M366089 五、新型說明: 【新型所屬之技術領域】 於一種立 本創作是有關於-種顯示器,且特別是 體顯示器。 關 【先前技術】 在顯示技術方面的發展,除了追求輕薄 希望能做賴示立體影像的目標。目前,立 ^ (Stereoscopic )立體顯示技術以及可裸眼觀看之裸眼式 (Aut〇-stereoscopic)立體顯示技術。然而’戴眼 顯示技術目其方便性與舒紐不佳,而稍被袖 體 顯示技術所取代。 目前發展出來的裸眼式立體顯示技術,主要是利用光 柵來控制觀賞者左眼與右眼所接收的影像。根據人 覺特性,當左眼、右眼分別觀看相同的影像内容,但具有 不同視差(parallax)的影像時,人眼會觀看到—立體影^象。 一般而言,可顯示立體影像的顯示裝置即是藉由將光柵 (barrier)配置於顯示面板與人眼之間,以使人眼觀看到 一立體影像。 圖1是習知一種顯示裝置的示意圖,圖2是圖1中之 視差屏障基板的示意圖。請參考圖1與圖2,習知顯示裝 置100包括一背光模組110、一顯示面板120以及一視差 屏障面板(Parallax Barrier Panel) 130 ’並且顯示面板12〇 M366089 配置於背光模組110與視差屏障面板13〇之間。 視差屏障基板130包括一上基板132、一液晶層134、 下基板136、與兩電極層132a、136a,其中電極層132a、 136a分別配置於上基板132與下基板136的内表面。視差 屏障基板130更包括分別配置於電極層132a、136a上的兩 '配向膜(未繪示),其中液晶層134的液晶分子為扭轉向 ' 列型(Twist Nematic,™)液晶分子,所以兩配向膜的配向方 向實質上相互垂直。 圖3是視差屏障基板之配向膜的配向方向與狹縫走向 的不意圖。請參考圖2與圖3,電極層136a更具有多個狹 缝s。從垂直下基板136的方向觀之,這些狹縫s的走向 D1與配置於電極層136a上的配向膜之配向方向D2具有 一夹角<9 (此夾角Θ約為116.57。)。 圖4是液晶分子配置於圖3中之局部區域a的上視 圖。请夢考圖3與圖4,由於狹缝S邊緣的電場會發散, 因此會產生平行下基板136且垂直狹缝s的走向Di之橫 向電場分量Ef。位於狹缝S邊緣的液晶分子134a會受到 此橫向電場分量£〖的牽引,而無法呈現預期的傾倒(如狹 缝S邊緣以外的液晶分子134a之排列方向),進而產生漏 光^現象。因此,當顯示裝置顯示立體影像時,由於視差 屏P早基板的漏光現象,進而造成左眼影像與右眼影像無法 完全分離,導致立體影像的顯示效果不佳。 M366089 【新型内容】 本創作提供一種顯示裝置,其具有良好的立體影像顯 示效果。 本創作提出一種顯示裝置,包括一視差屏障面板以及 一顯示ι§。視差屏障面板包括一第一基板、—第二基板、 —第一電極層、一第二電極層、一第一配向膜以及一液晶 層。第二基板配置於第一基板下,第一電極層覆蓋第一基 板朝向第二基板的一表面,而第二電極層配置於第二基板 朝向第一基板的一表面,且第二電極層具有多個狹缝,其 =延些狹缝具有一走向。第一配向膜覆蓋於第二基板朝向 弟基板的表面上,並具有一第一配向方向,其中第一配 向方向貫質上垂直於這些狹缝的走向。液晶層配置於第一 電極層及第-配向膜之間。視差屏障面板之第二基板 於顯示器上。 在本創作之-實施例中,上述顯示裝置 第-電極層上的一第二配向膜,且第二配向膜具有覆 配向方向,而第-配向方向實質上垂直於第二配向方向。 實施例中,當第—電極層及第二電極層之間 這些狹縫的邊緣具有一橫向電場,此樺向 電%的电%線方向平行於第一配向方向。 在本創作之—實施例中,上述顯示器為液晶顯干哭 (LCD),且液晶顯示器具有—第—偏光片以及—第: 光片二第-偏光片較第二偏光片相對鄰近視差 ^偏 其中弟-偏光片的偏振方向與第—配向方向平行。此外, M366089 上述視差屏障面板更包括一第三偏光片,配置於第一基板 相對遠離顯示器的一表面。 在本創作之一實施例中,上述顯示器為有機發光顯示 盗(OLED)、電漿顯示面板(PDP)或陰極射線管(CRT) 顯示器。此外,上述視差屏障面板更包括一第一偏光片以 及一第二偏光片,第一偏光片配置於第一基板相對遠離顯 示器的一表面,而第二偏光片配置於第二基板相對鄰近顯 不為的一表面。 在本創作之一實施例中,上述液晶層具有多個液晶分 子’且這些液晶分子為向列型液晶分子。 基於上述,本創作藉由將位於第二基板上之第一配向 =第-配向方向設計綠質上鼓於第二基板上之狹缝 番走向’贿在狹缝邊緣因電場發散而產生之橫向電場的 =線方向會平行於第—_方向。因此,受橫向電場牵 分子會平行於第—配向方向傾倒,進而可改善視 屏1¥基板在狹縫邊緣產生的漏光現象。 ⑼為讓本創作之上述特徵和優點能更鶴易懂,下文 牛只靶例,亚配合所附圖式作詳細說明如下。 【實施方式】 可以中所提出的作為示例的細部結構都 同的目互組合、替換 易於被理解下為了方便說明,並使說明内容能更 下文採用相同或相似的標號來表示類似的元 M366089 件’並可能省略重複的文字說明。 [第一實施例] 圖5疋本創作第一實施例之顯示裝置的爆炸圖。請參 考圖5,在本實施例中,顯示裝置1〇包括一梘差屏障面板 200以及一顯示器300,且视差屏障面板2〇〇配置於顯示器 300上。值得注意的是,本實施例之顯示器3〇〇是以非自 發光型顯示器為例進行說明,其例如是液晶顯示器。因此, 顯示态300需配置用以提供光源的光源模組(未緣示)。 視差屏障面板200包括一第一基板21〇、一第二基板 220 ' —第一電極層230、一第二電極層24〇、一第一配向 膜250以及一液晶層260,其中第二基板220配置於第一 基板210與顯示器300之間。第一電極層23〇覆蓋第一基 板210朝向弟二基板220的一表面,而第二電極層240配 置於第二基板220朝向第一基板210的一表面。此外,第 一配向膜250覆蓋於第二基板220朝向第一基板21〇的表 面上’且具有一第一配向方向R1 (齋示於圖6中)。 圖6疋圖5中之兩配向膜的配向方向與狹缝走向的示 思圖。請參考圖5與圖6,在本實施例中,顯示裝置可 包括一覆蓋於第一電極層230上的第二配向膜270,且第 二配向膜270具有一第二配向方向R2。液晶層260配置於 第一電極層230及第一配向膜250之間,並且具有多個液 晶分子262。其中,本實施例之液晶分子262為向列型液 晶分子’所以第一配向膜250的第一配向方向ri與第二 M366089 配向膜270的第二配向方向R2實質上相互垂直。此外, 藉由第一配向膜250與第二配向膜270的作用使液晶分子 262呈現特定的預傾角’有助於提高液晶分子262的應答 速率,進而可使顯示裝置10具有較佳的顯示效果。 除此之外,顯示态300更具有一第一偏光片以及 一第二偏光片320。詳細而言,顯示器300包括一液晶顯 示面板302以及一背光模紐330,其中液晶顯示面板302 朝向視差屏障面板200的第二基板220以及背光模組330 的各表面上分別具有第一偏光片310以及第二偏光片 320,且第一偏光片310的偏振方向pi垂直於第二偏光片 320的偏振方向。此外,視差屏障面板200更包括一第三 偏光片280 ’配置於第一基板210相對遠離顯示器3〇〇的 一表面,且第一偏光片310的偏振方向pi與第一配向方 向R1相同’而第三偏光片280的偏振方向P2則垂直於第 一配向方向R1。 當光線由顯示器300射出時,光線會被極化而使光偏 振方向平行於第一偏光片310的偏振方向P1。若第一電極 層230與第二電極層240之間無電壓差時,液晶層260内 的液晶分子262會使通過第一偏光片310的光線的偏振方 向轉動約90度,因而與第三偏光片280的偏振方向p2平 行’進而使光線可通過第三偏光片280,晝面為亮態。反 之’當兩電極層230、240之間具有一電壓差時,液晶分子 262是處於站立的狀態,所以通過第一偏光片31〇的光線 的偏振方向不會改變,因而無法通過第三偏光片28〇,晝 M366089 面為暗態。 圖7是液晶分子配置於圖6中之局部區域B的上視 圖。請參考圖5、圖6與圖7,在本實施例中,第二電極層 240具^有多個狹缝242,且這些狹缝242具有一走向si。 ^於第一電極層230及第二電極層24〇之間有一電壓差 時,在這些狹缝242邊緣的電場會發散,因此會產生一平 行於第二基板220且垂直此走向S1的橫向電場E。 值得注意的是,本創作藉由將第一配向膜250的第一 =向方向R1設計為實質上垂直於走向S1,以使此橫向電 場E的電場線方向會平行於第一配向方向R1。更進—步地 5兒,當第一電極層230及第二電極層240之間有一電壓差 時’位於狹縫242邊緣的液晶分子262會受到橫向電場e 的牵引,而平行於第一配向方向R1傾倒,進而可阻擋狹 缝242邊緣的光線通過,以避免視差屏障基板2〇〇產生漏 光的現象。因此’藉由第一配向方向R1與狹缝242之走 向s!垂直的配置方式,視差屏障面板2〇〇可將左眼影像 與右眼影像完全分離,以使顯示裝置1〇產生更為清晰的立 體影像。 [第二實施例] 圖8是本創作第二實施例之顯示裝置的爆炸圖。請參 考圖8,本實施例之顯示裝置10,與第一實施例之顯示裝置 10不同之處在於:顯示裝置10,之顯示器300,是以自發光 型顯示器為例進行說明,其中自發光型顯示器的顯示面板 10 M366089 不需配置用以提供光源的背光模組(未績示)。舉例而古, 自發光型顯示器可以是有_光顯示器、電㈣示器或是 陰極射線管顯示器等等。 由於自發光型顯示器本身並未有偏光片的設置,所以 本實施例之視差屏障面板200,包括一第一偏光片26〇,以及 、-第二偏光片27G’’且第-偏光片,配置於第一基板 -2K)相對遠離顯示器綱,的—表面,而第二偏光片27〇,配 擊 置於第二基板220相對鄰近顯示器3〇〇,的一表面。換言 之’第-偏光片260’與第二偏光片27〇,是分別配置於第一 基板210與弟二基板220的外表面上。 此外’第一偏光片260’與第二偏光片27〇,的偏振方向 是相互垂直的。如此,可使顯示襄置1〇,具有良好的顯示 效果。相較於第-實施例,本實施例之視差屏障面板勘, 減少了設置於顯示器300遠離視差屏障面板2〇〇的表面上 的第二偏光片320。 綜上所述,本創作藉由將位於第二基板上之第一配向 # _第一配向方向設計為實質上垂直於第二基板上之狹缝 的走向,以使兩個電極層之間有電壓差而產生電場時,在 狹缝邊緣因電場發散而產生之橫向電場的電場線方向會平 行於第一配向方向。如此一來,受橫向電場牽引的液晶分 子會以平行於第一配向方向傾倒,以避免視差屏障面板產 ' 生漏光的現象。因此,視差屏障面板可將左眼影像與右眼 影像完全分離,以使顯示裝置產生更為清晰的立體影像。 雖然本創作已以實施例揭露如上,然其並非用以限定 M366089 本創作,任何所屬技術領域中具有通常知識者,在不脫離 本創作之精神和範圍内,當可作些許之更動與潤飾,故本 創作之保護範圍#視後社t請料所界定者為準。 【圖式簡單說明】 圖1是習知一種顯示裝置的示意圖。 圖2是圖1中之視差屏障基板的示意圖。 圖3疋視差屏卩早基板之配向膜的配向方向與狹缝走向 的不意圖。 圖4是液晶分子配置_ 3 +之局純域A的上視 圖。 圖5是本創作第-實施例之顯示裝置的爆炸圖。 圖6是圖5中之祕向膜的配向方向與狹缝走向的示 思圖。 圖7是液晶分子配置於圖6中之 〈局部區域B的上視 圖。 圖8是本創作第二實施例之顯示萝 衣置的爆炸圖。 【主要元件符號說明】 100 :顯示裝置 11〇 .背光模組 120 :顯示面板 130 .視差屏障面板 132 .上基板 12 M366089 134 :液晶層 136 :下基板 132a、136a :電極層 A :局部區域 D1 :走向 D2 :配向方向 Ef ·電場分里 S :狹缝 0 :夾角 10、10’ :顯示裝置 200、200’ :視差屏障面板 210 :第一基板 220 :第二基板 230 :第一電極層 240:第二電極層 242 :狹缝 250 :第一配向膜 260 :液晶層 262 :液晶分子 270 :第二配向膜 280 :第三偏光片 300、300’ :顯示器 302 .液晶顯不面板 310、260’ :第一偏光片 13 M366089 320、270’ :第二偏光片 330 ··背光模組 B:局部區域 E:橫向電場 P1 :偏振方向 P2 :偏振方向 R1 ··第一配向方向 R2 :第二配向方向 S1 :走向M366089 V. New description: [New technical field] A kind of vertical creation is related to a kind of display, especially a body display. Off [Prior Art] In the development of display technology, in addition to the pursuit of light and thin, I hope to be able to do the goal of viewing stereoscopic images. At present, Stereoscopic stereoscopic display technology and Aut〇-stereoscopic stereoscopic display technology that can be viewed by the naked eye. However, the wear-and-eye display technology has been replaced by a sleeve display technology for its convenience and Shuxin. The naked-eye stereoscopic display technology developed at present mainly uses a grating to control images received by the viewer's left and right eyes. According to the characteristics of human perception, when the left and right eyes respectively view the same image content, but have different parallax images, the human eye will see the stereo image. In general, a display device capable of displaying a stereoscopic image is configured such that a barrier is disposed between the display panel and the human eye to allow the human eye to view a stereoscopic image. 1 is a schematic view of a conventional display device, and FIG. 2 is a schematic view of the parallax barrier substrate of FIG. 1. Referring to FIG. 1 and FIG. 2 , the display device 100 includes a backlight module 110 , a display panel 120 , and a parallax barrier panel 130 ′ and the display panel 12 〇 M366089 is disposed in the backlight module 110 and parallax. Between the barrier panels 13〇. The parallax barrier substrate 130 includes an upper substrate 132, a liquid crystal layer 134, a lower substrate 136, and two electrode layers 132a and 136a. The electrode layers 132a and 136a are disposed on the inner surfaces of the upper substrate 132 and the lower substrate 136, respectively. The parallax barrier substrate 130 further includes two 'alignment films (not shown) respectively disposed on the electrode layers 132a and 136a, wherein the liquid crystal molecules of the liquid crystal layer 134 are twisted toward Twist Nematic (TM) liquid crystal molecules, so The alignment directions of the alignment films are substantially perpendicular to each other. Fig. 3 is a view showing the alignment direction of the alignment film of the parallax barrier substrate and the slit direction. Referring to Figures 2 and 3, the electrode layer 136a has a plurality of slits s. Viewed from the direction of the vertical lower substrate 136, the direction D1 of the slits s has an angle <9 (the angle Θ is about 116.57.) with the alignment direction D2 of the alignment film disposed on the electrode layer 136a. Fig. 4 is a top plan view showing a liquid crystal molecule disposed in a partial region a in Fig. 3. Please refer to Fig. 3 and Fig. 4, since the electric field at the edge of the slit S is diverged, a transverse electric field component Ef parallel to the lower substrate 136 and the direction of the vertical slit s Di is generated. The liquid crystal molecules 134a located at the edge of the slit S are subjected to the traction of the transverse electric field component, and the desired tilting (e.g., the alignment direction of the liquid crystal molecules 134a outside the edge of the slit S) cannot be exhibited, thereby causing a light leakage phenomenon. Therefore, when the display device displays the stereoscopic image, the left-eye image and the right-eye image cannot be completely separated due to the light leakage phenomenon of the front substrate of the parallax screen P, resulting in poor display effect of the stereoscopic image. M366089 [New Content] This creation provides a display device with good stereoscopic image display effects. The present invention proposes a display device comprising a parallax barrier panel and a display. The parallax barrier panel includes a first substrate, a second substrate, a first electrode layer, a second electrode layer, a first alignment film, and a liquid crystal layer. The second substrate is disposed under the first substrate, the first electrode layer covers a surface of the first substrate toward the second substrate, and the second electrode layer is disposed on a surface of the second substrate facing the first substrate, and the second electrode layer has Multiple slits, which have a slit that has a run. The first alignment film covers the surface of the second substrate facing the substrate and has a first alignment direction, wherein the first alignment direction is perpendicular to the direction of the slits. The liquid crystal layer is disposed between the first electrode layer and the first alignment film. The second substrate of the parallax barrier panel is on the display. In an embodiment of the present invention, the display device has a second alignment film on the first electrode layer, and the second alignment film has an orientation direction, and the first alignment direction is substantially perpendicular to the second alignment direction. In an embodiment, the edges of the slits between the first electrode layer and the second electrode layer have a transverse electric field, and the electric % line direction of the birch electric power is parallel to the first alignment direction. In an embodiment of the present invention, the display is a liquid crystal display dry (LCD), and the liquid crystal display has a -first polarizer and a - photo: the second polarizer is relatively adjacent to the parallax of the second polarizer The polarization direction of the dipole-polarizer is parallel to the first-alignment direction. In addition, the above-mentioned parallax barrier panel further includes a third polarizer disposed on a surface of the first substrate relatively away from the display. In one embodiment of the present invention, the display is an organic light emitting display (OLED), a plasma display panel (PDP) or a cathode ray tube (CRT) display. In addition, the parallax barrier panel further includes a first polarizer and a second polarizer. The first polarizer is disposed on a surface of the first substrate opposite to the display, and the second polarizer is disposed adjacent to the second substrate. For a surface. In an embodiment of the present invention, the liquid crystal layer has a plurality of liquid crystal molecules ' and these liquid crystal molecules are nematic liquid crystal molecules. Based on the above, the present invention creates a lateral direction due to the electric field divergence at the edge of the slit by designing the slit on the second substrate by designing the first alignment=first-alignment direction on the second substrate. The direction of the electric field = line will be parallel to the -_ direction. Therefore, the horizontal electric field molecules are tilted parallel to the first alignment direction, thereby improving the light leakage phenomenon of the screen substrate on the edge of the slit. (9) In order to make the above features and advantages of this creation more understandable, the following is a detailed description of the following examples of cattle targets and sub-combinations. [Embodiment] The detailed description of the details of the detailed descriptions of the present invention can be understood by the same or similar reference numerals to indicate similar elements M366089. 'And may omit duplicate textual descriptions. [First Embodiment] Fig. 5 is an exploded view of a display device of the first embodiment of the present invention. Referring to FIG. 5, in the embodiment, the display device 1A includes a coma barrier panel 200 and a display 300, and the parallax barrier panel 2 is disposed on the display 300. It is to be noted that the display 3 of the present embodiment is described by taking a non-self-luminous display as an example, which is, for example, a liquid crystal display. Therefore, the display state 300 needs to be configured with a light source module for providing a light source (not shown). The parallax barrier panel 200 includes a first substrate 21 , a second substrate 220 ′ — a first electrode layer 230 , a second electrode layer 24 , a first alignment film 250 , and a liquid crystal layer 260 , wherein the second substrate 220 The first substrate 210 is disposed between the first substrate 210 and the display 300. The first electrode layer 23 covers a surface of the first substrate 210 facing the second substrate 220, and the second electrode layer 240 is disposed on a surface of the second substrate 220 facing the first substrate 210. Further, the first alignment film 250 covers the second substrate 220 toward the surface of the first substrate 21'' and has a first alignment direction R1 (laid in Fig. 6). Fig. 6 is a schematic view showing the alignment direction and the slit direction of the two alignment films in Fig. 5. Referring to FIG. 5 and FIG. 6, in the embodiment, the display device may include a second alignment film 270 overlying the first electrode layer 230, and the second alignment film 270 has a second alignment direction R2. The liquid crystal layer 260 is disposed between the first electrode layer 230 and the first alignment film 250 and has a plurality of liquid crystal molecules 262. Here, the liquid crystal molecules 262 of the present embodiment are nematic liquid crystal molecules, so the first alignment direction ri of the first alignment film 250 and the second alignment direction R2 of the second M366089 alignment film 270 are substantially perpendicular to each other. In addition, the liquid crystal molecules 262 exhibit a specific pretilt angle by the action of the first alignment film 250 and the second alignment film 270, which helps to increase the response rate of the liquid crystal molecules 262, thereby enabling the display device 10 to have a better display effect. . In addition, the display state 300 further has a first polarizer and a second polarizer 320. In detail, the display 300 includes a liquid crystal display panel 302 and a backlight module 330. The liquid crystal display panel 302 has a first polarizer 310 on each surface of the second substrate 220 and the backlight module 330 of the parallax barrier panel 200. And the second polarizer 320, and the polarization direction pi of the first polarizer 310 is perpendicular to the polarization direction of the second polarizer 320. In addition, the parallax barrier panel 200 further includes a third polarizer 280 ′ disposed on a surface of the first substrate 210 relatively away from the display 3 , and the polarization direction pi of the first polarizer 310 is the same as the first alignment direction R1. The polarization direction P2 of the third polarizer 280 is perpendicular to the first alignment direction R1. When light is emitted from the display 300, the light is polarized such that the direction of polarization of the light is parallel to the polarization direction P1 of the first polarizer 310. If there is no voltage difference between the first electrode layer 230 and the second electrode layer 240, the liquid crystal molecules 262 in the liquid crystal layer 260 rotate the polarization direction of the light passing through the first polarizer 310 by about 90 degrees, and thus the third polarized light. The polarization direction p2 of the sheet 280 is parallel 'and thus allows light to pass through the third polarizer 280, and the facet is in a bright state. Conversely, when there is a voltage difference between the two electrode layers 230, 240, the liquid crystal molecules 262 are in a standing state, so the polarization direction of the light passing through the first polarizer 31 does not change, and thus the third polarizer cannot pass. 28〇, 昼M366089 The face is dark. Fig. 7 is a top plan view showing a liquid crystal molecule disposed in a partial region B in Fig. 6. Referring to FIG. 5, FIG. 6, and FIG. 7, in the embodiment, the second electrode layer 240 has a plurality of slits 242, and the slits 242 have a striker si. When there is a voltage difference between the first electrode layer 230 and the second electrode layer 24, the electric field at the edge of the slit 242 is diverged, thereby generating a transverse electric field parallel to the second substrate 220 and perpendicular to the direction S1. E. It is to be noted that the present invention is designed such that the first = direction R1 of the first alignment film 250 is substantially perpendicular to the strike S1 such that the direction of the electric field line of the transverse electric field E is parallel to the first alignment direction R1. Further, when there is a voltage difference between the first electrode layer 230 and the second electrode layer 240, the liquid crystal molecules 262 located at the edge of the slit 242 are pulled by the transverse electric field e, parallel to the first alignment. The direction R1 is poured, and the light passing through the edge of the slit 242 can be blocked to prevent the light leakage of the parallax barrier substrate 2 . Therefore, by the arrangement of the first alignment direction R1 and the direction s! of the slit 242, the parallax barrier panel 2 完全 can completely separate the left-eye image from the right-eye image, so that the display device 1 〇 is produced more clearly. Stereoscopic image. [Second Embodiment] Fig. 8 is an exploded view of a display device of a second embodiment of the present invention. Referring to FIG. 8 , the display device 10 of the present embodiment is different from the display device 10 of the first embodiment in that the display device 10 is displayed by taking a self-illuminating display as an example, wherein the self-illuminating type is used. The display panel 10 M366089 of the display does not need to be equipped with a backlight module for providing a light source (not shown). For example, the self-illuminating display may be a _light display, an electric (four) display or a cathode ray tube display or the like. Since the self-luminous display itself does not have the polarizer, the parallax barrier panel 200 of the present embodiment includes a first polarizer 26〇, and a second polarizer 27G′′ and a photo-polarizer. The first substrate - 2K) is relatively far from the surface of the display, and the second polarizer 27 is placed on a surface of the second substrate 220 adjacent to the display 3A. In other words, the 'first polarizer 260' and the second polarizer 27' are disposed on the outer surfaces of the first substrate 210 and the second substrate 220, respectively. Further, the polarization directions of the 'first polarizer 260' and the second polarizer 27' are perpendicular to each other. In this way, the display can be set to 1 〇, which has a good display effect. Compared with the first embodiment, the parallax barrier panel of the present embodiment reduces the second polarizer 320 disposed on the surface of the display 300 away from the parallax barrier panel 2A. In summary, the present invention designs the first alignment direction on the second substrate to be substantially perpendicular to the direction of the slit on the second substrate so that there is a gap between the two electrode layers. When an electric field is generated by a voltage difference, the direction of the electric field line of the transverse electric field generated by the electric field divergence at the edge of the slit is parallel to the first alignment direction. In this way, the liquid crystal molecules pulled by the transverse electric field are tilted in parallel with the first alignment direction to avoid the phenomenon that the parallax barrier panel produces light leakage. Therefore, the parallax barrier panel can completely separate the left eye image from the right eye image to make the display device produce a clearer stereoscopic image. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the creation of M366089, and any person having ordinary knowledge in the art can make some changes and refinements without departing from the spirit and scope of the present invention. Therefore, the scope of protection of this creation is subject to the definition of the poster. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a conventional display device. 2 is a schematic view of the parallax barrier substrate of FIG. 1. Fig. 3 is a schematic view of the alignment direction of the alignment film of the 疋 parallax screen and the slit direction of the early substrate. Fig. 4 is a top view of the pure domain A of the liquid crystal molecule configuration _ 3 + . Fig. 5 is an exploded view of the display device of the first embodiment of the present invention. Fig. 6 is a view showing the alignment direction and the slit direction of the secret film of Fig. 5. Fig. 7 is a top view of the partial region B in which the liquid crystal molecules are arranged in Fig. 6. Fig. 8 is an exploded view showing the display of the second embodiment of the present invention. [Description of main component symbols] 100: Display device 11 背光. Backlight module 120: Display panel 130. Parallax barrier panel 132. Upper substrate 12 M366089 134: Liquid crystal layer 136: Lower substrate 132a, 136a: Electrode layer A: Local area D1 : going to D2 : alignment direction Ef · electric field distribution S : slit 0 : angle 10 , 10 ' : display device 200 , 200 ' : parallax barrier panel 210 : first substrate 220 : second substrate 230 : first electrode layer 240 : second electrode layer 242 : slit 250 : first alignment film 260 : liquid crystal layer 262 : liquid crystal molecule 270 : second alignment film 280 : third polarizer 300 , 300 ' : display 302 . liquid crystal display panel 310 , 260 ' : First polarizer 13 M366089 320, 270': Second polarizer 330 · Backlight module B: Local area E: Transverse electric field P1: Polarization direction P2: Polarization direction R1 · First alignment direction R2: Second Orientation direction S1: direction
1414