M379073 五、新型說明: 【新型所屬之技術領域】 本創作是有關於一種晝素結構以及具有此畫素結構 之顯示面板’且特別是有關於一種具有良好的反射率與產 品良率的畫素結構以及具有此畫素結構之顯示面板。 【先前技術】M379073 V. New description: [New technical field] This creation is about a halogen structure and a display panel with this pixel structure', and especially for a pixel with good reflectivity and product yield. Structure and display panel having the pixel structure. [Prior Art]
一般而言,顯示面板所使用的晝素結構設計可分為穿 透式、反射式以及半穿透半反射式等三大類,盆中,且有 半穿透半反射式畫素結構的顯示面板,可同時在光線充足 與光線不足的情形下使用,因此可應用的範圍較為廣泛。 圃ί马省知的半牙透半反射式畫素結構,在光阻丹 顯影時的示意圖。圖2Α為圖1的區域Α的放大示意圖。 圖2Β為圖2Α在顯影後的示意圖。請先參照圖丨,此半穿 透半反射式畫素結構1〇〇具有穿透區1G2與反射區ι〇4, 此半穿透半反射式錢結構刚包括··絲元件ιι〇、In general, the structure of the halogen structure used in the display panel can be divided into three types: transmissive, reflective, and transflective, and the display panel has a semi-transparent semi-reflective pixel structure. It can be used in both light and low light, so it can be applied in a wide range. A schematic diagram of a half-transflective pixel structure known in the United States, developed in photoresist. 2A is an enlarged schematic view of a region 图 of FIG. 1. Figure 2 is a schematic view of Figure 2 after development. Referring first to the figure, the semi-transparent pixel structure 1 has a penetrating region 1G2 and a reflecting region ι4, and the semi-transparent semi-reflective money structure just includes a silk component ιι〇,
電、保護層120、平坦層125、晝素電極圖宰⑶ 以及反射層140。 μ未 動元3Γ1Γ0與電容電極cs配置於基板1〇1上。主 動兀件110具有閘極112、源極114 王 UW抓緣層GI覆蓋閘極i 容116與通道層 U8位於雜112上方_剛5。=^通道層 116位於通道層118的兩側。保護祕叫與沒極 110。平坦層125配置於保護層12G二二覆=主動元件 人王動7G件110上方 的保4層120與平坦層125具有接觸窗開口 w。晝素電極 =案i3〇配置於平坦層125上,且晝素電極圖案130透過 13觸窗開σ W與主動元件11G電性連接。晝素電極圖案 〇的材料採用銦錫氧化物(indium tin oxide, ITO)。反射層 ^配置於晝素電極圖案130上,反射層14G的材料-般 疋採用反射輪㈣金>1,如喊其合金。 、一值得〉主意的是,在後續形成光阻PR來對反射層140 進仃圖案化製程,於光阻pR的顯影過程中,所使用的強 驗性顯影液將舰反射層140的!s或其合金。 明同時參照圖2A與圖2B,採用純鋁或其合金之反射 曰I40谷易會被強鹼顯影液所腐蝕’而露出位於反射層140 下方的1素電極圖案13G,如區域B所示。此時,處於強 驗陡’肩衫液中的晝素電極圖案13〇與反射層14〇正好產生 下列式(1)的氧化還原反應: Ιη2〇3+2Α1 ^=λ Α1203+2Ιη .··.·. ( l ) _如此一來,區域B處的晝素電極圖案130的邊緣部份 谷易剝落而造成產品的良率損失。 圖3為習知的另—種半穿透半反射式晝素結構的示音 ^請參照圖3,在鮮穿透半反射式錢結構⑽ 將反射層MG的圖形絲完成後,再製作晝素電極圖案 30’如此-來’晝素電極圖案⑽不會被強驗顯影液所腐 。然而’因為將晝素電極圖案13G覆蓋於反射層140上, M379073 會使得反射層UG無法直接反射紐,而歧 反射率降低。 此外,亦有提出使用其他金屬,如鉻(Cr)來取代鋁的 做法,藉以避免晝素電極圖案13〇剝落的問題。然而,由 於其他金屬的反射雜域低,所以以其他金屬取代銘來 製作反射層140,仍無法避免反射率降低的問題。 【新型内容】 有鑑於此,本創作提供一種畫素結構,具有良好的反 射率以及產品良率。 本創作提供-種顯示面板,具有上述的晝素結構,可 具有良好的反射率以及產品良率。 基於上述,本創作提出—種晝素結構,配置於基板 上:此晝素結構具有穿透區與反射區。晝素結構包括:主 動疋件、保4層、晝素電極圖案以及反射層。主動元件配 置於基板上。保護層覆蓋主動元件,其中主動元件上方的 保羞層具有接觸窗開口。晝素電極圖案配置於保護層上 方/、中晝素電極圖案藉由接觸窗開口與主動元件電性連 &反射層置於晝素電極圖案上且位於反射區内,其中, 反射層包括堆4於晝素電極圖案上的第一金屬層及金屬氮 化層。 在士創作之一實施例中,上述之畫素結構更包括平坦 ^ ι蓋保遵層,其中,晝素電極圖案配置於平坦層上, 且接觸窗開口也形成於平坦層中。 M379073 在本創作之-實施例中,上述金屬氮化層配置於晝素 電極圖案上,且第一金屬層配置於金屬氮化層上。 在本創作之-實施例中,上述第一金屬^配置於畫素 電極圖案上’且金屬氮化層配置於第一金屬層上。 在本創作之一實施例中,上述反射層更&括第二金屬 層’而第-金屬層、金屬氮化層與第二金屬層依序堆疊於 晝素電極圖案上。 1' 在本創作之-實施例中,上述主動元件包括問極、源 極以及汲極’且接觸窗開口暴露出汲極。 在本創作之一實施例中,上述金屬氮化層的厚度介於 100A到400A之間。 在本創作之一實施例中,上述第一金屬層的材質包括 鋁。 在本創作之一實施例中,上述第二金屬層的材質包括 鋁。 在本創作之一實施例中,上述畫素電極圖案位於穿透 區與反射區中。 在本創作之一實施例中,上述晝素電極圖案的材質包 括.銦錫氧化物(ΓΓΟ)或銦鋅氧化物(IZ0)。 本創作又提出一種顯示面板,包括:第一基板、第二 基板以及顯示介質層。第一基板具有多個晝素結構,各晝 素、t°構配置於第—基板上’ a各畫素結構具有穿透區與反 射區。各晝素結構包括:主動元件、保護層、晝素電極圖 木以及反射層。主動元件配置於第一基板上。保護層覆蓋 =動元件,其中絲元件上方的倾層具有接觸窗開口 β =素電極圖案配置於保護層上方,其中晝素電極圖案藉由 接觸窗開口與主動元件電性連接。反射層配置於晝素4極 圖案上且位於反射區内,其中,反射層包括堆疊於晝素電 極圖案上的第-金屬層以及金屬氮化層。第二基板[第一 基板對向設置。顯示介質層配置於第—基板以及第^基板 之間。 在本創作之一實施例中,上述顯示介質層包括液晶 層。 本創作的晝素結構的反射層中設置有金屬氮化層,可 保護晝素電極圖案不會受到顯影液之腐蝕而剝落。特別 疋,反射層可具有金屬層/金屬氮化層/金屬層之設計,因 此本創作的晝素結構可同時具有高反射率以及較低的層間 阻抗。此外,本創作的顯示面板採用上述的晝素結構,因 此具有良好的顯示效果以及產品良率。 為讓本創作之上述特徵和優點能更明顯易懂,下文特 舉實施例’並配合所附圖式作詳細說明如下。 【貫施方式】 本創作主要是在晝素結構的反射層中設置金屬氮化 層,以防止強鹼顯影液腐蝕晝素電極圖案。以下將以數個 貫施例詳細說明本創作。 畫素結構 圖4為本創作較佳實施例的一種晝素結構的示意圖。 M379073 圖5為圖4的區域C的放大示意圖《請同時參照圖4與圖 5,此晝素結構200配置於基板201上,且晝素結構200 具有穿透區202與反射區204。 如圖4所示的晝素結構200包括:主動元件21〇、保 漠層220、晝素電極圖案230以及反射層240。主動元件 210配置於基板2〇1上。保護層220覆蓋主動元件210,且 主動元件210上方的保護層220具有接觸窗開口 w。晝素 電極圖案230配置於保護層220上方,晝素電極圖案230 藉由接觸窗開口 W與主動元件210電性連接。反射層240 配置於晝素電極圖案230上且位於反射區204内,其中, 反射層240包括堆疊於晝素電極圖案230上的第一金屬層 242及金屬氮化層244。 在本實施例中,晝素結構200更包括平坦層225,覆 蓋保護層220’其中’晝素電極圖案230配置於平坦層225 上’且接觸窗開口 W也形成於平坦層225中。形成平坦層 225之目的是:可以較佳地形成平坦的晝素電極圖案2兕 與反射層240。另外,反射區204内的平坦層225還可設 計為不規則的凹凸表面,以提昇反射層240散射光線的效 果。當然’在其他實施例中,也可不形成平坦層225,而 疋將晝素電極圖案230與反射層240直接形成於保護声 220上》 曰 請繼續參照圖4 ’主動元件210包括閘極212、源極 214以及汲極216,且接觸窗開口 w暴露出汲極216。詳 細而言,晝素結構200還可包括電容電極CS、閘絕緣層 GI與通道層218。電容電極CS設置於基板201上,且閘 乡巴緣層GI覆蓋閘極212與電容電極cs。通道層218位於 閘極212上方的閘絕緣層GI上,且源極214與汲極训 位於通道層218的兩側^電容電極cs、閘絕緣層〇ι與部 份及極216可形成儲存電容。 晝素電極圖案23G可位於穿透區观與反射區2〇4 中。特別疋,在穿透區202中,晝素電極圖案23〇可具有 多=狹缝S,以達成廣視角的顯示效果,此部份端視於設 汁時的需求而定,本創作並不限制晝素電極圖案23〇的形 狀或位置。另夕卜,晝素電極圖案23〇的材質例如是銦錫氧 化物(ITO)、銦辞氧化物(IZ〇)或其他適當的材料。 睛繼續參照圖5,金屬氮化層244可配置於畫素電極 ,案230上’且第一金屬層242配置於金屬氮化層244上。 第一金屬層242的材質例如為鋁或鋁合金,或是其他反射 效果良好之金屬或合金。金屬氮化層244的厚度例如介於 100A到400A之間。 由於晝素結構200額外採用金屬氮化層244之設計,The electric layer, the protective layer 120, the flat layer 125, the halogen electrode layer (3), and the reflective layer 140. The μ-immoving element 3Γ1Γ0 and the capacitor electrode cs are disposed on the substrate 1〇1. The active element 110 has a gate 112, a source 114, a UW grabbing layer GI covering the gate i and a channel layer U8 located above the impurity 112. The channel layer 116 is located on both sides of the channel layer 118. Protection secrets and immersions 110. The flat layer 125 is disposed on the protective layer 12G. The active layer 4 has a contact opening w and a flat layer 125 above the protective layer 12G. The halogen electrode = the case i3 is disposed on the flat layer 125, and the halogen electrode pattern 130 is electrically connected to the active device 11G through the 13-contact opening σ W . The element of the halogen electrode is made of indium tin oxide (ITO). The reflective layer ^ is disposed on the halogen electrode pattern 130, and the material of the reflective layer 14G is generally a reflection wheel (4) gold > 1, such as an alloy. It is worthwhile to: in the subsequent formation of the photoresist PR to the reflective layer 140 into the patterning process, in the development process of the photoresist pR, the use of the strong developer will be the ship's reflective layer 140! Or its alloy. Referring to Fig. 2A and Fig. 2B simultaneously, the reflection 曰I40 of pure aluminum or its alloy is easily etched by the strong alkali developer to expose the 1-element electrode pattern 13G under the reflective layer 140 as shown in the region B. At this time, the halogen electrode pattern 13〇 and the reflective layer 14〇 in the strong steep 'shoulder's shirt liquid just generate the redox reaction of the following formula (1): Ιη2〇3+2Α1 ^=λ Α1203+2Ιη .·· ( l ) _ As a result, the edge portion of the halogen electrode pattern 130 at the region B is easily peeled off to cause a yield loss of the product. 3 is a schematic representation of another conventional transflective halogen structure. Referring to FIG. 3, after the freshly penetrating semi-reflective structure (10) completes the pattern of the reflective layer MG, The prime electrode pattern 30' is such that the 'halogen electrode pattern (10) is not rotted by the strong developer. However, because the halogen electrode pattern 13G is overlaid on the reflective layer 140, the M379073 causes the reflective layer UG to be unable to directly reflect the neon, and the parasitic reflectance is lowered. In addition, the use of other metals such as chromium (Cr) in place of aluminum has been proposed to avoid the problem of the ruthenium electrode pattern 13 being peeled off. However, since the reflection domains of other metals are low, the reflection layer 140 is replaced by other metals, and the problem of a decrease in reflectance cannot be avoided. [New content] In view of this, this creation provides a pixel structure with good reflectivity and product yield. This creation provides a display panel with the above-described halogen structure, which has good reflectivity and product yield. Based on the above, the present invention proposes a species of a halogen structure which is disposed on a substrate: the halogen structure has a penetrating region and a reflecting region. The halogen structure includes: an active element, a protective layer, a halogen electrode pattern, and a reflective layer. The active components are placed on the substrate. The protective layer covers the active component, wherein the shyness layer above the active component has a contact opening. The halogen electrode pattern is disposed above the protective layer, and the neutral pixel electrode pattern is electrically connected to the active device through the contact window opening. The reflective layer is disposed on the pixel electrode pattern and located in the reflective region, wherein the reflective layer includes the stack. 4 a first metal layer and a metal nitride layer on the halogen electrode pattern. In one embodiment of the creation, the pixel structure further includes a flat layer, wherein the halogen electrode pattern is disposed on the flat layer, and the contact opening is also formed in the flat layer. M379073 In the present invention, the metal nitride layer is disposed on the halogen electrode pattern, and the first metal layer is disposed on the metal nitride layer. In an embodiment of the present invention, the first metal is disposed on the pixel electrode pattern and the metal nitride layer is disposed on the first metal layer. In an embodiment of the present invention, the reflective layer further includes a second metal layer ′ and the first metal layer, the metal nitride layer and the second metal layer are sequentially stacked on the halogen electrode pattern. 1' In the present invention, the active element includes a source, a source, and a drain, and the contact opening exposes a drain. In one embodiment of the present invention, the metal nitride layer has a thickness of between 100A and 400A. In an embodiment of the present invention, the material of the first metal layer comprises aluminum. In an embodiment of the present invention, the material of the second metal layer comprises aluminum. In one embodiment of the present invention, the pixel element pattern is located in the penetrating region and the reflecting region. In an embodiment of the present invention, the material of the halogen electrode pattern includes indium tin oxide (yttrium oxide) or indium zinc oxide (IZ0). The present invention further provides a display panel comprising: a first substrate, a second substrate, and a display medium layer. The first substrate has a plurality of halogen structures, and each of the elements is disposed on the first substrate. The respective pixel structures have a penetrating region and a reflecting region. Each of the halogen structures includes an active element, a protective layer, a halogen electrode electrode, and a reflective layer. The active component is disposed on the first substrate. The protective layer covers the moving element, wherein the tilting layer above the wire element has a contact opening β = the electrode pattern is disposed above the protective layer, wherein the halogen electrode pattern is electrically connected to the active element through the contact opening. The reflective layer is disposed on the pixel 4-pole pattern and located in the reflective region, wherein the reflective layer includes a first metal layer and a metal nitride layer stacked on the halogen electrode pattern. The second substrate [the first substrate is disposed opposite to each other. The display medium layer is disposed between the first substrate and the second substrate. In an embodiment of the present invention, the display medium layer comprises a liquid crystal layer. The metal nitride layer is provided in the reflective layer of the monolithic structure of the present invention to protect the halogen electrode pattern from peeling off by the corrosion of the developer. In particular, the reflective layer can have a metal layer/metal nitride layer/metal layer design, so the present pixel structure can have both high reflectivity and low interlayer resistance. In addition, the display panel of the present invention adopts the above-described halogen structure, and thus has a good display effect and product yield. To make the above-described features and advantages of the present invention more comprehensible, the following detailed description is made in conjunction with the accompanying drawings. [Comprehensive application method] This creation mainly provides a metal nitride layer in the reflective layer of the halogen structure to prevent the strong alkali developer from corroding the halogen electrode pattern. The following is a detailed description of the creation in several examples. Pixel Structure Figure 4 is a schematic diagram of a pixel structure of the preferred embodiment of the present invention. M379073 FIG. 5 is an enlarged schematic view of a region C of FIG. 4. Referring to FIG. 4 and FIG. 5 simultaneously, the halogen structure 200 is disposed on the substrate 201, and the halogen structure 200 has a penetration region 202 and a reflection region 204. The halogen structure 200 shown in Fig. 4 includes an active element 21, a desert layer 220, a halogen electrode pattern 230, and a reflective layer 240. The active device 210 is disposed on the substrate 2〇1. The protective layer 220 covers the active element 210, and the protective layer 220 above the active element 210 has a contact opening w. The halogen electrode pattern 230 is disposed above the protective layer 220, and the halogen electrode pattern 230 is electrically connected to the active device 210 through the contact opening W. The reflective layer 240 is disposed on the halogen electrode pattern 230 and located in the reflective region 204. The reflective layer 240 includes a first metal layer 242 and a metal nitride layer 244 stacked on the halogen electrode pattern 230. In the present embodiment, the halogen structure 200 further includes a flat layer 225 covering the protective layer 220' in which the 'tenon electrode pattern 230 is disposed on the flat layer 225' and the contact opening W is also formed in the flat layer 225. The purpose of forming the flat layer 225 is that a flat halogen electrode pattern 2 兕 and a reflective layer 240 can be preferably formed. In addition, the flat layer 225 in the reflective region 204 can also be designed as an irregular concave and convex surface to enhance the effect of the reflective layer 240 to scatter light. Of course, in other embodiments, the flat layer 225 may not be formed, and the germane electrode pattern 230 and the reflective layer 240 are directly formed on the protective sound 220. Please continue to refer to FIG. 4 'the active device 210 includes the gate 212, Source 214 and drain 216, and contact opening w exposes drain 216. In detail, the halogen structure 200 may further include a capacitor electrode CS, a gate insulating layer GI, and a channel layer 218. The capacitor electrode CS is disposed on the substrate 201, and the gate pad layer GI covers the gate 212 and the capacitor electrode cs. The channel layer 218 is located on the gate insulating layer GI above the gate 212, and the source electrode 214 and the drain electrode are located on both sides of the channel layer 218. The capacitor electrode cs, the gate insulating layer, the portion and the pole 216 can form a storage capacitor. . The halogen electrode pattern 23G may be located in the penetration region and the reflection region 2〇4. In particular, in the penetrating region 202, the halogen electrode pattern 23 can have a plurality of slits S to achieve a wide viewing angle. This portion depends on the needs of the juice setting, and the creation is not The shape or position of the halogen electrode pattern 23 is limited. Further, the material of the halogen electrode pattern 23A is, for example, indium tin oxide (ITO), indium oxide (IZ) or other suitable material. With continued reference to FIG. 5, the metal nitride layer 244 can be disposed on the pixel electrode, and the first metal layer 242 is disposed on the metal nitride layer 244. The material of the first metal layer 242 is, for example, aluminum or an aluminum alloy, or other metal or alloy having a good reflection effect. The metal nitride layer 244 has a thickness of, for example, between 100A and 400A. Since the halogen structure 200 additionally uses the design of the metal nitride layer 244,
所以,在進行光阻PR的顯影時(請參見後續圖6A〜圖6C 的說明),將可避免晝素電極圖案230受到強鹼顯影液的 腐蝕而剝落。 圖6A為圖5的晝素結構在光阻顯影時的局部示音 圖。圖6B為圖5的晝素結構經過顯影液腐蝕後的示意圖。 請先參照圖6A,在將反射層240進行圖案化定義之 前’可先將反射層240進行底部氮化處理,使得金屬氮化 M379073 層244 (如氮化鋁(A1N))均勻地形成於第一金屬層242、 以及晝素電極圖案230之間。 请再參照圖6B ’於反射區204會繼續形成光阻pR以 圖案化反射層240。值得注意的是,在將光阻PR進行顯影 的過程中會使用強鹼顯影液。然而,如圖6B的區域D = 示,由於已經在第一金屬層242與晝素電極圖案230之間 形成了金屬氮化層244,此金屬It化層244可避免強驗顯 影液接觸到晝素電極圖案230,如此一來,晝素電極圖案 230便不會與第一金屬層242產生上述式(1)所示的氧^匕 還原反應。在顯影過程結束後,繼續對於反射層24〇進行 蝕刻,即可得到具有圖5的膜層堆疊的晝素結構2〇〇。 由上述可知,採用金屬氮化層244可避免晝素電極圖 案230剝落’並且,由於反射層24〇位於晝素電極圖案2邓 的上方,所以畫素結構200還可保持良好的反射效果。然 而,此處僅為舉例說明,還可以採用其他的膜層結構設計、 立圖7為本創作較佳實施例的另一種晝素結構的局部示 意圖,其對應於圖4的區域C。圖8A為圖7的晝素結構 在光阻顯影時的局部示意圖。圖8B為圖7的晝素結&經 過顯影液腐钱後的示意圖。 工 請先參照圖7,畫素結構200也可以採用圖7所示的 膜層結構,亦即’第-金屬層242是配置於晝素電極圖案 230上,金屬氮化層244是配置於第一金屬層上。/、 請參照圖8A’在將反射層240進行圖案化定義之前, 可先將反射層24G進行表面氮化處理,使金屬氮化層施 ^/^073 (如氮化鋁(A1N))均勻形成於第一金屬層242的表面上。 請再參照圖8B,於反射區204會繼續形成光阻pR以 圖案化反射層240。值得注意的是’在將光阻pR進行顯影 ,過程中會使用強鹼顯影液。在顯影的過程中,由於金I 氮化層244覆蓋在第一金屬層242上,所以金屬氮化層244 可避免強鹼顯影液接觸到晝素電極圖案23〇。結果^,佥 素電極圖案230不會與第一金屬層242產生式(1)所示= 氧化還原反應。在顯影過程結束後,繼續對於反射層24〇 進行蝕刻,即可得到具有圖7的膜層堆疊的晝素結構92〇〇。 圖9為本創作較佳實施例的又一種晝素結構局部示意 圖,其對應於圖4的區域C。圖10A為圖9的晝素結構& 光阻顯影時的局部示意圖。圖10B為圖9的晝素結構經過 顯影液腐餘後的示意圖。 請參照圖9 ’在此實施例中,反射層240更包括第二 金屬層246,而第一金屬層242、金屬氮化層244與第二金 屬層246依序堆疊於晝素電極圖案230上。換言之,金屬 氮化層244是位於第一金屬層242與第二金屬層246之間。 請先參照圖10A,在將反射層240進行圖案化定義之 前,可先將反射層240進行氮化處理,而使金屬氮化層244 位於反射層240的中間部分,而形成A1/A1N/A1的三層膜 層結構;或者’也可用依序堆疊的方式來形A1/A1N/A1的 三層膜層結構。 請再參照圖10B,於反射區204會繼續形成光阻PR 以圖案化反射層240。值得注意的是’在將光阻進行顯 11 影的過程巾會錢㈣液。在顯影的過程巾,位於反 射層240中間部分的今屬氣#麻u^ π I 層244可阻擔顯影液腐蝕書 素電極圖案230。結果是,晝素電極圖案謂*會產生^ (1)所示的氧化還原反應。在顯騎程結束後,繼續對於 反射層㈣進行钱刻,即可得到具有圖9的膜層堆疊的書 素結構200。 — 值得-提的是,#晝素結構·具有圖9所示的膜層 設計時’亦即’第-金屬層242、金屬氮化層244與第二 金屬層施是依序堆疊於晝素電極圖案挪上,由於第一 金屬層242與晝素電極圖案23()直接接觸,所以可降低層 間阻抗;另外’第二金屬層246可直接反射光線,而得到 良好的反射率。 顯示面板 圖11為本創作較佳實施例的一種顯示面板的示意 圖。请參圖11,顯示面板3〇〇包括:第一基板3〇1、第 二基板302以及顯示介質層303。第一基板301具有多個 上述的晝素結構200。顯示介質層303可以是液晶層或其 他類似性質的顯示介質。 由於顯示面板300具有上述的晝素結構2〇〇,因此顯 示面板300具有上述畫素結構2〇〇所提及的所有技術功 效。因此,顯示面板300具有良好的顯示效果與產品良率。 圖12為具有不同晝素結構的主動元件陣列基板的反 射率量測結果。使用的反射率量測儀器為〇TSUKA公司出 [S3 12 M379073 產的OTSUKA LCD 7200。請參照圖12,曲線群組41〇代 表具有上述A1/A1N/A1的反射層240的晝素結構(如圖9 所示)之主動元件陣列基板的反射率、曲線群組42〇代表 具有上述具有A1/A1N的晝素結構(如圖7所示)之主動元件 陣列基板的反射率、曲線群組430代表反射層的材質採用 鉻之主動元件陣列基板的反射率、曲線群組440代表具有 習知的晝素結構l〇〇a(如圖3所示)之主動元件陣列基板 反射率。 一量測方式如下:首先,以不同角度對於待量測之主動 兀件陣列基板入射光線,其中,主動元件陣列基板的正上 方為〇度;接著,使用主動元件陣列基板正上方的 量測反射光線的強度。 、°° 由圖12的結果可以看出,曲線群組44〇的反射率最 低,亦即,習知中先設置反射層再設置晝素電極圖孝的主 動元件,列基板的反射率最低;再來,曲線群組43〇的反 射率次高,亦即,使用鉻來取代鋁之主動元件陣列基板的 反射率較曲線群組440稍高。 土 值得注意的是,在曲線群組420中,亦即使用上述具 有A1/A1N的畫素結構(如圖7所示)之主動元件陣列基板的 反射率明顯高於曲線群組430、440。特別是,在曲绩 中,個具有上述删麵的晝素結構(如 之主動元件陣列基板的反射率是最高的。 綜上所述,本創作的晝素結構及顯示面板至少具 下優點: 13 本創作的晝素結構的反射層中設置有氣化只,可 細時接觸到晝素電極圖案與反射層:因此 尚反射率,且 =狀射層的堆疊方式可可不同。特別層/ 化層/金屬層設計之晝素結構胃 而具有良好的顯示效 圖案與反射層之間的層間阻抗也較低。此外,本 創作的‘4不面板採用上述晝素結構, 果與產品良率。 太:創作已以實施例揭露如上,然其並非用以限定 本創作;m技術領域巾具*通常知識者,在不脫離 創作之伴t和|&圍内’當可作些許之更動與潤飾,故本 '、遵乾圍當視後附之巾請專概騎界定者為準。 【圖式簡單說明】 顯為習知的半穿透半反射式晝素結構,在光阻pr _影時的示意圖。 圖2A為圖1的區域A的放 圖2B為圖2A在顯影後的示意圖。 圖3為習知的另一種半穿透半反射式晝素結構的示意 園° 圖4為本_較佳實施例的-種晝素結構的示意圖。 圖5為圖4的區域C的放大示意圖。 圖6A為圖5的晝素結構在光阻顯影時的局部示意圖。 圖6B為圖5的畫素結構經過顯影液腐蝕後的示意圖。 m 14 •種畫素結構的局部示 圖8A為圖7的晝素結構在光阻顯影時的局部示意圖。 圖8B為圖7的晝素結構經過顯影液腐蝕後的示意圖。 圖9為本創作較佳實施例的又一種晝素結構局部示意 圖’其對應於圖4的區域c。 圖10A為圖9的畫素結構在光阻顯影時的局部示意 圖。 〜Therefore, when developing the photoresist PR (see the description of Figs. 6A to 6C), it is possible to prevent the halogen electrode pattern 230 from being peeled off by the corrosion of the strong alkali developing solution. Fig. 6A is a partial view of the halogen structure of Fig. 5 in the development of photoresist. 6B is a schematic view of the halogen structure of FIG. 5 after being etched by a developing solution. Referring to FIG. 6A, before the reflective layer 240 is patterned, the reflective layer 240 may be subjected to bottom nitridation treatment, so that the metal nitride M379073 layer 244 (such as aluminum nitride (A1N)) is uniformly formed on the first layer. A metal layer 242 and a halogen electrode pattern 230 are provided. Referring to Figure 6B' again, a photoresist pR is formed in the reflective region 204 to pattern the reflective layer 240. It is worth noting that a strong alkali developer is used in the development of the photoresist PR. However, as shown in the region D= of FIG. 6B, since the metal nitride layer 244 has been formed between the first metal layer 242 and the halogen electrode pattern 230, the metalitized layer 244 can prevent the strong developer from coming into contact with the germanium. The element electrode pattern 230 is such that the halogen electrode pattern 230 does not generate the oxygen reduction reaction represented by the above formula (1) with the first metal layer 242. After the development process is finished, the etching of the reflective layer 24 is continued to obtain a halogen structure 2 having the film layer stack of Fig. 5. As can be seen from the above, the use of the metal nitride layer 244 prevents the pixel electrode pattern 230 from peeling off and the pixel structure 200 can maintain a good reflection effect since the reflective layer 24 is located above the pixel electrode pattern 2 Deng. However, for the sake of exemplification, other film structure designs may be employed, and Figure 7 is a partial schematic view of another pixel structure of the preferred embodiment of the present invention, which corresponds to region C of Figure 4. Fig. 8A is a partial schematic view showing the structure of the halogen of Fig. 7 in the development of photoresist. Fig. 8B is a schematic view of the alizarin junction & of Fig. 7 after the developer has been rotted. Referring to FIG. 7 first, the pixel structure 200 may also adopt the film structure shown in FIG. 7, that is, the 'first metal layer 242 is disposed on the halogen electrode pattern 230, and the metal nitride layer 244 is disposed on the first layer. On a metal layer. Referring to FIG. 8A', before the reflective layer 240 is patterned, the reflective layer 24G may be subjected to surface nitridation treatment to uniformly apply the metal nitride layer (such as aluminum nitride (A1N)). It is formed on the surface of the first metal layer 242. Referring again to FIG. 8B, a photoresist pR is formed in the reflective region 204 to pattern the reflective layer 240. It is worth noting that in the development of the photoresist pR, a strong alkali developer is used. In the developing process, since the gold I nitride layer 244 is overlaid on the first metal layer 242, the metal nitride layer 244 can prevent the strong alkali developing solution from contacting the halogen electrode pattern 23A. As a result, the pixel electrode pattern 230 does not generate the redox reaction with the first metal layer 242 as shown in the formula (1). After the development process is finished, the etching of the reflective layer 24A is continued to obtain a halogen structure 92 having the film layer stack of Fig. 7. Figure 9 is a partial schematic view of a further pixel structure of the preferred embodiment of the present invention, which corresponds to the area C of Figure 4 . Fig. 10A is a partial schematic view showing the halogen structure & photoresist development of Fig. 9. Fig. 10B is a schematic view showing the structure of the halogen of Fig. 9 after being rotted by the developing solution. Referring to FIG. 9 'in this embodiment, the reflective layer 240 further includes a second metal layer 246 , and the first metal layer 242 , the metal nitride layer 244 and the second metal layer 246 are sequentially stacked on the halogen electrode pattern 230 . . In other words, the metal nitride layer 244 is between the first metal layer 242 and the second metal layer 246. Referring to FIG. 10A, before the reflective layer 240 is patterned, the reflective layer 240 may be nitrided, and the metal nitride layer 244 is located in the middle portion of the reflective layer 240 to form A1/A1N/A1. The three-layer film structure; or 'the three-layer film structure of A1/A1N/A1 can also be formed by sequential stacking. Referring again to FIG. 10B, a photoresist PR is continued to be formed in the reflective region 204 to pattern the reflective layer 240. It is worth noting that the process of the photoresist will show the money (four) liquid. In the developing process towel, the present genus # ^ π I layer 244 located in the middle portion of the reflective layer 240 can block the developer from etching the pixel electrode pattern 230. As a result, the halogen electrode pattern is said to produce a redox reaction as shown in (1). After the end of the cycle, the deposition of the reflective layer (4) is continued, and the book structure 200 having the film layer stack of Fig. 9 is obtained. — It is worthwhile to mention that the #昼素 structure· having the film layer design shown in Fig. 9 'that is, the first metal layer 242, the metal nitride layer 244 and the second metal layer are sequentially stacked on the halogen. The electrode pattern is shifted, since the first metal layer 242 is in direct contact with the halogen electrode pattern 23(), the interlayer resistance can be reduced; and the second metal layer 246 can directly reflect the light to obtain a good reflectance. Display Panel Fig. 11 is a schematic view of a display panel in accordance with a preferred embodiment of the present invention. Referring to FIG. 11, the display panel 3A includes a first substrate 3A1, a second substrate 302, and a display medium layer 303. The first substrate 301 has a plurality of the above-described halogen structures 200. The display medium layer 303 may be a display medium of a liquid crystal layer or the like. Since the display panel 300 has the above-described halogen structure 2〇〇, the display panel 300 has all the technical effects mentioned above in the pixel structure 2〇〇. Therefore, the display panel 300 has a good display effect and product yield. Fig. 12 is a graph showing the reflectance measurement results of an active device array substrate having different pixel structures. The reflectance measuring instrument used was OTSUKA LCD 7200 manufactured by 〇TSUKA Corporation [S3 12 M379073. Referring to FIG. 12, the curve group 41A represents the reflectivity of the active device array substrate having the pixel structure of the reflective layer 240 of the above A1/A1N/A1 (as shown in FIG. 9), and the curve group 42〇 represents the above. The reflectivity of the active device array substrate having the A1/A1N halogen structure (as shown in FIG. 7), the curve group 430 representing the material of the reflective layer using the reflectivity of the chromium active device array substrate, and the curve group 440 representing The reflectivity of the active device array substrate of the conventional halogen structure l〇〇a (shown in FIG. 3). A measurement method is as follows: First, the light is incident on the active element array substrate to be measured at different angles, wherein the active element array substrate is directly above the susceptibility; then, the measurement reflection directly above the active device array substrate is used. The intensity of the light. It can be seen from the results of FIG. 12 that the curve group 44〇 has the lowest reflectivity, that is, the active element in which the reflective layer is first disposed and then the pixel electrode is disposed, and the reflectance of the column substrate is the lowest; Further, the reflectance of the curve group 43A is the second highest, that is, the reflectance of the active device array substrate using chromium instead of aluminum is slightly higher than that of the curve group 440. It is worth noting that in the curve group 420, that is, the active element array substrate using the above-described pixel structure having A1/A1N (as shown in Fig. 7) has a significantly higher reflectance than the curve groups 430, 440. In particular, in the track record, a single crystal structure having the above-mentioned deleted surface (for example, the active element array substrate has the highest reflectance. In summary, the present pixel structure and display panel have at least the following advantages: 13 The vaporization layer of the created monolithic structure is provided with gasification only, which can be in contact with the halogen electrode pattern and the reflective layer in a fine manner: therefore, the reflectance is still different, and the stacking manner of the morphing layer can be different. The layer/metal layer design has a low-structure structure of the stomach and has a good display effect pattern and the interlayer impedance between the reflective layers is also low. In addition, the '4 non-panel of the present invention adopts the above-mentioned halogen structure, fruit and product yield. Too: Creation has been exposed as above in the examples, but it is not intended to limit the creation; m technical field towel* is usually a knowledgeable person, and can make some changes without being separated from the companion t and |& Retouching, so this ', according to the dry-lined attached to the towel, please refer to the definition of the specific rider. [Simple diagram description] It is a well-known semi-transparent semi-reflective alizarin structure, in the photoresist pr _ Schematic diagram of the shadow time. Figure 2A is the area A of Figure 1. Figure 2B is a schematic view of Figure 2A after development. Figure 3 is a schematic representation of another conventional transflective halogen structure. Figure 4 is a schematic view of the structure of the species of the preferred embodiment. Fig. 5 is an enlarged schematic view of a region C of Fig. 4. Fig. 6A is a partial schematic view of the pixel structure of Fig. 5 during photoresist development. Fig. 6B is a schematic view showing the pixel structure of Fig. 5 after being etched by a developer. Figure 8A is a partial schematic view of the halogen structure of Figure 7 during photoresist development. Figure 8B is a schematic view of the halogen structure of Figure 7 after being etched by a developer. Another partial schematic diagram of a halogen structure of the embodiment corresponds to the region c of Fig. 4. Fig. 10A is a partial schematic view of the pixel structure of Fig. 9 during photoresist development.
園為本創作較佳實施例的另 意圖,其對應於圖4的區域c。 圖10B為圖9的晝素結構經過顯影液腐蝕後的示意 圖。 圖11為本創作較佳實施例的一種顯示面板的示意圖。 圖12為具有不同畫素結構的主動元件陣列基板的反 射率量測結果。 【主要元件符號說明】 100、100a、200 :晝素結構 1(H、201 :基板 102、202 ··穿透區 104、204 :反射區 110、210 :主動元件 112、212 :閘極 114、214 :源極 116 : 216 没極 118、218 :通道層 15 M379073 120 、220 :保護層 125 、225 :平坦層 130 、230 :晝素電極圖案 140 、240 :反射層 242 :第一金屬層 244 :金屬氮化層 246 :第二金屬層 300 .顯不面板 301 :第一基板 302 :第二基板 303 :顯示介質層 A、 B、C、D :區域 CS :電容電極 GI : :閘絕緣層 PR :光阻 S : 狹缝 w : 接觸窗開口 16 IS 1The garden is a further intention of creating a preferred embodiment, which corresponds to the area c of Fig. 4. Fig. 10B is a schematic view showing the structure of the halogen of Fig. 9 after being etched by a developing solution. FIG. 11 is a schematic diagram of a display panel according to a preferred embodiment of the present invention. Fig. 12 is a measurement result of reflectance of an active device array substrate having different pixel structures. [Description of main component symbols] 100, 100a, 200: halogen structure 1 (H, 201: substrate 102, 202 · penetration region 104, 204: reflection region 110, 210: active device 112, 212: gate 114, 214 : source 116 : 216 immersion 118 , 218 : channel layer 15 M379073 120 , 220 : protective layer 125 , 225 : flat layer 130 , 230 : halogen electrode pattern 140 , 240 : reflective layer 242 : first metal layer 244 : metal nitride layer 246 : second metal layer 300 . display panel 301 : first substrate 302 : second substrate 303 : display dielectric layer A, B, C, D : region CS : capacitor electrode GI : : gate insulating layer PR: photoresist S: slit w: contact window opening 16 IS 1