輔助電感。第一輔助電容係具有第一端與第二端 :其中,第一端係電性連接全橋式切換電路之第一功率 開關元件與第三功率開關元件。第二輔助電容係具有第 一端與第二端;其中,第一碑係電性連接第一輔助電容 之第二端,而第二端係電性连接全橋式切換電路之第二 功率開關元件與第四功率開赚元件。辅助電係具有第一 端與第二端;其中,第一端係電性連接第一辅助電容之 第二端,而第二端係電性連接隔離變壓器之一次側繞組 〇 [0022] 全波整流電路係電性連接隔離變壓器之二次側繞組,整 流隔離變壓器之二次側繞組之輸出電壓。 [0023] 低通濾波電路係電性連接全波整流電路,濾除全波整流 電路所輸出之整流電壓之高頻諧波成分。 [0024] 藉此,利用提供零電壓切換輔助電路之輔助電感,以增 加超前臂所提供之儲能,而確保全橋相移式轉換器達成 正常之零電壓切換操作。 [0025] 為了能更進一步瞭解本創作為達成預定目的所採取之技 術、手段及功效,請參閱以下有關本創作之詳細說明與 表單編號A0101 第9頁/共29頁 M382658 附圖,相信本創作之目的、特徵與特點,當可由此得一 深入且具體之瞭解,然而所附圖式僅提供參考與說明用 ,並非用來對本創作加以限制者。 【實施方式】 [0026] 有關本創作之技術内容及詳細說明,配合圖式說明如下 [0027] 請參見第二圖,係本創作一具有零電壓切換輔助電路之 全橋相移式轉換器之電路圖。該全橋相移式轉換器係電 性連接一直流輸入電壓Vg,以傳送該直流輸入電壓Vg提 供之能量至所供應之一負載。該全橋相移式轉換器係 主要包含一全橋式切換電路10、一隔離變壓器20、一全 波整流電路30以及一低通濾波電路40。本創作之該全橋 相移式轉換器與習知之全橋相移式轉換器最大差異在於 ,本創作之該全橋相移式轉換器更提供一零電壓切換輔 助電路1 00。 [0028] 該全橋式切換電路10係包含四個功率開關元件,亦即分 別為一第一功率開關元件Q1、一第二功率開關元件Q2、 一第三功率開關元件Q3以及一第四功率開關元件Q4,用 以切換該直流輸入電壓Vg為一方波電壓。其中,每一功 率開關元件Q卜Q4係分別具有與該功率開關元件Q卜Q4反 向並聯之一二極體D卜D4,或稱為本體二極體(body diode) 與一寄生電容 (parasitic capacit an ce)Cl~C4 ,亦即,該第一功率開關元件Q1並聯該第一二極體D1與 該第一寄生電容C1 ;該第二功率開關元件Q2並聯該第二 表單編號A0101 第10頁/共29頁 M382658 二極體D2與該第二寄生電容G2 ;該第三功率關元件⑽ 並聯該第三二極體D3與該第三寄生電容C3 ;以及,該第 四功率開關元件Q4並聯該第四二極體&4與該第四寄生電 容C4。此外,該第一功率開關元件“與該第二功率開關 元件Q2係形成一超前臂(leading_edge lag)(未標示) ,而該第三功率開關元件Q3與該第四功率開關元件以係 形成一落後臂(lagging-edge lag)(未標示)。 [0029]該隔離變壓器20係具有一一次側繞組(未標示)與一二次 側繞組(未標示)。該隔離變壓器2〇係具有與該一次側繞 組串聯之一次側漏電感Le,並且,該二次抓繞組係為 一中心抽頭式繞組《該隔離變壓Β2〇ϋ性連接該全橋 式切換電路10,用以接收該方波電愿1並利用該一次側 繞組與該二次側繞組之阻數比轉換該方波電壓之大小。 此外’該㈣變壓㈣係可提供—次側電路與二次側電 路之'間達到隔離之功能。 圆該零電壓切換輔助電路1〇〇係包含一第一輔助電容㈤、 第-辅助電容Cs2以及-輔助電感Ls。該第一輔助電容 Csl係具有一第一端(未標示)與一第二端(未標示)。其中 該第端係電性連接該全橋式切換電路10之該第一功 率開關70件Q1與該第三功率開關元件〇3(即該全橋式切換 電路10之上#功率開關元件)。該第二輔助電容Cs2係具 有第-端(未標示)與-第二端(未標示)。其中,該第 端係電性連接該第一輔助電容Csl之該第 二端,而該第 端係電1±連接該全橋式切換電路1〇之該第二功率開關 儿件〇2與該第四功率開關元件Q4(即該該全橋式切換電路 表單编號A0101 第丨丨頁/共29頁 M382658 之下臂功率開關元件)。該輔助電感Ls係具有一第一端( 未標示)與一第二端(未標示)。其中,該第一端係電性連 接該第一輔助電容Csl之該第二端,而該第二端係電性連 接該隔離變壓器20之該一次側繞組。 [0031] 該全波整流電路30係包含一第一整流二極體SR1與一第二 整流二極體SR2,並且電性連接該隔離變壓器20之該二次 側繞組,用以整流該隔離變壓器20之該二次側繞組之輸 出電壓。該低通濾波電路40係包含一輸出濾波電感Lo與 一輸出濾波電容Co,並且電性連接該全波整流電路30, 用以濾除該全波整流電路30所輸出之整流電壓之高頻諧 波成分,提供該負載RL所需電壓準位之一輸出電壓Vo。 [0032] 此外,該具有零電壓切換輔助電路之全橋相移式轉換器 也配合一回授控制電路(未圖示),藉由相位調變的方式 ,對該些功率開關元件Q卜Q4提供不同相移控制,以達成 該輸出電壓Vo之穩壓調節(regulation)功能。也就是說 ,該回授控制電路用以確保該輸出電壓Vo受到該直流輸 入電壓Vg或該輸出負載及的變動影響程度最小。該回授 L· 控制電路主要係包含一電壓補償電路與一相移脈波寬度 調變控制器。該電壓補償電路係電性連接該低通濾波電 路40,用以接收該全橋相移式轉換器之該輸出電壓Vo, 並產生一輸出補償電壓。該相移脈波寬度調變控制器係 電性連接該電壓補償電路,用以接收該輸出補償電壓, 並且根據該輸出補償電壓控制該相移脈波寬度調變控制 器之輸出方波之責任週期Dp(參見第三圖),並產生四個 開關驅動信號,分別為一第一開關驅動信號SQ1、一第二 表單編號A0101 第12頁/共29頁 開關驅動信號SQ2、一第三開關驅動信號SQ3以及一第四 開關驅動信號SQ4,分別控制所對應之該些功率開關元件 Q卜Q4之導通與截止。亦即,該第一開關驅動信號SQ1係 用以控制該第一功率開關元件Q1之導通與截止;該第二 開關驅動信號SQ2係用以控制該第二功率開關元件Q2之導 通與截止;該第三開關驅動信號SQ3係用以控制該第三功 率開關元件Q3之導通與截止;以及,該第四開關驅動信 號SQ4係用以控制該第四功率開關元件Q4之導通與截止。 [0033] 該第一開關驅動信號SQ1與該第二開關驅動信號SQ2係為 準位互補之電壓信號(參見第三圖),並且,該第三開關 驅動信號S Q 3與該第四開關驅動信號义Q 4係為準位互補之 電壓信號。此外,由於該些功率開册元件Q1〜Q4具有導通 延遲(turn-on delay)與截止延遲(turn-off delay) 的非理想現象,因此,為了避免該超前臂或該落後臂在 非完全導通或截止狀態下發生短路之情況,故此,在本 實施例中,在該第一功率開關元件Q1與該第二功率開關 元件Q2,或該第三功率開關元件Q3與該第四功率開關元 件Q4導通與戴止時,提供一延遲時間Td。值得一提,該 延遲時間Td乃為該些功f開關元件Q1〜Q4完成零電壓切換 之關鍵。因此,在考慮該延遲時間Td之效應後,該脈波 寬度調變控制器之責任週期也應為一有效責任週期 (effective duty)Deff ° [0034] 請參見第三圖,係該全橋相移式轉換器操作之時序與電 壓、電流波形圖。該具有零電壓切換辅助電路之全橋相 移式轉換器之操作順序將配合第三圖,以不同時間區間 表單编號A0101 第13頁/共29頁 M382658 表達更詳細之描述◊所述如下: _] (1)第-時間區間Δί1 (第一時間tl至第二時間⑵: [0036]該第-時間區間心亦可稱為能量傳送區間。該第一功 率開關元件Q1與該第四功率開關元件以為導通狀態而 該第二功率開關元件⑽與該第三功率開關元件Q3為截止 狀態。該直流輸入電壓Vg經由該第一功率開關元件以與 該第一功率開關元件Q2,使得該零電麼切換辅助電路 之該輔助電感Ls之跨壓(輔助電感電壓VLs)為該直流輸入 電壓Vg之一半,並且,該隔離變壓器2〇之該一次側繞組 跨壓等於該直流輸入電壓Vg大小。因此,該一次側漏電 感L e被充電而儲存能量(磁能),並且,該隔離變壓器2 〇 之一次側電流Ipr會逐漸上井,同時,該無難變壓器2〇之 二次側會獲得由一次側電壓Vpr感應到二次側之感應電壓 。因此,該全波整流電路30之該第一整流二極體SR1係為 順向偏壓(forward biased)而導通,而該第二整流二 極體SR2係為逆向偏壓(reverse biased)而截止。能量 會從輸入電源端經由該隔離變壓器2 〇而傳送到負載端。 在該第一時間區間Δ1;1 ,該全橋相移式轉換器於能量傳 送操作下之等效電路圖係如第四圖Α所示。The voltage converter 20A, a full-wave rectifier circuit 30A, and a low-pass filter circuit 40A [0006] The full-bridge switching circuit 10A is electrically connected to the DC input voltage Vga. The secondary winding (including the secondary leakage inductance Lea) of the isolation transformer 20A is electrically connected to the full bridge switching circuit 10A. One of the secondary windings of the isolation transformer 20A is electrically connected to the full-wave rectifier circuit 30A. Moreover, the low-pass filter circuit 40A is electrically connected to the full-wave rectifier circuit Form No. A0101 Page 5 of 29 M382658 30A. Therefore, under this circuit architecture, the energy supplied by the DC input voltage Vga is delivered to one of the supplied loads RLa. [0007] The full-wave rectifier circuit 30A includes a first rectifying diode SRI a and a second rectifying diode SR2a, and is electrically connected to the secondary winding of the isolation transformer 20A for rectifying the isolation. The output voltage of the secondary winding of the transformer 2 0 A. The low-pass filter circuit 40A is formed by an output filter inductor Loa and an output filter capacitor Coa, and is electrically connected to the full-wave rectifier circuit 30A for filtering the high rectified voltage output by the full-wave rectifier circuit 30A. The frequency harmonic component provides an output voltage (not labeled) of the voltage level required for the load RLa. [0008] The full bridge switching circuit 10A includes four power switching elements, that is, a first power switching element Q1 a , a second power switching element Q2a , a third power switching element Q3a , and a fourth Power switching element Q4a. Moreover, each of the power switching elements Qla~Q4a includes a reverse parallel diode (not labeled), or a body diode and a parasitic capacitance (not labeled). Further, the full bridge switching circuit 10A is composed of two sets of bridge arms, each of which is composed of the above two power switching elements. The first power switching element is triggered when the first power switching element Q1 a and the second power switching element Q2a are turned on at a rising edge of an effective PWM signal. The bridge arm composed of Qla and the second power switching element Q2a is referred to as a leading-edge lag (not shown). On the contrary, since the third power switching element Q 3 a and the fourth power switching element Q 4 a are turned on at the falling edge of the effective pulse width modulation signal, the form number A0101 is page 6 / 29 pages, the bridge arm composed of the third power switching element Q3a and the fourth power switching element Q4a is called a lagging-edge lag (not labeled) 〇 [0009] for the trailing arm, The zero voltage switching is implemented in that the load current is reflected by the secondary side of the isolation transformer 20A to the primary side. Therefore, the induced energy generated by the trailing arm is expressed by the following formula: [0010] εη = 0.5 X Lm X Im2 +0.5 X λ2 X Loa X (/^ In)2 +0,5 X Lea X (Im +/^ / n) 2 ··· (1) [0011] where F represents the induced energy generated by the trailing arm; Im represents the magnetic 4b current of the primary winding of the isolation transformer 20 A (magnetizing) Current); this represents the maximum value of the current flowing through the output * Lotip filter inductor Loa; and the coefficient η is the turns ratio of the primary winding of the isolation transformer 20Α to the secondary winding. [0012] Because the energy stored by the output filter inductor Loa of the low-pass filter circuit 40 is larger than the energy required for charging or discharging the parasitic capacitances of the primary side, that is, the trailing arm provides zero voltage switching. The energy required is sufficient. Therefore, the third power switching element Q3a and the fourth power switching element Q4a are easily switched to zero voltage in a use range where the load varies greatly. [0013] However, for the lead forearm, zero voltage switching is achieved by the leakage inductance Le of the isolation transformer 20A and the resonance provided by the first power switching element Qla and the second power switching element Q2a. Therefore, the induced energy generated by the super forearm is expressed by the following formula 2: Form No. A0101 Page 7 of 29 M382658 [0014] „ ηςντ v ίΛ 丄τ , 2 ... (Type 2) = 0 , 5 X Lea X (Ipr + Im) [0015] wherein F represents the induced energy generated by the super forearm. [0016] Especially at light load, the first power switching element Qla and the second power switching element Q2a is difficult to achieve zero voltage switching. Therefore, overall, the phase-shifting full-bridge zero-voltage switching converter is less suitable for application under a load variation range. [0017] Therefore, how to design a zero The full-bridge phase-shift converter of the voltage-switching auxiliary circuit can improve the energy required for the zero-voltage switching of the super-forearm of the conventional phase-shifting full-bridge zero-voltage switching converter, which is what the creators of the case want to overcome and A new topic to be solved. [New content] [0018] In order to achieve the above object, the present invention provides a full-bridge phase-shift converter with a zero voltage switching auxiliary circuit. Full-bridge phase shift with zero voltage switching auxiliary circuit Turn The device is electrically connected to the DC input voltage to transmit the energy provided by the DC input voltage to the supplied load. The full bridge phase shift converter with zero voltage switching auxiliary circuit includes a full bridge switching circuit, an isolation transformer, and zero voltage. Switching auxiliary circuit, full-wave rectifying circuit and low-pass filtering circuit. [0019] The full-bridge switching circuit includes four power switching elements, which are a first power switching element, a second power switching element, and a third power switching element, respectively. a fourth power switching element for switching a DC input voltage to a square wave voltage; wherein each of the power switching elements has a diode and a parasitic capacitance in parallel with the power switching element, and the first power switching element and the form number A0101 The second power switching element forms a super forearm, and the third power switching element and the fourth power switching element form a trailing arm. [0020] The isolation transformer has a primary winding and a secondary winding, and is electrically Connect the full bridge switching circuit to receive the square wave voltage and use the primary side winding and the secondary side winding The E-number is less than the converted square wave voltage. [0021] The zero-voltage switching auxiliary circuit includes a first auxiliary capacitor, a second auxiliary capacitor, and an auxiliary inductor. The first auxiliary capacitor has a first end and a second end: wherein The first end is electrically connected to the first power switching element and the third power switching element of the full bridge switching circuit. The second auxiliary capacitor has a first end and a second end; wherein the first monument is electrically connected first a second end of the auxiliary capacitor, wherein the second end is electrically connected to the second power switching element of the full bridge switching circuit and the fourth power generating component. The auxiliary power system has a first end and a second end; wherein, the first end The end is electrically connected to the second end of the first auxiliary capacitor, and the second end is electrically connected to the primary winding of the isolation transformer. [0022] The full-wave rectifying circuit is electrically connected to the secondary winding of the isolation transformer, and the rectification is isolated. The output voltage of the secondary winding of the transformer. [0023] The low-pass filter circuit is electrically connected to the full-wave rectifying circuit to filter out high-frequency harmonic components of the rectified voltage outputted by the full-wave rectifying circuit. [0024] Thereby, the auxiliary inductor provided by the zero voltage switching auxiliary circuit is used to increase the energy storage provided by the super forearm, thereby ensuring a normal zero voltage switching operation of the full bridge phase shift converter. [0025] In order to further understand the techniques, means and effects of this creation in order to achieve the intended purpose, please refer to the following detailed description of the creation and the form number A0101 page 9 / 29 M382658, believe this creation The purpose, features, and characteristics of the present invention are to be understood as being limited and not limited by the description. [Embodiment] [0026] The technical content and detailed description of the present invention are described below with reference to the following [0027] Please refer to the second figure, which is a full-bridge phase shift converter with zero voltage switching auxiliary circuit. Circuit diagram. The full bridge phase shift converter electrically connects the input voltage Vg to deliver the energy provided by the DC input voltage Vg to one of the supplied loads. The full bridge phase shift converter mainly comprises a full bridge switching circuit 10, an isolation transformer 20, a full wave rectifier circuit 30 and a low pass filter circuit 40. The biggest difference between the full-bridge phase-shift converter of the present invention and the conventional full-bridge phase-shift converter is that the full-bridge phase-shift converter of the present invention further provides a zero-voltage switching auxiliary circuit 100. [0028] The full bridge switching circuit 10 includes four power switching elements, that is, a first power switching element Q1, a second power switching element Q2, a third power switching element Q3, and a fourth power. The switching element Q4 is configured to switch the DC input voltage Vg to a square wave voltage. Wherein, each of the power switching elements Qb and Q4 respectively has a diode Db D4 in anti-parallel with the power switching element QbQ4, or a body diode and a parasitic capacitance (parasitic) Capacit an ce)Cl~C4, that is, the first power switching element Q1 is connected in parallel with the first diode D1 and the first parasitic capacitor C1; the second power switching element Q2 is connected in parallel with the second form number A0101. Page 29 of 29 M382658 diode D2 and the second parasitic capacitor G2; the third power-off element (10) is connected in parallel with the third diode D3 and the third parasitic capacitor C3; and, the fourth power switching element Q4 The fourth diode & 4 is connected in parallel with the fourth parasitic capacitor C4. In addition, the first power switching element "forms a lead_edge" (not labeled) with the second power switching element Q2, and the third power switching element Q3 and the fourth power switching element form a first Lagging-edge lag (not shown) [0029] The isolation transformer 20 has a primary winding (not shown) and a secondary winding (not labeled). The isolation transformer 2 has a The primary side winding is connected in series with the primary side leakage inductance Le, and the secondary winding winding is a center tapped winding. The isolation transformer is connected to the full bridge switching circuit 10 for receiving the square wave. The electric wish 1 converts the square wave voltage by the resistance ratio of the primary side winding and the secondary side winding. In addition, the (four) variable voltage (four) system can provide - between the secondary side circuit and the secondary side circuit The function of the isolation. The zero voltage switching auxiliary circuit 1 includes a first auxiliary capacitor (5), a first auxiliary capacitor Cs2 and an auxiliary inductor Ls. The first auxiliary capacitor Cs1 has a first end (not labeled). With a second end (not labeled The first end is electrically connected to the first power switch 70 of the full bridge switching circuit 10 and the third power switching element 〇3 (ie, the power switch of the full bridge switching circuit 10) The second auxiliary capacitor Cs2 has a first end (not labeled) and a second end (not labeled), wherein the first end is electrically connected to the second end of the first auxiliary capacitor Cs1, and The first end is electrically connected to the second power switch element 〇2 of the full bridge switching circuit 1 and the fourth power switching element Q4 (ie, the full bridge switching circuit form number A0101) Page / Total 29 pages M382658 lower arm power switching element). The auxiliary inductor Ls has a first end (not labeled) and a second end (not labeled), wherein the first end is electrically connected to the first The second end of the auxiliary capacitor Cs1 is electrically connected to the primary side winding of the isolation transformer 20. [0031] The full-wave rectifying circuit 30 includes a first rectifying diode SR1 and a a second rectifying diode SR2, and electrically connected to the secondary winding of the isolation transformer 20, To rectify the output voltage of the secondary winding of the isolation transformer 20. The low-pass filter circuit 40 includes an output filter inductor Lo and an output filter capacitor Co, and is electrically connected to the full-wave rectifier circuit 30 for filtering In addition to the high frequency harmonic component of the rectified voltage output by the full-wave rectifying circuit 30, one of the voltage levels required for the load RL is supplied with an output voltage Vo. [0032] Furthermore, the full bridge phase with the zero voltage switching auxiliary circuit The shift converter is also coupled with a feedback control circuit (not shown) to provide different phase shift control for the power switching elements Qb and Q4 by means of phase modulation to achieve voltage regulation of the output voltage Vo. (regulation) function. That is, the feedback control circuit is used to ensure that the output voltage Vo is minimally affected by the DC input voltage Vg or the fluctuation of the output load. The feedback L· control circuit mainly comprises a voltage compensation circuit and a phase shift pulse width modulation controller. The voltage compensation circuit is electrically connected to the low pass filter circuit 40 for receiving the output voltage Vo of the full bridge phase shift converter and generating an output compensation voltage. The phase shift pulse width modulation controller is electrically connected to the voltage compensation circuit for receiving the output compensation voltage, and controlling the output square wave of the phase shift pulse width modulation controller according to the output compensation voltage Cycle Dp (see the third figure), and generate four switch drive signals, respectively a first switch drive signal SQ1, a second form number A0101 page 12 / a total of 29 page switch drive signal SQ2, a third switch drive The signal SQ3 and a fourth switch drive signal SQ4 respectively control the on and off of the corresponding power switching elements Qb and Q4. That is, the first switch driving signal SQ1 is used to control the on and off of the first power switching element Q1; the second switch driving signal SQ2 is used to control the turning on and off of the second power switching element Q2; The third switch driving signal SQ3 is used to control the turning on and off of the third power switching element Q3; and the fourth switch driving signal SQ4 is used to control the turning on and off of the fourth power switching element Q4. [0033] The first switch drive signal SQ1 and the second switch drive signal SQ2 are voltage signals complementary to the level (see the third figure), and the third switch drive signal SQ 3 and the fourth switch drive signal The Yi Q 4 system is a voltage signal with complementary levels. In addition, since the power-on elements Q1 to Q4 have non-ideal phenomena of turn-on delay and turn-off delay, in order to prevent the lead arm or the trailing arm from being incompletely turned on. Or a short circuit occurs in the off state. Therefore, in the embodiment, the first power switching element Q1 and the second power switching element Q2, or the third power switching element Q3 and the fourth power switching element Q4 A delay time Td is provided when conducting and wearing. It is worth mentioning that the delay time Td is the key to complete zero voltage switching of the work f switching elements Q1~Q4. Therefore, after considering the effect of the delay time Td, the duty cycle of the pulse width modulation controller should also be an effective duty Deff ° [0034] See the third figure, which is the full bridge phase Timing and voltage and current waveform diagrams of the shift converter operation. The operation sequence of the full-bridge phase-shift converter with zero-voltage switching auxiliary circuit will be described in the third figure, with a detailed description of the different time interval form number A0101 page 13 / page 29 M382658, as follows: _] (1) The first time interval Δί1 (the first time t1 to the second time (2): [0036] The first time interval heart may also be referred to as an energy transfer interval. The first power switching element Q1 and the fourth power The switching element is in an on state and the second power switching element (10) and the third power switching element Q3 are in an off state. The DC input voltage Vg is coupled to the first power switching element Q2 via the first power switching element such that the zero The voltage across the auxiliary inductor Ls (auxiliary inductor voltage VLs) of the auxiliary switching circuit is one-half of the DC input voltage Vg, and the primary winding cross-voltage of the isolation transformer 2 is equal to the DC input voltage Vg. Therefore, the primary side leakage inductance L e is charged to store energy (magnetic energy), and the primary side current Ipr of the isolation transformer 2 逐渐 gradually goes up the well, and at the same time, the difficult transformer 2 The secondary side obtains an induced voltage that is induced to the secondary side by the primary side voltage Vpr. Therefore, the first rectifying diode SR1 of the full-wave rectifying circuit 30 is forward biased and turned on, and The second rectifying diode SR2 is reverse biased and turned off. Energy is transmitted from the input power terminal to the load terminal via the isolation transformer 2 。. In the first time interval Δ1; The equivalent circuit diagram of the bridge phase shift converter under the energy transfer operation is as shown in the fourth figure.

第二時間區間At2 (第二時間“至第三時間t3): [0038]當t = t2時,該第四功率開關元件Q4截止,此時該隔離變 壓器20之該一次側電流Ipr上升至最大值。該直流輸入電 壓Vg經由對該第四功率開關元件q4之該第四寄生電容C4 充電,並使該第二功率開關元件Q3之該第三寄生電容 表單編號A0101 第14頁/共29頁 放電,使得該第四功率開關元件Q4之汲源極跨壓等於該 直流輸入電壓Vg大小。當t = t3時,由於該第三功率開關 元件Q3所並聯之該第三二極體D3所提供之電壓箝制作用 (voltage clamping),使得該第三功率開關元件Q3之 汲源極跨壓接近零電壓,此時電路之等效諧振電感與等 效諧振電容產生諧振。 [0039] (3)第三時間區間△ 13 (第三時間13至第四時間t4 ): [0040] 當t = t3時,該第三功率開關元件Q3導通,並且,由於該 第三二極體D3因電路產生諧振而導通,因此流入大部份 的電流,使得該第三功率開關元件Q3達到零電壓切換。 [0041] (4)第四時間區間At4 (第四時間t4至第五時間t5): [0042] 當t = t4時,該第一功率開關元件Q1截止,該隔離變壓器 2 0之該一次侧漏電感L e與該第一功率開關元件Q1之該第 一寄生電容C1充電,並使得該第二功率開關元件Q2之該 第二寄生電容C2放電。當t = t5時,流經該輔助電感Ls之 一輔助電感電流ILs上升至最大值ILsp。此時,該全波整 流電路30之該第一整流二極體SR1與該第二整流二極體 SR2同時導通,因此,該隔離變壓器20之二次側電路進入 飛輪狀態(freewheel state),該隔離變壓器20—次側 短路,因此該一次側繞組與該二次側繞組上都沒有電壓 ,使得該輸出濾波電感Lo並不會反射至該隔離變壓器20 之一次側。由於該隔離變壓器20之一次側電流無法提供 足夠之能量,所以該隔離變壓器20二次側接近零電壓。 並且,在此短路區間,該全橋相移式轉換器之等效電路 表單编號A0101 第15頁/共29頁 M382658 可如第四圖B表示,係為該全橋相移式轉換器於飛輪狀態 操作下之等效電路圖。此時,該辅助電感Ls可等效為一 電流源,並且,該超前臂之該第一功率開關元件Q1與該 第二功率開關元件Q2之諧振,係由該隔離變壓器20之該 一次側漏電感Le所形成之等效諧振電感與該第一寄生電 容C1和該第二寄生電容C2所形成之等效諧振電容所產生 。因為增加該零電壓切換輔助電路100之該輔助電感Ls, 因此,流經該輔助電感Ls之電流能增加該隔離變壓器20 之該一次側電流Ipr,而能充足地提供對該第一寄生電容 C1與該第二寄生電容C2充電或放電所需之能量。 [0043] (5)第五時間區間Δΐ5 (第五時間t5至第六時間t6): [0044] 當t = t5時,當該第二二極體D2導通時,將該第二功率開 關元件Q2導通,使得該第二功率開關元件Q2之汲源極跨 壓接近零電壓,此時該第二功率開關元件Q2達到零電壓 切換。因為該隔離變壓器20之該一次側電流Ipr為線性減 少至零時,該第二二極體D2與該第三二極體D3自動關閉 截止後,該隔離變壓器20之該一次側電流Ipr經由該第二 功率開關元件Q2與該第三功率開關元件Q3繼續減小為負 值電流。當t = t6時,該隔離變壓器20之該一次側電流 Ipr下降至最小值。 [0045] 上述為該全橋相移式轉換器於正半週期之零電壓切換操 作說明。然而,由於該全橋相移式轉換器於負半週期之 零電壓切換與正半週期之零電壓切換操作為對稱,因此 ,可進一步參見第三圖,能以了解該全橋相移式轉換器 於負半週期之零電壓切換操作,在此不再贅述。 表單編號A0101 [0046] 由於該全橋相移式轉換器所提供該零電壓切換輔助電路 100,因此,對於超前臂的零電壓切換,除了增加少許流 過該超前臂之電流外,亦即流過該第一功率開關元件Q1 與該第二功率開關元件Q2,並不會干擾功率級(power stage)之操作。因此,在不影響該全橋相移式轉換器正 常操作情況以及擴大負載的使用範圍下,能夠設計該輔 助電感Ls之大小用以產生足夠之感應能量,以提供該超 前臂之該第一寄生電容C1與該第二寄生電容C2充電、放 電所需之能量。 [0047] [0048] [0049] 因此,該超前臂所產生之感應能量係如下列第3式表示: 石福=X U X (Ipr + Im)2 + (15 X Ls X “2 ..· (第3式) 其中,F 表示該超前臂所產生之感應能量;Im表示該 隔離變壓器20之該一次側繞組之磁化電流(magnet i zing current);而該則表示該輔助電感電流之最大 值。 [0050] 由於該全橋相移式轉換器所提供該零電壓切換輔助電路 100,因此,第3式與第2式相較之下,可明顯看出,增加 的部份為該輔助電感Ls所提供之能量 ((UXQX/O。 藉此,利用提供該零電壓切換辅助電路之該輔助電感Ls ,以增加該全橋式切換電路之該超前臂於零電壓切換操 表單編號A0101 第17頁/共29頁 [0051] M382658 作下所需之能量,而確保該全橋相移式轉換器達成正常 之零電壓切換操作。並且,該全橋相移式轉換器可在維 持最大可用之責任週期情況下,在負載變化較大的使用 範圍下達成零電壓切換操作。 [0052] 惟,以上所述,僅為本創作較佳具體實施例之詳細說明 與圖式,惟本創作之特徵並不侷限於此,並非用以限制 本創作,本創作之所有範圍應以下述之申請專利範圍為 準,凡合於本創作申請專利範圍之精神與其類似變化之 實施例,皆應包含於本創作之範疇_,任何熟悉該項技 藝者在本創作之領域内,可輕易思及之變化或修飾皆可 涵蓋在以下本案之專利範圍。 【圖式簡單說明】 [0053] 第一圖係習知全橋相移式零電壓切換轉換器之電路圖; [0054] 第二圖係本創作一具有零電壓切換辅助電路之全橋相移 式轉換器之電路圖;及 [0055] 第三圖係該全橋相移式轉換器操作之時序與電壓、電流 波形圖; [0056] 第四圖A係該全橋相移式轉換器於能量傳送操作下之等效 電路圖;及 [0057] 第四圖B係該全橋相移式轉換器於飛輪狀態操作下之等效 電路圖。 【主要元件符號說明】 [0058] 〔習知技術〕 表單編號A0101 第18頁/共29頁 M382658The second time interval At2 (second time "to third time t3": [0038] when t = t2, the fourth power switching element Q4 is turned off, at which time the primary side current Ipr of the isolation transformer 20 rises to the maximum The DC input voltage Vg is charged via the fourth parasitic capacitance C4 of the fourth power switching element q4, and the third parasitic capacitance form number A0101 of the second power switching element Q3 is 14 pages/total 29 pages Discharging such that the source-to-source voltage across the fourth power switching element Q4 is equal to the magnitude of the DC input voltage Vg. When t = t3, the third diode D3 is connected in parallel by the third power switching element Q3. The voltage clamping is such that the voltage across the third power switching element Q3 is close to zero voltage, and the equivalent resonant inductance of the circuit resonates with the equivalent resonant capacitance. [0039] (3) Three time interval Δ 13 (third time 13 to fourth time t4): [0040] When t = t3, the third power switching element Q3 is turned on, and since the third diode D3 is resonated by the circuit Turned on, so it flows in most of the current The third power switching element Q3 reaches zero voltage switching. [0041] (4) Fourth time interval At4 (fourth time t4 to fifth time t5): [0042] When t = t4, the first power switching element Q1 is turned off, the primary side leakage inductance L e of the isolation transformer 20 is charged with the first parasitic capacitance C1 of the first power switching element Q1, and the second parasitic capacitance C2 of the second power switching element Q2 is discharged. When t = t5, the auxiliary inductor current ILs flowing through the auxiliary inductor Ls rises to a maximum value ILsp. At this time, the first rectifying diode SR1 of the full-wave rectifying circuit 30 and the second rectifying diode The body SR2 is simultaneously turned on. Therefore, the secondary side circuit of the isolation transformer 20 enters a freewheel state, and the isolation transformer 20 is short-circuited on the secondary side, so that there is no voltage on the primary side winding and the secondary side winding, so that The output filter inductor Lo is not reflected to the primary side of the isolation transformer 20. Since the primary side current of the isolation transformer 20 does not provide sufficient energy, the secondary side of the isolation transformer 20 approaches zero voltage. Interval, the equivalent circuit form number of the full bridge phase shift converter A0101 page 15 / 29 pages M382658 can be as shown in the fourth figure B, the full bridge phase shift converter under the flywheel state operation An equivalent circuit diagram. At this time, the auxiliary inductor Ls can be equivalent to a current source, and the first power switching element Q1 of the lead arm and the second power switching element Q2 are resonated by the isolation transformer 20 The equivalent resonant inductance formed by the primary side leakage inductance Le is generated by the equivalent resonant capacitance formed by the first parasitic capacitance C1 and the second parasitic capacitance C2. Since the auxiliary inductance Ls of the zero voltage switching auxiliary circuit 100 is increased, the current flowing through the auxiliary inductance Ls can increase the primary side current Ipr of the isolation transformer 20, and can sufficiently provide the first parasitic capacitance C1. The energy required to charge or discharge the second parasitic capacitance C2. (5) The fifth time interval Δΐ5 (the fifth time t5 to the sixth time t6): [0044] when t=t5, when the second diode D2 is turned on, the second power switching element Q2 is turned on, so that the source voltage across the second power switching element Q2 is close to zero voltage, and the second power switching element Q2 reaches zero voltage switching. Since the primary side current Ipr of the isolation transformer 20 is linearly reduced to zero, after the second diode D2 and the third diode D3 are automatically turned off, the primary current Ipr of the isolation transformer 20 passes through the primary current Ipr. The second power switching element Q2 and the third power switching element Q3 continue to decrease to a negative current. When t = t6, the primary side current Ipr of the isolation transformer 20 drops to a minimum value. [0045] The above is a description of the zero-voltage switching operation of the full-bridge phase-shift converter during the positive half cycle. However, since the zero-voltage switching of the full-bridge phase-shift converter in the negative half cycle is symmetric with the zero-voltage switching operation of the positive half cycle, further reference can be made to the third figure to understand the full-bridge phase-shifting conversion. The zero voltage switching operation of the negative half cycle is not repeated here. Form No. A0101 [0046] Since the zero-voltage switching auxiliary circuit 100 is provided by the full-bridge phase-shift converter, for the zero-voltage switching of the super forearm, in addition to adding a little current flowing through the forearm, that is, the flow The first power switching element Q1 and the second power switching element Q2 do not interfere with the operation of the power stage. Therefore, the auxiliary inductor Ls can be designed to generate sufficient inductive energy to provide the first parasitic of the superforward arm without affecting the normal operation of the full bridge phase shift converter and the use range of the extended load. The energy required to charge and discharge the capacitor C1 and the second parasitic capacitor C2. [0049] Therefore, the induced energy generated by the super forearm is expressed as the following formula: Shifu = XUX (Ipr + Im) 2 + (15 X Ls X "2 .. ( 3) where F represents the induced energy generated by the super forearm; Im represents the magnetizing current of the primary winding of the isolation transformer 20; and this represents the maximum value of the auxiliary inductor current. 0050] Since the zero-voltage switching auxiliary circuit 100 is provided by the full-bridge phase-shifting converter, it can be clearly seen that the third part is compared with the second type, and the added portion is the auxiliary inductance Ls. The energy provided ((UXQX/O. Thereby, the auxiliary inductor Ls providing the zero voltage switching auxiliary circuit is used to increase the super forearm of the full bridge switching circuit at zero voltage switching operation form No. A0101 page 17 / A total of 29 pages [0051] M382658 to make the required energy, and to ensure that the full bridge phase shift converter achieves a normal zero voltage switching operation, and the full bridge phase shift converter can maintain the maximum available duty cycle In the case of zero, the zero is achieved under the use range where the load changes greatly. [0052] However, the above description is only for the detailed description and drawings of the preferred embodiments of the present invention, but the features of the present invention are not limited thereto, and are not intended to limit the creation. All scopes shall be subject to the scope of the following patent application, and all embodiments that incorporate the spirit of the scope of the patent application and similar changes shall be included in the scope of this creation. Anyone familiar with the skill in the field of creation The changes or modifications that can be easily considered can be covered in the following patent scope of the present invention. [Simplified Schematic] [0053] The first figure is a circuit diagram of a conventional full-bridge phase-shifting zero-voltage switching converter; [0054] The second diagram is a circuit diagram of a full-bridge phase-shift converter with a zero-voltage switching auxiliary circuit; and [0055] the third diagram is a timing and voltage and current waveform diagram of the full-bridge phase-shift converter operation; 0056] FIG. 4A is an equivalent circuit diagram of the full bridge phase shift converter under energy transfer operation; and [0057] FIG. 4B is the equivalent of the full bridge phase shift converter under flywheel state operation Circuit . The main element REFERENCE NUMERALS [0058] conventional art] [Form A0101 Page number 18 / of 29 M382658

[0059] Vga 直流輸入電壓 [0060] 10A 全橋式切換電路 [0061] Qla 第一功率開關元件 [0062] Q2a 第二功率開關元件 [0063] Q3a 第三功率開關元件 [0064] Q4a 第四功率開關元件 [0065] 20A 隔離變壓器 [0066] Lea 一次側漏電感 [0067] 30A 全波整流電路 [0068] SRla第一整流二極體 [0069] SR2a第二整流二極體 [0070] 40A 低通濾波電路 [0071] Loa 輸出濾波電感 [0072] Coa 輸出濾波電容 [0073] RLa 負載 [0074] 〔本創作〕 [0075] Vg 直流輸入電壓 [0076] 10 全橋式切換電路 [0077] Q1 第一功率開關元件 表單編號A0101 第19頁/共29頁 M382658 [0078] D1 第一二極體 [0079] C1 第一寄生電容 [0080] Q2 第二功率開關元件 [0081] D2 第二二極體 [0082] C2 第二寄生電容 [0083] Q3 第三功率開關元件 [0084] D3 第三二極體 [0085] C3 第三寄生電容 [0086] Q4 第四功率開關元件 [0087] D4 第四二極體 [0088] C4 第四寄生電容 [0089] SQ1 第一開關驅動信號 [0090] SQ2 第二開關驅動信號 [0091] SQ3 第三開關驅動信號 [0092] SQ4 第四開關驅動信號 [0093] 100 零電壓切換輔助電路 [0094] Ls 辅助電感 [0095] Csl 第一輔助電容 [0096] Cs2 第二電輔助容 表單編號A0101 第20頁/共29頁 M382658 [0097] Pu輔助電感電壓 [0098] 輔助電感電流 [0099] /Up輔助電感電流最大值 [0100] 20 隔離變壓器 [0101] Le 一次側漏電感 [0102] Vpr 一次側電壓 [0103] Ipr 一次側電流 [0104] 30 全波整流電路 [0105] SRI 第一整流二極體 [0106] SR2 第二整流二極體 [0107] 40 低通濾波電路 [0108] Lo 輸出濾波電感 [0109] Co 輸出濾波電容 [0110] Rl 負載 [0111] Vo 輸出電壓 [0112] Td 延遲時間 [0113] tl 第一時間 [0114] t2 第二時間 表單編號A0101 第21頁/共29頁 M382658 [0115] t3第三時間 [0116] 1:4第四時間 [0117] t5第五時間 [0118] t6第六時間 [0119] Δ/tl第一時間區間 [0120] A t2第二時間區間 [0121] A t3第三時間區間 [0122] Δΐ4第四時間區間 [0123] At5第五時間區間 [0124] Dp責任週期 [0125] Deff有效責任週期 表單編號A0101 第22頁/共29頁Vga DC input voltage [0060] 10A full bridge switching circuit [0061] Qla first power switching element [0062] Q2a second power switching element [0063] Q3a third power switching element [0064] Q4a fourth power Switching element [0065] 20A Isolation transformer [0066] Lea primary side leakage inductance [0067] 30A full wave rectifier circuit [0068] SRla first rectifier diode [0069] SR2a second rectifier diode [0070] 40A low pass Filter circuit [0071] Loa output filter inductor [0072] Coa output filter capacitor [0073] RLa load [0074] [This creation] [0075] Vg DC input voltage [0076] 10 full bridge switching circuit [0077] Q1 first Power Switch Component Form No. A0101 Page 19 of 29 M382658 [0078] D1 First Diode [0079] C1 First Parasitic Capacitor [0080] Q2 Second Power Switching Element [0081] D2 Second Diode [ 0082] C2 Second Parasitic Capacitor [0083] Q3 Third Power Switching Element [0084] D3 Third Diode [0085] C3 Third Parasitic Capacitor [0086] Q4 Fourth Power Switching Element [0087] D4 Fourth Dipole Body [0088] C4 fourth parasitic capacitance [0089] SQ1 Switch drive signal [0090] SQ2 second switch drive signal [0091] SQ3 third switch drive signal [0092] SQ4 fourth switch drive signal [0093] 100 zero voltage switching auxiliary circuit [0094] Ls auxiliary inductance [0095] Csl Auxiliary Capacitor [0096] Cs2 Second Electrical Auxiliary Form No. A0101 Page 20 of 29 M382658 [0097] Pu Auxiliary Inductor Voltage [0098] Auxiliary Inductor Current [0099] /Up Auxiliary Inductor Current Max [0100] 20 Isolation Transformer [0101] Le Primary Side Leakage Inductance [0102] Vpr Primary Side Voltage [0103] Ipr Primary Side Current [0104] 30 Full Wave Rectifier Circuit [0105] SRI First Rectifier Diode [0106] SR2 Second Rectifier II Polar body [0107] 40 low-pass filter circuit [0108] Lo output filter inductor [0109] Co output filter capacitor [0110] Rl load [0111] Vo output voltage [0112] Td delay time [0113] tl first time [0114 ] t2 Second time form number A0101 Page 21 of 29 M382658 [0115] t3 third time [0116] 1:4 fourth time [0117] t5 fifth time [0118] t6 sixth time [0119] Δ /tl first time interval [0120] A t2 second time Between [0121] A t3 third time interval [0122] Δΐ4 fourth time interval [0123] At5 fifth time interval [0124] Dp duty cycle [0125] Deff effective duty cycle on page A0101 Form Number 22/29 Total

Claims (1)

M382658 •、申請專利範圍: 1 . 一種具有零電壓切換輔助電路之全橋相移式轉換器,係電 性連接一直流輸入電壓,以傳送該直流輸入電壓提供之能 量至所供應之負載;該具有零電壓切換輔助電路之全橋相 移式轉換器包含: 一全橋式切換電路,係包含四個功率開關元件,分別為一 第一功率開關元件、一第二功率開關元件、一第三功率開 關元件以及一第四功率開關元件,以切換該直流輸入電壓 為一方波電壓;其中,每一功率開關元件分別具有與該功 率開關元件並聯之一二極體與一寄生電容,並且,該第一 功率開關元件與該第二功率開關丨元件係形成一超前臂,該 第三功率開關元件與該第四功率開關元件係形成一落後臂 9 一隔離變壓器,係具有——次側繞組與一二次側繞組,並 且電性連接該全橋式切換電路,以接收該方波電壓,並利 用該一次側繞組與該二次側繞組之數比轉換該方波電壓 之大小; 一零電壓切換辅助電路,係包含: 一第一輔助電容,係具有一第一端與一第二端;其中,該 第一端係電性連接該全橋式切換電路之該第一功率開關元 件與該第三功率開關元件; 一第二輔助電容,係具有一第一端與一第二端;其中,該 第一端係電性連接該第一輔助電容之該第二端,而該第二 端係電性連接該全橋式切換電路之該第二功率開關元件與 該第四功率開關元件;及 099203377 表單編號Α0101 第23頁/共29頁 0992009607-0 M382658 一輔助電感,係具有一第一端與一第二端;其中,該第一 端係電性連接該第一輔助電容之該第二端,而該第二端係 電性連接該隔離變壓器之該一次側繞組; 一全波整流電路,係電性連接該隔離變壓器之該二次側繞 組,整流該隔離變壓器之該二次側繞組之輸出電壓;及 一低通濾波電路,係電性連接該全波整流電路,濾除該全 波整流電路所輸出之整流電壓之高頻諧波成分; 藉此,利用提供該零電壓切換輔助電路之該輔助電感,以 增加該全橋式切換電路之該超前臂於零電壓切換操作下所 需之能量,而確保該全橋相移式轉換器達成正常之零電壓 切換操作。 2 .如申請專利範圍第1項之具有零電壓切換輔助電路之全橋 相移式轉換器,更包含: 一電壓補償電路,係電性連接該低通濾波電路,以接收該 全橋相移式轉換器之一輸出電壓,並產生一輸出補償電壓 ;及 一相移脈波寬度調變控制器,係電性連接該電壓補償電路 ,以接收該輸出補償電壓,並產生四個開關驅動信號,分 別為一第一開關驅動信號、一第二開關驅動信號、一第三 開關驅動信號以及一第四開關驅動信號,分別控制所對應 之該些功率開關元件之導通與截止。 3 .如申請專利範圍第2項之具有零電壓切換輔助電路之全橋 相移式轉換器,其中該第一開關驅動信號與該第二開關驅 動信號係為準位互補之電壓信號。 4 .如申請專利範圍第2項之具有零電壓切換輔助電路之全橋 相移式轉換器,其中該第三開關驅動信號與該第四開關驅 099203377 表單編號A0101 第24頁/共29頁 0992009607-0 M382658 動信號係為準位互補之電壓信號。 5 .如申請專利範圍第1項之具有零電壓切換輔助電路之全橋 相移式轉換器,其中該超前臂之該第一功率開關元件與該 第二功率開關元件之諧振,係由該隔離變壓器之--次側 漏電感與該第一該寄生電容和該第二該寄生電容所形成之 一等效諧振電容所產生。 6 .如申請專利範圍第1項之具有零電壓切換輔助電路之全橋 相移式轉換器,其中該落後臂之該第三功率開關元件與該 第四功率開關元件之諧振,係由該隔離變壓器之--次側M382658 •, the scope of patent application: 1. A full-bridge phase-shifting converter with a zero-voltage switching auxiliary circuit electrically connecting the input voltage to transmit the energy provided by the DC input voltage to the supplied load; The full bridge phase shift converter with zero voltage switching auxiliary circuit comprises: a full bridge switching circuit comprising four power switching elements, respectively a first power switching element, a second power switching element, and a third a power switching element and a fourth power switching element to switch the DC input voltage into a square wave voltage; wherein each power switching element has a diode and a parasitic capacitance in parallel with the power switching element, and The first power switching element and the second power switch unit form a lead arm, and the third power switching element and the fourth power switching element form a trailing arm 9 - an isolating transformer having a secondary winding a secondary winding, and electrically connected to the full bridge switching circuit to receive the square wave voltage and utilize the primary a ratio of the winding to the secondary winding to convert the magnitude of the square wave voltage; the zero voltage switching auxiliary circuit includes: a first auxiliary capacitor having a first end and a second end; wherein the first One end is electrically connected to the first power switching element of the full bridge switching circuit and the third power switching element; and a second auxiliary capacitor has a first end and a second end; wherein the first The second end is electrically connected to the second end of the first auxiliary capacitor, and the second end is electrically connected to the second power switching element of the full bridge switching circuit and the fourth power switching element; and 099203377 form number Α0101, page 23 of 29, 0992009607-0, M382658, an auxiliary inductor having a first end and a second end; wherein the first end is electrically connected to the second end of the first auxiliary capacitor, and The second end is electrically connected to the primary side winding of the isolation transformer; a full-wave rectifying circuit is electrically connected to the secondary winding of the isolation transformer, and rectifies an output voltage of the secondary winding of the isolation transformer ; And a low-pass filter circuit electrically connecting the full-wave rectifier circuit to filter out high-frequency harmonic components of the rectified voltage output by the full-wave rectifier circuit; thereby, the auxiliary device providing the zero-voltage switching auxiliary circuit The inductor is configured to increase the energy required by the super-forearm of the full bridge switching circuit for zero voltage switching operation to ensure that the full bridge phase shift converter achieves a normal zero voltage switching operation. 2. The full-bridge phase shift converter with zero-voltage switching auxiliary circuit according to claim 1, further comprising: a voltage compensation circuit electrically connected to the low-pass filter circuit to receive the full-bridge phase shift One of the converters outputs a voltage and generates an output compensation voltage; and a phase shift pulse width modulation controller electrically connected to the voltage compensation circuit to receive the output compensation voltage and generate four switch drive signals A first switch drive signal, a second switch drive signal, a third switch drive signal, and a fourth switch drive signal are respectively controlled to turn on and off of the corresponding power switch elements. 3. A full bridge phase shift converter having a zero voltage switching auxiliary circuit according to claim 2, wherein the first switch drive signal and the second switch drive signal are voltage signals complementary to each other. 4. A full-bridge phase-shift converter having a zero-voltage switching auxiliary circuit as claimed in claim 2, wherein the third switch drive signal and the fourth switch drive 099203377 Form No. A0101 Page 24 / Total 29 Page 0992009607 -0 M382658 The dynamic signal is a voltage signal with complementary levels. 5. The full bridge phase shift converter having a zero voltage switching auxiliary circuit according to claim 1, wherein the first power switching element of the super forearm resonates with the second power switching element by the isolation The secondary side leakage inductance of the transformer is generated by an equivalent resonant capacitance formed by the first parasitic capacitance and the second parasitic capacitance. 6. The full bridge phase shift converter having a zero voltage switching auxiliary circuit according to claim 1, wherein the third power switching element of the trailing arm resonates with the fourth power switching element by the isolation Transformer - the secondary side 漏電感與該第三該寄生電容和該第四該寄生電容所形成之 一等效諧振電容所產生。 7 .如申請專利範圍第1項之具有零電壓切換輔助電路之全橋 相移式轉換器,其中該隔離變壓器之該二次側繞組係為一 中心抽頭式繞組。 8 .如申請專利範圍第1項之具有零電壓切換辅助電路之全橋The leakage inductance is generated by an equivalent resonant capacitance formed by the third parasitic capacitance and the fourth parasitic capacitance. 7. A full bridge phase shift converter having a zero voltage switching auxiliary circuit as claimed in claim 1, wherein the secondary side winding of the isolation transformer is a center tapped winding. 8. Full bridge with zero voltage switching auxiliary circuit as claimed in item 1 of the patent application 相移式轉換器,其中該低通濾波電路係為一電感與一電容 所組成。 099203377 表單编號A0101 第25頁/共29頁 0992009607-0A phase shift converter, wherein the low pass filter circuit is composed of an inductor and a capacitor. 099203377 Form No. A0101 Page 25 of 29 0992009607-0
TW99203377U 2010-02-23 2010-02-23 Full-bridge phase-shift converter with assisted zero-voltage-switching circuit TWM382658U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99203377U TWM382658U (en) 2010-02-23 2010-02-23 Full-bridge phase-shift converter with assisted zero-voltage-switching circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99203377U TWM382658U (en) 2010-02-23 2010-02-23 Full-bridge phase-shift converter with assisted zero-voltage-switching circuit

Publications (1)

Publication Number Publication Date
TWM382658U true TWM382658U (en) 2010-06-11

Family

ID=50599617

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99203377U TWM382658U (en) 2010-02-23 2010-02-23 Full-bridge phase-shift converter with assisted zero-voltage-switching circuit

Country Status (1)

Country Link
TW (1) TWM382658U (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8995153B2 (en) 2012-07-24 2015-03-31 Industrial Technology Research Institute Passive power factor correction circuit
TWI495245B (en) * 2013-09-06 2015-08-01 Chicony Power Tech Co Ltd Method of controlling phase-shift full-bridge converter at light load operation
TWI505614B (en) * 2012-08-28 2015-10-21 Silergy Semiconductor Technology Hangzhou Ltd AC / DC voltage conversion circuit with low standby power consumption and its control method
US9252672B2 (en) 2013-10-04 2016-02-02 Chicony Power Technology Co., Ltd. Method of controlling phase-shift full-bridge converter in light load operation
TWI568163B (en) * 2015-12-22 2017-01-21 財團法人工業技術研究院 Isolated converter and isolated converter? control method
US10425003B1 (en) 2018-11-14 2019-09-24 Chicony Power Techology Co., Ltd. Power supply device
TWI765547B (en) * 2021-01-28 2022-05-21 台達電子工業股份有限公司 An isolated conversion device with magnetic bias balance control and method of magnetic bias balance control the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8995153B2 (en) 2012-07-24 2015-03-31 Industrial Technology Research Institute Passive power factor correction circuit
TWI492502B (en) * 2012-07-24 2015-07-11 Ind Tech Res Inst Passive power factor correction circuit
TWI505614B (en) * 2012-08-28 2015-10-21 Silergy Semiconductor Technology Hangzhou Ltd AC / DC voltage conversion circuit with low standby power consumption and its control method
TWI495245B (en) * 2013-09-06 2015-08-01 Chicony Power Tech Co Ltd Method of controlling phase-shift full-bridge converter at light load operation
US9252672B2 (en) 2013-10-04 2016-02-02 Chicony Power Technology Co., Ltd. Method of controlling phase-shift full-bridge converter in light load operation
US9621056B2 (en) 2013-10-04 2017-04-11 Chicony Power Technology Co., Ltd. Method of controlling phase-shift full-bridge converter in light load operation
TWI568163B (en) * 2015-12-22 2017-01-21 財團法人工業技術研究院 Isolated converter and isolated converter? control method
US10425003B1 (en) 2018-11-14 2019-09-24 Chicony Power Techology Co., Ltd. Power supply device
TWI765547B (en) * 2021-01-28 2022-05-21 台達電子工業股份有限公司 An isolated conversion device with magnetic bias balance control and method of magnetic bias balance control the same

Similar Documents

Publication Publication Date Title
US11594973B2 (en) Multiple-port bidirectional converter and control method thereof
US10700589B2 (en) Wide-operating-range resonant-transition soft-switched converter
US9660536B2 (en) Switching power supply device performs power transmission by using resonance phenomenon
CN102201739B (en) Symmetrical half-bridge LLC resonant bidirectional DC-DC converter
Gu et al. Hybrid-switching full-bridge DC–DC converter with minimal voltage stress of bridge rectifier, reduced circulating losses, and filter requirement for electric vehicle battery chargers
US9106141B2 (en) Switching power supply device
CN103580493B (en) high power converter architecture
WO2023098218A1 (en) Wide-range resonant soft-switching bidirectional direct-current converter, and control method therefor
US20110273909A1 (en) Full-bridge phase-shift converter with auxiliary zero-voltage-switching circuit
TWM382658U (en) Full-bridge phase-shift converter with assisted zero-voltage-switching circuit
KR102009200B1 (en) Bidirectional Converter with Auxiliary LC Resonant Circuit and Operating Method thereof
TW200929814A (en) DC transformer
TW201815043A (en) DC-DC converter for modulating full-bridge control mode based on loading current capable of optimizing the conversion efficiency by switching to different operating mode based on magnitude of loading
WO2017012328A1 (en) Phase-shift full-bridge topology circuit for single-stage power factor correction
CN201623633U (en) Full-bridge phase-shift type converter provided with zero-voltage switching auxiliary circuit
CN109586575A (en) Virtual parametric high side mosfet driver
TW201034364A (en) Power converter
TW201541838A (en) Flyback active clamping power converter
TWI495245B (en) Method of controlling phase-shift full-bridge converter at light load operation
CN202276537U (en) An X-ray high-frequency high-voltage generator conversion circuit
US9356527B2 (en) Multi-mode active clamping power converter
Wang et al. High efficiency high step-up isolated DC-DC converter for photovoltaic applications
US20200328678A1 (en) Dual-capacitor resonant circuit for use with quasi-resonant zero-current-switching dc-dc converters
US10075055B2 (en) Zero-voltage-switching scheme for phase shift converters
TWM457354U (en) Bidirectional half-bridge DC-to-DC converter featuring asymmetric pulse control method

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees