TWM381060U - Infrared sensing module - Google Patents

Infrared sensing module Download PDF

Info

Publication number
TWM381060U
TWM381060U TW98218275U TW98218275U TWM381060U TW M381060 U TWM381060 U TW M381060U TW 98218275 U TW98218275 U TW 98218275U TW 98218275 U TW98218275 U TW 98218275U TW M381060 U TWM381060 U TW M381060U
Authority
TW
Taiwan
Prior art keywords
piezoelectric actuator
infrared
infrared sensor
square wave
sensor module
Prior art date
Application number
TW98218275U
Other languages
Chinese (zh)
Inventor
wan-chun Yin
Original Assignee
Inova Inc
Santoma Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inova Inc, Santoma Ltd filed Critical Inova Inc
Priority to TW98218275U priority Critical patent/TWM381060U/en
Publication of TWM381060U publication Critical patent/TWM381060U/en

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

五、新型說明: 【新型所屬之技術領域】 [0001] 本創作係有關於一種感測器模組,尤其是一種紅外線 感測器模組,其藉由交替性地讓紅外線通過與阻隔,而 用於持續感測一不可移動之紅外線輻射體。 【先前技術】 [0002] 一般而言,焦電型(pyroe 1 ectr i c type )紅外線 感測器是利用焦電材料之焦電特性感測紅外線,其利用 基於黑體的紅外線能量所導致之溫度變化感測紅外線。 由於焦電型紅外線感測器可感測人體所散發之紅外線, 所以廣泛應用於感測人體之技術,而可應用於一自動照 明燈、一自動門、一自動供水裝置與一侵入警告裝置等 等。此外,焦電型紅外線感測器亦可用於多種吸收紅外 線的裝置,例如:一氣體偵測器、一有毒氣體警報裝置與 一火災警報裝置等等。由於焦電型紅外線感測器僅能感 測暫態溫度之變化,所以焦電型紅外線感測器在其焦電 材料之溫度改變後而轉變為穩定溫度時,將不會再產生 對應紅外線感測結果之輸出訊號。也就是說,紅外線第 一次入射到焦電型紅外線感測器之後,焦電型紅外線感 測器僅為產生一次對應紅外線感測結果之輸出訊號,之 後焦電型紅外線感測器於熱源無變化之下不再產生輸出 訊號。 由上述可知,由於焦電型紅外線感測器受焦電材料之 特性影響,即焦電材料不會在穩定溫度下感測紅外線, 所以導致焦電型紅外線感測器之應用受到限制,例如:具 表單編號A0101 第3頁/共40頁 M381060 焦電型紅外線感測器之自動照明燈,其通常設置於浴室 、大樓大廳、地下室樓梯間等等。當一有人出現在焦電 型紅外線感測器之感測範圍内時,自動照明燈就會開啟 一次’但是之後不管人仍持續出現在焦電型紅外線感測 器之感測範圍内,自動照明燈會在一預定時間後就會自 行關閉。為了解決此種類型之焦電型紅外線感測器的問 題’焦電材料所受到的溫度必須持續的變化,其藉由周 期性地與交替性地讓入射之紅外線通過與阻隔,而改變 焦電材料所受到的溫度。 請參閱第一圖’其為習知焦電型紅外線感測器之結構 不意圖。如圖所示,習知焦電型紅外線感測器之製作材 料I係選自於結欽酸船(Pb(Zr,Ti)〇3)壓電陶瓷材 料或—單晶材料,如鈕酸鋰(LiTa03)。如第一圖所示 ’一石夕窗口 2設置於一蓋體6之頂部中間,矽窗口2用於選 擇性遽光,僅讓一紅外線波長之光線通過矽窗口2 ^ 一焦 電材料4透過一黏膠緊密設於一導電托架5之上表面,焦 電材料4用於感測通過矽窗口2之紅外線。一高阻抗件7與 一場效晶體管(FET) 8相互連接並設置於一下托架3上, 向阻抗件7與場效晶體管8用於放大焦電材料4所產生之輸 出訊號。一帽體1於充填氮氣後密封,同時導線9設置於 下托架3,以傳輸訊號至外部。 焦電材料4的操作原理示意於第二a圖與第二b圖,其 為&知焦電型紅外線感測器之焦電材料4之操作原理的示 意圖。如圖所示’當焦電材料4吸收熱能時,焦電材料4 會改菱自發性極化(spontaneous polarization) 1〇 ’即誘發表面電荷1卜此外,焦電材料4之表面電荷11與V. New description: [New technology field] [0001] This creation is about a sensor module, especially an infrared sensor module, which alternately allows infrared rays to pass through and block. It is used to continuously sense an immovable infrared radiator. [Prior Art] [0002] In general, a pyro type 1 ectr ic type infrared sensor senses infrared rays by utilizing the pyroelectric characteristics of a pyroelectric material, which utilizes temperature changes caused by black body-based infrared energy. Sensing infrared light. Since the pyroelectric type infrared sensor can sense the infrared rays emitted by the human body, it is widely used in the technology of sensing the human body, and can be applied to an automatic lighting, an automatic door, an automatic water supply device, and an intrusion warning device. Wait. In addition, the pyroelectric infrared sensor can also be used in a variety of infrared absorbing devices, such as a gas detector, a toxic gas alarm device, and a fire alarm device. Since the pyroelectric type infrared sensor can only sense the change of the transient temperature, the pyroelectric type infrared sensor will not generate corresponding infrared sensation when the temperature of the pyroelectric material changes to a stable temperature. The output signal of the test result. That is to say, after the infrared light is incident on the pyroelectric type infrared sensor for the first time, the pyroelectric type infrared sensor only outputs an output signal corresponding to the infrared sensing result, and then the pyroelectric type infrared sensor is not in the heat source. The output signal is no longer generated under the change. As can be seen from the above, since the pyroelectric type infrared sensor is affected by the characteristics of the pyroelectric material, that is, the pyroelectric material does not sense infrared rays at a stable temperature, the application of the pyroelectric type infrared sensor is limited, for example: Form No. A0101 Page 3 of 40 M381060 Automatic lighting for pyroelectric infrared sensors, which are usually installed in bathrooms, building halls, basement stairwells, etc. When someone appears in the sensing range of the pyroelectric infrared sensor, the automatic light will be turned on once' but after that, people continue to appear in the sensing range of the pyroelectric infrared sensor, and the automatic lighting The light will turn itself off after a predetermined time. In order to solve the problem of this type of pyroelectric type infrared sensor, the temperature to which the pyroelectric material is subjected must be continuously changed, which changes the focus by periodically and alternately passing the incident infrared rays through the barrier. The temperature to which the material is subjected. Please refer to the first figure, which is a structure of a conventional pyroelectric type infrared sensor. As shown in the figure, the material I of the conventional pyroelectric type infrared sensor is selected from a piezoelectric acid material of Pb (Zr, Ti) 〇 3 or a single crystal material such as lithium nitrite. (LiTa03). As shown in the first figure, the 'one stone eve window 2 is disposed in the middle of the top of a cover body 6, and the 矽 window 2 is used for selective glazing, and only one infrared wavelength light passes through the 矽 window 2 ^ a pyroelectric material 4 The adhesive is closely disposed on the upper surface of a conductive bracket 5, and the pyroelectric material 4 is used to sense the infrared rays passing through the window 2. A high-impedance member 7 is connected to a field effect transistor (FET) 8 and is disposed on the lower carrier 3, and the impedance member 7 and the field effect transistor 8 are used to amplify the output signal generated by the pyroelectric material 4. A cap 1 is sealed after filling with nitrogen gas, and a wire 9 is provided to the lower bracket 3 to transmit a signal to the outside. The principle of operation of the pyroelectric material 4 is illustrated in Figures 2a and 2b, which are schematic illustrations of the principle of operation of the pyroelectric material 4 of the pyroelectric type infrared sensor. As shown in the figure, when the pyroelectric material 4 absorbs thermal energy, the pyroelectric material 4 will change the spontaneous polarization 1〇', that is, induce the surface charge 1 In addition, the surface charge 11 of the pyroelectric material 4

St A0101 第4頁/共40頁 自發性極化11之變化成比例,且此一現象稱為焦電效應 。焦電感測器藉由陶瓷材料可感測從人體輻射出之微小 紅外線能量,以下將進一步詳細說明。 如第二A圖所示,當焦電材料4之自發性極化10被誘發 於一特定方向時,表面電荷11在達到熱平衡之一溫度T [K]下誘發至一表面電極,所以焦電材料4保持電中性》 然而,於此狀態下,當具熱能之紅外線入射至焦電材料4 時,焦電材料4之溫度會從T [K]增加至(Τ+ΔΤ) [K] ,且自發性極化10之數量會隨著溫度增加而減少,如第 二B圖所示。自發性極化10的變化是迅速改變的,而束缚 於焦電材料4之表面的部分表面電荷11會轉為自由電荷12 ,且自由電荷12不會耦合内部自發性極化10。 承上所述,自由電荷12流經連接於焦電材料4之表面 電極的一導線13,且流經設置於導線13之中間部分的一 高阻抗負載14而消失。在此例中,當一電壓計連接於高 阻抗負載14之兩端時,可偵測流動的自由電荷的數量, 而得知與流動的自由電荷成比例之一電壓。當自由電荷 12沿著導線13放電,且之後焦電材料4之溫度不再產生變 化時*焦電材料4不會再產生自由電荷12 »且電壓計從尚 阻抗負載14即會測量不到電壓,所以即不會偵測到從紅 外線感測器所輸出之一訊號。因此,為了偵測一連續輸 出訊號,所以必須讓焦電材料4之溫度為連續可逆變化, 其藉由控制入射至焦電材料4的紅外線,也就是交替性地 導通與阻隔紅外線入射至焦電材料,使焦電材料4之溫度 從溫度T[K]變化至溫度(Τ+ΔΤ) [K]為連續可逆變化, 以偵測連續輸出訊號。 表單編號Α0101 第5頁/共40頁 此例中,當紅外線之導通時間與阻隔時間太短時,焦 電材料4無法被紅外線加熱,所以焦電材料4之溫度變化 會降低,且輸出電壓會降低。相反地,當紅外線之導通 時間與阻隔時間太長時,焦電材料4之自發性極化會逐漸 降低,所以少量自由電荷1 2會流經高阻抗負載14,因此 焦電材料4無法同時產生大量自由電荷1 2。基於上述,所 以必須依據焦電材料4之比熱而調整紅外線之導通時間與 阻隔時間。 請參閱第三圖,其為習知焦電型紅外線感測器之輸出 對頻率的曲線圖。如圖所示,當頻率為1赫茲時,習知焦 電型紅外線感測器會輸出最大值,也就是紅外線之導通 時間與阻隔時間設定為1赫茲,以取得習知焦電型紅外線 感測器之最大輸出值。 最近,發展出一種紅外線通過與阻隔裝置,其包含二 壓電雙晶片振動器與二狹縫板。以下係配合第四圖說明 壓電雙晶片振動器之操作原理。壓電元件具有一特性, 當電能輸入至壓電元件時,壓電元件會產生位移。於此 例中,壓電元件所產生之位移係如下方程式1所示: x:dE------------------( 1 ) 其中,X為壓電元件之位移,d為壓電係數,E為施加於壓 電元件之電壓。一般之壓電材料,一公分長之壓電材料 經輸入1萬伏特之電壓時,即會產生10微米(/zm)之位 移。如第四圖所示,一金屬彈片22藉由黏膠設置於兩壓 電元件21之間,且黏設完成之結構的一端設於一固定裝 置23。黏設完成之結構的另一端的位移,也就是自由端 之位移可由下方程式2求得。 表單編號A0101 第6頁/共40頁 M381060 3 l2 (2) △xi =乏xd:u χρ·χΕ 其中,為位移,d31為壓電係數,1為自由端之長度 ,t為壓電元件21之厚度,E為施加之電壓。與此例中, 壓電元件21之長度設為10釐米(mm),且輸入之電壓為1 千伏特,如此會產生100微米(//m)之位移。如此可知 ,使用壓電雙晶片之紅外線感測器可放大位移10倍。St A0101 Page 4 of 40 The change in spontaneous polarization 11 is proportional, and this phenomenon is called the pyroelectric effect. The coke inductive sensor senses the tiny infrared energy radiated from the human body by means of a ceramic material, which will be described in further detail below. As shown in FIG. 2A, when the spontaneous polarization 10 of the pyroelectric material 4 is induced in a specific direction, the surface charge 11 is induced to a surface electrode at a temperature T [K] at which the thermal equilibrium is reached, so the coke is Material 4 remains electrically neutral. However, in this state, when infrared light having thermal energy is incident on the pyroelectric material 4, the temperature of the pyroelectric material 4 increases from T [K] to (Τ+ΔΤ) [K]. And the number of spontaneous polarizations 10 decreases as the temperature increases, as shown in Figure B. The change in the spontaneous polarization 10 is rapidly changed, and part of the surface charge 11 bound to the surface of the pyroelectric material 4 is converted into a free charge 12, and the free charge 12 does not couple the internal spontaneous polarization 10. As described above, the free charge 12 flows through a wire 13 connected to the surface electrode of the pyroelectric material 4, and disappears through a high-impedance load 14 disposed in the middle portion of the wire 13. In this example, when a voltmeter is connected across the high impedance load 14, the amount of free charge flowing can be detected and a voltage proportional to the free charge of the flow is known. When the free charge 12 is discharged along the wire 13, and then the temperature of the pyroelectric material 4 no longer changes * the pyroelectric material 4 will no longer generate free charge 12 » and the voltmeter will not measure the voltage from the still impedance load 14 Therefore, one of the signals output from the infrared sensor is not detected. Therefore, in order to detect a continuous output signal, the temperature of the pyroelectric material 4 must be continuously reversible, by controlling the infrared rays incident on the pyroelectric material 4, that is, alternately conducting and blocking infrared rays from incident to the pyroelectric The material changes the temperature of the pyroelectric material 4 from the temperature T[K] to the temperature (Τ+ΔΤ) [K] as a continuous reversible change to detect the continuous output signal. Form No. Α0101 Page 5 of 40 In this example, when the on-time and the blocking time of the infrared light are too short, the pyroelectric material 4 cannot be heated by the infrared rays, so the temperature change of the pyroelectric material 4 is lowered, and the output voltage is reduce. Conversely, when the on-time and the blocking time of the infrared ray are too long, the spontaneous polarization of the pyroelectric material 4 gradually decreases, so a small amount of free charge 12 flows through the high-impedance load 14, so that the pyroelectric material 4 cannot be simultaneously generated. A large amount of free charge 1 2 . Based on the above, it is necessary to adjust the on-time and the blocking time of the infrared rays in accordance with the specific heat of the pyroelectric material 4. Please refer to the third figure, which is a graph of the output versus frequency of a conventional pyroelectric infrared sensor. As shown in the figure, when the frequency is 1 Hz, the conventional pyroelectric infrared sensor outputs a maximum value, that is, the on-time and the blocking time of the infrared ray are set to 1 Hz to obtain the conventional pyroelectric infrared sensing. The maximum output value of the device. Recently, an infrared ray pass and barrier device has been developed which includes a bimorph bimorph vibrator and a two slit plate. The operation principle of the piezoelectric bimorph vibrator will be described below in conjunction with the fourth figure. The piezoelectric element has a characteristic that when the electric energy is input to the piezoelectric element, the piezoelectric element is displaced. In this example, the displacement produced by the piezoelectric element is as shown in Equation 1 below: x:dE------------------(1) where X is the piezoelectric element The displacement, d is the piezoelectric coefficient, and E is the voltage applied to the piezoelectric element. In general piezoelectric materials, a piezoelectric material of one centimeter length produces a displacement of 10 micrometers (/zm) when a voltage of 10,000 volts is input. As shown in the fourth figure, a metal dome 22 is disposed between the two piezoelectric elements 21 by means of an adhesive, and one end of the bonded structure is disposed at a fixing device 23. The displacement of the other end of the bonded structure, that is, the displacement of the free end, can be obtained by the following program 2. Form No. A0101 Page 6 of 40 M381060 3 l2 (2) △xi = Lack of xd:u χρ·χΕ where, for displacement, d31 is the piezoelectric coefficient, 1 is the length of the free end, t is the piezoelectric element 21 The thickness, E is the applied voltage. In this example, the length of the piezoelectric element 21 is set to 10 cm (mm), and the input voltage is 1 kV, which causes a displacement of 100 μm (//m). It can be seen that the infrared sensor using the piezoelectric bimorph can amplify the displacement by 10 times.

最近發展出另一種焦電型紅外線感測器,其整體結構 及其操作原理如第五圖所示。請參閱第五圖,其為另一 習知焦電型紅外線感測器之透視圖。習知焦電型紅外線 感測器包含壓電雙晶片與狹縫。一矽窗口 60設置於一蓋 體61上,用於選擇性地傳送紅外線62。二狭縫板64、64 ’分別設置於壓電雙晶片63之自由端,以利用狹縫板64 、64’使通過矽窗口 60之紅外線62交替性地受阻隔或通 過,通過之紅外線62會再通過一盒體66上之一圓孔67, 以照射盒體66中所設置之一焦電元件65。此一方式,焦 電型紅外線感測器可彳貞測與紅外線之能量成比例之輸出 電壓。 請參閱第六A圖至第六B圖,其為第五圖之焦電型紅外 線感測器交替性地讓紅外線通過與阻隔之方式的示意圖 。如第六A圖所示,此例初始係施加0伏特電壓至焦電型 紅外線感測器之壓電雙晶片,且上狹缝板82與下狹縫板 83為開啟,所以紅外線81通過狹縫板82、83。然而,如 第六B圖所示,當輸入一特定電壓至焦電型紅外線感測器 之壓電雙晶片時,狹縫板82、83會往相反方向移動,因 表單编號A0101 第7頁/共40頁 此紅外線81受狹缝板82、83的阻隔。 上述紅外線通過與阻隔裝置之功效在於其功率消耗可 降低至30毫瓦(mW),其為小功率消耗,而大約為馬達 型之功率消耗的四十分之一,且尺寸大小可減少至二十 分之一。此外,紅外線通過與阻隔裝置所使用之操作頻 率可降低至5赫茲。然而,由於兩狹縫板除了狹縫會讓紅 外線通過以外,其餘平面皆會阻隔紅外線,所以導致入 射至紅外線感測器的紅外線減少二分之一,因此,紅外 線感測器之輸出電壓亦等比例的降低了二分之一。於此 例中,處理狹縫的精確度不高,感測結果的變化大,如 此為了提高處理狹縫的精確而降低感測結果之變化時, 即造成處理狹縫的成本提高。在上述習知例中,實際上 壓電雙晶片之每一端是呈弧線運動並非線性運動,所以 處理狹縫會變得更加困難。此外,二壓電雙晶片必須依 據維度與壓電特性精確地相互配合,如此在產品外形上 亦有相當的難度。 另外,盒體中設置紅外線感測器,且盒體上設置一孔 ·.- - 洞,複數狹縫板設置於壓電雙晶片之每一端並位於盒體 上,而狹縫板於移動時會產生氣流,因而會產生雜訊的 問題,這問題的產生原因在於壓電雙晶片之位移不夠大 ,因此增加壓電雙晶片所產生之位移的解決方案已經被 發展出來了,但由於結構過於複雜而導致成本提高,所 以並未用在商業用途上。 為了解決上述之問題,發展出一種使用一壓電線性馬 達之紅外線通過與阻隔裝置,由於習知壓電線性馬達係 採用產生三角波之電路,以提供三角波,但是產生三角 表單編號A0101 第8頁/共40頁 波之電路較為複雜,所以習知壓電線性馬達無法製作成 小型馬達。習知紅外線通過與阻隔裝置具有較低之驅動 電壓且可產生較大的力量,但習知紅外線通過與阻隔裝 置的價格昂貴且耐久性差。此外,習用使用壓電雙晶片 之紅外線通過與阻隔裝置具較高之驅動電壓,且所產生 之力量較低。另外,習知紅外線通過與阻隔裝置經過長 時間使用後,無法避免金屬板與壓電元件分離,所以會 導致產生耐久性降低的問題。 因此,本創作針對上述問題提供一種紅外線感測器模 組,其利用控制紅外線受阻隔或通過而入射至紅外線感 測器,使焦電型紅外線感測器之焦電材料之溫度可連續 性變化,以用於連續感測紅外線,且利用具多層壓電材 料之壓電致動器,以增加作動之位移,進而解決焦電型 紅外線感測器無法連續感測紅外線以及壓電元件位移量 不足之問題。 【新型内容】 [0003] 本創作之目的之一,在於提供一種紅外線感測器模組 ,其提供較佳之輸出效率與高維度精確度。 本創作之目的之一,在於提供一種紅外線感測器模組’ ,其藉由圓頂形壓電致動器而建構成簡單架構,且利用 可製造出任意外形之一粉末射出成型法,而簡易製作出 圓頂形壓電致動器。 本創作之目的之一,在於提供一種紅外線感測器模組 ,其藉由可在低驅動電壓運作之紅外線通過與阻隔裝置 ,而產生較大力量,以讓紅外線通過或阻隔紅外線。 表單編號A0101 第9頁/共40頁 本創作之目的之一,在於提供一種紅外線感測器模組 ,其可感測一連續訊號,甚至從不可移動之紅外線輻射 體。 本創作之目的之一,在於提供一種紅外線感測器模組 ,其係利用壓電致動器做為壓電線性馬達之驅動元件, 而以較低之操作電壓控制紅外線之遮光板,以控制紅外 線受阻隔或通過。 本創作之目的之一,在於提供一種紅外線感測器模組 ,其係利用具多層壓電材料之壓電致動器,以增加作動 之位移。 本創作為一種紅外線感測器模組,其包含一紅外線感 測器、一壓電致動器、一振動轴、一遮光板、一振盈單 元與一控制單元,其中紅外線感測器係感測一物體之一 紅外線,並對應產生一輸出訊號,控制單元依據紅外線 感測器之輸出訊號控制該振盪單元產生輸入訊號至壓電 致動器,該輸入訊號之波形為方_波,:塵.電致動器具有一 極化方向,該極化方向朝向至一曲面中心,該壓電致動 器依據一輸入訊號之波形,而往一圓頂頂端之一法線的 方向重複擴張與收縮,振動軸之一端緊密接設該壓電致 動器之該圓頂端點,移動件接設於該振動軸,遮光板緊 密接設該移動件並位於該紅外線感測器前方,壓電致動 器驅使移動件呈軸向運動於該振動軸,使遮光板交替性 地讓該紅外線入射至該紅外線感測器與阻隔該紅外線入 射至該紅外線感測器。此外,本創作之紅外線感測器模 組更包含一導引器、一升壓單元、一運算放大器與一彈 性體,其中導引器設置於該振動轴並限制該移動件之一 表單編號A0101 第10頁/共40頁 M381060 移動距離,升壓單元耦接於該振盪單元與該壓電致動器 之間,升壓單元提升振盪單元所產生之該方波之一電壓 準位,使該電壓準位對應於屋電致動器之一操作電壓準 位,運算放大器放大該紅外線感測器之輸出訊號,彈性 體設置於該振動軸與該移動件之間並耦接該振動軸與該 移動件。Another type of pyroelectric type infrared sensor has recently been developed, and its overall structure and operation principle are as shown in the fifth figure. Please refer to the fifth figure, which is a perspective view of another conventional pyroelectric type infrared sensor. Conventional pyroelectric infrared sensors include piezoelectric bimorphs and slits. A stack of windows 60 is provided on a cover 61 for selectively transmitting infrared rays 62. The two slit plates 64, 64' are respectively disposed at the free ends of the piezoelectric bimorph 63, so that the infrared rays 62 passing through the meandering window 60 are alternately blocked or passed by the slit plates 64, 64', and the infrared rays 62 pass through A circular aperture 67 in a box 66 is then passed through to illuminate one of the pyroelectric elements 65 disposed in the housing 66. In this way, the pyroelectric infrared sensor can measure the output voltage proportional to the energy of the infrared light. Please refer to FIGS. 6A to 6B, which are schematic diagrams of the manner in which the pyroelectric infrared sensor of FIG. 5 alternately allows infrared rays to pass through and block. As shown in FIG. 6A, this example initially applies a voltage of 0 volts to the piezoelectric bimorph of the pyroelectric type infrared sensor, and the upper slit plate 82 and the lower slit plate 83 are opened, so the infrared rays 81 pass through the narrow Sewing plates 82, 83. However, as shown in FIG. 6B, when a specific voltage is input to the piezoelectric bimorph of the pyroelectric type infrared sensor, the slit plates 82, 83 are moved in the opposite direction, as the form number A0101 is page 7. / A total of 40 pages of this infrared ray 81 is blocked by the slit plates 82, 83. The effect of the above-mentioned infrared ray passing and blocking device is that its power consumption can be reduced to 30 milliwatts (mW), which is a small power consumption, which is about one-fortieth of the power consumption of the motor type, and the size can be reduced to two. one tenth. In addition, the operating frequency of the infrared ray passing through the barrier device can be reduced to 5 Hz. However, since the two slit plates allow the infrared rays to pass through the slits, the other planes block the infrared rays, so that the infrared rays incident on the infrared sensor are reduced by one-half, and therefore, the output voltage of the infrared sensor is also equal. The ratio is reduced by a factor of two. In this example, the accuracy of the processing slit is not high, and the variation of the sensing result is large, so that the cost of the processing slit is increased in order to improve the accuracy of the processing slit and reduce the variation of the sensing result. In the above conventional example, in practice, each end of the piezoelectric bimorph is moved in an arc and moves nonlinearly, so that it becomes more difficult to process the slit. In addition, the bimorph bimorph must accurately match the dimensions and piezoelectric characteristics, which makes the product appearance quite difficult. In addition, an infrared sensor is disposed in the box body, and a hole·.-- hole is disposed in the box body, and the plurality of slit plates are disposed at each end of the piezoelectric bimorph and are located on the box body, and the slit plate is moved Airflow is generated, which causes noise problems. This problem is caused by the displacement of the piezoelectric bimorph is not large enough, so the solution to increase the displacement generated by the piezoelectric bimorph has been developed, but the structure is too Complexity leads to increased costs, so it is not used for commercial purposes. In order to solve the above problems, an infrared ray passing and blocking device using a piezoelectric linear motor has been developed. Since a conventional piezoelectric linear motor uses a circuit for generating a triangular wave to provide a triangular wave, a triangular form number A0101 is generated. The circuit of a total of 40 pages is complicated, so the conventional piezoelectric linear motor cannot be made into a small motor. Conventional infrared rays have a lower driving voltage with a barrier device and can generate a large force, but conventional infrared rays are expensive and durable with barrier devices. In addition, infrared light passing through the piezoelectric bimorph has a higher driving voltage and a lower power generated by the barrier device. Further, since the conventional infrared rays are used for a long period of time after being used with the barrier device, the separation between the metal plate and the piezoelectric element cannot be avoided, which causes a problem of deterioration in durability. Therefore, the present invention provides an infrared sensor module for controlling the above problem, which is controlled by infrared rays to be blocked or passed through to the infrared sensor, so that the temperature of the pyroelectric material of the pyroelectric type infrared sensor can be continuously changed. For continuous sensing of infrared rays, and using piezoelectric actuators with multiple layers of piezoelectric materials to increase the displacement of the actuation, thereby solving the problem that the pyroelectric infrared sensor cannot continuously sense infrared rays and the displacement of the piezoelectric elements is insufficient. The problem. [New Content] [0003] One of the aims of the present invention is to provide an infrared sensor module that provides better output efficiency and high dimensional accuracy. One of the objects of the present invention is to provide an infrared sensor module which is constructed by a dome-shaped piezoelectric actuator and which can be fabricated into a powder injection molding method of any shape. A dome shaped piezoelectric actuator is easily fabricated. One of the aims of the present invention is to provide an infrared sensor module that generates a large force by passing infrared rays and a barrier device operating at a low driving voltage to allow infrared rays to pass through or block infrared rays. Form No. A0101 Page 9 of 40 One of the purposes of this creation is to provide an infrared sensor module that senses a continuous signal, even from an immovable infrared radiator. One of the purposes of the present invention is to provide an infrared sensor module that uses a piezoelectric actuator as a driving element of a piezoelectric linear motor and controls an infrared ray shield with a lower operating voltage to control Infrared rays are blocked or passed. One of the aims of the present invention is to provide an infrared sensor module that utilizes a piezoelectric actuator having a plurality of layers of piezoelectric material to increase the displacement of the actuation. The present invention is an infrared sensor module comprising an infrared sensor, a piezoelectric actuator, a vibration shaft, a visor, a vibration unit and a control unit, wherein the infrared sensor is sensed Measuring one of the infrared rays of an object, and correspondingly generating an output signal, the control unit controls the oscillating unit to generate an input signal to the piezoelectric actuator according to the output signal of the infrared sensor, and the waveform of the input signal is square wave: dust The electric actuator has a polarization direction which is directed toward a center of a curved surface, and the piezoelectric actuator repeatedly expands and contracts toward a normal direction of one of the dome tops according to the waveform of an input signal, and vibrates One end of the shaft is closely connected to the end of the dome of the piezoelectric actuator, and the moving member is connected to the vibration shaft, and the light shielding plate is closely connected to the moving member and located in front of the infrared sensor, and the piezoelectric actuator drives The moving member moves axially to the vibration axis, so that the visor alternately causes the infrared ray to be incident on the infrared ray sensor and block the infrared ray from entering the infrared ray sensor. In addition, the infrared sensor module of the present invention further comprises an introducer, a boosting unit, an operational amplifier and an elastic body, wherein the guide is disposed on the vibration axis and limits one of the moving parts to form number A0101 Page 10 of 40 M381060 moving distance, the boosting unit is coupled between the oscillating unit and the piezoelectric actuator, and the boosting unit boosts a voltage level of the square wave generated by the oscillating unit, so that The voltage level corresponds to an operating voltage level of the electrical actuator, the operational amplifier amplifies the output signal of the infrared sensor, and the elastic body is disposed between the vibration axis and the moving component and coupled to the vibration axis and the Moving parts.

該紅外線感測器所產生之該輸出訊號之一數值一旦大 於或等於一參考值時,該控制單元控制該振盪單元驅使 該壓電致動器擴張或收縮,使該遮光板阻隔該紅外線入 射至該紅外線感測器或使該紅外線通過該遮光板而入射 至該紅外線感測器,當該紅外線感測器所產生之該輸出 訊號之該數值小於該參考值時,該控制單元控制該振盪 單元驅使該壓電致動器停止作動,使該遮光板停止作動 而不會遮蔽紅外線感測器;該輸入訊號之波形為一方波 ,當該方波之一脈波寬度大於或等於該振盪單元所使用 之一預設值時,該壓電致動器往該圓頂頂端之該法線的 方向擴張;該壓電致動器往該圓頂頂端之該法線的方向 擴張,並擴張於一區間,該區間為對應該方波上升並保 持一最大值的期間,且該壓電致動器於對應該方波下降 之另一區間回復外形。 此外,該壓電致動器更可在該方波之一脈波寬度小於 該振盪單元之一預設值時,該Μ電致動器往該圓頂頂端 之該法線的方向收縮;該壓電致動器往該圓頂頂端之該 法線的方向收縮,並收縮於一區間,該區間對應該方波 上升並保持一最大值的期間,且該壓電致動器於對應該 方波下降之另一區間回復外形。 表單編號Α0101 第11頁/共40頁 [0004] 【實施方式】 炫為使貴審查委員對本創作之技術特徵及所達成之 功效更有進一步之瞭解與認識,謹佐以較佳之實施例圖 及配合詳細之說明,說明如後: 首先,相同的元件於不同圖示中會標示相同元件編號 ,此外,一般常用之功能或結構,以下不再贅述。 請參閱第十六圖,其為本創作之紅外線感測器模組之 一實施例的方塊圖。如圖所示,本創作之紅外線感測器 模組包含一壓電致動器1〇〇、一振動轴1〇3、一移動件 1 〇 5 (參閱第11圖)、一遮光板〗〇7、一紅外線感測器 200、一振盪單元3〇〇、一控制單元4〇〇、一升壓單元500 '一運算放大器6 0 0與一電源單元7 〇 〇。紅外線感測器 200係感測對應一物體之一紅外線,本實施例之紅外線感 測器200係傳送物體之紅外線,以感測物體,紅外線感測 器200包含一紅外線窗口 2〇3,以選擇僅讓紅外線通過紅 外線窗口 203,本實施例之紅外:線感測器2〇〇可為一焦電 型紅外線感測器。 . :: ... 承接上述’壓電致動器100包含圓頂外形之壓電元件 ,壓電致動器100之極化方南係朝向至本身之曲面.中心, 壓電致動器100依據一輸入訊號之波形,而往一圓頂頂端 之法線(normal line)的方向重複擴張與收縮。本實 施例之壓電致動器1〇〇具較佳之輸出效率與高維度精確度 ’壓電致動器100可利用一粉末射出成型方法簡單地製造 出任意外形,如一圓頂外形或其他類似之三維立體外形. °振動軸103具一棒狀外形,振動轴103之一端係緊連壓 電致動器100之圓頂端點,移動件105 (參閱第11圖)係 表單編號A0101 第丨2頁/共40頁 搞接振動轴103,而往一軸向移動。遮光板107係連接移 動件105並位於紅外線感測器200之前方,遮光板107用 以交替性地阻隔紅外線入射至紅外線感測器2 0 0或使紅外 線通過而入射至紅外線感測器2 0 0,有關於交替性地阻隔 紅外線或使紅外線通過並入射至紅外線感測器2 0 0的相關 元件之詳細說明將於下述詳加說明,例如壓電致動器100 、振動軸103、移動件105與遮光板107。 控制單元400係控制振盪單元300輸出輸入訊號並輸入 至壓電致動器100,控制單元400依據紅外線感測器200 之輸出訊號控制振盪單元300,以驅使壓電致動器100往 一圓頂頂端之一法線的方向重複擴張與收縮。升壓單元 500係提升振盈單元300所輸出之方波的一電壓準位,使 該輸入訊號之該電壓準位對應於壓電致動器100之一工作 電壓準位,此外,本創作之紅外線感測器模組亦可不需 設置升壓單元500,而直接以振盪單元300所輸出之輸入 訊號驅動壓電致動器100,其中該輸入訊號之波形為方波 。運算放大器60 0係放大紅外線感測器2 0 0之輸出訊號, 此外,本創作之紅外線感測器模組亦可不需設置運算放 大器600,而直接將紅外線感測器200之輸出訊號輸入至 控制單元400。電源單元700係供電至振蘆單元300與控 制單元400。 請參閱第十一圖,其為本創作之壓電致動器、振動轴 與移動件之示意圖。如第十一圖所示,壓電致動器100係 由圓頂外形之壓電元件所形成,振動軸103具一棒狀外形 ,振動軸103之一端係緊連壓電致動器100之圓頂端點, 移動件105係耦接振動轴103,以往一軸向移動,本實施 表單編號A0101 第13頁/共40頁 例更包含一彈性體109 ,其設置於振動軸1〇3與移動件 105之間,並耦接振動軸1〇3與移動件1〇5 ,如第十二圖 所示,其中苐十一圖與第十二圖之不同在於第十二圖之 裝置更設置遮光板107於彈性體1〇9之外側’並位於紅外 線感測器2 0 0之前方,使紅外線通過並入射至紅外線感測 器200 ’或阻隔紅外線;本實施例之彈性體1〇9可為一彈 簧’遮光板107之一端係設置於彈性體1〇9之外側,且彈 性體10 9緊設於移動件1 〇 5之外側,且遮光板1 〇 7之另一 側遮住紅外線感測器2 〇 〇,本實;$包例之遮光板1 〇 7之另一 側為不易變形之鋼板。如第十三圖所示,其中第十二圖 與第十三圖之不同在於第十三圖更設置導引器m,其中 導引器111係設置於振動軸1〇3上,以限制移動件1〇5之 一移動位移。 壓電致動器100依據輸入電壓產生作動之原理,如下 圖及配合詳細之說明所揭示。 請參閱第七A圖至第七D圖,其為本創作之壓電致動器 之一實施例的示意圖。如第七B圖與第七D圖所示,箭頭A 為極化方向,參考特性E為電場方向、壓電致動器1〇〇之 該極化方向朝向至一曲面中心,由於壓電致動器1〇〇之電 極區的上表面與下表面具電壓差,使該壓電致動器1〇〇依 據一輸入訊號之波形,而往一圓頂頂端之一法線的方向 重複擴張與收縮’也就是依據同一時脈頻率之脈波的變 化’而往一圓頂頂端之一法線的方向重複擴張與收縮。 因此,如第七A圖所示,當振盪單元300所產生之輸入 訊號之一脈波寬度大於或等於該振盪單元300之一預設值 時’該壓電致動器100往該圓頂頂端之該法線的方向擴張 表單蹁號A0101 第丨4頁/共40頁 ,其擴張方式係如第七B圖所示,其中壓電致動器loo之 擴張如擴張部l〇〇a往點線方向擴張。在收縮時,如第七〇 圖所示’當振盪_單元300所產生之輸入訊號之一脈波寬度 小於該振盪單元300之一預設值時,該壓電致動器1〇〇往 該圓頂頂端之該法線的方向收縮,其收縮方式係如第七D 圖所示’其中壓電致動器1〇〇之擴張如擴張部1〇〇1)往點線 方向擴張,該輸入訊號為方波。 該壓電致動器100往該圓頂頂端之該法線的方向擴張 ,並擴張於一區間’該區間為對應該方波上升並保持一 最大值的期間’且該壓電致動器1〇〇於對應該方波下降之 另一區間回復外形;該壓電致動器1〇〇往該圓頂頂端之該 法線的方向收縮,並收縮於一區間,該區間對應該方波 上升並保持一最大值的期間,且該壓電致動器1〇〇於對應 該方波下降之另一區間回復外形。 請參閱第八A圖與第八β圖’其為本創作之壓電致動器 產生位移之一較佳實施例的示意圖。如圖所示,其採用 一有限元素法(Finite Element Method,FEM)所取 知之分析圖示’其中如第八A圖所示,其為壓電致動器 1〇〇之擴張圖示,壓電致動器100往第八A圖所示之該圓頂 頂端之該法線的上方擴張’亦即當方波之脈波寬度大於 或等於該振盈單元300之預設值時,壓電致動器1〇〇即會 如第八A圖所示之擴張方式作動,如第八B圖所示,其為 壓電致動器100之收縮圖示,壓電致動器1〇〇往第八B圖所 示之該圓頂頂端之該法線的下方收縮,亦即當方波之脈 波寬度小於該振盈單元300之一預設值時,壓電致動器 100即會如第八B圖所示之收縮方式作動。 表單編號A0101 第15頁/共40頁 請參閱第九A圖至第十C圖,其為本創作之一較佳實施 例之壓電致動器與移動件的示意圖。如第九A圖至第十C 圖所示,其為壓電致動器與移動件依據輸入訊號之波形 作動的示意圖。如第九A圖所示,其為壓電致動器100依 據輸入訊號之波形擴張,振動轴103依據輸入訊號之波形 產生位移,其如第九B圖所示,其中第九A圖之方波之最 大值為30伏特。如第九C圖所示,第九A圖所示之輸入訊 號為方波,壓電致動器100在方波之波形為a-b-c的區間 往該圓頂頂端之法線之方向上擴張,其中該a-b-c區間為 對應該方波上升並保持一最大值的期間;且壓電致動器 100在方波之波形為c-d的區間於回復外形,其中該c-d 區間對應之方波為下降。本實施例之移動件105之作動如 下說明,當方波上升並保持一最大值的期間,亦即在a-b-c的區間時,由於壓電致動器100所包含之壓電元件之 阻抗與電容值所得之時間常數之影響導致充電較慢,所 以壓電致動器1 0 0緩慢連動而擴漲,且移動件1 0 5藉由移 動件105與振動軸103之間的摩擦力,而從位置1移動到位 置2。此外,當方波下降的期間,亦即在c-d的區間時, 電荷傳送至壓電致動器100,而迅速放電至接地端,所以 壓電致動器100回復原形,所以移動件105所產生之慣性 大於移動件105與振動軸103之間的摩擦力,如此移動件 105維持在位置2,重覆上述之步驟,移動件105會往箭頭 標示之方向連續移動。 如第十A圖所示,其為壓電致動器100依據輸入訊號之 波形收縮,振動軸103係依據輸入訊號之波形產生位移, 其如第十B圖所示,其中第十A圖之方波之最大值為30伏 表單編號A0101 第16頁/共40頁 特。如第十C圖所示,輸入壓電致動器1 Ο 0之方波係如第 十Α圖所示,壓電致動器100在方波之波形為a-b-c的區 間時,而往該圓頂頂端之該法線的方向上收縮,其中該 a-b-c區間對應該方波上升並保持一最大值的期間;且壓 電致動器100之圓頂端點在方波之波形為c-d的區間於法 線之方向上回復原狀,其中該c-d區間對應之方波為下降 。本實施例之移動件105之作動如下說明,當方波上升並 保持一最大值的期間,亦即在a-b-c的區間時,由於壓電 致動器100所包含之壓電元件之阻抗與電容值所得之時間 常數之影響導致充電較慢,所以壓電致動器100緩慢連動 而收縮,且移動件105藉由移動件105與振動軸103之間 的摩擦力,而從位置1移動到位置2。此外,當方波下降 的期間,亦即在c-d的區間時,電荷傳送至壓電致動器 100,而迅速放電至接地端,所以壓電致動器100回復外 形,所以移動件105所產生之慣性大於移動件105與振動 軸103之間的摩擦力,如此移動件105維持在位置2,重覆 上述之步驟,移動件105會往箭頭標示之方向連續移動。 以上所述,本創作僅調變脈波訊號寬度,所以移動件 105可輕易在一任意周期從振動轴103之右端至振動軸 103之左端往復運動,此外,遮光板107設置於移動件 105,以阻隔紅外線或供紅外線通過而入射至紅外線感測 器 200 ° 那就是說,本創作之控制單元400依據紅外線感測器 200之輸出訊號控制振盪單元300,以控制方波之訊號寬 度。本實施例中,紅外線感測器200所產生之該輸出訊號 之一數值大於或等於一參考值時,控制單元400控制該振 表單编號A0101 第17頁/共40頁 盈單兀300驅使該壓電致動器100擴張或收縮,使該遮光 板107阻隔該紅外線入射至該紅外線感測器200或使該紅 外線通過該遮光板107而入射至該紅外線感測器200,當 紅外線感測器2〇〇所產生之該輸出訊號之該數值小於該參 考值時,控制單元4〇〇控制該振盪單元30〇驅使該壓電致 動器100停止作動’所以遮光板107停止作動而不會遮蔽 紅外線感測器200。 本實施例中’紅外線感測器200在一預設周期不產生 該輸出訊號’該控制單元400關閉該振盪單元300之電源 ’以關閉該振盪單元3 〇 〇。 請參閱第十四A圖與第十四B圖,其為本創作之紅外線 感測器模組之實際外觀的示意圖。如第十四A圖所示,其 為遮光板107未遮住紅外線感測器2〇〇之紅外線窗口 2〇3 ’’如第十四β圖所示,其為遮光板丨〇7遮住紅外線感測器 200之紅外線窗口 2〇3。本創作之紅外線感測器模組一開 始係如第十四A圖所示,紅外線感測器200之紅外線窗口 2〇3為開啟,亦即紅外線感測器2〇〇之紅外線窗口 2〇3未 被遮光板107遮蓋,所以紅外線可入射至紅外線感測器· 2〇〇 ’之後紅外線感測器模組於控制單元400依據紅外線 感測器20 0所產生之輸出訊號驅使振盪單元3〇〇產生輸入 訊號至壓電致動器1〇〇,因而驅使壓電致動器1〇〇帶動振 動轴103與移動件1〇5,導致遮光板107移動至遮住紅外 線窗口 203,其如第十四B圖所示。 請參閱第十五A圖至第十五C圖,其為本創作之紅外線 感測器之輸出訊號的波形圖》如第十五A圖所示,其波形 為紅外線感測器2 〇 〇於感測一輻射物體時所輸出之波形, 表單編號A0101 第18頁/共40頁 一般在第十五A圖之波形產生時即表示感測到不可移動之 輻射物體,且紅外線感測器200不再產生輸出訊號。然而 ,本創作之壓電致動器100帶動遮光板107之作動,以交 替性地讓該紅外線入射至該紅外線感測器200與阻隔該紅 外線入射至該紅外線感測器2 0 0,所以紅外線感測器2 0 0 可連續操作,甚至感測不可移動之輻射體。如此,紅外 線感測器200連續輸出之輸出訊號的波形如第十五B圖所 示。 同時,當輻射體消失時,即沒有物體輻射紅外線,所 以如第十五C圖所示,紅外線感測器200之輸出訊號即不 再產生輸出訊號,即使紅外線感測器200之紅外線窗口 203受到遮光板107交替開啟與遮蓋,本實施例之控制單 元400控制振盪單元300回復到待機模式,且壓電致動器 100之操作模式於壓電致動器100作動後切換為停止狀態 ,所以遮光板107不再遮住紅外線感測器200。 綜上所述,本創作之紅外線感測器模組係利用控制單 元依據紅外線感測器之輸出訊號控制振盪單元產生方波 至壓電致動器,以驅動振動軸與移動件,使遮光板阻隔 紅外線或讓紅外線通過,供紅外線感測器可連續感測紅 外線。 故本創作實為一具有新穎性、進步性及可供產業上利 用者,應符合我國專利法專利申請要件無疑,爰依法提 出創作專利申請,祈鈞局早曰賜准專利,至感為禱。 惟以上所述者,僅為本創作較佳實施例而已,並非用來 限定本創作實施之範圍,故舉凡依本創作申請專利範圍 所述之特徵及精神所為之均等變化與修飾,均應包括於 表單編號A0101 第19頁/共40頁 [0005] 本創作之+料利$im 【圖式簡單說明】 第-圖為習知焦電型紅外線感測器之結構示意圖; 第二A圖為習知焦電型紅外線感測器之焦電材料操作原理 的不意圖; 第二B圖為習知焦電型紅外線感測器之焦電材料操作原理 的示意圖; 第三圖為習知焦電型紅外線感測器所產生之一輸出訊號 之增益-頻率的曲線圖; 第四圖為習知壓電雙晶片的結構與位移示意圖; 第五圖為習知焦電型紅外線感測器之透視圖; 第六A圖為第五圖之焦電型紅外線感測器交替性地讓紅外 線通過的示意圖; 第六B圖為第五圖之焦電型紅外線感測器交替性地阻隔紅 外線的示意圖; 第七A圖為本創作之壓電致動器之輸乂訊號的一實施例之 波形圖, 第七B圖為本創作之壓電致動器擴張之一實施例的示意圖 第七C圖為本創作之壓電致動器之輸入訊號的另一實施例 之波形圖; 第七D圖為本創作之壓電致動器收縮之一實施例的示意圖 , 第八A圖為本創作之壓電致動器產生位移之一較佳實施例 的示意圖; 表單編號A0101 第20頁/共40頁 第八B圖為本創作之壓電致動器產生位移之一較佳實施例 的不意圖, 第九A圖為本創作之壓電致動器之輸入訊號的另一實施例 之波形圖; 第九B圖為本創作之移動件所產生之位移的一實施例之波 形圖; 第九C圖為本創作之壓電致動器帶動移動件之一實施例的 不意圖, 第十A圖為本創作之壓電致動器之輸入訊號的另一實施例 之波形圖; 第十B圖為本創作之移動件所產之位移的另一實施例之波 形圖; 第十C圖為本創作之壓電致動器帶動移動件之另一實施例 的不意圖, 第十一圖為本創作之壓電致動器、振動軸與移動件之組 裝示意圖; 第十二圖為本創作之壓電致動器、振動軸、移動件與遮 光板之組裝示意圖; 第十三圖為本創作之壓電致動器、振動軸、移動件、遮 光板與導引器之組裝示意圖; 第十四A圖為本創作之紅外線感測器模組讓紅外線通過之 一實施例的示意圖; 第十四B圖為本創作之紅外線感測器模組阻隔紅外線之一 實施例的不意圖; 第十五A圖為本創作之紅外線感測器之輸出訊號的電壓-時間之波形圖; 表單编號A0101 第21頁/共40頁 M381060 第十五B圖為本創作之紅外線感測器之輸出訊號的電壓-時間之波形圖; 第十五C圖為本創作之紅外線感測器之輸出訊號的電壓-時間之波形圖;以及 第十六圖為本創作之紅外線感測器模組之一實施例的方 塊圖。 【主要元件符號說明】 [0006] 1 帽體 2 矽窗口 3 下托架 4 焦電材料 5 導電托架 6蓋體 7 南阻抗件 8 場效晶體管 9導線 10 自發性極化 11 表面電荷 12自由電荷 13 導線 14 高阻抗負載 21 壓電元件 22金屬彈片 23 固定裝置 6 0 矽窗口 表單編號A0101 第22頁/共40頁 M381060When the value of one of the output signals generated by the infrared sensor is greater than or equal to a reference value, the control unit controls the oscillating unit to drive the piezoelectric actuator to expand or contract, so that the visor blocks the infrared ray from entering The infrared sensor or the infrared ray is incident on the infrared ray sensor through the visor, and when the value of the output signal generated by the infrared irritator is less than the reference value, the control unit controls the oscillating unit Driving the piezoelectric actuator to stop, causing the visor to stop acting without shielding the infrared sensor; the waveform of the input signal is a square wave, and when one of the square waves has a pulse width greater than or equal to the oscillating unit When a preset value is used, the piezoelectric actuator expands toward the normal of the top end of the dome; the piezoelectric actuator expands toward the normal of the top end of the dome and expands to The interval is a period in which the square wave rises and maintains a maximum value, and the piezoelectric actuator returns to the outer shape in another interval corresponding to the square wave drop. In addition, the piezoelectric actuator may further shrink toward the normal of the dome top when one pulse wave width of the square wave is less than a preset value of the oscillation unit; The piezoelectric actuator contracts toward the normal of the top end of the dome and contracts to a section corresponding to a period in which the square wave rises and maintains a maximum value, and the piezoelectric actuator is corresponding to the square Another section of the wave drop returns to the shape. Form No. Α0101 Page 11 of 40 [0004] [Embodiment] The Group has a better understanding and understanding of the technical features of the creation and the efficiencies achieved. With the detailed description, the description will be as follows: First, the same components will be denoted by the same component numbers in different illustrations. In addition, commonly used functions or structures will not be described below. Please refer to the sixteenth figure, which is a block diagram of an embodiment of the infrared sensor module of the present invention. As shown in the figure, the infrared sensor module of the present invention comprises a piezoelectric actuator 1〇〇, a vibration axis 1〇3, a moving member 1〇5 (refer to FIG. 11), and a visor 〇 7. An infrared sensor 200, an oscillating unit 3A, a control unit 4A, a boosting unit 500', an operational amplifier 600 and a power supply unit 7A. The infrared sensor 200 senses one of the infrared rays corresponding to an object. The infrared sensor 200 of the embodiment transmits infrared rays of the object to sense the object, and the infrared sensor 200 includes an infrared window 2〇3 to select Only the infrared ray passes through the infrared window 203. The infrared: line sensor 2 本 of the embodiment can be a pyroelectric type infrared ray sensor. :: The above-mentioned 'piezo actuator 100 includes a piezo-shaped piezoelectric element, and the polarization of the piezoelectric actuator 100 is toward the curved surface of the center. The piezoelectric actuator 100 According to the waveform of an input signal, the expansion and contraction are repeated in the direction of the normal line at the top of a dome. The piezoelectric actuator 1 of the present embodiment has better output efficiency and high dimensional accuracy. The piezoelectric actuator 100 can easily produce an arbitrary shape by a powder injection molding method, such as a dome shape or the like. The three-dimensional shape of the vibration axis 103 has a rod-like shape, one end of the vibration shaft 103 is fastened to the dome end of the piezoelectric actuator 100, and the moving member 105 (see Fig. 11) is the form number A0101. The page/total 40 pages engages the vibration shaft 103 and moves in an axial direction. The visor 107 is connected to the moving member 105 and located in front of the infrared ray sensor 200. The visor 107 is used to alternately block the infrared ray from entering the infrared ray sensor 200 or passing the infrared ray to the infrared ray sensor. 0, a detailed description of related elements that alternately block infrared rays or pass infrared rays and enter the infrared sensor 200 will be described in detail below, such as piezoelectric actuator 100, vibration axis 103, movement The member 105 and the visor 107. The control unit 400 controls the oscillating unit 300 to output an input signal and input it to the piezoelectric actuator 100. The control unit 400 controls the oscillating unit 300 according to the output signal of the infrared stimulator 200 to drive the piezoelectric actuator 100 toward the top of the dome. One of the normal directions repeats expansion and contraction. The boosting unit 500 is configured to increase a voltage level of the square wave outputted by the oscillating unit 300, so that the voltage level of the input signal corresponds to an operating voltage level of the piezoelectric actuator 100. The infrared sensor module can also drive the piezoelectric actuator 100 directly by the input signal output from the oscillating unit 300 without setting the boosting unit 500, wherein the waveform of the input signal is a square wave. The operational amplifier 60 0 is used to amplify the output signal of the infrared sensor 200. In addition, the infrared sensor module of the present invention can directly input the output signal of the infrared sensor 200 to the control without setting the operational amplifier 600. Unit 400. The power supply unit 700 is powered to the vibrating unit 300 and the control unit 400. Please refer to the eleventh figure, which is a schematic diagram of the piezoelectric actuator, the vibration shaft and the moving part. As shown in FIG. 11, the piezoelectric actuator 100 is formed by a piezoelectric element having a dome shape, the vibration shaft 103 has a rod-like shape, and one end of the vibration shaft 103 is closely coupled to the piezoelectric actuator 100. The dome end, the moving member 105 is coupled to the vibrating shaft 103, and has been moved in the axial direction. The embodiment No. A0101, page 13 of the 40th page further includes an elastic body 109 disposed on the vibrating shaft 1〇3 and moving. Between the pieces 105, and coupled to the vibration axis 1〇3 and the moving part 1〇5, as shown in the twelfth figure, wherein the eleventh figure and the twelfth figure are different in the device of the twelfth figure. The plate 107 is on the outer side of the elastic body 1〇9 and is located before the infrared sensor 200, so that the infrared rays pass through and enter the infrared sensor 200' or block the infrared rays; the elastic body 1〇9 of the embodiment may be One end of a spring 'shading plate 107 is disposed on the outer side of the elastic body 〇9, and the elastic body 10 9 is tightly disposed on the outer side of the moving member 1 〇5, and the other side of the visor 1 遮7 covers the infrared ray sensing 2 〇〇, this is the real; the other side of the visor 1 〇7 of the package is a non-deformable steel plate. As shown in the thirteenth figure, the difference between the twelfth and thirteenth drawings is that the guide m is further disposed in the thirteenth embodiment, wherein the guide 111 is disposed on the vibration axis 1〇3 to restrict movement. One of the pieces 1〇5 moves the displacement. The principle of actuation of the piezoelectric actuator 100 in response to an input voltage is disclosed in the following figures and in conjunction with the detailed description. Please refer to Figures 7A through 7D, which are schematic views of one embodiment of the piezoelectric actuator of the present invention. As shown in the seventh B and seventh D, the arrow A is the polarization direction, the reference characteristic E is the electric field direction, and the polarization direction of the piezoelectric actuator 1 朝向 is toward the center of a curved surface due to piezoelectric The upper surface of the electrode region of the actuator 1 is different from the mask voltage of the lower surface, so that the piezoelectric actuator 1 repeatedly expands and contracts toward the normal line of one of the dome tops according to the waveform of an input signal. 'That is, according to the change of the pulse wave of the same clock frequency', the expansion and contraction are repeated toward the normal line of one of the top ends of a dome. Therefore, as shown in FIG. 7A, when the pulse width of one of the input signals generated by the oscillating unit 300 is greater than or equal to a preset value of the oscillating unit 300, the piezoelectric actuator 100 is toward the top of the dome. The direction of the normal expansion is nickname A0101, page 4/40 pages, and the expansion mode is as shown in the seventh B, in which the expansion of the piezoelectric actuator loo is as the expansion point l〇〇a The line expands. When contracting, as shown in the seventh diagram, when the pulse width of one of the input signals generated by the oscillation unit 300 is less than a preset value of the oscillation unit 300, the piezoelectric actuator 1 is The direction of the normal line at the top of the dome is contracted in such a manner as to expand in the direction of the dotted line as shown in FIG. 7D, in which the expansion of the piezoelectric actuator 1〇〇, such as the expansion portion 1〇〇1, is input. The signal is square wave. The piezoelectric actuator 100 expands toward the normal line of the top end of the dome and expands in an interval 'the interval is a period corresponding to the square wave rising and maintaining a maximum value' and the piezoelectric actuator 1 The shape is restored in another interval corresponding to the falling of the square wave; the piezoelectric actuator 1 contracts toward the normal of the top end of the dome and contracts to an interval corresponding to the square wave rise And maintaining a maximum period, and the piezoelectric actuator 1 returns to the outer shape in another interval corresponding to the square wave drop. Referring to Figures 8A and 8B, there is shown a schematic diagram of a preferred embodiment of the displacement of the piezoelectric actuator of the present invention. As shown in the figure, it uses a finite element method (FEM) to find the analysis diagram 'which is shown in Figure 8A, which is an expansion diagram of the piezoelectric actuator 1 ,, pressure The electric actuator 100 expands above the normal of the top end of the dome shown in FIG. 8A, that is, when the pulse wave width of the square wave is greater than or equal to a preset value of the vibration unit 300, the piezoelectric The actuator 1 will act as an expansion mode as shown in FIG. 8A, as shown in FIG. 8B, which is a contraction diagram of the piezoelectric actuator 100, and the piezoelectric actuator 1 The lower side of the normal line of the top end of the dome shown in FIG. B is contracted, that is, when the pulse wave width of the square wave is smaller than a preset value of the vibration unit 300, the piezoelectric actuator 100 will be as The contraction mode shown in Figure 8B is actuated. Form No. A0101 Page 15 of 40 Please refer to Figures 9A through 10C, which are schematic views of a piezoelectric actuator and a moving member of a preferred embodiment of the present invention. As shown in Figs. 9A to 10C, it is a schematic diagram of the piezoelectric actuator and the moving member actuated according to the waveform of the input signal. As shown in FIG. 9A, the piezoelectric actuator 100 expands according to the waveform of the input signal, and the vibration axis 103 generates a displacement according to the waveform of the input signal, as shown in FIG. The maximum value of the wave is 30 volts. As shown in FIG. C, the input signal shown in FIG. 9A is a square wave, and the piezoelectric actuator 100 expands in the direction of the normal of the top end of the dome in the interval of the square wave waveform abc, wherein The abc interval is a period in which the square wave rises and maintains a maximum value; and the piezoelectric actuator 100 returns to the outer shape in a section where the square wave waveform is cd, wherein the square wave corresponding to the cd section is decreased. The operation of the moving member 105 of the present embodiment is as follows. When the square wave rises and maintains a maximum value, that is, in the interval of abc, the impedance and capacitance value of the piezoelectric element included in the piezoelectric actuator 100 are as follows. The influence of the obtained time constant results in slower charging, so the piezoelectric actuator 100 is slowly interlocked and expanded, and the moving member 105 is frictionally moved by the moving member 105 and the vibrating shaft 103. 1 Move to position 2. Further, when the square wave falls, that is, in the interval of cd, the electric charge is transmitted to the piezoelectric actuator 100, and is quickly discharged to the ground terminal, so that the piezoelectric actuator 100 returns to the original shape, so that the moving member 105 is generated. The inertia is greater than the friction between the moving member 105 and the vibrating shaft 103, so that the moving member 105 is maintained at the position 2, and the above steps are repeated, and the moving member 105 is continuously moved in the direction indicated by the arrow. As shown in FIG. 10A, the piezoelectric actuator 100 is contracted according to the waveform of the input signal, and the vibration axis 103 is displaced according to the waveform of the input signal, as shown in FIG. 10B, wherein FIG. The maximum value of the square wave is 30 volts. Form number A0101 Page 16 / Total 40 pages. As shown in FIG. 10C, the square wave system input to the piezoelectric actuator 1 Ο 0 is as shown in the tenth diagram, and the piezoelectric actuator 100 is in the circle where the waveform of the square wave is abc. The top end of the top line is contracted in the direction of the normal, wherein the abc interval corresponds to a period in which the square wave rises and maintains a maximum value; and the dome end of the piezoelectric actuator 100 is in the range of the square wave waveform cd The direction of the line returns to the original state, wherein the square wave corresponding to the cd interval is decreased. The operation of the moving member 105 of the present embodiment is as follows. When the square wave rises and maintains a maximum value, that is, in the interval of abc, the impedance and capacitance value of the piezoelectric element included in the piezoelectric actuator 100 are as follows. The influence of the obtained time constant causes the charging to be slow, so the piezoelectric actuator 100 is slowly interlocked and contracted, and the moving member 105 is moved from the position 1 to the position 2 by the frictional force between the moving member 105 and the vibration shaft 103. . Further, when the square wave falls, that is, in the interval of cd, the electric charge is transmitted to the piezoelectric actuator 100, and is quickly discharged to the ground terminal, so the piezoelectric actuator 100 returns to the outer shape, so that the moving member 105 is generated. The inertia is greater than the friction between the moving member 105 and the vibrating shaft 103, so that the moving member 105 is maintained at the position 2, and the above steps are repeated, and the moving member 105 is continuously moved in the direction indicated by the arrow. As described above, the present invention only modulates the pulse signal width, so that the moving member 105 can easily reciprocate from the right end of the vibration shaft 103 to the left end of the vibration shaft 103 in an arbitrary period. Further, the light shielding plate 107 is disposed on the moving member 105. The infrared ray sensor or the infrared ray is incident on the infrared ray sensor 200 °. That is to say, the control unit 400 of the present invention controls the oscillating unit 300 according to the output signal of the infrared ray sensor 200 to control the signal width of the square wave. In this embodiment, when one of the output signals generated by the infrared sensor 200 is greater than or equal to a reference value, the control unit 400 controls the vibration form number A0101, page 17 of 40 pages, to drive the The piezoelectric actuator 100 expands or contracts, so that the visor 107 blocks the infrared ray from entering the infrared ray sensor 200 or causes the infrared ray to enter the infrared ray sensor 200 through the visor 107, and the infrared ray sensor When the value of the output signal generated by 2〇〇 is less than the reference value, the control unit 4〇〇 controls the oscillating unit 30 to drive the piezoelectric actuator 100 to stop. Therefore, the visor 107 stops acting without shielding. Infrared sensor 200. In the present embodiment, the 'infrared sensor 200 does not generate the output signal for a predetermined period'. The control unit 400 turns off the power supply of the oscillating unit 300 to turn off the oscillating unit 3 〇 . Please refer to Figures 14A and 14B for a schematic view of the actual appearance of the infrared sensor module of the present invention. As shown in FIG. 14A, it is an infrared window 2 〇 3 '' of the visor 107 which does not cover the infrared ray sensor 2 如 as shown in the fourteenth β-graph, which is hidden by the visor 丨〇 7 The infrared window of the infrared sensor 200 is 2〇3. The infrared sensor module of the present invention is initially shown in FIG. 14A, and the infrared window 2〇3 of the infrared sensor 200 is turned on, that is, the infrared window of the infrared sensor 2〇〇2〇3 It is not covered by the visor 107, so the infrared ray can be incident on the infrared ray sensor. After the infrared ray sensor module is driven by the control unit 400 according to the output signal generated by the infrared sensor 20, the oscillating unit 3 is driven. The input signal is generated to the piezoelectric actuator 1〇〇, thereby driving the piezoelectric actuator 1 to drive the vibration shaft 103 and the moving member 1〇5, causing the light shielding plate 107 to move to cover the infrared window 203, which is like the tenth Figure 4B shows. Please refer to the fifteenth Ath to fifteenth Cth, which is the waveform diagram of the output signal of the infrared sensor of the present invention, as shown in the fifteenth A, the waveform of which is the infrared sensor 2 The waveform outputted when sensing a radiation object, Form No. A0101, page 18/total 40 pages, generally indicates that the non-movable radiation object is sensed when the waveform of the fifteenth A diagram is generated, and the infrared sensor 200 does not The output signal is generated again. However, the piezoelectric actuator 100 of the present invention drives the visor 107 to alternately allow the infrared ray to be incident on the infrared ray sensor 200 and block the infrared ray from entering the infrared ray sensor 200, so the infrared ray The sensor 200 can operate continuously and even sense an immovable radiator. Thus, the waveform of the output signal continuously output by the infrared line sensor 200 is as shown in Fig. 15B. Meanwhile, when the radiator disappears, that is, no object radiates infrared rays, as shown in FIG. 15C, the output signal of the infrared sensor 200 no longer generates an output signal even if the infrared window 203 of the infrared sensor 200 is received. The visor 107 is alternately opened and covered. The control unit 400 of the embodiment controls the oscillating unit 300 to return to the standby mode, and the operation mode of the piezoelectric actuator 100 is switched to the stop state after the piezoelectric actuator 100 is actuated, so the shading is performed. The plate 107 no longer blocks the infrared sensor 200. In summary, the infrared sensor module of the present invention uses the control unit to control the oscillating unit to generate a square wave to the piezoelectric actuator according to the output signal of the infrared sensor, so as to drive the vibration shaft and the moving member to make the visor Block infrared rays or let infrared rays pass through, so that the infrared sensor can continuously sense infrared rays. Therefore, this creation is a novelty, progressive and available for industrial use. It should be consistent with the patent application requirements of China's patent law. It is undoubtedly proposed to create a patent application in accordance with the law, and the Prayer Council will grant patents as soon as possible. . However, the above description is only for the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, and the equivalent changes and modifications as described in the scope of the patent application of the present invention should include Form No. A0101 Page 19 of 40 [0005] The material of this creation is $im [Simplified illustration] The first picture shows the structure of the conventional pyroelectric infrared sensor; the second picture is The schematic of the operating principle of the pyroelectric material of the conventional pyroelectric infrared sensor; the second B is a schematic diagram of the operating principle of the pyroelectric material of the conventional pyroelectric infrared sensor; the third figure is the conventional coke The gain-frequency curve of one of the output signals generated by the infrared sensor; the fourth is a schematic diagram of the structure and displacement of the conventional piezoelectric bimorph; and the fifth is the perspective of the conventional pyroelectric infrared sensor Figure 6 is a schematic view of the pyroelectric type infrared sensor of the fifth figure alternately letting infrared rays pass; the sixth figure is a schematic diagram of the pyroelectric type infrared sensor of the fifth figure alternately blocking infrared rays. ; Figure 7A is this creation FIG. 7B is a schematic diagram of an embodiment of the piezoelectric actuator expansion of the present invention. FIG. 7C is a piezoelectric actuator of the present invention. A waveform diagram of another embodiment of the input signal of the device; FIG. 7D is a schematic diagram of one embodiment of the piezoelectric actuator contraction of the present invention, and FIG. 8A shows the displacement of the piezoelectric actuator of the present invention. BRIEF DESCRIPTION OF THE PREFERRED EMBODIMENT; Form No. A0101 Page 20/Total 40 Page 8B is a schematic view of a preferred embodiment of the displacement of the piezoelectric actuator of the present invention, and the ninth A is a creation A waveform diagram of another embodiment of the input signal of the piezoelectric actuator; ninth B is a waveform diagram of an embodiment of the displacement generated by the moving member of the present invention; The actuator is not intended to drive an embodiment of the moving member, and the tenth A is a waveform diagram of another embodiment of the input signal of the piezoelectric actuator of the present invention; A waveform diagram of another embodiment of the displacement of the production; the tenth C diagram is a piezoelectric actuator of the present invention The eleventh figure is a schematic diagram of the assembly of the piezoelectric actuator, the vibration shaft and the moving member of the present invention; the twelfth figure is the piezoelectric actuator and vibration of the present invention. Schematic diagram of assembly of shaft, moving parts and visor; Fig. 13 is a schematic view showing the assembly of piezoelectric actuator, vibration shaft, moving parts, visor and guide of the present invention; The infrared sensor module allows infrared rays to pass through a schematic diagram of one embodiment; the fourteenth Bth diagram is a schematic diagram of one embodiment of the infrared sensor module of the present invention for blocking infrared rays; The voltage-time waveform of the output signal of the infrared sensor; Form No. A0101 Page 21 of 40 M381060 The fifteenth B diagram is the voltage-time waveform of the output signal of the infrared sensor of the present invention. The fifteenth C is a waveform diagram of the voltage-time of the output signal of the infrared sensor of the present invention; and the sixteenth diagram is a block diagram of an embodiment of the infrared sensor module of the present invention. [Main component symbol description] [0006] 1 Cap 2 矽 Window 3 Lower bracket 4 Photoelectric material 5 Conductive bracket 6 Cover 7 South impedance 8 Field effect transistor 9 Conductor 10 Spontaneous polarization 11 Surface charge 12 free Charge 13 Conductor 14 High-impedance load 21 Piezoelectric element 22 Metal shrapnel 23 Fixing device 6 0 矽 Window form number A0101 Page 22 of 40 M381060

61 蓋體 62 紅外線 63 壓電雙晶片 64 狹縫板 64, 狹縫板 65 焦電元件 66 盒體 67 圓孑L 81 紅外線 82 上狹縫板 83 下狹縫板 100 壓電致動器 100a擴張部 100b擴張部 103 振動韩 105 移動件 107 遮光板 109 彈性體 111 導引器 200 紅外線感測器 203 紅外線窗口 300 振盪單元 400 控制單元 500 升壓單元 600 運算放大器 700 電源單元 表單編號A0101 第23頁/共40頁61 cover 62 infrared 63 piezoelectric bimorph 64 slit plate 64, slit plate 65 pyroelectric element 66 case 67 round 孑 L 81 infrared 82 upper slit plate 83 lower slit plate 100 piezoelectric actuator 100a expansion Section 100b Expansion Section 103 Vibration Han 105 Moving Member 107 Light Shield 109 Elastomer 111 Introducer 200 Infrared Sensor 203 Infrared Window 300 Oscillation Unit 400 Control Unit 500 Boost Unit 600 Operational Amplifier 700 Power Supply Unit Form No. A0101 Page 23 / Total 40 pages

Claims (1)

M381060 六、申請專利範圍: 1 . 一種紅外線感測器模組,其包含: 一紅外線感測器,其感測一物體之一紅外線; 一壓電致動器,其具至少一圓τΐ外形之壓電元件,該麼電 元件具一極化方向,該極化方向朝向至該壓電元件之一曲 面中心,該壓電致動器依據一輸入訊號之波形,而往一圓 頂頂端之一法線的方向重複擴張與收縮; 一振動軸,其具一棒狀外形,該振動轴之一端緊密接設該 ^ 壓電致動器之該圓頂端點; __ 一移動件,其接設於該振動轴,該移動件呈軸向運動於該 振動軸; 一遮光板,其緊密接設於該移動件,並位於該紅外線感測 器前方,該遮光板交替性地讓該紅外線入射至該紅外線感 測器與阻隔該紅外線入射至該紅外線感測器; 一振盪單元,其產生該輸入訊號至該壓電致動器;以及 一控制單元,其依據該紅外線感測器之一輸出訊號控制該 振盪單元,而驅動該壓電制動器。 · 2 .如申請專利範圍第1項所述之紅外線感測器模組,更包含: 一導引器,其設置於該振動軸,並限制該移動件之一移動 距離。 3 .如申請專利範圍第1項所述之紅外線感測器模組,更包含: 一升壓單元,其耦接於該振盪單元與該壓電致動器之間, 該升壓單元提升該振盪單元所產生之該輸入訊號之一電壓 準位,使該電壓準位對應於該壓電致動器之一操作電壓準 位。 098218275 表單編號Α0101 第24頁/共40頁 0993052093-0 M381060 4 .如申請專利範圍第1項所述之紅外線感測器模組,更包含: 一運算放大器,其放大該紅外線感測器之該輸出訊號。 5 .如申請專利範圍第1項所述之紅外線感測器模組,更包含: 一彈性體,其設置於該振動軸與該移動件之間,並耦接該 振動軸與該移動件。 6 .如申請專利範圍第1、2、3、4或5項所述之紅外線感測器 模組,其中該紅外線感測器所產生之該輸出訊號之一數值 大於或等於一參考值時,該控制單元控制該振盪單元驅使 該壓電致動器擴張或收縮,使該遮光板阻隔該紅外線入射 至該紅外線感測器或使該紅外線通過該遮光板而入射至該 紅外線感測器,當該紅外線感測器所產生之該輸出訊號之 該數值小於該參考值時,該控制單元控制該振盪單元驅使 作動之該壓電致動器停止作動,使該遮光板停止作動而不 會遮蔽該紅外線感測器。 7 .如申請專利範圍第6項所述之紅外線感測器模組,其中該 紅外線感測器在一預設周期不產生該輸出訊號,且該控制 單元關閉該振盪單元。 8 .如申請專利範圍第1、2、3、4或5項所述之紅外線感測器 模組,其中該輸入訊號之波形為一方波,該方波之一脈波 寬度大於或等於該振盪單元之一預設值時,該壓電致動器 往該圓頂頂端之該法線的方向擴張。 9 .如申請專利範圍第8項所述之紅外線感測器模組,其中該 壓電致動器往該圓頂頂端之該法線的方向擴張,並擴張於 一區間,該區間為對應該方波上升並保持一最大值的期間 ,且該壓電致動器於對應該方波下降之另一區間回復外形 098218275 表單編號A0101 第25頁/共40頁 0993052093-0 M381060 10 .如申請專利範圍第1、2、3、4或5項所述之紅外線感測器 模組,其中該輸入訊號之波形為一方波,該方波之一脈波 寬度小於該振盪單元之一預設值時,該壓電致動器往該圓 頂頂端之該法線的方向收縮。 11 .如申請專利範圍第1〇項所述之紅外線感測器模組,其中該 壓電致動器往該圓頂頂端之該法線的方向收縮,並收縮於 一區間,該區間對應該方波上升並保持一最大值的期間, 且該壓電致動器於對應該方波下降之另一區間回復外形。 098218275 表單編號A0101 第26頁/共40頁M381060 VI. Patent application scope: 1. An infrared sensor module, comprising: an infrared sensor that senses one of infrared rays of an object; and a piezoelectric actuator with at least one circular τΐ shape pressure An electrical component having a polarization direction oriented toward a curved surface center of the piezoelectric component, the piezoelectric actuator being toward a normal of one of the dome tops according to an input signal waveform Repeating the expansion and contraction of the direction; a vibration axis having a rod-like shape, one end of the vibration shaft being closely connected to the dome end of the piezoelectric actuator; __ a moving member connected to the vibration a shaft, the moving member is axially moved to the vibration shaft; a light shielding plate is closely connected to the moving member and located in front of the infrared sensor, and the light shielding plate alternately causes the infrared light to enter the infrared sensation The detector and the infrared ray are incident on the infrared ray sensor; an oscillating unit that generates the input signal to the piezoelectric actuator; and a control unit that outputs a signal according to one of the infrared ray sensors The system oscillation unit, and driving the piezoelectric actuator. 2. The infrared sensor module of claim 1, further comprising: an introducer disposed on the vibration axis and limiting a moving distance of the moving member. 3. The infrared sensor module of claim 1, further comprising: a boosting unit coupled between the oscillating unit and the piezoelectric actuator, the boosting unit boosting the One of the voltage levels of the input signal generated by the oscillating unit is such that the voltage level corresponds to an operating voltage level of the piezoelectric actuator. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Output signal. 5. The infrared sensor module of claim 1, further comprising: an elastic body disposed between the vibration shaft and the moving member and coupled to the vibration shaft and the moving member. 6. The infrared sensor module of claim 1, wherein the value of one of the output signals generated by the infrared sensor is greater than or equal to a reference value, The control unit controls the oscillating unit to drive the piezoelectric actuator to expand or contract, so that the visor blocks the infrared ray from entering the infrared ray sensor or causes the infrared ray to enter the infrared ray sensor through the visor When the value of the output signal generated by the infrared sensor is less than the reference value, the control unit controls the oscillating unit to drive the piezoelectric actuator to stop, and the visor stops acting without shielding Infrared sensor. 7. The infrared sensor module of claim 6, wherein the infrared sensor does not generate the output signal for a predetermined period of time, and the control unit turns off the oscillation unit. 8. The infrared sensor module of claim 1, wherein the waveform of the input signal is a square wave, and a pulse width of the square wave is greater than or equal to the oscillation. When one of the units is preset, the piezoelectric actuator expands toward the normal of the top end of the dome. 9. The infrared sensor module of claim 8, wherein the piezoelectric actuator expands toward the normal of the top end of the dome and expands in an interval corresponding to the interval The square wave rises and maintains a maximum period, and the piezoelectric actuator returns to the shape 098218275 in another interval corresponding to the square wave drop. Form No. A0101 Page 25 / Total 40 Page 0993052093-0 M381060 10 . The infrared sensor module of the first, second, third, fourth or fifth aspect, wherein the waveform of the input signal is a square wave, and a pulse width of the square wave is less than a preset value of the oscillation unit The piezoelectric actuator contracts toward the normal of the top end of the dome. 11. The infrared sensor module of claim 1, wherein the piezoelectric actuator contracts toward the normal of the top end of the dome and contracts to an interval corresponding to the interval The square wave rises and maintains a maximum period, and the piezoelectric actuator returns to the outer shape in another interval corresponding to the square wave drop. 098218275 Form No. A0101 Page 26 of 40 0993052093-00993052093-0
TW98218275U 2009-10-05 2009-10-05 Infrared sensing module TWM381060U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98218275U TWM381060U (en) 2009-10-05 2009-10-05 Infrared sensing module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98218275U TWM381060U (en) 2009-10-05 2009-10-05 Infrared sensing module

Publications (1)

Publication Number Publication Date
TWM381060U true TWM381060U (en) 2010-05-21

Family

ID=50598103

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98218275U TWM381060U (en) 2009-10-05 2009-10-05 Infrared sensing module

Country Status (1)

Country Link
TW (1) TWM381060U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8810447B2 (en) 2011-11-24 2014-08-19 Industrial Technology Research Institute Calibration devices and calibration methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8810447B2 (en) 2011-11-24 2014-08-19 Industrial Technology Research Institute Calibration devices and calibration methods

Similar Documents

Publication Publication Date Title
US9140609B2 (en) Infrared presence detector for detecting a presence of an object in a surveillance area
CN103097041B (en) Thin-film ultrasonic transducer
TW201112080A (en) Touch sensitive device
JP6273038B2 (en) Infrared sensor module using rotary ultrasonic motor
US20130342432A1 (en) Cholesteric Liquid Crystal Writing Tablet Erased By A Piezoelectric Transducer
KR100517428B1 (en) Infrared Bolometer
KR100775015B1 (en) Module of infrared sensor
TWM381060U (en) Infrared sensing module
CN100541820C (en) A kind of non-contact optoelectronic actuator and device that is used for flexible structure control
US10179728B2 (en) Micro-bolometer having an adjustable dynamic range
Xie et al. Energy harvesting by pyroelectric effect using PZT
JP3156594U (en) Infrared sensor module
Bischur et al. Piezoelectric energy harvester operating in flowing water
Maiwa et al. Energy harvesting using PLZT and lead-free ceramics and their piezoelectric properties on the nano-scale
Bu et al. A packaged electrostatic energy harvester with micro-molded bulk electrets
KR100705709B1 (en) The apparatus for motion detection using the infrared sensor and piezoelectric film
KR20110092365A (en) Real time pyroelectric infrared sensor module
Salim et al. Using Smart-Piezoelectric Materials to Generate Electricity
Uchino Piezoelectric energy harvesting systems with metal oxides
US20130342488A1 (en) Cholesteric liquid crystal writing tablet erased by a piezoelectric transducer
KR200415824Y1 (en) The apparatus for motion detection using the infrared sensor and piezoelectric film
KR100377806B1 (en) Module of pyroelectric type infrared sensor
ITUD20090026U1 (en) MODULE FOR INFRARED SENSOR
Uchino Piezoelectric energy harvesting systems
Man-Soon et al. A newly designed chopper for pyroelectric infrared sensor by using a dome-shaped piezoelectric linear motor (DSPLM)