M362999 五、新型說明: 【新型所屬之技術領域】 一本創作係有關於一種均勻光產生結構,尤指一種能產生 尚光利用效率之均勻光產生結構。 【先前技術】 5月爹閱第一A圖、第一b圖及第一 ς圖所示,習知均勻 光產生結構係包括:一發光元件1 〇、一導光本體1 1、一 C形反射罩體12,其中該導光本體丨i係容置於該c形反 射罩體1 2内’並且該發光元件1 Q係設置該導光本體^ ^ 及該C形反射罩體1 2的其中一相同外側。 再者,該發光元件1〇係具有複數個單波長或 之光源。該導光本體1]L之底面係為—反射面11]L,並且 一圖案1 3係成形在該反射面1 i i上(如第及第一 C圖所示),以用於將該發光元件i 〇從該入光面i i 2打入 至該導光本體1 1内之光束,破壞其全反射機制並均勻地從 該出光面1 1 0投射出去。換言之,該導光本體i i係為一 五角形結構,其卜斜面為出光面1 1 ◦,而其餘為反射面, 亚且位於底面之反射面2 2丄係具有該圖案丄3。另外,該 〔形反射罩體1 2伽以將逸出該導光本體丨丨之 導向該出光面1 1 〇。 然而、’習知的糾光產生結構仍具有下列的缺失存在: -、在該導光本體11之反射面i工工上,僅有一漸漸變大 之圖案1 3,然而該發光元件i Q係具有複數個光源, 因此使用「僅有-漸漸變大之圖案i 3」易造成習知均 勻光產生結構的均勻度不佳。 3 M362999 二、在該導光本體1 1中相對於出 3為-平面’此平面(該反射 0之反射面1 1 效區域,而造成習知均勻^,113)易產生發光無 緣是,本創作人有感上述缺失==發光效率不足。 從事此方面之相雜驗,&心_ _ σ,且依據多年來 、$田a播出一種抓舛人二硯察且研究之,並配合學理之 =二】十合理且有致改善上述缺失之本創作。 本創作U要目的在於提供—種均自光錢 夠增加光的利用率及均勻度。 八 為了解決上述技術問題’根據本創作之其中—種方案, 提供一種均勻光產生結構,其包括:一導光單元、一反射單 元、一發光單元及一圖案單元。其中,該導光單元係具有— 透明的導光本體,並且該導光本體係具有一入光面、二相反 於該入光面之第一反射面、複數個形成於該入光面及該第— 反射面之間之第二反射面、及一形成於該入光面及該第一反 射面之間之出光面’其中§亥4第二反射面的最後端係為一後 反射面,該等第二反射面的最下端係為一下反射面。該反射 單元係包覆該第一反射面及該等第二反射面。該發光單元係 設置該導光本體之入光面的外侧,並且該發光單元係具有複 數個發光元件。該圖案單元係設置於該下反射面上,其中該 圖案單元係具有複數組分別相對應於不同發光元件之圖案, 並且每一組圖案係具有複數個微結構。藉此’該發光單元所 產生的光束係穿過該入光面以導入該導光本體内’然後該光 束係透過該第一反射面、該等第二反射面及該圖案單元的反 射及散射而投向該出光面,最後該光束係從該出光面投射出 M362999 本創作的有益效果在於:本創作 善習知「僅有_漸漸變大之圖案」::光產生結構係改 複數組圖案,1以彡卩刷、泠佑、失,取而代之的則是 来太二L 射出成形的方式成形於-導 先本體的其中一反射面上,並且透 、又〜万、v 所破壞全反射之氺右呤砧;^ M # 反射罩體將被該圖案 C繼地反射至該導光本體的出光面。 術丰H 步暸解糊料料駄目_採取之技 請參_下錢本創作之詳細朗與附圖, 相t本創作之目的、特徵與特點,當可由此得—深入且f 創作加以_|。 L㈣用’亚非用來對本 【實施方式】 -實第二圖A ' 圖所示,本創作第 ^例係提供-種均勻光產生結構,其包括:—導光單元 =、-反射單Μ 1 a、-發光單元2 2 a及一圖案單 凡 2 3 a。M362999 V. New description: [New technical field] A creation department is about a uniform light generating structure, especially a uniform light generating structure that can produce the efficiency of light utilization. [Prior Art] As shown in FIG. 1A, the first b diagram, and the first diagram, the conventional uniform light generating structure includes: a light emitting element 1 〇, a light guiding body 1 1 , and a C shape. a reflector body 12, wherein the light guiding body 丨i is received in the c-shaped reflector body 1 2 and the light emitting element 1 Q is disposed on the light guiding body and the C-shaped reflector body 12 One of them is the same outside. Further, the light-emitting element 1 has a plurality of single wavelength or light sources. The bottom surface of the light guiding body 1]L is a reflecting surface 11]L, and a pattern 13 is formed on the reflecting surface 1 ii (as shown in the first and the first C) for the light emitting The light beam entering the light guiding body 11 from the light incident surface ii 2 destroys the total reflection mechanism and uniformly projects from the light emitting surface 110. In other words, the light guiding body i i is a pentagonal structure, and the inclined surface is the light emitting surface 1 1 ◦, and the rest is a reflecting surface, and the reflective surface 2 2 located on the bottom surface has the pattern 丄3. In addition, the [reflective cover body 1 2 is slid to guide the light guiding body 丨丨 to the light emitting surface 11 1 〇. However, the conventional light-correcting structure still has the following defects: - On the reflective surface i of the light-guiding body 11, there is only one gradually larger pattern 13 , but the light-emitting element i Q is Since there are a plurality of light sources, the use of the "only-gradually large pattern i 3" tends to cause poor uniformity of the conventional uniform light generating structure. 3 M362999 Second, in the light guiding body 1 1 with respect to the out of 3 is a plane - this plane (the reflecting surface of the reflecting surface 1 1 effect area, resulting in a uniform uniform ^, 113) is easy to produce light, is not The creator feels the above missing == luminous efficiency is insufficient. Engaged in this aspect of the miscellaneous test, & heart _ _ σ, and based on years, $ Tian a broadcast a grasp of the two people to observe and study, and with the academic = two] ten reasonable and improved the above-mentioned lack The creation of this. The purpose of this creation U is to provide a variety of light from the light to increase the utilization and uniformity of light. In order to solve the above-mentioned technical problems, according to one of the proposals of the present invention, a uniform light generating structure is provided, comprising: a light guiding unit, a reflecting unit, a light emitting unit and a pattern unit. The light guiding unit has a transparent light guiding body, and the light guiding system has a light incident surface, a first reflective surface opposite to the light incident surface, a plurality of light incident surfaces formed on the light incident surface, and the plurality of light guiding surfaces a second reflecting surface between the reflecting surfaces and a light emitting surface formed between the light incident surface and the first reflecting surface, wherein a rear end of the second reflecting surface of the second reflecting surface is a rear reflecting surface, The lowermost end of the second reflecting surfaces is a lower reflecting surface. The reflecting unit covers the first reflecting surface and the second reflecting surfaces. The light emitting unit is disposed outside the light incident surface of the light guiding body, and the light emitting unit has a plurality of light emitting elements. The pattern unit is disposed on the lower reflecting surface, wherein the pattern unit has a complex array corresponding to patterns of different light emitting elements, and each set of patterns has a plurality of microstructures. Thereby, the light beam generated by the light emitting unit passes through the light incident surface to be introduced into the light guide body, and then the light beam passes through the first reflective surface, the second reflective surface, and the reflection and scattering of the pattern unit. And the light beam is projected to the illuminating surface, and finally the beam is projected from the illuminating surface. M362999 The beneficial effect of the creation is that the creation is well-known as "only gradual gradual pattern":: light-generating structure is modified array pattern 1 is brushed, smashed, lost, and replaced by the method of injection molding, which is formed on one of the reflective surfaces of the leading body, and is transparent, and the total reflection is destroyed by 10,000 and v.氺 Right anvil; ^ M # Reflective cover will be reflected by the pattern C to the light-emitting surface of the light guiding body. Technology Feng H step to understand the paste material attention _ take the skills please refer to the _ money book creation details and drawings, the purpose of this creation, features and characteristics, can be derived from this - deep and f creation _| . L(4) is used in the 'Afro-Affinity', and the second picture A' is shown in the figure. The second example of the present invention provides a uniform light generating structure, which includes: - light guiding unit =, - reflection unit 1 a, - illumination unit 2 2 a and a pattern of 2 3 a.
其中,該導光單元20a係具有-透明的導光本體2 〇 〇 a,並且该導光本體2〇〇 3係具有一入光面2〇丄a、 二相反於該入光面2 〇 1 a之第一反射面2 〇 2 a、複數個 形成於該入光面2 〇 1 a及該第一反射面2 〇 2 a之間之第 二反射面、及一形成於該入光面2 〇 i a及該第一反射面2 a之間之出光面2〇5a,其中該等第二反射面的最後 立而係為一後反射面2 〇 3 a,係為一弧面,並且該等第二反 射面的最下端係為一下反射面2〇4 a。 再者’該反射單元2 1 a係以至少暴露出該入光面2 0 1 a及該出光面2 〇 5 a的方式設置在該導光本體2 〇 〇 a 的表面上。此外,該反射單元2 1 a的材質係可為一具有 5 M362999 60%〜99%反射率之高反射率材料,並且該高反射率材料係可 為金屬材料(例如:銀或銅)或氧化物(例如:二氧化鈦 (Ti02))。 另外,該發光單元2 2 a係設置該導光本體2 〇 〇 a之 入光面2 0 1 a的外側,並且該發光單元2 2 a係具有複數 個發光元件2 2 0 a,例如:該發光單元2 2 a係可由一紅 色發光二極體R、一綠色發光二極體G及一藍色發 B所組成。 版 再者,該圖案單元2 3 a係設置於該下反射面2 〇 4 ^ 士:圖案單元2 3 a係具有複數組分別相對應該等發 光兀件2 2 0a之圖案(230a、23la、 並,每-組圖案(2 3 0 a、231a、2 3 2 a)係且有 複數個微結構(M1、M2、M3),其用 ^ 並增加發光均勻度。此外,每一組圖案(Mess a、2 3 2 a )之料微結構係彼此分 :尺寸或密度係沿著遠離該發光單元…的 平列水§兄,上述该等圖案(2 3 〇 a、 2 a )係可分別對應於不_發光元件,每_二、2 微結構係透過塗佈、印刷、蒸鑛或濺鍍的方式成2之该 二體2 0 a上,並且該等微結構的 二:亥導; 者,先透過化學蝕刻或雷射加 ::开4方形,. 模具,以使縣―_案之料赌後使射 形的方式成形於該導光本體上,'了透過—體射出j 狀或鋸齒狀。 、’ ^荨微結構的形狀為匈 M362999 因此’轉光單元2 2 a所產生的光束(圖未示)係穿 過該入光面2 Q 1 a以導人該導光本體2 Q◦ a内,然後該 光^系透過該第-反射面2〇2 a、該等第二反射面及該圖 案單兀23 a的反射而投向該出光面⑼“,最後該光束 係從該出光面2 0 5 a投射出去。 以本創作第一實施例而言,該等微結構組(Ml、M2、 Μ 3)係分成二組圓形微結構,分別對應於該發光單元2 2 a内之不同波長之紅、綠、藍三組光源位置(亦即紅色發光 二極體R、綠色發光二極紅及藍色發光二極體B )。圓形微 =構Μ 1 Μ 2、Μ 3的圓面積放大比例係依據「紅、綠、 監二組光源離出光面2 〇 5 a的距離Dr、Dg、Db」、「光源 強度Ir、Ig、ib」及「對該等微結構組的散射程度&、%、 外」而變化,光源在導光本體2〇〇at傳播損耗為〇,同 一組光源受不同組光散射圖案之疊加效應為ξ,故此微結構 組的分佈為一多變函數M (D,j, s,〇, ξ)。 當該發光單2 a内之光源排列方式為沿遠離出光面 2 0 5 a方向依序為紅、綠、藍三波長之光源,紅光光源(紅 色發光二極體R)、綠光光源(綠色發光二極體G )盘誌、本 源(藍色發光二極體B)與該出光面2 〇 5 a之距^比為 Dr : Dg : Db=tan72。: tan78。: tan82。。光源能量比卜: 出=1 : 2.01 : 2.12。光源散射程度比例為Sr : Sg : .· 3·5:5·5,紅光光源沿遠離該發光單元2 2 a方向的能量損耗 ’綠光錢沿遠離該發光單元2 2 a方_ 里才貝耗為〇.〇93%/mm,並且藍光光源沿遠離該發光單元 2 2 a方向的能量損耗為〇 〇84%/1Ώηι。 凡 M362999 考慮上述各項參數值,可得由該導光本體2 〇 〇 a之出 光面2 Ο 5 a所得之紅光能量,有6G%的能量被相對應紅光 光源的微結構組Μ 1所散射而朝向該出光面2 〇 5 a,有 2 〇 %的能量被相對應綠光光源的微結構組M 2所散射而朝向 該出光面2 Q 5 a ’有1G%的能量被相對應藍光光源的微結 構組M3所散射而朝向該出光面2 〇 5 a,另外有10%的^ 量是未經散射,而是藉由反射機制從該出光面2 〇 5°a = fj ;由該導光本體2 OQ a之出光面2Q 5 a所得之綠光能 量,有50%的能量被相對應綠光光源的微結構組M 而,向該出光面2 0 5 a ’有3G%的能#被相對應紅光光源 的微結構組Μ 1所散射而朝向該出光面2 〇 5 a,有1〇%的 能量被相對應藍光光源的微結構組M3所散射而朝向該出>光 面2 0 5 a,另外有1〇〇/❶的能量是未經散射,而是藉由反射 機制從該出光面2 0 5 a離開;由該導光本體2 〇 〇 a之出 光面2 0 5 a所得之藍錢量’有4G%的能量被相對應藍光 光源的微結構組Μ 3所散射而朝向該出光面2 q 5 a,有 35%的能量被相對應綠光光源的微結構組“ 2所散射而朝向 忒出光面2 0 5 a,有15%的能量被相對應紅光光源的微結 構組Ml所散射而朝向該出光面2 〇 5 a,另外有1〇%之能 量是未經散射,而是藉由反射機制從出光面2 〇 5 a離開。 因此可推得,此圖案2 3 a之微結構面積變化公式為:The light guiding unit 20a has a transparent light guiding body 2 〇〇 a, and the light guiding body 2 〇〇 3 has a light incident surface 2 〇丄 a, and two opposite to the light incident surface 2 〇 1 a first reflecting surface 2 a 〇 2 a, a plurality of second reflecting surfaces formed between the light incident surface 2 〇 1 a and the first reflecting surface 2 〇 2 a , and a second reflecting surface formed on the light incident surface 2 a light emitting surface 2〇5a between the 〇ia and the first reflecting surface 2a, wherein the second reflecting surface is a rear reflecting surface 2 〇3 a, which is a curved surface, and the same The lowermost end of the second reflecting surface is a lower reflecting surface 2〇4 a. Further, the reflecting unit 2 1 a is disposed on the surface of the light guiding body 2 〇 〇 a so as to expose at least the light incident surface 2 0 1 a and the light exit surface 2 〇 5 a. In addition, the material of the reflective unit 2 1 a may be a high reflectivity material having a reflectivity of 5 M362999 60% to 99%, and the high reflectivity material may be a metal material (eg, silver or copper) or oxidized. (for example: titanium dioxide (Ti02)). In addition, the light emitting unit 2 2 a is disposed outside the light incident surface 2 0 1 a of the light guiding body 2 〇〇a, and the light emitting unit 2 2 a has a plurality of light emitting elements 2 2 0 a, for example: The light emitting unit 2 2 a may be composed of a red light emitting diode R, a green light emitting diode G and a blue light B. Further, the pattern unit 2 3 a is disposed on the lower reflecting surface 2 〇 4 ^ : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Each group of patterns (2 3 0 a, 231a, 2 3 2 a) is composed of a plurality of microstructures (M1, M2, M3), which use ^ and increase the uniformity of illumination. In addition, each group of patterns The microstructures of (Mess a, 2 3 2 a ) are divided into each other: the size or density is along the parallel water away from the light-emitting unit... The above-mentioned patterns (2 3 〇a, 2 a ) can be Corresponding to the non-light-emitting elements, each of the two or two microstructures is formed by coating, printing, steaming or sputtering to form the two bodies 20 a, and the second of the microstructures First, through chemical etching or laser addition:: open 4 square, . mold, so that the county _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Shape or jagged. , ^ ^ The shape of the microstructure is Hung M362999. Therefore, the light beam (not shown) generated by the light-transforming unit 2 2 a passes through the light-incident surface 2 Q 1 a to guide the person. In the light body 2 Q◦ a, the light beam is then directed to the light exiting surface (9) through the reflection of the second reflecting surface and the second reflecting surface 23 a, and finally the light beam The projections are projected from the illuminating surface 2 0 5 a. In the first embodiment of the present creation, the microstructure groups (M1, M2, Μ 3) are divided into two sets of circular microstructures, respectively corresponding to the light-emitting unit. The positions of the three groups of red, green and blue light sources of different wavelengths within 2 2 a (ie red light-emitting diode R, green light-emitting diode red and blue light-emitting diode B). Circular micro = structure 1 Μ 2. The circular area magnification ratio of Μ 3 is based on "Dr, Dg, Db", "Light source intensity Ir, Ig, ib" and "The light source intensity, 2, 5 a distance from the light source, Dr. D, Dg, Db" The degree of scattering of the microstructure group is changed by &, %, and outer, and the propagation loss of the light source in the light guiding body 2〇〇at is 〇, and the superposition effect of the same group of light sources by different sets of light scattering patterns is ξ, so the microstructure group The distribution is a multivariable function M (D, j, s, 〇, ξ). When the light source in the illuminating sheet 2a is arranged in a manner away from the illuminating surface 2 0 The 5 a direction is a red, green and blue light source, a red light source (red light emitting diode R), a green light source (green light emitting diode G), and a source (blue light emitting diode) B) The distance from the light-emitting surface 2 〇 5 a is Dr : Dg : Db=tan72.: tan78.: tan82. The light source energy ratio is: =1: 2.01: 2.12. The ratio of the light source scattering degree is Sr: Sg: .· 3·5:5·5, the energy loss of the red light source along the direction away from the light-emitting unit 2 2 a 'green light money away from the light-emitting unit 2 2 a square _ 才 耗 耗 〇 〇 〇 93 %/mm, and the energy loss of the blue light source in the direction away from the light-emitting unit 2 2 a is 〇〇84%/1Ώη. Where M362999 considers the above parameters, the red light energy obtained by the light-emitting surface 2 Ο 5 a of the light guiding body 2 〇〇a can be obtained, and 6G% of the energy is corresponding to the microstructure of the red light source Μ 1 2 〇% of the energy is scattered toward the illuminating surface 2 〇5 a, and is scattered by the microstructure group M 2 corresponding to the green light source, and 1 G% of energy is corresponding to the illuminating surface 2 Q 5 a ' The microstructure group M3 of the blue light source is scattered toward the light exit surface 2 〇 5 a, and another 10% is unscattered, but is reflected from the light exit surface by 2 a 5 °a = fj; The green light energy obtained by the light-emitting surface 2Q 5 a of the light guiding body 2 OQ a has 50% of energy corresponding to the microstructure group M of the green light source, and has 3G% to the light-emitting surface 2 0 5 a ' Energy # is scattered by the microstructure group Μ 1 of the corresponding red light source toward the light exit surface 2 〇 5 a, and 1% of the energy is scattered by the microstructure group M3 corresponding to the blue light source toward the exit > The light surface is 2 0 5 a, and another 1 〇〇 / ❶ energy is not scattered, but is separated from the light exit surface 2 0 5 a by a reflection mechanism; by the light guiding body 2 The amount of blue money obtained by the light surface of 〇〇a 2 0 5 a '4G% of energy is scattered by the microstructure group Μ 3 of the corresponding blue light source toward the light exit surface 2 q 5 a, 35% of the energy is The microstructure group corresponding to the green light source "scatters toward the pupil light surface 2 0 5 a, and 15% of the energy is scattered by the microstructure group M1 corresponding to the red light source toward the light exit surface 2 〇 5 a In addition, 1% of the energy is unscattered, but is separated from the light exit surface 2 〇 5 a by a reflection mechanism. Therefore, the formula for changing the microstructure of the pattern 2 3 a is:
Ml = 1.048 x4e0096ri +CR M2 = OA5lxLGe009^- +CG M3 = 0.6l3xLBeom4ri +CB M362999 其中ri、r2、Γ3為每組圖案中的各點圓面積的半徑變數, LR、LG、lb分別為紅光、、綠光、藍光在導光本體2 強度修正係數,並且CR、CG、CB分別為紅光、綠光藍^ 在導光本體200a之光形分佈常數。 因f,、微結構土組M1之第一個微結構,其圓形面積為 0.35mm,並且沿退離該發光單元2 2 a為5職處;另—面 積為0.38議之圓形微結構,其每隔▲依比例增大: 微結構組M2之圓形大小為一個面積為〇72_2之圓形微= 構,其,遠離該發光單元2 2 3為5mm 4 ;另―^ 0.76mm之圓形微結構’其每隔5mm依比例增大。微结構= ^^之固就小為-個面積為⑽^之圓形微結構,# 遠離該發光單元2 2 a為5咖處;另一面積為114醜^ 圓形微結構’其每隔5mm依比例辦大。 -(23a、23a。之變化(第二D圖及第:e圖内: 揭露之虛線左方的圖案變化)亦可制下列的距㈣ 公式(其中第二D圖的三組圖案R ' G ' β =光二極體R、綠色發光二極體〇及藍色發光二極: B,j二E圖的三組圖案R"、G' B"分別對應紅色發光 一極體R、綠色發光二極體G及藍色發光二極體B ): R : C1R + 4X - X(X-1)/C2R,x=0, L 2” G : C】G + 4Χ - X(X-l)/c2G,χ=〇, i,2,... B : CiB + 4X-X(X-l)/c2B,x=〇, 12” 其中,X為每組圖案中的各點位置變數 ㈣賴、G、B的初始位置常數;C2R,C2=^^ G、B二組圖案的位置變化比例常數。 M362999 請參閱第三圖所示,第二實施例與第一實施例最大的差 別在於.在第二實施例中,該後反射面2 〇 3 b係為一具有 一預定傾斜角度之傾斜面,其用於將該光束反射至該圖案單 元2 3 b上。換言之,藉由該後反射面2 〇 3 b的偏光效果, 可使光束偏向於該導光本體2 0 0 b底部(下反射面2 0 4 b)之該圖案單元2 3 b,以用於增強光散射及反射的效果 並減少無效光束的比例,以增強射向該出光面2 〇 5 b之光 束能量,以達到最高發光效率與均勻性。 睛參閱第四圖所示,第三實施例與第二實施例最大的差 別在於·在第三實施例中,該後反射面2 0 3 c係由複數個 傾斜面2 0 3 0 c所組成,藉由該後反射面2 0 3 c的偏光 效果’亦能達到如上述第二實施例中所提到之優點。 請參閱第五圖所示,第四實施例與第二實施例最大的差 別在於:在第四實施例中,該後反射面2 0 3 d係為一弧面 (此孤面的面積係大於第一實施例中弧面的面積),其用於將 該光束反射至該圖案單元2 3 0上,藉由該後反射面2 0 3 d的聚光效果’亦能達到如上述第二實施例中所提到之優點。 請參閱第六圖所示,第五實施例與第四實施例最大的差 別在於:在第五實施例中,該後反射面2 0 3 e係由複數個 孤面2 〇 3 0 e所組成,藉由該後反射面2 0 3 e的聚光效 果’亦能達到如上述第二實施例中所提到之優點。 δ月參閱弟七圖所示,第六實施例與上述其他貫施例最大 的差別在於:在第六實施例中,該導光本體2 〇 0 f係具有 一與該後反射面2 〇 3 f相對稱之前反射面2 0 6 f ’該後 反射面2 0 3 f係佔據該導光本體2 0 0 f後端的一部分, 該前反射面2 〇 6 f係佔據該導光本體2 0 〇 f前端的一部 M3 62999 ^ ’並且該後反射面2 Ο 3 f及該前反射面2 Q 6 f皆為傾 ,面^其中該出光面2 Ο 5 f係位於該導光本體2 Ο 0 f的 :取上端並且位於該後反射面2 Ο 3 f及前反射面2 Ο 6 f之 間。 請爹閱第八圖所示,第七實施例與第六實施例最大的差 別在於.在第七實施例巾,該後反射面2 0 3 g及該前反射 面2 0 6 g皆為弧面。 請參閱第九圖所示,第八實施例與第六實施例最大的差 鲁別在於:在第八實施例中’該後反射面2 〇 3 h係佔據該導 ,本體2 0 0 h後端的全部’該前反射面2 〇 6 佔據該 導光本體2 Q 0 h前端的全部(因此該等第二反射面的最前 端係為一前反射面2 〇 6 h)。 請參閱第十圖所示,第九實施例與第八實施例最大的差 別在於:在第九實施例中,該後反射面2〇3 i及該前反射 面2 0 6 i皆為弧面。 請參閱第十一圖所示,此係為導光本體2 〇 〇」的前視 圖,其中該出光面2 0 5 j係相反於該下反射面2 〇 4 j, 並且禮下反射面2 0 4 j及該出光面2 〇 5 j之間的距離係 沿著遠離該發光單元(圖未示)的方向漸漸縮小。例如:該 下反射面2 0 4 j係沿著遠離該發光單元(圖未示)的方向 愈來愈靠近該出光面2 0 5 j。 請參閱第十二圖所示,此係為導光本體2 〇 〇 k的上視 圖,其中該前反射面206k係相反於該後反射面2 〇 3 k,並且該前反射面2 0 6 k及該後反射面2 〇 3 k之間的 '距離係沿著遠離該發光單元(圖未示)的方向漸漸縮小。例 .如:該前反射面2 0 6 k及該後反射面2 〇 3 k同時沿著遠 11 M362999 離1二單兀(圖未示)的方向漸漸彼此接近。 j ’上述第十一圖及第十二圖的實施例亦可加 一 ===及該後反射面之間的距離係沿著ΐ離該 的距離係沿著遠離該發光單元的方向漸漸縮小面之間 -、=針㈣光產生結構係具有下列的優點存在: ,十對^光單兀内之多組光源」及「與該 ,出光面相對位置關係」’以設計複數組圖案之带狀大 式’因此可增加本創作㈣錢生結構之光 佈itt亚且使得沿著導光本體之長度方向的照度分 二、2料光單元㈣賤出絲之反射㈣ 角度之平面或弧面,藉由控制該發光單^傾斜 之行進方向,可大為提升光·效率。I生之光束 J·隹本創作之所有範圍應以下述之 ^合於本創作中請專利範圍之精神缝類關為準’ 本創作之_中,任何熟悉該項技4::例’ ::可輕易思及之變化或修飾皆可心:¾ 【圖式簡單說明】 第A圖係為習知均勻光產生έ士槿之☆雜 第-Β圖係為習知均勾光產生:構之導⑵意圖; 合之立體示意圖; ' 早7014圖案單元配 第-C圖係為習知均勻衫生結構之 合之側視示意圖; ' 早70與圖案單元配 第二Α圖係為本劊作均勾光 弟冑施例之立體分 12 M362999 ^ 解示意圖; 第二B圖係為本創作均勻光產生結構之導光單元與圖案單元 配合之第一實施例之側視示意圖; 第二C圖係為本創作均勻光產生結構之發光單元與第一種圖 案單元配合之第一實施例之底視示意圖; 第二D圖係為本創作均勻光產生結構之發光單元與第二種圖 案單元配合之第一實施例之底視示意圖; 第二E圖係為本創作均勻光產生結構之發光單元與第三種圖 φ 案單元配合之第一實施例之底視示意圖; 第三圖係為本創作均勻光產生結構之導光單元之第二實施例 之側視不意圖, 第四圖係為本創作均勻光產生結構之導光單元之第三實施例 之侧視不意圖, 第五圖係為本創作均勻光產生結構之導光單元之第四實施例 之侧視示意圖; 第六圖係為本創作均勻光產生結構之導光單元之第五實施例 之侧視不意圖, • 第七圖係為本創作均勻光產生結構之導光單元之第六實施例 之侧視不意圖, 第八圖係為本創作均勻光產生結構之導光單元之第七實施例 之侧視不意圖; •第九圖係為本創作均勻光產生結構之導光單元之第八實施例 —之側視示意圖; 第十圖係為本創作均勻光產生結構之導光單元之第九實施例 之側視不意圖; -第十一圖係為本創作均勻光產生結構之導光單元之第十實施 13 M362999 . 例之前視示意圖;以及 第十二圖係為本創作均勻光產生結構之導光單元之第十一實 施例之上視示意圖。 【主要單元符號說明】 [習知] 發光元件 10 出光面 110 反射面 111 入光面 112 反射面 113 導光本體 11 C形反射罩體 1 2 圖案 13 [第一實施例] 導光單元 2 0a 導光本體 2 0 0 入光面 2 0 1 第一反射面 2 0 2 後反射面 2 0 3 下反射面 2 0 4 出光面 2 0 5 反射單元 2 1 a 發光單元 2 2a 紅色發光二極體 R 綠色發光二極體 G 藍色發光二極體 B 圖案單元 2 3a 圖案 2 3 0 圖案 2 3 1 圖案 2 3 2 14 M362999Ml = 1.048 x4e0096ri +CR M2 = OA5lxLGe009^- +CG M3 = 0.6l3xLBeom4ri +CB M362999 where ri, r2, Γ3 are the radius variables of the circle area of each dot in each set of patterns, LR, LG, and lb are respectively red light , green light, blue light in the light guiding body 2 intensity correction coefficient, and CR, CG, CB are red light, green light blue ^ light distribution constant of the light guiding body 200a. Because f, the first microstructure of the microstructured soil group M1 has a circular area of 0.35 mm, and is 5 positions away from the light-emitting unit 2 2 a; the other is a circular microstructure of 0.38 mm. , every ▲ proportional increase: the circular size of the microstructure group M2 is a circular micro-area with an area of 〇72_2, which is 5mm 4 away from the light-emitting unit 2 2 3; another ^ 0.76mm The circular microstructure 'is increased in proportion to every 5 mm. The microstructure = ^^ solid is small - a circular microstructure with an area of (10) ^, # away from the light unit 2 2 a is 5 coffee; the other area is 114 ugly ^ circular microstructure 'every 5mm is large according to the ratio. - (23a, 23a. The change (the second D picture and the: e picture: the pattern change on the left side of the dotted line) can also be made into the following distance (four) formula (where the second D picture of the three sets of patterns R ' G ' β = photodiode R, green LED and blue LED: B, j, E, three sets of patterns R", G' B" corresponding to red light-emitting diode R, green Light-emitting diode G and blue light-emitting diode B): R : C1R + 4X - X(X-1)/C2R, x=0, L 2" G : C] G + 4Χ - X(Xl)/ c2G, χ=〇, i, 2,... B: CiB + 4X-X(Xl)/c2B, x=〇, 12” where X is the positional variable of each point in each set of patterns (four) La, G , the initial positional constant of B; C2R, C2 = ^^ G, B, the positional change ratio constant of the two sets of patterns. M362999 Referring to the third figure, the biggest difference between the second embodiment and the first embodiment is that In the second embodiment, the rear reflecting surface 2 〇 3 b is an inclined surface having a predetermined inclination angle for reflecting the light beam onto the pattern unit 2 3 b. In other words, the back reflecting surface 2 〇3 b polarizing effect, the beam can be biased toward the light guiding body 2 0 0 b the pattern unit 2 3 b at the bottom (lower reflecting surface 2 0 4 b) for enhancing the effect of light scattering and reflection and reducing the proportion of the ineffective beam to enhance the beam energy directed to the emitting surface 2 〇 5 b In order to achieve the highest luminous efficiency and uniformity. The maximum difference between the third embodiment and the second embodiment is shown in the fourth figure. In the third embodiment, the rear reflecting surface 2 0 3 c is composed of plural The inclined surface 2 0 3 0 c is composed, and the polarizing effect of the rear reflecting surface 2 0 3 c can also achieve the advantages as mentioned in the second embodiment above. Please refer to the fifth figure, The greatest difference between the fourth embodiment and the second embodiment is that in the fourth embodiment, the rear reflecting surface 2 0 3 d is a curved surface (the area of the isolated surface is larger than the area of the curved surface in the first embodiment). ), which is used to reflect the light beam onto the pattern unit 203, and the concentrating effect of the back reflecting surface 2 0 3 d can also achieve the advantages mentioned in the second embodiment above. Referring to the sixth figure, the greatest difference between the fifth embodiment and the fourth embodiment is that in the fifth embodiment The rear reflecting surface 2 0 3 e is composed of a plurality of isolated faces 2 〇 3 0 e , and the condensing effect of the rear reflecting surface 2 0 3 e can also reach the above mentioned in the second embodiment. The advantage of the sixth embodiment is the greatest difference between the sixth embodiment and the other embodiments described above. In the sixth embodiment, the light guiding body 2 〇0 f has one and the back reflecting surface. 2 〇3 f symmetrical front reflecting surface 2 0 6 f 'The rear reflecting surface 2 0 3 f occupies a part of the rear end of the light guiding body 2 0 0 f, the front reflecting surface 2 〇6 f occupies the light guiding body A portion of the front end of the 〇f is M3 62999 ^ ' and the rear reflecting surface 2 Ο 3 f and the front reflecting surface 2 Q 6 f are both inclined, and the surface 2 is located at the light guiding body 2 Ο 0 f: Take the upper end and be between the back reflection surface 2 Ο 3 f and the front reflection surface 2 Ο 6 f. Please refer to the eighth figure, the biggest difference between the seventh embodiment and the sixth embodiment is that in the seventh embodiment, the rear reflecting surface 2 0 3 g and the front reflecting surface 2 0 6 g are arcs. surface. Referring to the ninth figure, the greatest difference between the eighth embodiment and the sixth embodiment is that in the eighth embodiment, the rear reflecting surface 2 〇 3 h occupies the guiding body, and after the body is 2 0 0 h. All of the front end's front reflecting surface 2 〇6 occupies all of the front end of the light guiding body 2 Q 0 h (so the front end of the second reflecting surfaces is a front reflecting surface 2 〇 6 h). Referring to the tenth figure, the greatest difference between the ninth embodiment and the eighth embodiment is that in the ninth embodiment, the back reflection surface 2〇3 i and the front reflection surface 2 0 6 i are all curved surfaces. . Referring to the eleventh figure, this is a front view of the light guiding body 2 ,", wherein the light emitting surface 2 0 5 j is opposite to the lower reflecting surface 2 〇 4 j, and the lower reflecting surface 2 0 4 j and the distance between the illuminating surface 2 〇 5 j are gradually reduced in a direction away from the light emitting unit (not shown). For example, the lower reflecting surface 2 0 4 j is closer to the light emitting surface 2 0 5 j in a direction away from the light emitting unit (not shown). Referring to FIG. 12, this is a top view of the light guiding body 2 〇〇k, wherein the front reflecting surface 206k is opposite to the back reflecting surface 2 〇3 k, and the front reflecting surface is 2 0 6 k And the distance between the rear reflecting surfaces 2 〇 3 k is gradually reduced in a direction away from the light emitting unit (not shown). For example, the front reflecting surface 2 0 6 k and the rear reflecting surface 2 〇 3 k are gradually approaching each other along the direction of the distance 11 M362999 from the 1st unit (not shown). j 'The above-mentioned eleventh and twelfth embodiments may also add a === and the distance between the rear reflecting surfaces is gradually reduced along the distance away from the lighting unit. The surface-to-needle (four) light-generating structure has the following advantages:: a plurality of sets of light sources in ten pairs of light single-spots and "relative positional relationship with the light-emitting surface" are designed to design a complex array pattern The strip-shaped large type can therefore increase the light of the creation of the creation of the material (4) and the illuminance along the length of the light-guiding body is divided into two, two light units (four) reflection of the silk (four) angle plane or arc By controlling the direction of travel of the illuminating unit, the light and efficiency can be greatly improved. All the scope of the creation of the light beam of J. 隹 应 应 应 应 应 应 合 合 合 合 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 本 本 本 本 本 本 本: It can be easily thought of changes or modifications: 3⁄4 [Simple description of the picture] The picture A is a well-known uniform light-generating έ 槿 ☆ 杂 Β Β Β Β Β Β 习 习 习 习 习Guide (2) Intention; a three-dimensional schematic diagram; 'Early 7014 pattern unit with the first-C diagram is a schematic view of the combination of the conventional uniform shirt structure; 'Early 70 and the pattern unit with the second map is based on The schematic diagram of the first embodiment of the light guide unit and the pattern unit for creating a uniform light generating structure is the side view of the first embodiment; The figure is a bottom view of the first embodiment of the light-emitting unit of the uniform light-generating structure and the first pattern unit; the second D-picture is the light-emitting unit and the second pattern unit for creating a uniform light-generating structure. A schematic bottom view of the first embodiment; the second E diagram is a creation A bottom view of the first embodiment of the light-emitting unit of the uniform light-generating structure and the third embodiment of the φ-shaped unit; the third figure is a side view of the second embodiment of the light-guiding unit for creating a uniform light-generating structure The fourth figure is a side view of the third embodiment of the light guiding unit for creating a uniform light generating structure, and the fifth figure is the side of the fourth embodiment of the light guiding unit for creating a uniform light generating structure. 6 is a side view of the fifth embodiment of the light guiding unit for creating a uniform light generating structure, and the seventh drawing is a sixth embodiment of the light guiding unit for creating a uniform light generating structure. The eighth figure is a side view of the seventh embodiment of the light guiding unit for creating a uniform light generating structure; the ninth drawing is the first light guiding unit for creating a uniform light generating structure. 8th embodiment - a side view of the ninth embodiment of the light guiding unit for creating a uniform light generating structure; - the eleventh drawing is a guide for creating a uniform light generating structure Light unit The tenth embodiment 13 M362999. The front view of the example; and the twelfth figure is a top view of the eleventh embodiment of the light guiding unit for creating a uniform light generating structure. [Description of main unit symbols] [Generally known] Light-emitting element 10 Light-emitting surface 110 Reflecting surface 111 Light-incident surface 112 Reflecting surface 113 Light-guiding body 11 C-shaped reflector body 1 2 Pattern 13 [First embodiment] Light-guiding unit 2 0a Light guiding body 2 0 0 light incident surface 2 0 1 first reflecting surface 2 0 2 rear reflecting surface 2 0 3 lower reflecting surface 2 0 4 light emitting surface 2 0 5 reflecting unit 2 1 a light emitting unit 2 2a red light emitting diode R Green light-emitting diode G Blue light-emitting diode B Pattern unit 2 3a Pattern 2 3 0 Pattern 2 3 1 Pattern 2 3 2 14 M362999
圓 形微結構 圓 形微結構 圓 形微結構 圖案單元 2 3 a 圖案 R 、 G " B ^ 圖案單元 2 3 a // 圖案 R // 、G,,- 、B // [第二實施例] 圖案單元 2 3 b 導光本體 2 0 0 b 後反射面 2 0 3 b 下反射面 2 0 4 b 出光面 2 0 5 b [第三實施例] 後反射面 2 0 3 c 傾斜面 2 0 3 0 ( [第四實施例] 後反射面 2 0 3 d 圖案單元 2 3 d [第五實施例] 後反射面 2 0 3 e 弧面 2 0 3 0 ( [第六實施例] 導光本體 2 0 0 f 後反射面 2 0 3 f 出光面 2 0 5 fCircular microstructure circular microstructure circular microstructure pattern unit 2 3 a pattern R , G " B ^ pattern unit 2 3 a // pattern R // , G,, -, B // [second embodiment ] pattern unit 2 3 b light guiding body 2 0 0 b rear reflecting surface 2 0 3 b lower reflecting surface 2 0 4 b light emitting surface 2 0 5 b [third embodiment] rear reflecting surface 2 0 3 c inclined surface 2 0 3 [ [Fourth embodiment] Back reflection surface 2 0 3 d Pattern unit 2 3 d [Fifth embodiment] Back reflection surface 2 0 3 e Arc surface 2 0 3 0 ( [Sixth embodiment] Light guiding body 2 0 0 f Rear reflection surface 2 0 3 f Light surface 2 0 5 f
Ml M2 M3 15 M362999 前反射面 2 0 6 f [第七實施例] 後反射面 2 0 3 g 前反射面 2 0 6 g [第八實施例] 導光本體 2 0 0 h 後反射面 2 0 3 h 前反射面 2 0 6 h [第九實施例] 後反射面 2 0 3 i 前反射面 2 0 6 i [第十實施例] 導光本體 2 0 0 j 下反射面 2 0 4 j 出光面 2 0 5 j [第十一實施例] 導光本體 2 0 0 k 後反射面 2 0 3 k 前反射面 2 0 6 kMl M2 M3 15 M362999 Front reflection surface 2 0 6 f [Seventh embodiment] Back reflection surface 2 0 3 g Front reflection surface 2 0 6 g [Eighth embodiment] Light guide body 2 0 0 h Rear reflection surface 2 0 3 h front reflecting surface 2 0 6 h [ninth embodiment] rear reflecting surface 2 0 3 i front reflecting surface 2 0 6 i [tenth embodiment] light guiding body 2 0 0 j lower reflecting surface 2 0 4 j light Face 2 0 5 j [Eleventh Embodiment] Light guiding body 2 0 0 k Rear reflecting surface 2 0 3 k Front reflecting surface 2 0 6 k
1616