TWM377599U - Micro-optical image capturing device - Google Patents

Micro-optical image capturing device Download PDF

Info

Publication number
TWM377599U
TWM377599U TW98221608U TW98221608U TWM377599U TW M377599 U TWM377599 U TW M377599U TW 98221608 U TW98221608 U TW 98221608U TW 98221608 U TW98221608 U TW 98221608U TW M377599 U TWM377599 U TW M377599U
Authority
TW
Taiwan
Prior art keywords
lens
micro
optical
imaging device
optical imaging
Prior art date
Application number
TW98221608U
Other languages
Chinese (zh)
Inventor
Chien-Hsun Lai
Original Assignee
Ability Opto Electronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ability Opto Electronics Technology Co Ltd filed Critical Ability Opto Electronics Technology Co Ltd
Priority to TW98221608U priority Critical patent/TWM377599U/en
Publication of TWM377599U publication Critical patent/TWM377599U/en

Links

Landscapes

  • Lenses (AREA)

Description

M377599 五、新型說明·· 【新型所屬之技術領域】 本創作涉及一種取像裝置,尤其係指一種由最少鏡片 構成,低光學畸變、尺寸短小且過濾特定波長光線成像於 圖像傳感器的超廣角微型光學取像裝置。 【先前技術】 近年,隨著技術進步與貢獻,使用諸如CCD型(電 荷耦合裝置)圖像傳感器或CMOS(互補金屬氧化物半導 體)型圖像傳感器的固態成像元件的取像裝置的尺寸縮 小,使得設有取像裝置的行動通訊裝置或電腦設備已很 普遍。 就設計而言,為了攜帶方便及符合人性化需求,可 拍照手機的取像鏡頭不僅需要具有良好的成像品質,還 需要有較小的體積及較低的成本。因此,與傳統照相 機、攝影機及一般數位相機的可調焦、可變焦鏡頭不 同,可拍照手機中所使用的取像鏡頭尺寸要小很多,結 構亦簡單很多,且主要係以定焦鏡頭為主。 然而,隨著這些行動通訊裝置或電腦設備尺寸縮小 的元件高密度趨勢,或功能的增加,都希望可更縮小被 裝配的取像裝置尺寸。 現有的取像透鏡產品通常安排三個透鏡組合的取 像裝置,以物件側的順序包含具有正折射的第一透鏡, 具有負折射率的第二透鏡,及具有正折射率的第三透 鏡。三透鏡組合的取像裝置之形式不僅在價格因素上失 去競爭力,亦使得鏡頭之整體長度仍然較長,重量也會 3 M377599M377599 V. New Description·· 【New Technical Fields】 This creation involves an image capture device, especially a super wide angle consisting of a minimum of lenses, low optical distortion, short size and filtering of specific wavelengths of light imaged on the image sensor. Micro optical imaging device. [Prior Art] In recent years, with the advancement and contribution of technology, the size of an image capturing device using a solid-state imaging element such as a CCD type (charge coupled device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) type image sensor has been reduced in size, It has become common to have a mobile communication device or a computer device with an image capturing device. In terms of design, in order to be portable and ergonomic, the image taking lens of the camera phone not only needs to have good image quality, but also requires a small volume and a low cost. Therefore, unlike the adjustable focus and zoom lenses of conventional cameras, cameras, and general digital cameras, the size of the image taking lens used in camera phones is much smaller, the structure is much simpler, and the main focus is on fixed focus lenses. . However, as the size of these mobile communication devices or computer devices is reduced, or the function is increased, it is desirable to reduce the size of the image pickup device to be assembled. The prior art image taking lens product is generally arranged with an image pickup device of three lens combinations, including a first lens having positive refraction, a second lens having a negative refractive index, and a third lens having a positive refractive index in the order of the object side. The form of the three-lens combination imaging device not only loses competitiveness in terms of price factors, but also makes the overall length of the lens still long and the weight is also 3 M377599

偏重。也由於各組成元件皆有其個別之尺寸公差,故組裝 後所累積之組合公差甚為可觀’常導致組裝後之焦距改 變而無法聚焦成像’造成產品良率不高,必須再進行調 焦之步驟,使得整體製程甚為繁瑣,增加製造成本。 另,此類光學取像裝置也因為使用目的只是用於可 見光通過,所以其過濾元件只使用紅外線過濾元件,無 過濾其它特定波長,只通過所需波長的組合,所以無法 對其它光線進行取像應用。 【新型内容】Heavier. Also, since each component has its own dimensional tolerance, the combined tolerance accumulated after assembly is very large, which often results in a change in the focal length after assembly and cannot focus on the image. This results in a low yield and must be adjusted. The steps make the overall process very cumbersome and increase manufacturing costs. In addition, since such an optical image capturing device is also used for visible light passage, the filter element uses only the infrared filter element, and does not filter other specific wavelengths, but only through the combination of the required wavelengths, so that other light cannot be imaged. application. [New content]

於是,為解決上述之缺點本創作之目的係在提供— 種微型光學取像裝置,用以形成超廣視角、大孔徑數值 及低敏感度,其構件精簡,且組合後焦公差係小於光學 聚焦之可用的焦深範圍,不需進行調焦之動作,可降低 製作成本,甚具經濟效益,並可以有效校正球差、像差、 %曲及整體長度極短的微型光學取像裝置。 本創作的另一目的係在提供一種微型光學取像 置’其雜元件過濾、其⑽定波長,通過所需波長的^Therefore, in order to solve the above disadvantages, the purpose of the present invention is to provide a micro optical image capturing device for forming an ultra-wide viewing angle, a large aperture value and a low sensitivity, the components are simplified, and the combined back focus tolerance is smaller than the optical focus. The available depth of focus range eliminates the need for focusing, reduces manufacturing costs, is economical, and effectively corrects spherical aberration, aberrations, % curvature, and miniature optical imaging devices with extremely short overall lengths. Another object of the present invention is to provide a miniature optical image pickup device whose impurity element is filtered, and its (10) wavelength is determined by the desired wavelength.

線,形成可對其它光線進行取像應用的微型光學取像穿 置 依據本創作之目的而提供的微型光學取像裝置, 被攝物體方包括:具有負屈光度且凸向被攝物之 鏡;孔徑光閘;具有正屈光度且凸向成像面呈半月 第二透鏡,用以過濾特定波長之光線的—過濾元 該過濾元件進一步可設置於第—透鏡與被;物體: 間。以及用以接收通過前述過濾元件紅外線不可 成像,且將成像傳換成為數位信號之一圖像傳减器。 4 M377599 其中,該過濾元件係為紅外線截止過濾元件,用於 可見光成像;或可見光截止過濾元件用以通過光線之波 長為780至1050nm,用於不可見光的紅外線光成像。 所述第一透鏡與第二透鏡使用材料的折射率為1.5 至1_7,且第一透鏡滿足關係式:-10<fl/f<-0.5 ;第二透 鏡滿足關係式:〇.5<f2/f<5 ;所述第一透鏡與第二透鏡 構成的取像裝置滿足公式:l_5<L/f<5 ;其中上式中,fl 係第一透鏡之光學焦距,f2係第二透鏡之光學焦距,f 係微型光學取像裝置整個系統的焦距,L係從微型光學 取像裝置的光學總長,即孔徑光閘到成像焦點的距離。 其中,該第一透鏡包含有面對被攝物體的第一面及 面對成像面的第二面,所述第一面係相對於被攝物體呈 凸面構形之凸面,第二面係相對於成像面呈凹陷構形之 凹陷;該第二透鏡包含有面對被攝物體的第三面及面對 成像面的第四面,所述第三面係相對於被攝物體呈凹陷 構形之凹陷,第四面係相對於成像面呈凸面構形之凸 面;且,前述第一、二、三、四面中皆為非球面。戶斤述 非球面的面型滿足下列公式: ru2 1 二-T+Ah^+ Bh6 + Chs + Dh10 + Ehn + Fh14 + Gh16 i + [\-(k + i)c2h2y 其中,z為沿光軸方向在高度為h的位置以表面頂點作 參考距光軸的位移值;k為錐度常量;c為曲率半徑的 倒數;A、B、C、D ' E、F、G為高階非球面係數。 實施上第一透鏡與第二透鏡係為圓形透鏡,亦可以 是圓形去掉兩對稱邊的劣弓形而呈長條狀之透鏡。 本創作的優點在於,本創作微型光學取像裝置係採 5 M377599 用負、正二片非球面透鏡,由第-透鏡為 的第-面用以超廣角的接受外在的入 == 束在第二面上,藉此可充分發揮非球面的功能,靖 差及減低公差敏感度,也使的本裝置呈有 二 推贫、去⑽。 八&角度,取 像角度可達90以上;而孔徑光閘取的所要 束,再經過第二透鏡經過第二透鏡上的為凸向成像面 第三,闊束’從而使光束在第四面上可分佈較=的面 積,藉此可充分發揮非球面的功能,矯正像差及a micro-optical imaging device that provides a micro-optical image-taking application for image-taking applications of other light sources, the object of which includes a mirror having a negative refracting power and convex toward the object; Aperture shutter; a second lens having a positive refracting power and a convex imaging surface in a half moon for filtering light of a specific wavelength - a filter element. The filter element may further be disposed between the first lens and the object; And an image reducer for receiving infrared non-imaging through the filter element and converting the image into a digital signal. 4 M377599 wherein the filter element is an infrared cut filter element for visible light imaging; or a visible cut filter element is used for infrared light imaging of invisible light by a wavelength of light of 780 to 1050 nm. The first lens and the second lens use materials have a refractive index of 1.5 to 1_7, and the first lens satisfies the relationship: -10<fl/f<-0.5; the second lens satisfies the relationship: 〇.5<f2/ f<5; the image capturing device composed of the first lens and the second lens satisfies the formula: l_5<L/f<5; wherein in the above formula, fl is the optical focal length of the first lens, and f2 is the optical of the second lens Focal length, the focal length of the entire system of the f-micro optical imaging device, and L is the total optical length of the micro-optical imaging device, that is, the distance from the aperture shutter to the imaging focus. Wherein, the first lens comprises a first surface facing the object and a second surface facing the imaging surface, the first surface is convex with respect to the object, and the second surface is opposite a recess having a concave configuration on the imaging surface; the second lens includes a third surface facing the object and a fourth surface facing the imaging surface, the third surface being concavely configured with respect to the object The recessed surface has a convex surface with a convex configuration with respect to the image forming surface; and the first, second, third, and fourth sides are aspherical surfaces. The surface type of the aspheric surface satisfies the following formula: ru2 1 II-T+Ah^+ Bh6 + Chs + Dh10 + Ehn + Fh14 + Gh16 i + [\-(k + i)c2h2y where z is along the optical axis The direction is at the height h position with the surface apex as the reference displacement from the optical axis; k is the taper constant; c is the reciprocal of the radius of curvature; A, B, C, D 'E, F, G are the high-order aspheric coefficients. The first lens and the second lens are implemented as a circular lens, and may be a lens having a circular shape and a long arc shape with the two symmetrical sides removed. The advantage of this creation is that the micro-optical imaging device of this creation adopts a negative and positive aspherical lens for 5 M377599, and the first surface of the first lens is used for the super wide angle to accept the external input == beam in the first On both sides, the aspherical function can be fully utilized, and the tolerance and sensitivity can be reduced. This device also has two advantages: (10). Eight & angle, the image angle can reach more than 90; and the desired beam of the aperture shutter, and then through the second lens through the second lens is convex to the imaging surface third, broad beam 'and thus the beam in the fourth An area of = can be distributed on the surface, so that the function of the aspheric surface can be fully utilized to correct aberrations and

差敏感度。第一、二透鏡片均可採用塑膠材質,有利ς 消除球差、像差及減輕鏡頭重量,整個光學系統只用到 二個塑膠透鏡’所以整個微型光學取像裝置整體的長户 ,適合大量生產,公差敏感度低,具有良好的:: 口口貝,且因為景深的自由度(Depth of field)夠大,組合 後焦公差係小於光學聚焦之可用的焦深範圍,應用時ς 需進行調焦之動作,易於製造組立’符合大規模量產之 要求。 一藉由過濾元件過濾特定波長的光線,通過所需波長的Poor sensitivity. The first and second lens sheets can be made of plastic material, which is good for eliminating spherical aberration, aberration and reducing the weight of the lens. The entire optical system uses only two plastic lenses'. Therefore, the whole micro-optical imaging device is suitable for a large number of households. Production, low tolerance sensitivity, good:: mouthpiece, and because the depth of field depth (Depth of field) is large enough, the combined back focus tolerance is less than the available focal depth range of optical focus, which is required for application. The action of focusing is easy to manufacture and meet the requirements of mass production. Filtering a specific wavelength of light by a filter element through a desired wavelength

光線’不只應用於彳進光的成像,進一步也可利用可見光 截止過滤元件形成對其它光線進行取像應用的微型光學取 像裝置》 【實施方式】 兹有關本創作之詳細内容及技術說明,現以實施例 ^作進一步說明,但應暸解的是,該等實施例僅為例示 έ 兄明之用’而不應被解釋為本創作實施之限制。 本創作的構成具體而言,係提供一種二片透鏡構成 的取像裝置’為超廣視角、大孔徑數值及低敏感度,並 6 :校正像差及場曲,且景深的自由度(Depth ^ ρΓ /大±’組合公差係小於光學聚焦之可用的焦深範 =用時不需進行調焦之動作,可降低製作成本,甚 具經濟效益。 •喷參閱圖1所示為本創作微型光學取像裝置的光 學結構圖。本創作之目的而提供的微型光學取像裝置, 其從被攝物體方依序包括:具有貞屈光度且凸向被攝物 之第二透鏡10;孔徑光閘20;具有正屈光度且凸向成 像面王半月型之第二透鏡30 ;過濾特定波長之光線的 一過濾元件40,該過濾元件40可以是一紅外線截止過 濾兀件,用於可見光成像,或一可見光截止過濾元件, 用以過濾可見光’而通過的光線之波長為78〇至 1050nm ’應用於不可見光的紅外線光成像;以及用以 接收通過前述過濾元件紅外線不可見光的成像,傳換成 為數位信號之一圖像傳感器5〇(成像面),該圖像傳感器 50包括一平面保護透鏡51與一影像感測器52,該影像 感測器52可以是電荷麵合元件(Charge Coupled Device,CCD )或互補式金屬氧化物半導體 (Complementary Metal Oxide Semiconductor,CMOS )。 前述第一透鏡與第二使用材料的折射率為1.5至 1.7,用以大角度折射入射光線,且該第一透鏡1〇滿足 關係式:,第二透鏡30滿足關係式: 0.5<f2/f<5 ;其中Π係第一透鏡20之光學焦距,口係 第二透鏡30之光學焦距,f係微型光學取像裝置整個系 統的焦距。 該二片透鏡構成的取像裝置滿足公式1.5<L/f<5, M377599 其中,L係從微型光學取像裝置的光學總長,即第一透 鏡10面對被攝物體的表面到成像焦點的距離;f係微型 光學取像裝置整個系統的焦距。 該第一透鏡10包含有面對被攝物體的第一面11及 面對成像面的第二面12,所述第一面11係相對於被攝 物體呈凸面構形之凸面,第二面12係相對於成像面呈 凹陷構形之凹陷。該第二透鏡30包含有面對被攝物體 的第三面31及面對成像面的第四面32,所述第三面31 係相對於被攝物體呈凹陷構形之凹陷,第四面32係相 對於成像面呈凸面構形之凸面。且前述第一、二、三、 四面11、12、31、32皆為非球面,藉此全面矯正球差 及像差,並具有低公差敏感度之特性。 而前述非球面的表型滿足下列公式: rU2 z =-r + Ah4 + Bh6 + Ch8 + Dh10 + Ehn + Fhu + Gh16 \ + [\-{k + l)c2h2]2 其中,z為沿光轴方向在高度為h的位置以表面頂點作 參考距光轴的位移值;k為錐度常量;c為曲率半徑的 倒數;A、B、C、D、E、F、G為高階非球面係數。 藉由前述結構組合,被攝物在經過二透鏡而在該圖 像傳感器50上的最大成像高度最大滿足如下關係式: 0.8<d/f<3,其中d係該圖像傳感器上的最大成像高度, f係微型光學取像裝置整個系統的焦距。 實施上第一透鏡20與第二透鏡30係為目前一般市 面產品的圓形透鏡形狀(如圖2所示),亦可以是圓形去 掉兩對稱邊的劣弓形而呈長條狀之透鏡(如圖3所示), 可應用於不同外殼模型的光學鏡頭裝置。 8 M377599 實施上,本創作之微型光學取像裝置中,該第—透 鏡10為負透鏡,其第一面11係相對於被攝物體呈凸面 構形,用以超廣角的接受外在的入射光束’從而使光束 在第二面12上,藉此可充分發揮非球面的功能,矯正 像差及減低公差敏感度,也使的本裝置具有超廣角度, 取像角度可達100°以上。再由該孔徑光閘20取得所要 的入射光束,入射光束再經過該第二透鏡30上相對於 被攝物體呈凹陷構形之凹陷的第三面31進行闊束,第 四面32係相對於成像面呈凸面構形的正透鏡,使光束 在第二面32上可分佈較大的面積。也就是說,入射光 束經過第三面31的闊束,從而使光束在第四面32上可 分佈較大的面積,而該第二透鏡30之半月形構造可充 分發揮非球面的功能,矯正像差及減低公差敏感度。 採用非球面設計除了可矯正球差及像差外還有助 於縮短鏡頭光學系統的總長,且第一、二透鏡片20、 3〇均可採用塑膠材質,有利於消除像差及減輕鏡頭重 量’整個光學系統只用到二個塑膠透鏡,適合大量生 產’且其公差敏感度低,加上景深的自由度(Depth of field)夠大,組合公差係小於光學聚焦之可用的焦深範 圍,應用時不需進行調焦之動作,易於製造組立,符合 大規模量産之要求。而用以過濾可見光,只通過紅外線 不可見光的過渡元件40,形成一種可對人體的熱輕射 進行取像的微型光學取像裝置 基於前述本創作之技術内容,可依據下列數值實施 例具體實施: 9 M377599 表面 曲率半徑 (mm)(Radius) 厚度/間隔(mm) (Thickness) 折射率(Nd) 阿貝數(Vd) 第一面11 -21.61717 0.692358 1.514 57.14 第二面12 3.16958 0.006121 光閘 〇〇 0.02614 第三面31 -1.20090 0.853936 1.632 23.4 第四面32 -0.53051 0.492730 其中,過濾·元件40的厚度為0.3 mm,係一可見光 截止過滤元件’通過的光線之波長為850nm ;平面保護 透鏡51的厚度為0.4 mm ;微型光學取像裝置到被攝物 的物距為200mm。 非球面係數的具體數值如下所列: 第一面 ll(k=922.002560): A.0.45487 B:l.05139 C:-11.6829 D:28.1105 E:27.2384 F.-196.404 G:207.278 第二面 12(k=167.144843): A:-0.304422 B:-118.812 C:-2072.28 D-.102208.0 E:208550.0 10 M377599 F:-49539000.0 G:-93459500.0 第三面 31(k=8.691066):The light 'is not only applied to the imaging of the punctured light, but also the visible optical cut-off filter element can be used to form the micro-optical image capturing device for the image taking application of other light rays. [Embodiment] The details and technical description of the present invention are now available. The embodiment is further described, but it should be understood that the examples are merely illustrative of the use of the invention and should not be construed as a limitation. Specifically, the composition of the present invention provides an image capturing device composed of two lenses, which is an ultra-wide viewing angle, a large aperture value, and a low sensitivity, and 6: corrects aberration and field curvature, and the degree of freedom of depth of field (Depth) ^ ρ Γ / large ± 'combination tolerance is less than the available depth of focus for optical focusing = no need to focus the action, can reduce production costs, and is very economical. • See Figure 1 for the creation of miniature Optical structure diagram of the optical image capturing device. The micro optical image capturing device provided for the purpose of the present invention includes, in order from the object side, a second lens 10 having a 贞 diopter and convex toward the object; the aperture shutter 20; a second lens 30 having a positive diopter and convex imaging surface half moon type; a filter element 40 for filtering light of a specific wavelength, the filter element 40 may be an infrared cut filter element for visible light imaging, or a a visible light cut-off filter element for filtering visible light 'passing light with a wavelength of 78 〇 to 1050 nm' for infrared light imaging of invisible light; and for receiving red through the aforementioned filter element The image invisible light is transmitted to the image sensor 5 (image plane), which is a digital signal. The image sensor 50 includes a plane protection lens 51 and an image sensor 52. The image sensor 52 can be a Charge Coupled Device (CCD) or a Complementary Metal Oxide Semiconductor (CMOS). The first lens and the second material have a refractive index of 1.5 to 1.7 for large angle refraction incidence. Light, and the first lens 1 〇 satisfies the relationship: the second lens 30 satisfies the relationship: 0.5 < f2 / f <5; wherein the optical focal length of the first lens 20 is the optical of the second lens 30 Focal length, f is the focal length of the entire system of the micro optical image capturing device. The image capturing device composed of the two lenses satisfies the formula 1.5 < L / f < 5, M377599 wherein L is the optical total length of the micro optical imaging device, that is, The first lens 10 faces the distance from the surface of the object to the imaging focus; f is the focal length of the entire system of the micro optical imaging device. The first lens 10 includes the first face 11 facing the object and faces The second surface 12 of the image surface, the first surface 11 is a convex surface with a convex configuration with respect to the object, and the second surface 12 is concave with a concave configuration with respect to the imaging surface. The second lens 30 includes Facing the third surface 31 of the object and the fourth surface 32 facing the imaging surface, the third surface 31 is recessed in a concave configuration with respect to the object, and the fourth surface 32 is opposite to the imaging surface. The convex surface of the convex configuration, and the first, second, third, and fourth faces 11, 12, 31, and 32 are all aspherical surfaces, thereby comprehensively correcting spherical aberration and aberration, and having characteristics of low tolerance sensitivity. The aspherical phenotype satisfies the following formula: rU2 z =-r + Ah4 + Bh6 + Ch8 + Dh10 + Ehn + Fhu + Gh16 \ + [\-{k + l)c2h2]2 where z is along the optical axis The direction is at the height h position with the surface apex as the reference displacement from the optical axis; k is the taper constant; c is the reciprocal of the radius of curvature; A, B, C, D, E, F, G are high-order aspheric coefficients. With the foregoing structural combination, the maximum imaging height of the subject on the image sensor 50 after passing through the two lenses satisfies the following relationship: 0.8 < d / f < 3, where d is the largest on the image sensor Imaging height, f is the focal length of the entire system of the micro optical imaging device. The first lens 20 and the second lens 30 are configured to have a circular lens shape (as shown in FIG. 2 ) of a general commercially available product, and may also be a lens with a long arc shape and a long strip shape with two symmetrical sides removed. As shown in Figure 3, it can be applied to optical lens devices of different housing models. 8 M377599 In practice, in the micro optical image capturing device of the present invention, the first lens 10 is a negative lens, and the first surface 11 is convexly arranged with respect to the object for accepting external incidence at an ultra wide angle. The beam 'the beam is on the second side 12, thereby fully utilizing the aspherical function, correcting the aberrations and reducing the tolerance sensitivity, and also making the device have an ultra-wide angle, and the image angle can be up to 100°. Then, the aperture beam 20 obtains a desired incident beam, and the incident beam is further broadened by the third surface 31 of the second lens 30 which is recessed with respect to the object, and the fourth surface 32 is opposite to the object. The positive side of the convex surface of the imaging surface allows the light beam to be distributed over a larger area on the second side 32. That is to say, the incident beam passes through the broad beam of the third surface 31, so that the beam can be distributed over a larger area on the fourth surface 32, and the half-moon structure of the second lens 30 can fully exert the function of the aspheric surface, and correct Aberration and reduced tolerance sensitivity. The aspherical design not only corrects the spherical aberration and aberrations, but also helps to shorten the total length of the lens optical system. The first and second lens sheets 20 and 3 can be made of plastic material, which helps to eliminate aberrations and reduce lens weight. 'The entire optical system uses only two plastic lenses, suitable for mass production' and its tolerance sensitivity is low, plus the depth of field depth (Depth of field) is large enough, the combined tolerance is less than the available focal depth range of optical focusing, It does not need to be adjusted when applied, and it is easy to manufacture and meet the requirements of mass production. The micro-optical image capturing device for filtering the visible light and passing only the infrared invisible light to form the image of the thermal light of the human body is based on the technical content of the foregoing creation, and can be implemented according to the following numerical examples. : 9 M377599 Surface Curvature Radius (mm) (Radius) Thickness / Interval (mm) (Thickness) Refractive Index (Nd) Abbe's Number (Vd) First Side 11 -21.61717 0.692358 1.514 57.14 Second Side 12 3.16958 0.006121 Light Gate 〇0.02614 third side 31 -1.20090 0.853936 1.632 23.4 fourth side 32 -0.53051 0.492730 wherein the filter element 40 has a thickness of 0.3 mm, which is a visible light cut-off filter element 'the wavelength of the light passing through is 850 nm; the plane protection lens 51 The thickness is 0.4 mm; the object distance from the micro optical imaging device to the subject is 200 mm. The specific values of the aspheric coefficients are listed below: First face ll (k=922.002560): A.0.45487 B:l.05139 C:-11.6829 D:28.1105 E:27.2384 F.-196.404 G:207.278 Second side 12 ( k=167.144843): A:-0.304422 B:-118.812 C:-2072.28 D-.102208.0 E:208550.0 10 M377599 F:-49539000.0 G:-93459500.0 Third side 31 (k=8.691066):

Ai-3.44787 B.98.5680 C:-6662.45 D:68292.1 E:395458.0 F:26476400.0 G:-1269100000.0 第四面 32(k=-4_911216): A:-3.02289 B:8.58336 C:-25.3064 D:28.1949 E:50.4081 F:-271.738 G:222.901 依上開數值實施之微型取像鏡頭的相關性能指數 為:L/f= 3.054 ; fl/f=-4.86 ; f2/f= 0.94 ; d/f= 2.069。 請再參閱圖式,圖4係前述數值實施例具體實施之 像散場曲圖;圖5係前述數值實施例具體實施之光學畸 變圖,由圖中可知本裝置的光學畸變相當低,具有良好 的成像品質。圖6與圖7分別為係本創作實施例調制轉 換函數(MTF)之空間頻率圖與離焦位置的曲線圖。從圖 11 M377599 4至圖7的圖形可看出所測得的像散場曲圖、畸變圖及 MTF曲線圖均在標準範圍且具有良好的光學性能,具 有良好的成像品質。尤其由圖6與圖7的MTF曲線圖 可清楚看出本裝置景深的自由度夠大,組合公差係小於 光學聚焦之焦深範圍,應用時不需進行調焦之動作,比 現有類似產品易於製造組立,符合大規模量産之要求。 本創作微型光學取像裝置係採用負、正二片非球面 透鏡,與過濾特定波長之光線,只通過所需波長之光線 的一過濾元件40,該過濾元件40可以是一紅外線截止 過濾元件,用於可見光成像,或一可見光截止過濾元 件,應用於不可見光的紅外線光成像。 藉由非球面的功能,矯正像差及減低公差敏感度, 除了可矯正像差外還有助於縮短鏡頭光學系統的總 長,也使的本裝置具有超廣角度,取像角度可達100° 以上。而第一、二透鏡片均可採用塑膠材質,有利於消 除像差及減輕鏡頭重量,整個光學系統只用到二個塑膠 透鏡,適合大量生產,且公差敏感度低,具有良好的成 像品質,易於製造組立,符合大規模量産之要求。 惟以上所述者,僅為本創作之較佳實施例而已,當 不能以此限定本創作實施之範圍,即大凡依本創作申請 專利範圍及創作說明内容所作之簡單的等效變化與修 飾,皆仍屬本創作專利涵蓋之範圍内。 【圖式簡單說明】 圖1係本創作之光學結構圖。 圖2係本創作之實施結構示意圖。 圖3係本創作另一實施之結構示意圖。; 12 M377599 圖4係本創作實施例之像散場曲圖。 圖5係本創作實施例之光學畸變圖。 圖6係本創作實施例調制轉換函數(MTF)之空間頻率 圖。 圖7係本創作實施例調制轉換函數(MTF)之離焦位置 圖。 【主要元件符號說明】 10 :第一透鏡 11 :第一面 12 :第二面 20 :孔徑光閘 30 :第二透鏡 31 :第三面 32 :第四面 40 :過濾元件 50 :圖像傳感器 51 :平面保護透鏡 52 :影像感測器 13Ai-3.44787 B.98.5680 C:-6662.45 D:68292.1 E:395458.0 F:26476400.0 G:-1269100000.0 Fourth side 32 (k=-4_911216): A:-3.02289 B:8.58336 C:-25.3064 D:28.1949 E: 50.4081 F:-271.738 G:222.901 The relevant performance index of the miniature image taking lens according to the open value is: L/f= 3.054; fl/f=-4.86; f2/f= 0.94; d/f= 2.069. Referring to the drawings, FIG. 4 is an astigmatic field curvature diagram of the numerical embodiment described above; FIG. 5 is an optical distortion diagram of the numerical embodiment described above, and the optical distortion of the apparatus is relatively low, and has good performance. Imaging quality. 6 and 7 are graphs showing the spatial frequency map and the out-of-focus position of the modulation conversion function (MTF) of the present creative embodiment, respectively. From the graph of M377599 4 to Fig. 7, it can be seen that the measured astigmatism field curvature map, distortion map and MTF graph are in the standard range and have good optical performance, and have good imaging quality. In particular, it can be clearly seen from the MTF graphs of FIG. 6 and FIG. 7 that the degree of freedom of the depth of field of the device is large enough, the combined tolerance is smaller than the focal depth of the optical focus, and the focusing operation is not required when applied, which is easier than the existing similar products. Manufacturing and assembly, in line with the requirements of mass production. The micro-optical imaging device of the present invention adopts a negative and positive aspherical lens, and a filter element 40 for filtering light of a specific wavelength and passing only light of a desired wavelength, and the filter element 40 can be an infrared cut-off filter element. For visible light imaging, or a visible light cut-off filter element, for infrared light imaging of invisible light. By aspherical functions, correcting aberrations and reducing tolerance sensitivity, in addition to correcting aberrations, it also helps to shorten the total length of the lens optics, and also allows the device to have an ultra-wide angle with an image angle of up to 100°. the above. The first and second lens sheets can be made of plastic material, which is beneficial for eliminating aberrations and reducing the weight of the lens. The entire optical system uses only two plastic lenses, which is suitable for mass production, has low tolerance sensitivity and good imaging quality. Easy to manufacture and meet the requirements of mass production. However, the above descriptions are only preferred embodiments of the present invention, and the scope of the present invention cannot be limited by this, that is, the simple equivalent changes and modifications made by the applicant according to the scope of the patent application and the content of the creation description, All are still covered by this creation patent. [Simple description of the diagram] Figure 1 is an optical structure diagram of the creation. Figure 2 is a schematic diagram of the implementation structure of the present creation. FIG. 3 is a schematic structural view of another embodiment of the present creation. 12 M377599 Fig. 4 is an astigmatic field curvature diagram of the present embodiment. Figure 5 is an optical distortion diagram of the presently-created embodiment. Figure 6 is a spatial frequency diagram of a modulation transfer function (MTF) of the present creative embodiment. Fig. 7 is a diagram showing the defocus position of the modulation transfer function (MTF) of the present embodiment. [Main component symbol description] 10: First lens 11: First face 12: Second face 20: Aperture shutter 30: Second lens 31: Third face 32: Fourth face 40: Filter element 50: Image sensor 51: plane protection lens 52: image sensor 13

Claims (1)

M377599 六、申請專利範圍: 1.一種微型光學取像裝置,由被攝物體方包括: 具有負屈光度,且凸向被攝物之第一透鏡; 孔徑光閘; 具有正屈光度,且凸向成像面呈半月型之第二透鏡; 用以過濾特定波長光線之過濾元件;以及 用以接收通過前述過濾元件的成像,且傳換成為數位信號 . 之一圖像傳感器。 φ 2.如申請專利範圍第1項所述之微型光學取像裝置,其中, 所述第一透鏡與第二透鏡的折射率為1.5至1.7。 3. 如申請專利範圍第1項所述之微型光學取像裝置,其中, 所述第一透鏡滿足如下關係式: -10<fl/f<-0.5 ; 所述第二透鏡滿足如下關係式: 0.5<f2/f<5 ;且 所述第一透鏡與第二透鏡構成的取像裝置滿足公式: 1.5<L/f<5 ; φ 其中上式中,fl係第一透鏡之光學焦距,f2係第二透鏡 • 之光學焦距,f係微型光學取像裝置整個系統的焦距,L 係從微型光學取像裝置的光學總長,即孔徑光閘到成像 焦點的距離。 4. 如申請專利範圍第3項所述之微型光學取像裝置,其中, 該第一透鏡包含有面對被攝物體的第一面及面對成像面 的第二面,所述第一面係相對於被攝物體呈凸面構形之 凸面,第二面係相對於成像面呈凹陷構形之凹陷;及 該第二透鏡包含有面對被攝物體的第三面及面對成像面 14 M377599 的第四面,所述第三面係相對於被攝物體呈凹陷構形之 凹陷,第四面係相對於成像面呈凸面構形之凸面;且, 前述第一、二、三、四面中皆為非球面。 5. 如申請專利範圍第4項所述之微型光學取像裝置,其中, 所述非球面的面型滿足下列公式: ru2 1 二-r + Ah4 + Bh6 + Chs + Dhw + Ehn + Fhu + Gh16 - \ + [l-(k + l)c2h2y - 其中,z為沿光軸方向在高度為h的位置以表面頂點作參 φ 考距光軸的位移值;k為錐度常量;c為曲率半徑的倒數; A、B、C、D、E、F、G為高階非球面係數。 6. 如申請專利範圍第4項所述之微型光學取像裝置,其中, 該圖像傳感器上的最大成像高度滿足如下關係式: 0.8<d/f<3,其中d係該圖像傳感器上的最大成像高度, f係微型光學取像裝置整個系統的焦距。 7. 如申請專利範圍第1項所述之微型光學取像裝置,其中, 該過濾元件進一步可設置於第一透鏡與被攝物體之間。 8. 如申請專利範圍第1項所述之微型光學取像裝置,其中, 鲁 該過濾、元件係為紅外線截止過濾元件。 -9.如申請專利範圍第1項所述之微型光學取像裝置,其中, 該過濾元件係為可見光截止過濾元件。 10. 如申請專利範圍第9項所述之微型光學取像裝置,其 中,該可見光截止過濾元件通過的光線之波長為780至 1050nm。 11. 如申請專利範圍第1項所述之微型光學取像裝置,其 中,第一透鏡與第二透鏡係為圓形透鏡。 12. 如申請專利範圍第1項所述之微型光學取像裝置,其中, 15 M377599 第一透鏡與第二透鏡係為圓形去掉兩對稱邊的劣弓形而呈 長條狀之透鏡。 16M377599 VI. Patent Application Range: 1. A miniature optical imaging device consisting of: a first lens with negative diopter and convex toward the subject; aperture shutter; with positive diopter and convex imaging a second lens having a half moon shape; a filter element for filtering light of a specific wavelength; and an image sensor for receiving imaging through the filter element and translating into a digital signal. The micro optical image pickup device according to claim 1, wherein the first lens and the second lens have a refractive index of 1.5 to 1.7. 3. The micro-optical imaging device of claim 1, wherein the first lens satisfies the following relationship: -10 <fl/f<-0.5; The second lens satisfies the following relationship: 0.5<f2/f<5; and the image capturing device composed of the first lens and the second lens satisfies the formula: 1.5 < L / f <5; φ where f is the optical focal length of the first lens , f2 is the optical focal length of the second lens, f is the focal length of the entire system of the micro optical imaging device, and L is the total optical length of the micro optical imaging device, that is, the distance from the aperture shutter to the imaging focus. 4. The micro-optical imaging device of claim 3, wherein the first lens comprises a first surface facing the object and a second surface facing the imaging surface, the first surface a convex surface having a convex configuration with respect to the object, the second surface being concavely recessed with respect to the imaging surface; and the second lens including the third surface facing the object and the facing imaging surface 14 a fourth surface of the M377599, wherein the third surface is concave with respect to the object in a concave configuration, and the fourth surface is convex with a convex configuration with respect to the imaging surface; and, the first, second, third, and fourth sides are Both are aspherical. 5. The micro-optical imaging device of claim 4, wherein the aspherical surface shape satisfies the following formula: ru2 1 di-r + Ah4 + Bh6 + Chs + Dhw + Ehn + Fhu + Gh16 - \ + [l-(k + l)c2h2y - where z is the displacement value at the height h of the position along the optical axis with the surface apex as the reference φ test distance; k is the taper constant; c is the radius of curvature Reciprocal; A, B, C, D, E, F, G are high-order aspheric coefficients. 6. The micro optical imaging device of claim 4, wherein the maximum imaging height on the image sensor satisfies the following relationship: 0.8 < d / f < 3, wherein d is the image sensor The maximum imaging height on the top, f is the focal length of the entire system of the micro optical imaging device. 7. The micro-optical imaging device of claim 1, wherein the filter element is further disposed between the first lens and the object. 8. The micro-optical image taking device according to claim 1, wherein the filter and the element are infrared cut filter elements. The micro optical image taking device according to claim 1, wherein the filter element is a visible light cut filter element. 10. The micro-optical imaging device of claim 9, wherein the visible light cut-off filter element passes light having a wavelength of 780 to 1050 nm. 11. The micro-optical imaging device of claim 1, wherein the first lens and the second lens are circular lenses. 12. The micro-optical imaging device of claim 1, wherein the first lens and the second lens of the 15 M377599 are circularly shaped to remove the inferior bow of the two symmetrical sides and are elongated lenses. 16
TW98221608U 2009-10-30 2009-10-30 Micro-optical image capturing device TWM377599U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98221608U TWM377599U (en) 2009-10-30 2009-10-30 Micro-optical image capturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98221608U TWM377599U (en) 2009-10-30 2009-10-30 Micro-optical image capturing device

Publications (1)

Publication Number Publication Date
TWM377599U true TWM377599U (en) 2010-04-01

Family

ID=50594825

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98221608U TWM377599U (en) 2009-10-30 2009-10-30 Micro-optical image capturing device

Country Status (1)

Country Link
TW (1) TWM377599U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI424188B (en) * 2010-09-20 2014-01-21 Largan Precision Co Ltd Wide-angle imaging lens assembly
TWI468723B (en) * 2011-01-24 2015-01-11 Ether Precision Inc Two lens module including a plano-convex lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI424188B (en) * 2010-09-20 2014-01-21 Largan Precision Co Ltd Wide-angle imaging lens assembly
TWI468723B (en) * 2011-01-24 2015-01-11 Ether Precision Inc Two lens module including a plano-convex lens

Similar Documents

Publication Publication Date Title
US10473895B2 (en) Subminiature optical system and portable device including the same
TWI448725B (en) Image capturing optical lens system
TWI449948B (en) Image capturing optical lens assembly
TWI457596B (en) Optical photographing system
KR101649467B1 (en) Photographic Lens Optical System
TWI585444B (en) Imaging lens
TWI435106B (en) Imaging lens system
KR101670054B1 (en) Zoom lens and image pickup device having the same
TWI490587B (en) Optical zoom lens
KR101736709B1 (en) Photographic lens and photographic apparatus including the same
JP2015011050A (en) Imaging lens and imaging device
KR102004423B1 (en) Optical imaging system
KR101734037B1 (en) Photographic lens and photographic apparatus including the same
JP2012159841A (en) Imaging microlens
TWM459408U (en) Thin type wide-angle three-piece type imaging lens module
JP5893997B2 (en) Imaging lens and imaging apparatus
TWM474142U (en) Thinned four-piece imaging lens module
TWM459409U (en) Wide-angle five-piece type imaging lens module
TWI437260B (en) Miniature image acquisition device
TWM460280U (en) Thin type wide-angle five sheet type imaging lens set
TW201502635A (en) Ultra-wide-angle imaging lens assembly with five lenses
KR20190080526A (en) Optical imaging system
JP2015203769A (en) Image capturing lens and image capturing device
TWM377599U (en) Micro-optical image capturing device
TW201122541A (en) Photography lens.

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model