TWM374590U - 3D image projection system - Google Patents

3D image projection system Download PDF

Info

Publication number
TWM374590U
TWM374590U TW98212426U TW98212426U TWM374590U TW M374590 U TWM374590 U TW M374590U TW 98212426 U TW98212426 U TW 98212426U TW 98212426 U TW98212426 U TW 98212426U TW M374590 U TWM374590 U TW M374590U
Authority
TW
Taiwan
Prior art keywords
light
polarization
polar
projection system
image
Prior art date
Application number
TW98212426U
Other languages
Chinese (zh)
Inventor
Yu-Hsiang Huang
Chien-Chih Hsiung
Wen-Lan Hung
Heng-Hsiang Chang
Original Assignee
Asia Optical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Optical Co Inc filed Critical Asia Optical Co Inc
Priority to TW98212426U priority Critical patent/TWM374590U/en
Publication of TWM374590U publication Critical patent/TWM374590U/en

Links

Description

五、新型說明: 【新型所屬之技術領域】 本新型係·-種投纖雜術,尤其綠—難體雜投影系統。 【先前技術】 ‘衫技術已經得到了充分的發展’並廣泛應用於電腦顯示、投影電視、 以及投域等。_ 3D賴動畫、讀影像齡的需要,立翻^彡顯示技 術逐漸成為投影顯示的重要研究方向。 目别已經iij現立體顯的彡像的投料統,它們基本都包括确投影子 系統’其中一個投影子系統投射左眼的影像,另一個投影子系統則投射右 眼的影像,觀眾再帶上偏振眼鏡就可以看到立體圖像。 讀達到3D投影絲的郷线,不僅所該本高,而且使用者在建 置該投影系統所需的空間也較大,若要移_純,更以目對造成使用者 相當的不便。 【新型内容】 本新型針對現有技術中的立體影像投影系統具有_成本高、所需空間大 及移動不便的缺點,提供-種結構簡單的讀影像投影系統。 本新型提供-種立體影像投影系統,包括有接收光束的投影鏡頭,該 立體景撕細嫩-蝴M,祕細·;—偏振分光模 組,將該非偏振光轉換成偏振光,包括:—第—偏振分光面供第一極性 产嫌广紐光反射,帛-影像單元,接收該第-極性光並調製成 ㈣二極性光,狀射,·隸—第二影料元,接收該 -雅光並調製成摸帶影像信號的第_極性光,再將其反射。 M37.4590 實施本新型的高氣度社細繼彡线,與财技制目比,本新 型採用簡單的結構,實現立體影像的投影顯示,且該投料統所需空間小, 搬運方便。在採肋個偏振分絲關振分光模組中,第—姉光和第二 極性光均經過多次過渡,到達投影鏡頭的第—極性光和第二極性光具有更 好的隔離度和更高的純度,提高了對比度,觀眾可以看職實的立體圖像。 【實施方式】 有關本實用新型的前述及其它技術内容'特點與功效,在以下配合w 圖的五個触實施觸詳細說0种,將可清楚的呈現。 圖^疋根據本新型的第一實施例、投影系統的示意圓。如圖1所示, 該W系統1 GO包括用於發出非偏振光的光源模組1〇1、將非偏振光轉換成 偏振光並使其鮮雜信號的偏齡光⑽和細驗⑽、以及接收 偏振光的投影鏡頭104,該投影鏡頭刚具有光轴L。 光源拉、! 101包括輪出非偏振絲的—個或多瓣光元件挪、依序排 〇發光元件105的輸出方向的透鏡組⑽以及中繼透鏡浙。該發光元 一 °、疋例如發光—極體(Light EmittingDi〇de,簡稱LED)或鍾射 -極體(Laser Dl0de,簡稱LD),當其數量為多個時,可發出不同波長的光, 如紅,、綠色、藍色等,提供投影系統所需的光束,於本實施例中, ϋ 101發出的光束方向垂直於光軸l,經透鏡組106以及中繼透鏡 107整形、勾化並進行聚焦。 j第魏财’偏振分光模組搬包括供第—極性光輸人、第二極 第的第—偏振分光面。信號模組103包括第—影像單元⑽和 -〜早幻10 ’其中第—影像單元⑽設置在偏振分光模組⑽一側, 4 位於光源模組101的光绫屮斛古 ㈣線出射方Μ ’祕將第—極性絲換成含有影像 =除紐瓣細㈣。㈣輸11G罐偏振分光模 的-側,且位於光軸L上,用於將第二極性光轉換成含有影像信號 β弟極丨4光並反射回去n雜單元⑽和第二影像單元11〇可以 疋石夕基液晶(Liquid Crystal 0n Silic〇n,簡稱關面板。 …光源模組1〇1戶斤發出的光線到達第—偏振分光面⑽後,第-極性的 光^並到達第讀單凡⑽;第二極性的光被第—偏振分光面⑽反 射’朝向第二影像單元110行進。第一極性的光被第一德液晶面板1〇9 .轉換成攜帶影像信號的第二極性光後,返回偏振分光模组ι〇2,並被反射投 =?广兄頭104第一極性的光被第二石夕基液晶面板11〇轉換成攜帶影像信 號的第-極性光’通過偏振分光模組⑽,投向投影鏡頭1〇4。 。其中,第-極性的光為p極光,第二極性的光為s極光。當第一影像 早π 2Π和第二影像單元218被來自同一場景、不同視角的不同圖像信號 同步驅動% ’觀眾帶上偏振眼鏡隻眼睛可以翻第—極性的偏振光圖 像’另-隻眼睛可以看到第二極性的偏振光圖像,這樣就可以看到真實的 立體圖像。 根據對比度計算公式: 對比度=亮場強度/暗場強度 受場照度=S極光路徑(RsxTp)+P極光路徑(TpXRs) 暗場照度=S極光路徑(TsxRs)+P極光路徑(RpxTp) 其中Rp為P極光的振幅反射係數’ Tp為P極光的振幅透射係數, 為P極光的振幅反射係數,Ts為s極光的振幅透射係數。 假設 Τρ=(λ 9 Rp=〇. 1V. New description: [New technology field] This new type is a kind of fiber-optic hybrid technology, especially the green-difficult body projection system. [Prior Art] ‘shirt technology has been fully developed’ and is widely used in computer display, projection television, and field. _ 3D Lai animation, the need to read the age of the image, the vertical display technology has gradually become an important research direction of projection display. I have already seen the imaging system of the stereoscopic image of iij, which basically includes the projection subsystem. One of the projection subsystems projects the image of the left eye, and the other projection subsystem projects the image of the right eye. Stereo images can be seen with polarized glasses. Reading the squall line that reaches the 3D projection wire is not only high, but also the space required for the user to construct the projection system. If it is to be moved, it is more inconvenient for the user. [New content] The novel stereoscopic image projection system in the prior art has the disadvantages of high cost, large space requirement and inconvenient movement, and provides a simple read image projection system. The present invention provides a stereoscopic image projection system, comprising a projection lens having a receiving beam, the stereoscopic tearing-beautiful butterfly, and a polarization splitting module, converting the unpolarized light into polarized light, including: - - the polarization splitting surface is for the first polarity to produce a wide-angle light reflection, and the 帛-image unit receives the first-polar light and modulates it into (four) dipolar light, the shape, the second-picture element, and receives the - yaguang And modulated into the first _ polar light with the image signal, and then reflected. M37.4590 The high-intensity social-sequence line of this new type is implemented. Compared with the financial technology, this new type adopts a simple structure to realize the projection display of stereoscopic images, and the feeding system requires small space and convenient transportation. In the ribbed polarized wire separation and polarization splitting module, the first-light and the second-polar light are subjected to multiple transitions, and the first-polar light and the second-polar light reaching the projection lens have better isolation and more High purity, improved contrast, and viewers can see stereoscopic images. [Embodiment] The above-mentioned and other technical contents 'features and effects of the present invention' will be clearly described in the following five touch implementations in conjunction with the w diagram. Figure 2 is a schematic circle of a projection system in accordance with a first embodiment of the present invention. As shown in FIG. 1, the W system 1 GO includes a light source module 1 for emitting unpolarized light, a light source (10) and a random inspection (10) for converting unpolarized light into polarized light and making a fresh signal. And a projection lens 104 that receives polarized light, the projection lens just having an optical axis L. Light source pull,! 101 includes a lens group (10) that rotates one or more optical elements of the non-polarized filament, sequentially discharges the output direction of the light-emitting element 105, and a relay lens. The illuminating element, for example, a light-emitting diode (LED) or a laser-emitting diode (LD), when the number is plural, can emit light of different wavelengths. Such as red, green, blue, etc., providing the light beam required by the projection system. In the present embodiment, the beam direction emitted by the crucible 101 is perpendicular to the optical axis 1, and is shaped and branched by the lens group 106 and the relay lens 107. Focus on. j Diwei's polarization splitting module includes a first-polarized light splitting surface for the first-polar light input and the second pole. The signal module 103 includes a first image unit (10) and an early image 10 (wherein the first image unit (10) is disposed on one side of the polarization beam splitting module (10), and 4 is located in the light source (four) line of the light source module 101. 'The secret of the first - the polarity of the wire with the image = in addition to the button (4). (4) The side of the polarization splitting mode of the 11G can is transmitted on the optical axis L for converting the second polar light into the light containing the image signal β and the light is reflected back to the n-cell unit (10) and the second image unit 11〇 It can be used in Liquid Crystal 0n Silic〇n (referred to as the panel). After the light from the light source module reaches the first-polarized light splitting surface (10), the first-polar light reaches the reading list. (10); the light of the second polarity is reflected by the first polarization splitting surface (10) toward the second image unit 110. The light of the first polarity is converted into the second polar light carrying the image signal by the first German liquid crystal panel 1〇9. After that, it returns to the polarization beam splitting module ι〇2, and is reflected and converted. The light of the first polarity of the Guangxiong head 104 is converted into the first-polar light carrying the image signal by the second daylight-based liquid crystal panel 11〇. The module (10) is directed to the projection lens 1〇4, wherein the first-polar light is p-polar and the second-polar light is s-polar. When the first image is π 2 早 and the second image unit 218 is from the same scene, Different image signals from different viewing angles are synchronized to drive % 'audience band Polarized glasses can only turn the polarized light image of the first polarity. Another eye can see the polarized light image of the second polarity, so that the real stereo image can be seen. Calculate the formula according to the contrast: Contrast = bright Field intensity/dark field intensity subject to field illumination = S auroral path (RsxTp) + P auroral path (TpXRs) Dark field illumination = S auroral path (TsxRs) + P auroral path (RpxTp) where Rp is the amplitude reflection coefficient of P apolar Tp is the amplitude transmission coefficient of P apolar light, and is the amplitude reflection coefficient of P apolar light, and Ts is the amplitude transmission coefficient of s aurora. Suppose Τρ=(λ 9 Rp=〇. 1

Rs=0. 9 Ts=0. 1 則得到對比度為9。 M37.4590 圖2是根據本實用新型的第二實施例、投影系統的示意圖。如圖2所 不,該投影系統200包括用於發出非偏振光的光源模組2〇1、將該非偏振光 轉換成偏振光並使其攜帶影像信號的偏振分光模組2〇2和信號模組2〇3、以 及接收偏振光的投影鏡頭204,該投影鏡頭204具有光科L。 光源模組201包括輸出分別具有不同波長的非偏振光束的複數個發光 元件205、依序排列于該發光元件205的輸出方向的透鏡組2〇6以及中繼透 鏡207。該發光元件205可以是例如發光二極體(Light Emitting Di〇de, 簡稱LE:D)或鐳射二極管(Laser Diode,簡稱LD),依據本身可發出特定波 •長的光’如紅色、、綠色、藍色等,提供投影系統2〇0所需的光束,於本實 施例中’該光源模組發出的光束方向平行於光轴L,經透鏡組咖以及中繼 透鏡207整形、勻化並進行聚焦。 在第二實施例中,該偏振分光模组2〇2包括供第一極性光(p極光)輸 入的四個偏振分光鏡’依次為苐一至第四偏振分光鏡2〇8—211,它們兩兩 相鄰,呈矩形排列。其中第一和第二偏振分光鏡·、2〇9與光源模組观 位於平行於光軸L的非偏振光出射方向上,而第三和第四偏振分光鏡训、 211均位於光轴L上。 •-在該實施例中’第-至第四偏振分光鏡一 211均由雨個三角棱鏡組 合而成’在兩個三角棱鏡的接觸面上,鍍設偏振分光膜,分別形成第—至 第四偏振分光面212-215,這四者對稱設置。第—極性光(p極光)可輸 入通過第-至第四偏振分光面212—215,且第二極性光(s極光)在第: 至第四偏振分光面212-215上發生反射。其中第一和第四偏振分光面把、 215彼此平行且最好位於同一平面上,與投影鏡頭2〇4的光轴l夹奶角 第二和第三偏振分光面213、214彼此平行且最好位於同_平面上,且輕 一和第四偏振分光面212、215垂直。 ” 第一偏振分光鏡簡靠近光源模組2〇1,且設置在非偏振光的出射方向 6 上。第四偏振分光鏡211靠近投影鏡頭2〇4,並設置在投影鏡頭2〇4的光軸 上。6號杈組203包括第一影像單元217和第二影像單元218,其中第一影 像單兀217設置在第二偏振分光鏡厕一側,與第一、第二偏振分光鏡施、 209位於同-直線上’用於將第一極性光轉換成含有影像信號的第二極性光 並將其反射回去·^第二影像單元218設置在第三偏振分光鏡21G的一側, L _h ’ $於將第二極性光轉換成含有影像健的第―極性光並 反射回去„亥第-影像單元217和第二影像單元218可以是石夕基液晶 (Liquid Crystal 0n Silicon,簡稱 LCoS)面板。 光源模組201發出的光線到達第一偏振分光® 212後,第-極性光通 過第-極性光被反射。通過第—偏振分光面212的第一極性光繼續通過 第二偏振分光面加,到達第一影像單元217。第一影像單元217將第一極 杜光轉換成包含影像信號的第二極性光,將其反射回第二偏振分光鏡测, 並在第二偏振分光面213上發生反射,朝向第四偏振分光鏡2ιι行進。該 第-極性光在第四偏齡光面215上被反射,到達投影鏡頭謝。兩種極性 光所行進的路程相同。 被第偏振为光面212反射的第二極性光到達相鄰的第三偏振分光鏡 210 ’並在第三偏振分光面214上發生反射,到達第二影像單元2.第二 影像單元218將第二極性光轉換成包含影像信號的第—極性光,並將其反 射回第三偏振分光鏡。該第一極性光通過第三偏振分光鏡2職,順利 通過第四偏振分光鏡211,到達投影鏡頭2〇4。 需要說明的是’圖中將第—影像單元21?和第二影像單元218的入射 =射光分別進行了圖示’是為了更清楚地進行說明,實際上該反射光 疋沿著入射光的同一路徑返回。 圖3是根據本實用新型的第三實施例、投影系統的示意圖。容 施例相同的部分不再贅述。在該第三實施财,第三偏振分光面似= 一極性光反射、第二極 ^ _ 先輸人’第二影像早元218也對應改變位置,以 Γ極喊’並將其無絲有影像錄的第-極性光之後反射回 去0類似地,第-低拉八p 入213也可以是供第-極性光反射、第二極性 , 時第一衫像早凡217設置在第二偏振分光面213 的右側,也可翻同樣的目的。 =類似’第四偏振分光面215也可以是供第一極性光反射、第二極 ^的偏振”光面’圖4是根據本實崎型的第四實施例、投影系統 的不思圖。與第三實施例_的部分不再贅述。在該第四實施射,第四 偏振分光面215料-絲統㈣:錄脉,瑜置在投影鏡 頭2〇4的光/ L上。此時光轴L與光源模組201發出的光束方向垂直。 圖5疋根據本灵用新型的第五實施例、投影系統的示意圖。盘第二實 施例相㈣部分不膽述。該實_與第二實施例不_是,第1偏振分 光鏡208為薄片狀,其—面鐘有分光反射膜,可到達與第二實施例相同的 目的。麟說明的是,此處雖然以四個偏振分光鏡觸_2ΐι為例進行了說 明,但是,也可採用其他數量的偏振分光鏡,例如,在同—個直角棱鏡的 兩側面上鍍設偏振分麵,可代替兩個偏振分光鏡4處,只需要有四個 偏振分光面212—215即可。 在偏振分光麵2〇2巾,第—雛光和第二極性执卿多次過滤, 第-極性光情殘餘第二極絲會被财,對於第二極性光來說, 反之亦然。到達投影铜204的苐一極性光和第二極性光具有更好的隔離 度和更高的純度,從而提高了對比度。當第—影像單元217和第二影像單 元218被來自同-場景、不同視角的不同圖像錢同步驅動時,觀眾就可 以看到真實的立體圖像。 第二至第五實施例中,根據對比度計算公式·· 對比度=党場強度/暗場強度 M374590 711場照度=第—極性光路徑(TpxTpxRsxRs) +第二極性光路徑(RsxRsx ΤρχΤρ) 暗場照度=第一極性光路徑(RpxRpxTpxTp) +第二極性光路徑(TsxTsx RsxRs) 其中Rp為第—極性光的振幅反射係數,Tp為第—極性光的振幅透射係 數’ Rs為第二極性光的振幅反射係數,Ts為第二極性光的振幅透射係數。 假設 Tp=〇. 9 Rp=〇;iRs = 0.9 Ts = 0.1. The contrast was found to be 9. M37.4590 Figure 2 is a schematic illustration of a projection system in accordance with a second embodiment of the present invention. As shown in FIG. 2, the projection system 200 includes a light source module 2 for emitting unpolarized light, a polarization splitting module 2〇2 for converting the unpolarized light into polarized light and carrying the image signal, and a signal mode. Group 2〇3, and a projection lens 204 that receives polarized light, the projection lens 204 having an optical lens L. The light source module 201 includes a plurality of light-emitting elements 205 that output unpolarized light beams having different wavelengths, a lens group 2〇6 sequentially arranged in the output direction of the light-emitting elements 205, and a relay lens 207. The light-emitting element 205 can be, for example, a light-emitting diode (LED: D) or a laser diode (LD), which can emit a specific wave length according to itself, such as red, green. In the present embodiment, the beam direction of the light source module is parallel to the optical axis L, and is shaped and homogenized by the lens group and the relay lens 207. Focus on. In the second embodiment, the polarization beam splitting module 2〇2 includes four polarization beam splitters for inputting first polar light (p aurora), which are sequentially one to four polarization beam splitters 2〇8-211, two of which are Two adjacent, arranged in a rectangle. The first and second polarization beam splitters, 2〇9 and the light source module are located in an unpolarized light exit direction parallel to the optical axis L, and the third and fourth polarization beam splitting mirrors 211 are located on the optical axis L. on. - In this embodiment, the 'first to fourth polarization beam splitters 211 are combined by a rain triangle prism'. On the contact faces of the two triangular prisms, a polarizing beam splitting film is plated to form the first to the first The four polarization splitting surfaces 212-215 are symmetrically arranged. The first-polar light (p-polar light) can be input through the first to fourth polarization splitting planes 212-215, and the second-polar light (s-polar light) is reflected on the: to fourth polarization splitting planes 212-215. Wherein the first and fourth polarization splitting planes, 215 are parallel to each other and preferably on the same plane, and the optical axis l of the projection lens 2〇4 is sandwiched by the milk angle. The second and third polarization beam splitting surfaces 213, 214 are parallel to each other and most It is located on the same _ plane, and the light first and fourth polarization splitting surfaces 212, 215 are perpendicular. The first polarization beam splitter is located close to the light source module 2〇1 and is disposed in the exit direction 6 of the unpolarized light. The fourth polarization beam splitter 211 is adjacent to the projection lens 2〇4 and is disposed on the projection lens 2〇4. On the axis, the sixth group 203 includes a first image unit 217 and a second image unit 218, wherein the first image unit 217 is disposed on the side of the second polarization beam splitter, and the first and second polarization beam splitters are 209 is located on the same line - for converting the first polar light into the second polar light containing the image signal and reflecting it back. The second image unit 218 is disposed on one side of the third polarization beam splitter 21G, L _h Converting the second-polar light into the first-polar light containing the image and reflecting it back to the image--the image unit 217 and the second image unit 218 may be a Liquid Crystal 0n Silicon (LCoS) panel. . After the light emitted from the light source module 201 reaches the first polarization splitting light 212, the first-polar light is reflected by the first-polar light. The first polar light passing through the first polarization splitting surface 212 continues to pass through the second polarization splitting surface and reaches the first image unit 217. The first image unit 217 converts the first pole duo into the second polar light including the image signal, reflects it back to the second polarization beam splitting mirror, and reflects on the second polarizing beam splitting surface 213, and splits toward the fourth polarizing beam. Mirror 2 ιι travel. The first-polar light is reflected on the fourth deflected light surface 215 and reaches the projection lens. The two polar lights travel the same way. The second polarized light reflected by the first polarized surface 212 reaches the adjacent third polarizing beam splitter 210 ′ and is reflected on the third polarizing beam splitting surface 214 to reach the second image unit 2. The second image unit 218 The bipolar light is converted into first-polar light containing the image signal and reflected back to the third polarization beam splitter. The first polar light passes through the third polarization beam splitter 2 and smoothly passes through the fourth polarization beam splitter 211 to reach the projection lens 2〇4. It should be noted that 'the incident light of the first image unit 21 and the second image unit 218 is shown in the figure' for the sake of clarity. In fact, the reflected light is actually the same along the incident light. The path is returned. 3 is a schematic diagram of a projection system in accordance with a third embodiment of the present invention. The same parts of the embodiment will not be described again. In the third implementation, the third polarization splitting surface is like: a polar light reflection, the second pole ^ _ first input 'the second image early element 218 also corresponding to the change position, with the bungee shouting 'and its silkless The first-polar light of the video recording is reflected back to 0. Similarly, the first-low-low eight-p into 213 can also be used for the first-polar light reflection, the second polarity, and the first shirt image is set to the second polarization splitting. On the right side of face 213, the same purpose can be reversed. = similar to 'the fourth polarization splitting surface 215 may also be the first polar light reflection, the second pole's polarization "glossy surface". FIG. 4 is a schematic view of the projection system according to the fourth embodiment of the present invention. The part of the third embodiment will not be described again. In the fourth embodiment, the fourth polarization beam splitting surface 215 is a wire-system (four): recording pulse, which is placed on the light / L of the projection lens 2〇4. The axis L is perpendicular to the direction of the beam emitted by the light source module 201. Fig. 5 is a schematic view of a projection system according to a novel fifth embodiment of the present invention. The second embodiment of the second embodiment is not described in detail. The embodiment is not that the first polarization beam splitter 208 has a sheet shape, and the face clock has a spectroscopic reflection film, which can reach the same purpose as the second embodiment. Lin explained that although four polarization beam splitters are used here. Touch _2ΐι is taken as an example. However, other numbers of polarizing beamsplitters can be used. For example, polarized facets are plated on both sides of the same right-angle prism, which can replace the two polarizing beamsplitters 4, only It is necessary to have four polarization splitting surfaces 212-215. On the polarization splitting surface 2〇2 towel The first - the first light and the second polarity will be filtered several times, the second polar wire of the first-polar light will be fortune, and vice versa for the second-polar light, and the first-polar light of the projected copper 204 The second polar light has better isolation and higher purity, thereby improving contrast. When the first image unit 217 and the second image unit 218 are synchronously driven by different images from the same scene and different viewing angles, The viewer can see the real stereoscopic image. In the second to fifth embodiments, the contrast calculation formula is used. · Contrast = party field intensity / dark field intensity M374590 711 field illumination = first-polar light path (TpxTpxRsxRs) + Bipolar light path (RsxRsx ΤρχΤρ) Dark field illumination = first polarity light path (RpxRpxTpxTp) + second polarity light path (TsxTsx RsxRs) where Rp is the amplitude reflection coefficient of the first-polar light, and Tp is the amplitude of the first-polar light The transmission coefficient 'Rs is the amplitude reflection coefficient of the second polar light, and Ts is the amplitude transmission coefficient of the second polar light. Suppose Tp=〇. 9 Rp=〇;i

Rs=〇. 9 Ts=〇. 1 則得到對比度為81。 由此可見,相對於第一實施例而言,本實用新型的第二至第五實施例 中的投影系統可得到高對比度的影像,觀眾可以感受到更好的立體效果。 與現有技術相比,本新型採用簡單的結構,實現立體影像投影系統, 該投影系統所需空間小,搬運方便。 【圖式簡單說明】 圖1是根據本新型的第一實施例、投影系統的示意圖; 圖2是根據本新型的第二實施例、投影系統的示意圖; 圖3是根據本新型的第三實施例、投影系統的示意圖; 圖4是根據本新型的第四實施例、投影系統的示意圖; 圖5是根據本新型的第五實施例、投影系統的示意圖。 9 M374590 【主要元件符號說明】Rs=〇. 9 Ts=〇. 1 gives a contrast of 81. Thus, with reference to the first embodiment, the projection system of the second to fifth embodiments of the present invention can obtain a high-contrast image, and the viewer can feel a better stereoscopic effect. Compared with the prior art, the present invention adopts a simple structure to realize a stereoscopic image projection system, which requires a small space and is convenient to carry. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a projection system according to a first embodiment of the present invention; FIG. 2 is a schematic view of a projection system according to a second embodiment of the present invention; FIG. 3 is a third embodiment of the present invention. 4 is a schematic view of a projection system according to a fourth embodiment of the present invention; and FIG. 5 is a schematic view of a projection system according to a fifth embodiment of the present invention. 9 M374590 [Main component symbol description]

100-投影系統 200-投影系統 101-光源模組 201-光源模組 102-偏振分光模組 202-偏振分光模組 103-信號模組 203-信號模組 104-投影鏡頭 204-投影鏡頭 105-發光元件 205-發光元件 106-透鏡組 206-透鏡組 107-中繼透鏡 207-中繼透鏡 108-第一偏振分光面 208- 第一偏振分光鏡 209- 第二偏振分光鏡 210- 第三偏振分光鏡 211- 第四偏振分光鏡 212- 第一偏振分光面 213- 第二偏振分光面 214- 第三偏振分光面 215- 第四偏振分光面 217- 第一影像單元 218- .第二影像單元100-projection system 200-projection system 101-light source module 201-light source module 102-polarization splitting module 202-polarization splitting module 103-signal module 203-signal module 104-projecting lens 204-projecting lens 105- Light-emitting element 205 - Light-emitting element 106 - Lens group 206 - Lens group 107 - Relay lens 207 - Relay lens 108 - First polarization beam splitting surface 208 - First polarization beam splitter 209 - Second polarization beam splitter 210 - Third polarization Dichroic mirror 211 - Fourth polarizing beam splitter 212 - First polarizing beam splitting surface 213 - Second polarizing beam splitting surface 214 - Third polarizing beam splitting surface 215 - Fourth polarizing beam splitting surface 217 - First image unit 218 - .

Claims (1)

'如申請專纖财4項所述的立體影像投影钱, ' Arff 1 四偏振分光面以及該第二影像單元位於該投影鏡頭的光軸上。 7、如申請專利細第3項所述的立體影像投影系統’射,該第二、 偏振刀光面的至少一者是供第—極性光反射、第二極性光輸入的偏振 分光面。 、8、如申請專利細第3項所述的立體影像投影祕,其巾,該第四偏 光面疋供第極性光反射、第二極性光輸入的偏振分光面,該投影鏡 頭的光軸垂直於該非偏振光的出射方向。 "9、如申請專利範圍第3項所述的立體影像投影系統,射,該偏振分 光模組包括四個偏振分光鏡,其上分別設置該第—至第四偏振分光面。 10、如申請專利範圍第3項所述的立體影像投影系統,其中,該第一及 第四偏振分光面與該非偏振光的出射方向呈45。角,且該第二、第三偏 振分光面與該第一、第四偏振分光面垂直。'If you apply for stereoscopic image projection money as described in item 4 of the special fiber, 'Arff 1 four-polarization spectroscopic surface and the second image unit are located on the optical axis of the projection lens. 7. The stereoscopic image projection system of claim 3, wherein at least one of the second and polarizing knives is a polarization splitting surface for the first polarity light reflection and the second polarity light input. 8. The stereoscopic image projection secret described in claim 3, wherein the fourth polarizing surface is provided with a polarization light splitting surface for the first polarity light reflection and the second polarity light input, and the optical axis of the projection lens is vertical. In the direction of exit of the unpolarized light. <9. The stereoscopic image projection system of claim 3, wherein the polarization splitting module comprises four polarization beam splitters, wherein the first to fourth polarization splitting surfaces are respectively disposed. 10. The stereoscopic image projection system of claim 3, wherein the first and fourth polarization splitting surfaces are 45 in a direction in which the unpolarized light is emitted. An angle, and the second and third polarization splitting surfaces are perpendicular to the first and fourth polarization splitting planes. 1212
TW98212426U 2009-07-08 2009-07-08 3D image projection system TWM374590U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98212426U TWM374590U (en) 2009-07-08 2009-07-08 3D image projection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98212426U TWM374590U (en) 2009-07-08 2009-07-08 3D image projection system

Publications (1)

Publication Number Publication Date
TWM374590U true TWM374590U (en) 2010-02-21

Family

ID=50591962

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98212426U TWM374590U (en) 2009-07-08 2009-07-08 3D image projection system

Country Status (1)

Country Link
TW (1) TWM374590U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI412789B (en) * 2010-07-29 2013-10-21 Hon Hai Prec Ind Co Ltd Three-dimensional vsiual display device and display system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI412789B (en) * 2010-07-29 2013-10-21 Hon Hai Prec Ind Co Ltd Three-dimensional vsiual display device and display system

Similar Documents

Publication Publication Date Title
TWM577117U (en) Optical system
JP5350610B2 (en) Optical system for projector and corresponding projector
US7369317B2 (en) Head-mounted display utilizing an LCOS panel with a color filter attached thereon
US9507158B2 (en) Stereoscopic image display apparatus and stereoscopic image display method
JP6248381B2 (en) Optical system, polarization separating / combining element, and display device
TW201219961A (en) Multiple image projection apparatus
JP2010534867A (en) Head mounted single panel stereoscopic display
US8330879B2 (en) Projection display apparatus
JP2006526168A (en) Mirror assembly with integrated display device
JP2014092663A5 (en) Optical system, polarization separating / combining element, and display device
CN111487786A (en) Optical display system, control method and display device
KR100584534B1 (en) Reflection type projector
KR20140054072A (en) Optical systems with compact back focal lengths
TWI524128B (en) Projection system
TW201327012A (en) Reflective liquid crystal projection system
KR101574285B1 (en) A stereoscopic image projection device for improved brightness and a providing method for A stereoscopic image
CN110501813B (en) Display device
JP2008107521A (en) Light source device, illuminating device and image display device
US8888292B2 (en) Projection apparatus for providing multiple viewing angle images
US20170322425A1 (en) Cube, Polarizing Beam-Splitter with Reduced Incident-Angle
TWM374590U (en) 3D image projection system
TWI439732B (en) Stereoscopic display apparatus
TW200527106A (en) Optical projection system and method
TW200819786A (en) Light beam splitting and combining system and processing method
WO2022249597A1 (en) Image display device and light guide optical system

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees