TWM371274U - Multi-dimensional touch control module for generating multi-dimensional sensitizing areas - Google Patents

Multi-dimensional touch control module for generating multi-dimensional sensitizing areas Download PDF

Info

Publication number
TWM371274U
TWM371274U TW98212972U TW98212972U TWM371274U TW M371274 U TWM371274 U TW M371274U TW 98212972 U TW98212972 U TW 98212972U TW 98212972 U TW98212972 U TW 98212972U TW M371274 U TWM371274 U TW M371274U
Authority
TW
Taiwan
Prior art keywords
light
unit
lens
dimensional
guiding body
Prior art date
Application number
TW98212972U
Other languages
Chinese (zh)
Inventor
yi-long Hu
kun-xun Li
Yu-Wen Ding
Original Assignee
Lite On Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lite On Semiconductor Corp filed Critical Lite On Semiconductor Corp
Priority to TW98212972U priority Critical patent/TWM371274U/en
Publication of TWM371274U publication Critical patent/TWM371274U/en

Links

Landscapes

  • Position Input By Displaying (AREA)

Description

M371274 . 五、新型說明: 【新型所屬之技術領域】 本創作係有關於一種多維 產生多維感光區域之多维光風予觸控模組,尤指 【先前技術】 九准先予觸控模組。M371274 . V. New Description: [New Technology Field] This creation is about a multi-dimensional multi-dimensional light-sensing multi-dimensional light-sensing touch module, especially [previous technology] Jiu-Jun first touch module.

Ik著現代社會科技不斷進牛Ik keeps getting into the world with modern social technology

電子產品上,以利使用者觸控面板以大量運用在 合顯示器所呈現的畫面做為= 空直::控面板主要是配 作介面;觸控面板的種類發展;以乍:易的操 :不同,目前較常見的觸控面板大致可測:式 板、聲波式觸控面板,以及電磁式觸控面L )觸控面 電阻式或電容式觸控面板,其係 ,電容元件,並透過偵測觸壓點電壓值的變== f的位置f標。另-種光學式觸控面板則是 :的:ί 5又置光源以及對應的光學感測元件,利用光學减In the electronic products, the user's touch panel is used in a large number of images displayed on the display as = empty: the control panel is mainly equipped as an interface; the type of touch panel is developed; Different, the more common touch panels are generally measurable: a type of board, an acoustic touch panel, and an electromagnetic touch surface. L) a touch surface resistive or capacitive touch panel, which is a capacitive element and transmits through Detecting the change in the voltage value of the contact pressure point == f is the position f mark. Another type of optical touch panel is: ί 5 and a light source and corresponding optical sensing components, using optical subtraction

種用於 Ϊ =疋否偵測賴應的光源的光線來判斷觸壓點的i 置厘標。 先學式觸控面板由於利用光線產生按壓位置的遮 招,以形成光強資訊的差異’以辨別出按壓位置的座栌。 傳統光學式觸控面板係將可溯反射片裝設於照明區域「的 邊緣,利用發光㈣與可献射片的搭崎光線分佈於昭 明^域,然,可溯反射片易受到外在的雜光、散光的影響 使传δίΐ號/雜訊比低,造成觸控的不靈敏;且傳統光學式 觸控裝置只能處理二維平面座標,判斷目標物之水平移 動,但無法偵測目標物在垂直方向之變化,即無法得知目 3 M3 71274 標物在空間中之座標。 本案創作人有鑑於上述習用的結構裝置於實際施用 時的缺失,且積累個人從事相關產業開發實務上多年之經 驗,精心研究,終於提出一種設計合理且有效改善上述問 題之結構。 【新型内容】 本創作之主要目的在於提供一種用於產生多維感光區域 之多維光學觸控模組,其能夠透過複數個透鏡結構、少量發 光二極體及光感測元件的配合,即可輕易得知任何一物體在 多維感光區域内之空間座標位置。 為了解決上述技術問題,根據本創作之其中一種方案, 提供一種用於產生多維感光區域之多維光學觸控模組,其包 括:一導光單元、一發光單元、一散射圖案單元及一光感測 單元。其中,該導光單元係具有一透明的導光本體及複數個 設置於該導光本體上之透鏡結構’其中該導光本體係具有至 少一入光面及一反射面,並且該等透鏡結構的表面係形成一 與該反射面相對應之出光面。該發光單元係具有至少一設置 該導光本體的入光面外側之發光模組。該散射圖案單元係設 置於該導光本體之反射面上,其中該散射圖案單元係由複數 個散射微結構所組成。該光感測單元係設置於該導光單元之 該等透鏡結構的前方,其中該光感測單元係具有複數個光感 測元件,並且該等光感測元件的全部或一部分係相對應該等 透鏡結構。 藉此,由該發光模組所產生的光束係投向該導光本體, 然後該光束透過該等散射微結構的散射後而投向該等透鏡結 構,接著該光束係穿過該等透鏡結構以產生複數道指向性光 M371274 束(directivity light beam ) ’最後該等指向性光束係分別投向 該等光感測元件的全部或一部分。 ^ 為了解決上述技術問題,根據本創作之其中一種方案, 提供一種用於產生多維感光區域之多維光學觸控模組,^包 括:-導光單it、-辅助導光單^、—發光單元、—散射圖 案單兀及一光感測單元。其中,該導光單元係具有—透明的 .導光本體及複數個設置於該導光本體上之透鏡結構,豆中續 ,導光本體係具有至少-人光面及—反射面,並域等透鏡結 ❿構的表面係形成一與該反射面相對應之出光面。該辅助導光 單元係具有一透明的輔助導光本體及複數個設置於該輔助導 光本體上之辅助透鏡結構,其中該輔助導光本體係具有至少 一入光面,並且該等輔助透鏡結構的表面係形成一盥該輔助 導光本體之入光面相對應之出光面。該發光單元係具有至少 一設置该導光本體的入光面外側之發光模組。該散射圖案單 元係設置於該導光本體之反射面上,其中該散射圖案料係 由複數個散射微結構所組成。該域測單元錢置於該輔助 馨導光單元之該等伽透鏡結構的前方,其巾該域測單元係 . 具有複數個光感測元件。 藉此,由該發光模組所產生的光束係投向該導光本體, 然後該,束透_等散射微結構的散射後而投向該等透鏡結 構,接著該光束係穿過該等透鏡結構以產生複數道第一指向 性光束(directivity light beam ),每一道第一指向性光束係投 ,向該獅導光單元並穿職㈣助透鏡結構以轉換成複數道 .第二指向性光束,最後該等第二指向性光束係分別投向該等 光感測元件的全部或一部分,因此該等光感測元件的全部或 一部分係相對應該等第二指向性光束。 5 M371274 本創作的有益效果在於:本創作能㈣過複數個透 構(例如魏餘_鏡或魏倾透鏡)的配合 ^ 本用少量的發光模組(例如少量的發光二極體)= 可產生夕數個點光源’此外再配合複數個 用,以產生多維感光區域。因此,透過上述的架構 =易得知任何—物體在此多維感光區域内之空間 為了能更進-步瞭解本創作為達成預定目 術、手段及功效,請參閱以下有關 ,取之技 相信本創作之目的、特徵與特點,當可乍由二寻二?與附圖, 之瞭解,然而所附圖式僅提供參考;了 :::具體 創作加以限制者。 I邱用來訝本 【實施方式】 請參閱第一A圖及第一B圖所示,本創 提供一種用於產生多維感光區域之多維==冗施例係 括.一導光早7L1、一反射單元2、一發光單元3 —其包 圖案單元4及一光感測單元5。 、—散射 其中’该導光單元1係具有—透明的導光本 數個設置於該料本體i Q上切鏡結構丨丨,例如〇^複 透鏡結構11係可-體成型地4_祕置於該 ^等 0上(或透過後續製程而成形於該導光本體i 〇上7^本體1 該導光本體1 〇係具有至少-人光面i 〇 ◦及—^外, 1,並且鱗祕結構! 1的表面係减—與該^ 〇 U目對應之出光面1 Q 2。例如:「該反射面i 〇 i與^ 〇 面1 0 2係分別位於該導光單元i的兩相反側面上了出光 反射面1 Q1與該出光面1Q 2係分別位於該導光』5亥 义枣疋1的 M371274 兩相鄰側面上」。 另外,該反射單元2係可選擇地「包覆該導光本體 的邓分而露出該入光面1〇0及該出光面1〇2」或「〇 ϋ亥導光本體1Q之反射面101」。以本創作第一實_ 斤牛的例子來看’該反射早元2只包覆該導光本體丄〇之反 射面101而已’因此第-實施例之該人光面i 〇 〇及 5面=2皆祕露出來。另外,在第_實施财,該㈣ 早疋2係具有-基板本體2 q及1形在該基板本體2 〇上 之反射薄膜21,並且該反射薄膜21係具有一面向該導光 本體1 0之黏性表面2 1 0,以使得該反射單元2透過該反 射薄膜2 1之黏性表面2 1 〇以貼附於該導光本體1 〇之反 射面1 0 1上。此外,該基板本體2 〇的材質係可為高分子 材料或金屬材料。該反射薄膜2 1的材質係可為一具有 60%〜99%反射率之高反射率材料,並且該高反射率材料係可 為金屬材料(例如:銀或銅)或氧化物(例如:二氧化鈦 (Ti〇2))。 再者,该發光單元3係具有至少一設置該導光本體1〇 的入光面1 〇 〇外側之發光模組3 〇。依據不同的設計需 求,該發光模組3 〇係可具有複數個發光元件,例如:該發 光模組3 0係可由一紅色發光二極體、一綠色發光二極體及 一藍色發光二極體所組成。 另外’該散射圖案單元4係設置於該導光本體1 〇之反 射面1 〇 1上,其中該散射圖案單元4係由複數個散射微結 構4 0所組成,並且透過該等散射微結構4 0的使用,以破 壞光的全反射並增加發光均勻度。此外,第一A圖上之該等 散射微結構4 〇的分佈只是用來舉例而已,而並非用以限定 7 M371274 本創作舉例來§兒,依據不同的設計需求,該等散射微結構 4 0係彼此分開,並且料散射微結構4⑽密度及/或尺 寸係可延著遠離該發光模組3 Q的方向漸漸變大。 另外,依據不同的設計需求,該等散射微結構4 〇具有 Z i的?作方式。舉例來說,本創作可使用下列兩種方式來 ,作該等散射微結構4 0。第-種方式:該等散射微結構4 0係可為複數個透過塗佈、印刷、聽或麟的方式而成形 ^導光本體1 Q的反射面i i上之微型散射體,並且該 專微型散射體的形狀係可為圓形或方形。第二種方式:先透 過化學触刻或雷射加卫來製作—模具(圖未示),錢使用該 模具以-體射出成形的方式來製作該等散射微結構4〇,以 使得該等散射微結構4Q係可為複數個透過一體射出成形的 方式而成形於該導光本體i 〇的反射面i 〇 i上之微型散射 體’並且該等微型散射體的形狀為球狀、管狀或錐齒狀。 再者,該光感測單元5係設置於該導光單元丄之該等透 鏡結構1 1的前方,其中該光感測單元5係具有複數個光感 測凡件5 0,並且該等光感測元件5◦的全部或一部分係相 對應該等透鏡結構Η。換句話說,該等光M元件5 〇的 數夏係可不等於該等透鏡結構i丄的數量。 藉此,配合第一 All及第一 B圖所示,由該發光模組3 0所產生的光束L係投向該導光本體i 〇,然後該光束匕透 過該等政射微結構4 0的散射後而投向該等透鏡結構1 1, 接著§亥光束L係穿過該等透鏡結構丄丄以產生複數道指向性 光束(directivity light beam) L 1,最後該等指向性光束L 1係分別投向該等光感測元件5 〇的全部或一部分。 以本創作第一實施例所舉的例子來說,每一個透鏡結構 M371274 1 1係可為一半柱狀透鏡(half cylindrical lens),並且該等 半柱狀透鏡係並聯在一起,以使得該等指向性光束L 1形成 複數排並聯的線性光源(Hner light source )(如第一 a圖所 ' 示此外每—個光感測元件5 0係可為一線性感測器(linear sensor ),並且該等線性感測器的全部或一部分係相對應該等 半柱狀透鏡。 * 請參閱第一 C圖所示’本創作第一實施例亦可選用另一 .種反射單元2。因此第一C圖之反射單元與第一Β圖之反射 ^ 單元最大的差別在於:在第一C圖中,該反射單元2係為一 透過塗佈、印刷、蒸鍍或濺鍍的方式成形於該導光本體1 〇 上之反射層2 3。該反射層2 3的材質係可為一具有 60%〜99%反射率之高反射率材料,並且該高反射率材料係可 為金屬材料(例如:銀或銅)或氧化物(例如:二氧化鈦 (Ti〇2))〇 請參閱第一D圖(上視剖面示意圖)所示,本創作第一 實施例亦可選用另一種反射單元2。第一D圖之反射單元與 第一 B圖之反射單元最大的差別在於:在第一D圖中,該反 籲射單元2係包覆該導光本體10的一部分而只露出該入光面 '10 0及該出光面1〇 2。 . 請參閱第一E圖所示,本創作第一實施例亦可增設一個 發光模組3 0。因此該導光本體1 〇係具有另一個入光面1 0 0 ’並且該發光單元3係具有另一個設置於上述另一個入 光面1 0 0外側之發光模組3 〇。此外,第一e圖與第一B , 圖最大的差別在於··在第一 E圖中,本創作使用了兩個發光 - 模組30(例如:該發光單元3係具有兩個分別設置該導光 本體1 0之兩個入光面1 〇 〇外侧發光模組3 〇 )。依據不同 9 M3 71274 的設計需求’该等散射微結構4 0係可彼此分開’並且該等 散射微結構4 0的密度或尺寸係可延著接近上述兩個發光模 組3 0的方向漸漸變小,然而此界定只是用來舉例而已,而 並非用以限定本創作。 請參閱第二圖所示,本創作第二實施例係提供一種用於 產生多維感光區域之多維光學觸控模組,其包括:一導光單 元1、〆反射單元2、一發光單元3、一散射圖案單元4及 一光感測單元5。本創作第二實施例與第一實施例最大的差 別在於:每一個透鏡結構1 1係為一半球狀微透鏡(當然每 一個透鏡結構11亦可為一非球面微透鏡(具有特定曲率的 微透鏡)’亦即本創作可選擇性地使用球面或非球面微透 鏡),並真滅專半球狀微透鏡係排列成一矩陣式微透鏡,以使 得該等指尚性光束L 1形成一矩陣式光源’此外每一個光咸 測元件5 〇係為一線性感測器(liner sensor )’該等線性感測 器係排列成一線性感測器陣列(linear sensor array ),並且該 等線性感7則器的全部或一部分係相對應該等半球狀微透鏡。 請參閱第三圖所示,以第一實施例的架構來看,本創作 第三實施例另外增設一聚光透鏡單元6。因此本創作第三實 施例係提供一種用於產生多維感光區域之多維光學觸控模 組,其包栝:一導光單元1、一反射單元2、一發光單元(圖 未示)、一散射圖案單元4、一光感測單元5及一聚光透鏡單 元6。此外’該聚光透鏡單元6係設置於該導光單元i與該 光感測單元5之間’其中該聚光透鏡單元6係具有複數個相 對應該等透鏡結構1 1之聚光透鏡6 0,另外該等聚光透鏡 6 0亦可/體成型成單一個聚光透鏡6 0。因此,本創作可 透過該等聚光透鏡6 0的使用,將該等指向性光束乙i轉換 M371274 成聚焦型指向性光束Ll> (亦即可將光源聚集在指定的光 感測元件5 0上’以減少光感測元件5 〇之誤判)。 請參閱第四圖所示,本創作第四實施例係提供一種用於 產生多維感光區域之多維光學觸控模組,其包括:一導光單 元1、一辅助導光單元1 、一反射單元2、一發光單元3、 一散射圖案單元4及一光感測單元5。 再者,该導光單元1係具有一透明的導光本體1〇及複 數個設置於該導光本體10上之透鏡結構1 1,例如:該等 透鏡結構11係可一體成型地或貼附地設置於該導光本體工 〇上(或透過後續製程而成形於該導光本體丄〇上)。此外, 該導光本體1◦係具有至少一入光面二〇 〇及一反射面工〇 1,並且該等透鏡結構11的表面係形成一與該反射面1〇 1相對應之出光面10 2。例如:「該反射面1〇1與該出光 面1 0 2係分別位於該導光單元1的兩相反側面上」或者「該 反射面1〇1與該出光面10 2係分別位於該導光單元1的 兩相鄰側面上」。 另外’該反射單元2係可選擇地包覆該導光本體1 〇的 部分而露出該入光面1 〇 〇及該出光面1 〇 2或只包覆該 導光本體10之反射面101,其中該反射單元2係具有一 基板本體2 0及一成形在該基板本體2 〇上之反射薄膜2 1’並且該反射薄膜21係具有一面向該導光本體1〇之黏 性表面2 1 〇 ’以使得該反射單元2透過該反射薄膜2 1之 黏性表面2 1 0以貼附於該導光本體1 〇上。此外,依據不 同的設計需求,該反射單元2亦可係為一透過塗佈、印刷、 蒸錢或減鑛的方式成形於該導光本體10上之反射層(圖未 示)。 11 M371274 再者’該輔助導光單元係具有-透明的辅助導光本 體10及複數個設置於該辅助導光本體1〇-上之輔助透 鏡結構11 ,例如:該等辅助透鏡結構1χ-係可一體成 型地或貼附地設置於該輔助導光本體丄〇,上。另外,該輔 助導光本體1(3'係具有至少—人光面丨〇 ^,並且該等 辅助透鏡結構11,的表面係形成—與該辅助導光本體1 0之入光面1〇 〇 >相對應之出光面1〇 2 一。 此外’該發光單元3係具有至少-設置該導光本體i 〇 — 的入光面1 0 0外側之發光模組3 〇。依據不同的設計需. 求,如同第一實施例的第一 E圖所示,該導光本體1 〇亦可 鲁 具有另一個入光面,並且該發光單元3係具有另一個設置於 上述另一個入光面外側之發光模組(圖未示)。 另外,該散射圖案單元4係設置於該導光本體1 〇之反 射面1 0 1上,其中該散射圖案單元4係由複數個散射微結 構4 0所組成。再者,該光感測單元5係設置於該辅助導光 ,元1γ之該等辅助透鏡結構丄丄 >的前方,其中該光感測 單元5係具有複數個光感測元件5〇。 藉此,由該發光模組3 〇所產生的光束乙係投向該導光 本體1 0,然後該光束L透過該等散射微結構4〇的散射後 而投向該等透鏡結構11’接著該光束L係穿過該等透鏡結 構1 1以產生複數道第一指向性光束(directivity light beam ) LI’每一道第一指向性光束L1係投向該輔助導光單元 1>並穿過該等辅助透鏡結構11/以轉換成複數道第二指 向性光束L· 2 ’最後該等第二指向性光束l 2係分別投向該 等光感測元件50的全部或一部分,因此該等光感測元件5 ' 0的全部或一部分係相對應該等第二指向性光束L2。 · 12 M371274 以本創作第四實施例所舉的例子來看,每一個透鏡結構 1 1係可為半柱狀透鏡(half cylindrical lens),並且該等 半柱狀透鏡係並聯在一起,以使得該等第一指向性光束乙工 ❿成複數排並聯的線性光源(liner light source ),此外每一個 輔助透鏡結構1 1 >係可為一輔助半柱狀透鏡(half cylindrical lens)’並且該等辅助半柱狀透鏡係並聯在一起並 '且分別垂直於該等半柱狀透鏡,以使得該等第二指向性光束 ,L 2 /成矩陣式線性光源(liner light source array )。此外, • 每一個光感測元件5 0係可為一線性感測器(linersensor), 該等線性感測器係排列成一線性感測器陣列(Hnear sensor array ),並且該等線性感測器的全部或一部分係相對應該等 第二指向性光束L 2。 請參閱第五圖所示,以第四實施例的架構來看,本創作 第五貫施例另外增設一聚光透鏡單元6。因此本創作第五實 施例係提供一種用於產生多維感光區域之多維光學觸控模 組,其包括:一導光單元1、一反射單元2、一發光單元(圖 未示)、一散射圖案單元4、一光感測單元5及聚光透鏡單元 • 6。此外,該聚光透鏡單元6係設置於該輔助導光單元工-與該光感測單元5之間,其中該聚光透鏡單元6係具有複數 .個相對應該等第二指向性光束L·2之聚光透鏡60,另外該 等聚光透鏡6 0亦可一體成型成單一個聚光透鏡6 〇。因 此’本創作可透過該等聚光透鏡6 〇的使用,將該等第二指 向性光束L 2轉換成聚焦型指向性光束l 2 '(亦即可將光 ' 源聚集在指定的光感測元件5 0上,以減少光感測元件5 0 • 之誤判)。 綜上所述’本創作能夠透過複數個透鏡結構1 1 (例如 13 M371274 複數個柱狀透鏡或複數個微透鏡)的配合 使用少量的發光模組30 (例如少量的發光二作可 點光源,此外再配合複數個光感測元件; 用’以產生絲域。因此,透過上述的 、使 I輕易得知任何-物體在此多維感光區域内之空間座= 凡人^太^^所有範圍應以下述之申請專利範圍為準, 比^人乍申4專利範圍之精神與其類似變化之實施例, 於ΪΓ:之範疇中,任何熟悉該項技藝者在本創作 專利範圍i 及之變化或修飾皆可涵蓋在以下本案之 【圖式簡單說明】 第-A圖係為本創作多維光學觸控模組的第—實施例之 示意圖; 'B圖係為本創作多維光學觸控模組的第—實施例之 示意圖; 'C圖係為本創作多維光學觸控模組的第— :種反射單元之上視示意圖; 、 圖係為本創作多維光學觸控模組的第一 實施例使用另 篦一p闻:種反射單元之上視剖面示意圖; 1糸為本創作多維光學觸控模組的第一實施例增設一 /固發光模組之上視示意圖; 圖係^本創作多維光學觸控模組的第二實施例之立體示 思圖; 第三圖係^本創作多維光學觸控模組的第三 實施例之側視示 意圖; 14 M3 71274 第四圖係為本創作多維光學觸控模組的第四實施例之立體示 意圖;以及 第五圖係為本創作多維光學觸控模組的第五實施例之側視示 意圖。 【主要單元符號說明】It is used to determine the light of the light source of the light source to determine the value of the touch point. The pre-learning touch panel uses the light to generate a depression of the pressing position to form a difference in light intensity information to discriminate the seat of the pressing position. The conventional optical touch panel is provided with a retroreflective sheet mounted on the edge of the illumination area, and is distributed in the Zhaoming area by using the light (4) and the scatterable light of the stencil. However, the retroreflective sheet is susceptible to external The effects of stray light and astigmatism make the transmission δίΐ/noise ratio low, which makes the touch insensitive; and the traditional optical touch device can only process 2D plane coordinates, determine the horizontal movement of the target, but cannot detect the target. The change of the object in the vertical direction, that is, the coordinates of the target M3 71274 in space can not be known. The creator of the case has been in view of the lack of the above-mentioned conventional structural device in actual application, and accumulated personal experience in the relevant industry development practice for many years. The experience, careful research, finally proposed a structure that is reasonable in design and effective in improving the above problems. [New content] The main purpose of this creation is to provide a multi-dimensional optical touch module for generating multi-dimensional photosensitive regions, which can pass through a plurality of With the cooperation of the lens structure, a small number of light-emitting diodes and light sensing elements, it is easy to know the space of any object in the multi-dimensional photosensitive area. In order to solve the above technical problem, according to one aspect of the present invention, a multi-dimensional optical touch module for generating a multi-dimensional photosensitive region is provided, which includes: a light guiding unit, a light emitting unit, a scattering pattern unit, and a light sensing unit, wherein the light guiding unit has a transparent light guiding body and a plurality of lens structures disposed on the light guiding body, wherein the light guiding system has at least one light incident surface and a reflective surface And the surface of the lens structure forms a light emitting surface corresponding to the reflecting surface. The light emitting unit has at least one light emitting module disposed outside the light incident surface of the light guiding body. The scattering pattern unit is disposed on the light emitting module. a reflective surface of the light guiding body, wherein the scattering pattern unit is composed of a plurality of scattering microstructures. The light sensing unit is disposed in front of the lens structures of the light guiding unit, wherein the light sensing unit is Having a plurality of light sensing elements, and all or a portion of the light sensing elements are corresponding to a corresponding lens structure. The generated beam is directed to the light guiding body, and then the beam is scattered through the scattering microstructures and directed to the lens structures, and then the beam passes through the lens structures to generate a plurality of directional light M371274 beams ( Directivity light beam ) 'The last of these directional beam beams are respectively directed to all or part of the light sensing elements. ^ In order to solve the above technical problem, according to one of the schemes of the present invention, a multidimensional for generating a multi-dimensional photosensitive region is provided. The optical touch module includes: a light guide unit, an auxiliary light guide unit, an illumination unit, a scattering pattern unit, and a light sensing unit, wherein the light guiding unit has a transparent shape. a light guiding body and a plurality of lens structures disposed on the light guiding body, wherein the light guiding system has at least a human light surface and a reflecting surface, and a surface of the lens and the like is formed The reflecting surface corresponds to the light emitting surface. The auxiliary light guiding unit has a transparent auxiliary light guiding body and a plurality of auxiliary lens structures disposed on the auxiliary light guiding body, wherein the auxiliary light guiding system has at least one light incident surface, and the auxiliary lens structures The surface of the surface forms a light-emitting surface corresponding to the light-incident surface of the auxiliary light-guiding body. The light emitting unit has at least one light emitting module disposed outside the light incident surface of the light guiding body. The scattering pattern unit is disposed on a reflective surface of the light guiding body, wherein the scattering pattern material is composed of a plurality of scattering microstructures. The domain measurement unit is placed in front of the gamma lens structures of the auxiliary illuminating light unit, and the field measuring unit has a plurality of light sensing elements. Thereby, the light beam generated by the light emitting module is directed to the light guiding body, and then the scattering of the beam passing through the scattering structure is directed to the lens structures, and then the beam is passed through the lens structures. Generating a plurality of first directivity beam beams, each of the first directional beams is directed to the light guide unit of the lion and is used to drive the lens structure to convert into a plurality of channels. The second directional beam is finally The second directional beam beams are respectively directed to all or a portion of the photo-sensing elements, and thus all or a portion of the photo-sensing elements are relatively equal to the second directional beam. 5 M371274 The beneficial effect of this creation is that this creation can (4) cooperate with a plurality of transmissive structures (such as Wei Yu _ mirror or Wei tilt lens) with a small number of light-emitting modules (such as a small number of light-emitting diodes) = A plurality of point light sources are generated to be used in addition to the plurality of light sources to generate a multi-dimensional photosensitive region. Therefore, through the above structure = easy to know any - the space of the object in this multi-dimensional photosensitive area in order to be able to further understand this creation in order to achieve the intended eyesight, means and effects, please refer to the following related, take the technology to believe this The purpose, characteristics and characteristics of creation can be found in two? With reference to the drawings, the drawings are only provided for reference; however: ::: The specific creation is limited. I Qiu used to surprise this [Embodiment] Please refer to the first A picture and the first B picture, the present invention provides a multi-dimensional photosensitive area for the generation of multi-dimensional == redundant example system. A light guide early 7L1 A reflecting unit 2, a light emitting unit 3, a package pattern unit 4 and a light sensing unit 5. - scattering, wherein the light guiding unit 1 has a transparent light guide, the number of which is disposed on the material body i Q, and the mirror structure 丨丨, for example, the lens structure 11 can be formed in a body-shaped manner. Placed on the 0 or the like (or formed on the light guiding body i by a subsequent process). The body 1 has at least a human face i 〇◦ and —, 1, and The surface of the scale is reduced by 1 - the light surface 1 Q 2 corresponding to the ^ 〇 U mesh. For example: "The reflection surface i 〇i and ^ 〇 1 0 2 are respectively located in the light guiding unit i On the opposite side, the light-reflecting surface 1 Q1 and the light-emitting surface 1Q 2 are respectively located on two adjacent sides of the M371274 of the light guide 』 5 义 疋 疋 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The Dengguang of the light guiding body exposes the light incident surface 1〇0 and the light exit surface 1〇2” or the “reflecting surface 101 of the light guiding body 1Q”. It can be seen that the reflection element 2 covers only the reflective surface 101 of the light guiding body '. Therefore, the person's smooth surface i 〇〇 and 5 sides = 2 are exposed in the first embodiment. In addition, in the fourth embodiment, the (4) early 疋 2 series has a substrate body 2 q and a reflective film 21 having a shape on the substrate body 2 , and the reflective film 21 has a surface facing the light guiding body 10 . The viscous surface 210 is disposed such that the reflective unit 2 passes through the viscous surface 2 1 该 of the reflective film 2 1 to be attached to the reflective surface 110 of the light guiding body 1 。. Further, the substrate body 2 The material of the crucible may be a polymer material or a metal material. The material of the reflective film 21 may be a high reflectivity material having a reflectance of 60% to 99%, and the high reflectivity material may be a metal material. (for example, silver or copper) or an oxide (for example, titanium dioxide (Ti〇2)). Further, the light-emitting unit 3 has at least one light-emitting mold disposed outside the light-incident surface 1 of the light-guiding body 1〇. The light-emitting module 3 can have a plurality of light-emitting elements according to different design requirements. For example, the light-emitting module 30 can be a red light-emitting diode, a green light-emitting diode, and a blue light. Composition of color light-emitting diodes. In addition, 'the scattering pattern unit 4 is set On the reflective surface 1 〇1 of the light guiding body 1 ,, wherein the scattering pattern unit 4 is composed of a plurality of scattering microstructures 40, and through the use of the scattering microstructures 40, to destroy the entire light Reflecting and increasing the uniformity of illumination. In addition, the distribution of the scattering microstructures 4 第一 on the first A diagram is only used as an example, and is not intended to limit the example of 7 M371274, according to different design requirements, The scattering microstructures 40 are separated from each other, and the density and/or size of the material scattering microstructures 4 (10) may gradually increase away from the direction of the light-emitting module 3 Q. In addition, according to different design requirements, the scattering microstructures 4 have a mode of Z i . For example, the author can use the following two methods for the scattering microstructures 40. The first mode: the scattering microstructures 40 can be formed by a plurality of micro-scatterers formed on the reflecting surface ii of the light guiding body 1 Q by coating, printing, listening or lining, and the micro-body The shape of the scatterer can be circular or square. The second way is to first make a mold (not shown) by chemical touch or laser reinforcement, and use the mold to form the scattering microstructures by means of body injection molding, so that the same The scattering microstructure 4Q may be a plurality of micro scatterers formed on the reflecting surface i 〇 i of the light guiding body i 透过 by a plurality of injection molding methods, and the shapes of the micro scatterers are spherical, tubular or Tapered. Furthermore, the light sensing unit 5 is disposed in front of the lens structures 11 of the light guiding unit ,, wherein the light sensing unit 5 has a plurality of light sensing elements 50, and the light is All or part of the sensing element 5◦ is relatively equivalent to the lens structure Η. In other words, the number of summers of the optical M elements 5 可 may not be equal to the number of the lens structures i 。. Thereby, the light beam L generated by the light-emitting module 30 is directed to the light guiding body i 配合, and then the light beam 匕 passes through the political structures 40, as shown in the first and first B-pictures. After scattering, it is directed to the lens structures 1 1 , and then the louver beam L passes through the lens structures 产生 to generate a plurality of directivity light beams L 1 , and finally the directional light beams L 1 are respectively All or part of the light sensing elements 5 投 are directed. In the example of the first embodiment of the present invention, each lens structure M371274 1 1 may be a half cylindrical lens, and the semi-cylindrical lenses are connected in parallel to enable such The directional light beam L 1 forms a plurality of parallel light sources (Hner light source) (as shown in the first diagram), each of the light sensing elements 50 can be a linear sensor, and All or part of the isometric sensor should be equal to the semi-cylindrical lens. * Please refer to the first C diagram. 'The first embodiment of this creation can also use another reflection unit 2. Therefore, the first C picture The difference between the reflection unit and the reflection unit of the first pattern is that, in the first C diagram, the reflection unit 2 is formed by a coating, printing, vapor deposition or sputtering on the light guiding body. 1 反射 a reflective layer 2 3. The material of the reflective layer 23 can be a high reflectivity material having a reflectivity of 60% to 99%, and the high reflectivity material can be a metal material (for example: silver or Copper) or oxide (eg titanium dioxide (Ti〇2)) Referring to the first D diagram (top cross-sectional schematic view), the first embodiment of the present invention may also select another reflection unit 2. The biggest difference between the reflection unit of the first D diagram and the reflection unit of the first B diagram is that In the first D diagram, the anti-projection unit 2 covers a part of the light guiding body 10 to expose only the light incident surface '10 0 and the light exit surface 1〇2. Please refer to the first E map. In the first embodiment of the present invention, a light-emitting module 30 can also be added. Therefore, the light-guiding body 1 has another light-incident surface 1 0 0 ' and the light-emitting unit 3 has another one disposed on the other. The light-emitting module 3 外侧 on the outside of the light-emitting surface 100. In addition, the biggest difference between the first e-picture and the first B-picture is that in the first E-picture, the two illumination-modules 30 are used in the present creation. (For example, the light-emitting unit 3 has two light-incident surfaces 1 and 2 outer light-emitting modules 3 respectively disposed on the light-guiding body 10). According to different design requirements of 9 M3 71274, the scattering microstructures The 40 series can be separated from each other' and the density or size of the scattering microstructures 40 can be extended close to The directions of the two light-emitting modules 30 are gradually smaller, but the definition is only for the sake of example, and is not intended to limit the creation. Referring to the second figure, the second embodiment of the present invention provides a method for A multi-dimensional optical touch module for generating a multi-dimensional photosensitive region, comprising: a light guiding unit 1, a reflecting unit 2, a light emitting unit 3, a scattering pattern unit 4, and a light sensing unit 5. The second embodiment of the present invention The biggest difference from the first embodiment is that each lens structure 11 is a semi-spherical microlens (of course, each lens structure 11 can also be an aspherical microlens (microlens with a specific curvature)' The creation may selectively use a spherical or aspherical microlens), and the true hemispherical microlens is arranged in a matrix microlens such that the reference beams L1 form a matrix light source 'in addition to each light salt The measuring component 5 is a line sensor (the sensor). The line sensors are arranged in a line of linear sensor array, and all or one of the lines are sexy. And other sub-system should be relatively hemispherical microlenses. Referring to the third figure, in view of the architecture of the first embodiment, the third embodiment of the present invention additionally adds a concentrating lens unit 6. Therefore, the third embodiment of the present invention provides a multi-dimensional optical touch module for generating a multi-dimensional photosensitive region, which comprises a light guiding unit 1, a reflecting unit 2, a light emitting unit (not shown), and a scattering. The pattern unit 4, a light sensing unit 5 and a collecting lens unit 6. In addition, the concentrating lens unit 6 is disposed between the light guiding unit i and the light sensing unit 5, wherein the concentrating lens unit 6 has a plurality of collecting lenses 6 corresponding to the lens structure 1 1 . In addition, the concentrating lenses 60 can also be formed into a single concentrating lens 60. Therefore, the present invention can convert the directional light beam into a focused directional light beam L1 by using the concentrating lens 60 (i.e., the light source can be concentrated on the specified light sensing element 50). On the 'to reduce the light sensing component 5 误 misjudgment). Referring to the fourth embodiment, the fourth embodiment of the present invention provides a multi-dimensional optical touch module for generating a multi-dimensional photosensitive region, comprising: a light guiding unit 1, an auxiliary light guiding unit 1, and a reflecting unit. 2. A light emitting unit 3, a scattering pattern unit 4 and a light sensing unit 5. Furthermore, the light guiding unit 1 has a transparent light guiding body 1 〇 and a plurality of lens structures 1 1 disposed on the light guiding body 10 . For example, the lens structures 11 can be integrally formed or attached. The grounding body is disposed on the light guiding body (or formed on the light guiding body by a subsequent process). In addition, the light guiding body 1 has at least one light incident surface and a reflective surface, and the surface of the lens structure 11 forms a light emitting surface 10 corresponding to the reflective surface 1〇1. 2. For example, "the reflecting surface 1 〇 1 and the illuminating surface 1 0 2 are respectively located on opposite sides of the light guiding unit 1" or "the reflecting surface 1 〇 1 and the illuminating surface 10 2 are respectively located at the guiding light "on two adjacent sides of unit 1." In addition, the reflecting unit 2 selectively covers a portion of the light guiding body 1 而 to expose the light incident surface 1 〇〇 and the light emitting surface 1 〇 2 or only the reflective surface 101 of the light guiding body 10 is covered. The reflective unit 2 has a substrate body 20 and a reflective film 21 ′ formed on the substrate body 2 and the reflective film 21 has a viscous surface facing the light guiding body 1 1 〇 'The reflection unit 2 is transmitted through the viscous surface 2 1 0 of the reflective film 2 1 to be attached to the light guiding body 1 。. In addition, depending on different design requirements, the reflective unit 2 can also be a reflective layer (not shown) formed on the light guiding body 10 by coating, printing, steaming or descaling. 11 M371274 In addition, the auxiliary light guiding unit has a transparent auxiliary light guiding body 10 and a plurality of auxiliary lens structures 11 disposed on the auxiliary light guiding body 1 , for example, the auxiliary lens structures 1 It may be integrally or adhesively disposed on the auxiliary light guiding body 丄〇. In addition, the auxiliary light guiding body 1 (3' has at least a human light surface, and the surface of the auxiliary lens structure 11, is formed) and the light incident surface of the auxiliary light guiding body 10 <corresponding to the light-emitting surface 1〇2. In addition, the light-emitting unit 3 has at least the light-emitting module 3 外侧 disposed outside the light-incident surface 100 of the light-guiding body i 〇. Therefore, as shown in the first E diagram of the first embodiment, the light guiding body 1 can also have another light incident surface, and the light emitting unit 3 has another one disposed outside the other light incident surface. The light-emitting module (not shown) is further disposed on the reflective surface 110 of the light-guiding body 1 , wherein the scattering pattern unit 4 is composed of a plurality of scattering microstructures 40 Further, the light sensing unit 5 is disposed in front of the auxiliary light guiding unit, the auxiliary lens structure 元> of the element 1γ, wherein the light sensing unit 5 has a plurality of light sensing elements 5 Thereby, the light beam generated by the light-emitting module 3 投 is directed to the light guide Body 10, then the light beam L is scattered through the scattering microstructures 4〇 and then directed to the lens structures 11'. The light beam L then passes through the lens structures 1 1 to generate a plurality of first directivity beams ( Directivity light beam ) LI' each of the first directional light beams L1 is directed to the auxiliary light guiding unit 1 > and passes through the auxiliary lens structures 11 / to be converted into a plurality of second directional light beams L · 2 ' The second directional light beam 12 is respectively directed to all or a part of the light sensing elements 50, so that all or part of the light sensing elements 5'0 are corresponding to the second directional light beam L2. · 12 M371274 In the example of the fourth embodiment of the present invention, each of the lens structures 11 may be a half cylindrical lens, and the semi-cylindrical lenses are connected in parallel to make the first A directional beam is converted into a plurality of parallel light sources, and each of the auxiliary lens structures 1 1 > can be an auxiliary half cylindrical lens and the auxiliary half Columnar The lens systems are connected in parallel and 'and perpendicular to the semi-cylindrical lenses, respectively, such that the second directional beam, L 2 / is a linear light source array. In addition, • each light sensation The measuring component 50 can be a line sensor, and the line sensors are arranged in a line sensor array, and all or part of the line sensors are relatively equal. The second directional light beam L 2 . Referring to the fifth embodiment, in view of the architecture of the fourth embodiment, a fifth embodiment is additionally provided with a concentrating lens unit 6. Therefore, the fifth embodiment of the present invention provides a multi-dimensional optical touch module for generating a multi-dimensional photosensitive region, comprising: a light guiding unit 1, a reflecting unit 2, a light emitting unit (not shown), and a scattering pattern. Unit 4, a light sensing unit 5 and a collecting lens unit. In addition, the concentrating lens unit 6 is disposed between the auxiliary light guiding unit and the light sensing unit 5, wherein the concentrating lens unit 6 has a plurality of corresponding second directional light beams L· In addition, the condensing lens 60 may be integrally formed into a single condensing lens 6 〇. Therefore, the present invention can convert the second directional light beam L 2 into a focus directional light beam l 2 ' by using the condensing lens 6 ( (that is, the light source can be concentrated at a specified light sensation). Measure element 50 to reduce the false positive of light sensing element 5 0 •. In summary, the creation can use a small number of light-emitting modules 30 (for example, a small amount of light-emitting two as a point light source) through a plurality of lens structures 1 1 (for example, 13 M371274 plural cylindrical lenses or a plurality of microlenses). In addition, a plurality of light sensing elements are used together; 'to generate a silk domain. Therefore, through the above, I can easily know any object in the space of the multi-dimensional photosensitive area= 凡^^^^^^^^^^^^^^^ The scope of the patent application is subject to the scope of the patent and the similar changes of the scope of the patent application. In the scope of the ΪΓ:, any person familiar with the skill in the scope of this patent is changed or modified. It can be covered in the following [Simplified Description of the Drawings] The first-A diagram is a schematic diagram of the first embodiment of the creation of the multi-dimensional optical touch module; the 'B diagram is the first of the creation of the multi-dimensional optical touch module- The schematic view of the embodiment; the 'C picture is the first of the creation of the multi-dimensional optical touch module: the top view of the reflection unit; the picture is the first embodiment of the creation of the multi-dimensional optical touch module. One p Smear: a schematic view of the top view of the reflective unit; 1糸 is a schematic view of the first embodiment of the multi-dimensional optical touch module for adding a solid-state light-emitting module; The third embodiment of the present invention is a side view of the third embodiment of the multi-dimensional optical touch module; 14 M3 71274 The fourth figure is the creation of the multi-dimensional optical touch module A perspective view of a fourth embodiment of the present invention; and a fifth diagram is a side view of a fifth embodiment of the present multi-dimensional optical touch module.

導光單元 1 導光本體 10 透鏡結構 11 入光面 10 0 反射面 10 1 出光面 10 2 輔助導光單元 1, 輔助導光本體 1 0' 輔助透鏡結構 1 Γ 入光面 10 0 出光面 10 2 反射單元 2 基板本體 2 0 反射薄膜 2 1 黏性表面 2 10 反射層 2 3 發光單元 3 發光模組 3 0 散射圖案單元 4 散射微結構 4 0 光感測單元 5 光感測元件 5 0 聚光透鏡單元 6 聚光透鏡 6 0 光束 L 指向性光束 L 1 聚焦型指向性光束L1/ 第一指向性光束 L 1 第二指向性光束 L 2 15 M3 71274 聚焦型指向性光束L 2 16Light guiding unit 1 Light guiding body 10 Lens structure 11 Light incident surface 10 0 Reflecting surface 10 1 Light emitting surface 10 2 Auxiliary light guiding unit 1, Auxiliary light guiding body 1 0' Auxiliary lens structure 1 Γ Into the light surface 10 0 Light emitting surface 10 2 Reflecting unit 2 Substrate body 2 0 Reflective film 2 1 Adhesive surface 2 10 Reflective layer 2 3 Light-emitting unit 3 Light-emitting module 3 0 Scatter pattern unit 4 Scattering microstructure 4 0 Light-sensing unit 5 Light-sensing element 5 0 Optical lens unit 6 Condenser lens 6 0 Beam L Directional beam L 1 Focusing directional beam L1/ First directional beam L 1 Second directional beam L 2 15 M3 71274 Focusing directional beam L 2 16

Claims (1)

M3 71274 六、申請專利範圍: 1 種用於產生多維感光區域之多維光學觸控模組,豆包 括: 、,、u 導光單7L,其具有一透明的導光本體及複數個設置於 f導光本體上之透鏡結構,其中該導光本體係具有至 少一入光面及一反射面,並且該等透鏡結構的表面係 形成—與該反射面相對應之出光面; 一發光早凡,其具有至少—設置該導光本體的入光面外 側之發光模組; 一散射,案單元’其設置於該導光本體之反射面上,其 中《亥政射圖案單元係由複數個散射微結構所組成;以 及 ^感測單7〇 ’其設置於該導光單元之該等透鏡結構的 2方』^中该光感測單元係具有複數個光感測元件, 並且該等光感測元件的全部或一部分係相對應該等透 鏡結構; 藉由忒發光模組所產生的光束係投向該導光本體, ^ ^ °亥光束透過該等散射微結構的散射後而投向該等 透‘,構’接著該光束係穿過該等透鏡結構以產生複 數逼指向性光束(directivity light beam),最後該等指 向性光束係分別投向該等光感測元件的全部或一部 分。 2、 ,申请專利範圍第1項所述之用於產生多維感光區域之 多維光學觸控模組,其中該等透鏡結構係_體成型地或 貼附地設置於該導光本體上。 3、 如申專利_第i項所述之躲產生多減光區域之 17 M371274 多維光學觸控模組,其中每一個透鏡結構係為一半柱狀 透鏡(half cylindrical lens),並且該等半柱狀透鏡係並 聯在一起,以使得該等指向性光束形成複數排並聯的線 性光源(liner light source )’此外每一個光感測元件係為 一線性感測器(linear sensor ),並且該等線性感測器的 全部或一部分係相對應該等半柱狀透鏡。 4、 如申請專利範圍第1項所述之用於產生多維感光區域之 多維光學觸控模組,其中每一個透鏡結構係為一半球狀 微透鏡,並且該等半球狀微透鏡係排列成一矩陣式微透 鏡,以使得該等指向性光束形成一矩陣式光源,此外每 一個光感測元件係為一線性感測器(Hnersens〇r),該等 線性感測器係排列成一線性感測器陣列(linear sensor army) ’並且該等線性感測器的全部或一部分係相對應 該等半球狀微透鏡。 〜 5、 如中請專利範項魏之祕產生多維感光區域之 多維先學她模组,其巾該導光本體係具有另—個入光 =^且錢光單元係具有另-個設置於上述另-個入 光面外側之發光模組。 6、 如申請專利範圍第!項所 多維光學觸控模力產生夕、錢先區域之 過塗佈、£_二,、巾料散射微結構係為複數個透 二:二=鍵的方式而成形於該導光本體 為圓形或方形 並且該等微型散射體的形狀 ?、==:=”用於產生多維感光區域之 出成形的方式而成形於該導光本體的反射面上 18 M371274 之微型散射體,並且該等微型散射體的形狀為球狀、管 狀或鑛齒狀。 8、 如申請專利範圍第1項所述之用於產生多維感光區域之 多維光學觸控模組,更進一步包括:一反射單元,其可 選擇地包覆該導光本體的一部分而露出該入光面及該出 光面或只包覆該導光本體之反射面,其中該反射單元係 具有一基板本體及一成形在該基板本體上之反射薄膜, 並且该反射薄膜係具有一面向該導光本體之黏性表面, 以使得该反射單元透過該反射薄膜之黏性表面以貼附於 該導光本體上。 ' 9、 如申請專利範圍第χ項所述之用於產生多維感光區域之 多維光學觸控模組,更進一步包括:一反射單元,其可 選擇地包覆該導光本體的-部分而露出該人絲及該出 光面或只包覆該導光本體之反射面,其巾該反射單元係 為-透過塗佈、印刷、祕錢錢的方式成形於該導光 本體上之反射層。 10、 如申請專利範圍第1項所毅•產生韓感光區域 t多維光學觸控模組’更進一步包括:―聚光透鏡單元, 於該導光單元與該光感測單元之間,其中該聚光 ^鏡單元係具有複數個相對應該等透鏡結構之聚光透 !兄。 1種用於產生多維感賴域之多 控模組,其 包括: u單元’其具有—透_導光本體及複數個設置於 t光本體上之透鏡結構’其4導光本體係具有至 入光面及反射面,並且讀等透鏡緒構的表面係 19 M371274 形成一與該反射面相對應之出光面; 一辅助導光單元,其具有一透明的辅助導光本體及複數 個设置於該辅助導光本體上之輔助透鏡結構,其中該 辅助導光本體係具有至少一入光面,並且該等辅助透 鏡結構的表面係形成一與該辅助導光本體之入光面相 對應之出光面; 一發光單元,其具有至少一設置該導光本體的入光面外 側之發光模組; 一散射圖案單元,其設置於該導光本體之反射面上,其 中該散射圖案單元係由複數個散射微結構所組成;以 及 一光感測單元’其設置於該輔助導光單元之該等輔助透 鏡結構的前方’其中該光感測單元係具有複數個光感 測元件; 藉此’由該發光模組所產生的光束係投向該導光本體, 然後該光束透過該等散射微結構的散射後而投向該等 透鏡結構’接著該光束係穿過該等透鏡結構以產生複 數道弟^曰向性光束(directivity light beam ),每一道 第一指向性光束係投向該輔助導光單元並穿過該等輔 ,,鏡結構以轉換成複數道第二指向性光束,最後該 等第二指向性光束係分別投向該等光感測元件的全部 或—部分’因此該等光感測元件的全部或一部分係相 對應該等第二指向性光束。 2、、如巾請專利_第11項所狀用於產生多維感光區 域之多維光學觸控模組,其中該等透鏡結構係—體成型 地或貼附地設置於該導光本體上,並且該等獅透鏡結 20 M3 71274 構係一體成型地或貼附地設置於該輔助導光本體上。 3、如申請專利範圍第1 1項所述之用於產生多維感光區 域之多維光學觸控模組,其中每一個透鏡結構係為一半 才主狀透鏡(half cylindrical lens),並且該等半柱狀透鏡 係並秘在一起’以使得該等第一指向性光束形成複數排 並聯的線性光源(liner light source ),此外每一個輔助透 鏡結構係為一輔助半柱狀透鏡(half cylindrical lens;), 並且该等辅助半柱狀透鏡係並聯在一起並且分別垂直於 該等半柱狀透鏡,以使得該等第二指向性光束形成一矩 陣式線 I"生光源(Hner light source array )。 4、 如申請專利範圍第1 1項所述之用於產生多維感光區 域之多維光學觸控模組,其中每一個光感測元件係為一 線性感測盗(liner sens〇r),該等線性感測器係排列成一 線性感測态陣列(linear sens〇r array),並且該等線性感 測器的全部或一部分係相對應該等第二指向性光束。 5、 如申請專利範圍帛1 1項所述之用於產生多維感光區 域之多維光學觸控模組,其中該導光本體係具有另一個 入光面,並且該發光單元係具有另一個設置於上述另一 個入光面外側之發光模組。 6 '如中請專利範圍第丨i顿述之用於產生辣感光區 域之多維光學觸控模組,其中該等散射微結構係為複數 個透過k佈、印刷、蒸鑛或藏鍵的方式而成形於該導光 本體的反射面上之微型散射體,並且該等微型散射體的 形狀為圓形或方形。 7、如申請專利範圍第1 1項所述之用於產生多維感光區 域之多維光學觸控模組,其中該等散射微結構係為複數 21 M3 71274 =過-麟錢形的^㈣料該 狀、管狀或鑛齒狀。料破型散射體的形狀為球 18 :如!請專利範圍第11項所述之用於產生多维感光巴 域之多維光學驗馳,仏― 紅 之入光面及該透鏡結構之出==3出該導光本體 社丄 出丸面或只包覆該導光本體之 该a板本i上:i:::70係具有—基板本體及-成形在 :ίϊί! 膜’並且該反射薄膜係具有-面 ===黏性表面’以使得該反射單元透過該反 射輕之黏性表面以貼附於該導光本體上。 19=t=範圍第11項所述之用於產生多維感光區 控模組,更進—步包括:—反射單元, /、可^擇私覆料光本體的—部分絲出該導光本體 :二面亥透鏡結?之出光面或只包覆該導光本體之 錄㈣:t献射單70係為—透過塗佈、印刷、蒸鑛 或舰的方式成形㈣導光切上之反射層。 2 〇、如:請專利範圍第i Η所述之用於產生多維感光區 域之多維光學觸控· ’更進—步包括:—聚光透鏡單 元^ ^設置於該輔助導光單元與該光感測單元之間,其 中《亥聚光透鏡單元係具有複數個相對應該等第二指向性 光束之聚光透鏡。 22M3 71274 VI. Patent Application Range: A multi-dimensional optical touch module for generating multi-dimensional photosensitive regions, the beans include: , , , u light guide sheet 7L, which has a transparent light guiding body and a plurality of sets on the f a lens structure on the light guiding body, wherein the light guiding system has at least one light incident surface and a reflective surface, and the surface of the lens structures forms a light emitting surface corresponding to the reflective surface; Having at least a light-emitting module disposed outside the light-incident surface of the light-guiding body; a scattering, the case unit is disposed on the reflective surface of the light-guiding body, wherein the "Haizheng pattern unit is composed of a plurality of scattering microstructures The light sensing unit has a plurality of light sensing elements, and the light sensing elements are disposed in the two sides of the lens structure of the light guiding unit. All or part of the lens structure is relatively equal; the beam generated by the xenon illumination module is directed to the light guiding body, and the ^ ^ ° beam is transmitted through the scattering of the scattering microstructures 'Configuration' then the light beam that passes through the lens system to produce the structure forcing the number of multiplexed beam directivity (directivity light beam), the last such instructions are based isotropic beam toward all such elements or light sensing part. 2. The multi-dimensional optical touch module for generating a multi-dimensional photosensitive region according to the first aspect of the invention, wherein the lens structures are integrally formed or attached to the light guiding body. 3. The 17 M371274 multi-dimensional optical touch module for hiding multiple dimming regions as described in the patent _i item, wherein each lens structure is a half cylindrical lens, and the semi-columns The lens lenses are connected in parallel such that the directional beams form a plurality of parallel light sources (in addition to each other), and each of the light sensing elements is a linear sensor, and the lines are sexy. All or part of the detector should be relatively equal to the semi-cylindrical lens. 4. The multi-dimensional optical touch module for generating a multi-dimensional photosensitive region according to claim 1, wherein each lens structure is a semi-spherical microlens, and the hemispherical microlens is arranged in a matrix. The microlenses are such that the directional beams form a matrix light source, and each of the light sensing elements is a line sensor (Hnersens), and the line sensors are arranged in a line sensor array ( Linear sensor army) 'And all or part of the line sensor is relatively equal to the hemispherical microlens. ~ 5, such as the patent paradigm Wei Zhi secret to produce a multi-dimensional photosensitive area of the multi-dimensional first to learn her module, the towel of the light guide system has another - light = ^ and the money light unit has another set The other one of the light-emitting modules outside the light-incident surface. 6, such as the scope of application for patents! The multi-dimensional optical touch mold force generation of the item, the over-coating of the money-first area, the _2, and the scattering microstructure of the towel are formed by a plurality of two-two-keys formed on the light-guiding body. Shape or square and the shape of the micro scatterers?, ==:="" a micro scatterer formed on the reflective surface 18 M371274 of the light guiding body for generating a multi-dimensional photosensitive region, and such The shape of the micro-scatterer is spherical, tubular or mineral-shaped. 8. The multi-dimensional optical touch module for generating a multi-dimensional photosensitive region according to claim 1, further comprising: a reflection unit. Optionally, a portion of the light guiding body is exposed to expose the light incident surface and the light emitting surface or only the reflective surface of the light guiding body, wherein the reflective unit has a substrate body and is formed on the substrate body a reflective film, and the reflective film has a viscous surface facing the light guiding body such that the reflecting unit transmits the viscous surface of the reflective film to be attached to the light guiding body. The multi-dimensional optical touch module for generating a multi-dimensional photosensitive region according to the scope of the third aspect of the invention further includes: a reflective unit that selectively covers a portion of the light guiding body to expose the human filament and The light-emitting surface or only the reflective surface of the light-guiding body is coated, and the reflective unit is a reflective layer formed on the light-guiding body through coating, printing, and money. The multi-dimensional optical touch module of the first light-emitting area of the first aspect of the invention includes: a concentrating lens unit between the light guiding unit and the light sensing unit, wherein the collecting light unit A multi-control module for generating a multi-dimensional sensing domain, comprising: a u-unit having a transparent light guiding body and a plurality of The lens structure on the t-light body has a light guiding surface to the light incident surface and the reflecting surface, and the surface system 19 M371274 which reads the lens structure forms a light emitting surface corresponding to the reflecting surface; With a transparent auxiliary light guiding body and a plurality of auxiliary lens structures disposed on the auxiliary light guiding body, wherein the auxiliary light guiding system has at least one light incident surface, and the surface of the auxiliary lens structures forms a A light-emitting surface of the light-guiding surface of the auxiliary light-guiding body; a light-emitting unit having at least one light-emitting module disposed outside the light-incident surface of the light-guiding body; and a scattering pattern unit disposed at the light-reflecting body a surface, wherein the scattering pattern unit is composed of a plurality of scattering microstructures; and a light sensing unit is disposed in front of the auxiliary lens structures of the auxiliary light guiding unit, wherein the light sensing unit has a plurality of light sensing elements; wherein the light beam generated by the light emitting module is directed to the light guiding body, and then the light beam is scattered through the scattering microstructures and then directed to the lens structures. Passing through the lens structures to generate a plurality of directivity light beams, each of which directs the first directivity beam to the auxiliary guide The unit passes through the auxiliary, the mirror structure is converted into a plurality of second directional light beams, and finally the second directional light beams are respectively directed to all or part of the light sensing elements, respectively. All or part of the measuring element is relatively equal to the second directional beam. 2. The multi-dimensional optical touch module for generating a multi-dimensional photosensitive region, wherein the lens structure is integrally formed or attached to the light guiding body, and The lion lens junction 20 M3 71274 is integrally or adhesively disposed on the auxiliary light guiding body. 3. The multi-dimensional optical touch module for generating a multi-dimensional photosensitive region as described in claim 11, wherein each lens structure is a half cylindrical lens, and the semi-columns The lens lenses are combined to make the first directivity beams form a plurality of parallel light sources, and each of the auxiliary lens structures is a half cylindrical lens; And the auxiliary semi-cylindrical lenses are connected in parallel and perpendicular to the semi-cylindrical lenses, respectively, such that the second directional beams form a matrix line I"HNER light source array. 4. The multi-dimensional optical touch module for generating a multi-dimensional photosensitive area as described in claim 1 of the patent application, wherein each of the light sensing elements is a line of sexy thieves, such lines The sexy detectors are arranged in a linear sens〇r array, and all or part of the line detectors are relatively equal to the second directional beam. 5. The multi-dimensional optical touch module for generating a multi-dimensional photosensitive region according to the scope of the patent application, wherein the light guiding system has another light incident surface, and the light emitting unit has another setting The other light emitting module outside the light incident surface. 6 'The multi-dimensional optical touch module for generating a photosensitive photosensitive region, as described in the patent scope, the scattering microstructure is a plurality of ways of transmitting through k-cloth, printing, steaming or hiding. And a micro scatterer formed on the reflective surface of the light guiding body, and the micro scatterers are circular or square in shape. 7. The multi-dimensional optical touch module for generating a multi-dimensional photosensitive region as described in claim 1 wherein the scattering microstructure is a plurality of 21 M3 71274 = over-Lin-shaped ^(4) material Shaped, tubular or mineral toothed. The shape of the broken scatterer is a ball 18: such as! Please use the multi-dimensional optical chisel used to generate the multi-dimensional photo-sensitive area as described in the eleventh patent, the red-lighted surface of the 仏-red and the out-of-the-lens of the lens structure ==3 out of the light-guide body The i-plate on which the light-guiding body is coated: i:::70 has a substrate body and is formed on: ίϊί! film 'and the reflective film has a face === viscous surface' The reflecting unit is attached to the light guiding body through the reflective light viscous surface. 19=t=Scope The item 11 is used to generate a multi-dimensional photosensitive area control module, and further includes: a reflection unit, and a part of the light-emitting body that is partially covered by the light-emitting body : Two-sided lens knot? The light-emitting surface or only the light-conducting body is covered (4): The single-shot 70 is formed by coating, printing, steaming or ship-forming (four) light-reflecting and reflecting layers. 2 〇, eg, please use the multi-dimensional optical touch for generating a multi-dimensional photosensitive area as described in the scope of the patent. · The further step includes: - the concentrating lens unit is disposed on the auxiliary light guiding unit and the light Between the sensing units, wherein the "concentrating lens unit" has a plurality of collecting lenses corresponding to the second directional beam. twenty two
TW98212972U 2009-07-16 2009-07-16 Multi-dimensional touch control module for generating multi-dimensional sensitizing areas TWM371274U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98212972U TWM371274U (en) 2009-07-16 2009-07-16 Multi-dimensional touch control module for generating multi-dimensional sensitizing areas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98212972U TWM371274U (en) 2009-07-16 2009-07-16 Multi-dimensional touch control module for generating multi-dimensional sensitizing areas

Publications (1)

Publication Number Publication Date
TWM371274U true TWM371274U (en) 2009-12-21

Family

ID=44392814

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98212972U TWM371274U (en) 2009-07-16 2009-07-16 Multi-dimensional touch control module for generating multi-dimensional sensitizing areas

Country Status (1)

Country Link
TW (1) TWM371274U (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281050A (en) * 2010-06-11 2011-12-14 财团法人工业技术研究院 Photosensitive control system and method of operating thereof
TWI423098B (en) * 2010-07-15 2014-01-11 Quanta Comp Inc Optical touch structure
US8833997B2 (en) 2010-08-18 2014-09-16 Briview Corporation Light guide bar and optical touch panel having the same
TWI456463B (en) * 2011-10-26 2014-10-11 Pixart Imaging Inc Optical touch panel system and positioning method thereof
CN105094309A (en) * 2014-05-09 2015-11-25 义明科技股份有限公司 Optical sensing module and mobile device
TWI571787B (en) * 2014-05-09 2017-02-21 義明科技股份有限公司 Optical sensor module and mobile apparatus
US9778756B2 (en) 2014-05-09 2017-10-03 Eminent Electronic Technology Corp. Ltd. Optical sensor module utilizing optical designs to adjust gesture sensitive region, and related mobile apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281050A (en) * 2010-06-11 2011-12-14 财团法人工业技术研究院 Photosensitive control system and method of operating thereof
CN102281050B (en) * 2010-06-11 2013-10-23 财团法人工业技术研究院 Photosensitive control system and method of operating thereof
US8692178B2 (en) 2010-06-11 2014-04-08 Industrial Technology Research Institute Photosensitive control system, and method of operating thereof
TWI423098B (en) * 2010-07-15 2014-01-11 Quanta Comp Inc Optical touch structure
US8833997B2 (en) 2010-08-18 2014-09-16 Briview Corporation Light guide bar and optical touch panel having the same
TWI456463B (en) * 2011-10-26 2014-10-11 Pixart Imaging Inc Optical touch panel system and positioning method thereof
CN105094309A (en) * 2014-05-09 2015-11-25 义明科技股份有限公司 Optical sensing module and mobile device
US9569011B2 (en) 2014-05-09 2017-02-14 Eminent Electronic Technology Corp. Ltd. Optical sensor module utilizing optical designs to adjust gesture sensitive region, and related mobile apparatus
TWI571787B (en) * 2014-05-09 2017-02-21 義明科技股份有限公司 Optical sensor module and mobile apparatus
US9778756B2 (en) 2014-05-09 2017-10-03 Eminent Electronic Technology Corp. Ltd. Optical sensor module utilizing optical designs to adjust gesture sensitive region, and related mobile apparatus
CN105094309B (en) * 2014-05-09 2018-09-25 义明科技股份有限公司 Optical sensing module and mobile device

Similar Documents

Publication Publication Date Title
TWM371274U (en) Multi-dimensional touch control module for generating multi-dimensional sensitizing areas
KR101926406B1 (en) Position sensing systems for use in touch screens and prismatic film used therein
JP5212991B2 (en) Aerial video interaction device and program thereof
TWI363900B (en) Light guiding film
CN104820291B (en) 3 d display device and the instrument board for using 3 d display device
JP4518178B2 (en) Lens array sheet, optical member, light source, and liquid crystal display device
TW201112091A (en) Optical touch device and locating method thereof, and liner light source module
CN107250855A (en) Optical component for optical coupling
TW201001258A (en) Determining the location of one or more objects on a touch surface
JP2009258298A (en) Lens array sheet, light source and liquid crystal display device
US20130155030A1 (en) Display system and detection method
TW201643609A (en) Contactless input device and method
CN111108509B (en) Fingerprint detection device and electronic equipment
US20170082273A1 (en) Display device
JP2010287225A (en) Touch input device
JP2016154035A5 (en)
WO2016113917A1 (en) Device and method for contactless input
CN102985786A (en) A light projector and vision system for distance determination
WO2018188670A1 (en) Detection apparatus and terminal device
TW201107807A (en) Light guide module, optical touch module, and method of increasing signal to noise ratio of optical touch module
US20240019715A1 (en) Air floating video display apparatus
WO2022113745A1 (en) Floating-in-space-image display device
TW201505847A (en) Laminate, method for producing laminate, light guide body for light source device and light source device
TWM379804U (en) Optical position detecting device
JP2023509577A (en) Nanoimprinted microlens array and its manufacturing method

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model